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Abstract

It is clearly in the interest of network administrators to detect hosts within their networks that are

infiltrated by stealthy malware. Infected hosts (also called bots) can exfiltrate sensitive data to adversaries,

or lie in wait for commands from a bot-master to forward spam,launch denial-of-service attacks, or host

phishing sites, for example. Unfortunately, it is difficultto detect such hosts, since their activities are

subtle and do not disrupt the network.

In this thesis, we hypothesize that malware-infected hostsshare characteristics in their network behav-

iors, which are distinct from those of benign hosts. Our approach works by aggregating “similar” network

traffic involving multiple hosts. We identify key characteristics that capture basic properties of botnet

operation, and that can be observed even within coarse network traffic summaries, i.e., flow records. Us-

ing network traffic collected at the edge routers of the Carnegie Mellon University campus network, and

network traffic generated from real bot instances in virtualmachines and honeynets running in the wild,

we demonstrate that this approach can reliably detect infected hosts with very few false positives.

In addition to identifying relevant behavioral features within hosts’ network activities, another con-

tribution of this thesis is in developing efficient algorithms for analyzing network traffic. Our algorithms

utilize methods from diverse areas, including statistics,data mining, machine learning, and metric embed-

dings. We also introduce a technique to passively infer the application implementation on a host given only

anonymized traffic summaries. This technique enables us to detect malware that is browser-dependent,

and can also be applied to improve the accuracy of traffic deanonymization, i.e., identifying the web sites

in anonymized flow records.

To complement empirical analyses, we apply analytical models from network theory to study peer-to-

peer botnets. We focus on a structural property of networks,which characterizes the tendency for edges

to exist between “similar” nodes, and examine its effect on network resiliency and the network’s ability to

recover after a fraction of the nodes are removed. We show that previous works may have over-estimated

the power of certain botnet takedown strategies, and identify an alternative strategy that is more effective

than those explored previously.
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Chapter 1

Introduction

Stealthy malware is largely responsible for attacks on the Internet infrastructure, for the proliferation

of unsolicited spam e-mails, and for exfiltrating private information from end users and organizations.

Infected hosts (also calledbots) are also used to host, or serve as proxies for, phishing sites, spammer sites,

and those with other malicious content. These activities are performed by infected hosts at the command

of the attacker, i.e., the bot-master, where communications between bots and the bot-master often take

place over existing network protocols, including InternetRelay Chat (IRC), HTTP, and peer-to-peer (P2P)

networks.

Unfortunately, it is difficult to detect hosts infected withsuch malware, since by default they do lit-

tle to arouse suspicion: e.g., generally their communications neither consume significant bandwidth nor

involve a large number of targets. Analysis can be further complicated by infected hosts encrypting their

network traffic, or communicating over peer-to-peer protocols to “blend-in” with peer-to-peer file-sharing

traffic. While bots enlisted in aggressive scanning for other vulnerable hosts can be detected using known

techniques, it would be better to detect the infected hosts prior to them engaging in malicious activities.

For these reasons, bot detection has remained a challengingproblem.

In this thesis, we hypothesize that hosts infected with stealthy malware share behavioral characteristics

in their network activities that are distinct from those of benign hosts. We propose methods that detect

infected hosts by simply identifying aggregates of “similar” communications, using only information

contained in coarse network traffic summaries. In this chapter, we first review existing approaches for bot

detection, and then present our approach and contributions.
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1.1 Previous Bot Detection Techniques

Generally speaking, communications between bots and the bot-master can take place either through a

centralized channel, e.g., Internet Relay Chat (IRC) or HTTP, or in a decentralized manner over peer-to-

peer (P2P) protocols. In a centralized topology, every bot reports directly to the bot-master, whereas in

a decentralized topology messages are relayed through other peers in the botnet. Examples of botnets

that utilize the former include GTBot, AgoBot, SDBot, SpyBot [7], Zeus [15], Rustock [23], Click-

bot [38], MegaD [24], Torpig [137], while Sinit, Phatbot [135], Storm [52, 66, 116, 138], Nugache [138],

Waledac [17, 132], Conficker [117] fall into the latter category. Some botnets also have a hierarchical

organization that includes both centralized and decentralized topologies at distinct layers (e.g., Storm,

Waledac). The Stuxnet worm [45], which specifically targetsmachines in industrial systems that may not

be connected to the Internet, communicates with centralized HTTP command-and-control servers (if the

infected host is online), but also utilizes a P2P component to allow updates to be propagated to other bots

in the local network.

Due to their unusual command-driven and coordinated nature, bot detection techniques largely work

by examining network traffic for anomalies. Previous work inthis area can be grouped into the following

categories:

Signature-based Techniques. This group of proposals often rely on heuristics that assumecertain mod-

els of botnet architecture or behavior. Such assumptions include IRC-based command-and-control [14, 29,

51, 93, 119], or the presence of scanning activities or denial-of-service attacks performed by the infected

hosts [80]. These approaches, not unlike signature-based intrusion detection, can be evaded by malware

that do not conform to their profile.

Other proposals generate traffic signatures that can be usedin network intrusion detection systems

(e.g., Bro [113]). For example, by examining bot binaries running in controlled environments, Perdisci et

al. [115] clustered suspicious HTTP traffic that share similar statistical and structural properties. Wurzinger

et al. [151] identified changes in the network behaviors of a bot, which are assumed to indicate that it re-

ceived commands from the bot-master. Common substrings in the traffic immediately preceding behavior

changes are used to construct signatures. These approachesare hindered by bots that encrypt their com-

munications, and require access to the malware binary.
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Behavior-based Techniques. In contrast to signature-based approaches, which are limited to specific

activities performed by the infected hosts, several works proposed to detect bots by examining behavioral

characteristics of their network traffic. These works focuson the spatial-temporal similarities between the

behaviors of hosts participating in the same botnet, e.g., communication with the bot-master’s command-

and-control servers and performing the same malicious activities. For instance, BotHunter [53] detects

compromised hosts by identifying events that take place when a vulnerable host is infected, and which

show evidence of coordinated activities between the infected host and the bot-master. BotSniffer [55]

identifies hosts with similar suspicious network activities, namely scanning and sending spam emails,

and who also share common communication contents, defined bythe number of shared bi-grams. Bot-

Miner [54] groups together hosts based on destination or connection statistics (i.e., the byte count, the

packet count, the number of flows, etc.), and on their suspected malicious activities (i.e., scanning, spam-

ming, downloading binaries, or sending exploits). However, these approaches still rely on certain models

of bot behavior, using signatures to detect the occurrence of infections and suspicious activities (and hence

may require access to full packets that remain unencrypted).

Lu et al. [94, 95] assume bot activities to be more synchronized than human activities, and detect

infected hosts by looking for hosts with similar byte frequency distributions in their payload within the

same time window, e.g., one second. This approach can thus beevaded with encryption, and may not be

applicable to delay-tolerant botnets [21]. Giroire et al. [50] proposed methods to detect centralized botnet

command-and-control traffic by monitoring persistent and regular connections made to the same group

of destination IP addresses, i.e., the botnet control servers. Since legitimate user traffic can also appear

to be persistent and regular, this approach requires whitelisting common sites that benign users visit. It

can also be evaded by malware that communicate in a decentralized manner over peer-to-peer protocols.

BotProbe [56] exploits the determinism in the bots’ pre-programmed behavior in response to commands

from the bot-master. It actively replays, modifies, and intercepts packets of suspicious connections, and

utilizes hypothesis testing to distinguish bot traffic fromthose of human users. However, this approach is

hindered by encryption, and may require human participation.

Detecting Specific Botnet Operations. Another line of work includes techniques for identifying behav-

iors involving certain botnet operations. Ramachandran etal. [123] observed that bot-masters lookup DNS

blacklists to tell whether their bots are blacklisted. Theythus monitor lookups to a DNS-based blacklist to

identify bots. Fast-flux is a technique used by botnets to hide the backend control server, or to host spam

3



campaigns and phishing websites [67]. It operates by using dynamic DNS to establish a proxy network

based on the infected hosts, such that a single domain is associated with many different IP addresses.

Methods for identifying fast-flux domains include observing the number of DNS A records mapping to a

hostname, and the geographic diversity in the IPs associated with a domain [64, 65, 109]. Hu et al. [68]

also proposed detecting hosts participating in fast-flux networks by identifying HTTP redirection activity.

Infiltration and Disruption. Since some peer-to-peer botnets are built on existing network protocols,

e.g., the Overnet protocol based on the Kademlia distributed hash table [97], researchers have infiltrated

botnet networks in attempts to enumerate the infected hosts[77] or to disrupt botnet operation. As an

example of the latter, researchers have injected a large number of fake nodes into the network to perform

Sybil attacks [40, 60, 66], including content poisoning or eclipsing certain nodes from the rest of the P2P

network. These studies showed that the effectiveness of theattack depends on the attack duration as well

as the number of Sybils.

1.2 Thesis Approach and Contributions

Several drawbacks are present in previous works described in Section 1.1. First, there are common as-

sumptions about specific models of behavior performed by theinfected hosts (e.g., the protocol of com-

munication, the presence of scanning or spamming activities), or reliance on signatures appearing in their

communication content. These assumptions can be evaded by new malware that encrypt their messages or

that move to alternative communication architectures (e.g., private peer-to-peer protocols designed by the

bot-masters). Second, many proposals require informationcontained in network packets, which may not

be feasible to collect in large networks due to bandwidth andstorage requirements. Rather than packets,

coarse summaries of each network connection are often stored instead, e.g., Cisco NetFlow [1] or Argus

flows1. These drawbacks highlight the tension in the arms race between bot-masters and network defend-

ers: while malware is becoming increasingly sophisticated, we have less information on which to base our

investigations.

In this thesis, we take on the perspective of a network administrator that has access to traffic crossing

the border of her network, and that aims to identify internalhosts that are infected. We hypothesize that

infected hosts share certain characteristics in their network behaviors that are distinct from those of benign

hosts. Since malware rarely infects a single victim in a large enterprise network, such characteristic behav-

1http://www.qosient.com/argus
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iors should appear roughly coincidentally at multiple machines in the network. Based on this hypothesis,

our approach simply identifies aggregates of “similar” network traffic that are associated with multiple

hosts. In contrast to previous behavior-based malware detection proposals that focus (in part) on similar

malicious activities performed by multiple hosts [54, 55],we aim to exploit characteristic behaviors that

are fundamental to the method by which infected hosts are engaged with the bot-master.

We first demonstrate the effectiveness of this approach in detecting infected hosts participating in cen-

tralized botnets. In particular, to avoid high bandwidth and storage requirements in collecting full packet

data, our technique only utilizes information contained innetwork flow records, i.e., Argus records, which

include the source and destination addresses and ports, flowstart and end times, packet and byte counts,

and the first 64 bytes of the flow payload. We further address the detection of increasingly sophisticated

malware variants, specifically those that may not be confinedto infecting hosts of a particular operating

system, and those that communicate via resilient peer-to-peer network topologies. These later detection

techniques explicitly avoid payload inspection altogether (even the partial 64-byte payload) to accommo-

date malware that encrypt their communications.

To complement our empirical analyses, we apply models from network theory to peer-to-peer botnets,

and investigate the effectiveness of various botnet takedown strategies. Network models allows the “use-

fulness” of the botnet, as well as the impact of takedown attempts, to be evaluated using graph properties,

e.g., the size of the largest connected component, the average distance between pairs of nodes. We fo-

cus on a particular structural characteristic of networks —assortativity — that affects the resilience of a

network to takedown attempts and also its ability to recoverafter a fraction of nodes are removed.

The rest of this section presents an overview of our approachand contributions.

1.2.1 Aggregating Network Traffic for Malware Detection

To detect infected hosts participating in centralized botnets, we propose a system, called TĀMD (an ab-

breviation for “Traffic Aggregation for Malware Detection”) [155], that distills traffic aggregates from the

traffic passing the edge of the network. Each traffic aggregate is defined by certain characteristics that the

traffic grouped within it shares in common. By refining the aggregates to include only traffic that shares

multiple relevant characteristics, T̄AMD constructs a small set of new aggregates (i.e., without previous

precedent) that it recommends for examination, for example, by more targeted (e.g., signature-based)

intrusion detection tools.

Specifically, the characteristics on which TĀMD aggregates traffic include:
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• Common destinations: TĀMD analyzes the external networks with which internal hosts communi-

cate, and identifies traffic to busier-than-normal externaldestinations. Previous studies have shown

that the destination addresses with which a group of hosts communicates exhibit stability over

time [2, 84]. Since common sites are generally better administered and have a small chance of

being compromised by the attacker, malware activities are hence likely to exhibit communication

patterns outside the norm, i.e., contacting destinations that the internal hosts would not have con-

tacted otherwise.

• Similar payload: TĀMD identifies traffic with similar payloads or, more specifically, payload pre-

fixes (i.e., the first 64 bytes of each flow) for which a type of edit distance (string edit distance with

moves [30]) is small. Intuitively, command-and-control traffic between a bot-master and the bots

should share significant structure, i.e., pertaining to theprotocol syntax, and would have a low edit

distance between them.

• Common software platforms: TĀMD passively fingerprints the platforms of internal hosts, and

identifies traffic associated with hosts with common operating systems. Most malware tend to be

platform-dependent, e.g., infecting hosts running a particular operating system.

Alone, each of these characteristics for forming traffic aggregates would be too coarse for identifying

malware, as legitimate traffic can exhibit these characteristics as well. In combination, however, they can

be quite powerful at extracting malware communications (and relatively few others). In Chapter 2, we

show that with traffic generated from real bot instances, we were able to reliably extract this traffic from

all traffic passing the edge of the Carnegie Mellon University campus network, while the number of other

aggregates reported is very low. This is achieved even when the network traffic is recorded in the form of

flow records, and when the number of infected hosts comprise only 0.0097% of all internal hosts in the

network.

In addition to identifying traffic aggregates and ways of combining them to find malware-infected

hosts, our contributions also include efficient algorithmsfor analyzing network traffic, which are drawn

from diverse areas including signal processing, data mining, and metric embeddings. We also detail each

of these algorithms in Chapter 2.

There are several approaches by which malware writers can attempt to avoid detection by T̄AMD .

These approaches include 1) encrypting their traffic, so that our payload comparisons will be ineffective,

2) exploiting cross-platform applications (e.g., web browsers), so that the malware is no longer operating
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system-dependent, and 3) switching to alternative botnet architectures, such as those built over P2P net-

works, where infected hosts do not need to contact a single centralized server. To accommodate the use

of encryption, our techniques can be generalized to define encrypted content as “similar”, though a better

method perhaps is to move away from payload inspection altogether (even the partial 64-byte payload),

since this information is not typically included in flow records. We further address the other two meth-

ods of evading T̄AMD by developing techniques to perform passive application fingerprinting (targeting

browser-dependent malware in particular) and techniques to detect P2P bots, described in the following

subsections.

1.2.2 Passive Browser Fingerprinting from Coarse Traffic Summaries

A limitation to the TĀMD system, described above, is that it only forms platform aggregates based on the

hosts’ operating system. As such, it would not be able to detect malware that is application-dependent, but

otherwise operating system-independent. Such malware (e.g., theTrojan.PWS.ChromeInject tro-

jan 2 that exploits Mozilla Firefox, theMSIL.Yakizakeworm 3 that exploits Mozilla Thunderbird, the

Imspam trojan4 that sends spam through MSN or AOL Messenger) could span multiple traffic aggregates

formed by operating system fingerprinting alone, or represent only a small subset of an operating system

aggregate. In either case, the mismatch between the software fingerprinted (the O/S) and the software

exploited (e.g., the web browser) can allow the infected hosts to go unnoticed.

In addressing application-dependent malware, we focus particularly on those that are browser-dependent,

since web browsers are arguably one of the most important andwidespread applications in use today.

Rather than examining the traffic payload (e.g., client datain HTTP headers), we present a new technique

to infer the web browser implementation on a host using only information contained in flow records [157].

Our observation is that differences in browser implementations will result in varying network behaviors,

even when the same web page is retrieved. For example, browsers may retrieve objects on a given page in

different orders, there can be different numbers of objectsin one connection, and the number of simulta-

neously active connections also varies.

However, aside from the content and structure of the websites, users’ browsing behavior, browser

configuration, geographic location, and the client hardware configuration can also affect browser network

behavior. To overcome these challenges, we collected network traffic to top web sites using different

2http://www.bitdefender.com/VIRUS-1000451-en--Trojan.PWS.ChromeInject.B.html
3http://www.symantec.com/security response/writeup.jsp?docid=2007-092623-0634-99
4http://www.symantec.com/security response/writeup.jsp?docid=2007-041200-4330-99
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browser implementations from hosts in PlanetLab [25], which is a geographically distributed network of

machines. This allows us to construct a browser classifier based on Support Vector Machines (SVM) [31].

Given the limited amount of information contained in flow records, we demonstrate that our browser

classifier performs well on real user traffic recorded at the border of the Carnegie Mellon University

campus network — even when the training and testing datasetsare from different time frames, to different

websites, and collected at different geographic locations.

In Section 3, we show that incorporating browser fingerprinting into the platform aggregation step

in TĀMD induces small overhead, while allowing the detection of a wider range of malware (i.e., both

those that are operating system-dependent and browser-dependent). Moreover, in a second application

of browser fingerprinting, we demonstrate that knowledge ofthe client browser can be used to achieve

a higher accuracy in the deanonymization of websites than has previously been achievable from flow

records. In our experiments on traffic from our campus network, the precision of website identification

can be improved by 17% on average from the case without knowledge of the browser implementation.

1.2.3 Telling Peer-to-Peer File-sharing and Bots Apart

In contrast to centralized botnets, peer-to-peer (P2P) bots do not communicate with a single server, but

rather relay messages between other peers in the network. The motivations for bots using P2P substrates

are similar to those underlying the use of P2P protocols for file-sharing; the takedown of Napster, for ex-

ample, highlighted the limitations of a centralized “command-and-control” infrastructure in that domain.

It is thus not surprising that P2P substrates now support both file-sharing and botnet activities. Since

no single control server exists for P2P botnets, it also becomes possible for infected hosts to evade the

destination aggregation step in TĀMD .

A consequence of this common use of P2P technologies is that botnet command-and-control traffic

will tend to “blend into” a background of P2P file-sharing, making it difficult to separate these two types

of traffic. In both cases, status information about available peers needs to be maintained constantly to en-

sure the connectivity of the network; peers experience a high connection failure rate due to the dynamics

of nodes joining and leaving (i.e., “churn”); and peers participate in both client and server activities. This

commonality is punctuated by the fact that one highly publicized and well-studied P2P botnet, Storm,

built its communication protocol based on the Overnet network, whose distributed hash table implemen-

tation [97] is incorporated in both eDonkey5 and BitTorrent6 file-sharing applications.

5http://wiki.amule.org/index.php/FAQ eD2k-Kademlia
6http://bittorrent.org/beps/bep 0005.html
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In light of this, the primary problem facing the detection ofsuch bots is differentiating them from

other P2P hosts. We focus specifically on the problem of P2P bot detection given this challenge [156].

By targeting basic properties of bots that operate over P2P networks, we construct a series of tests on

network traffic to separate them from P2P file-sharing hosts.The characteristics on which our tests are

based include:

• Volume: Since file-sharing hosts generally perform large multi-media file transfers (e.g., MP3,

movies), but bots almost never do, traffic volume can be an rough indicator of suspicious activity.

• Peer churn: The peer membership of a file-sharing network is very dynamic, due to peers con-

stantly joining and leaving the network. Studies [58, 126, 140] have shown that most file-sharing

hosts appear only once a day, and remain connected for short durations. Bots, by contrast, are likely

to experience less churn in their peer membership, since they are required to maintain connectiv-

ity to other peers to receive and execute commands from the bot-master. A bot also cannot control

when network access will be available, and so it is often opportunistic in communicating with peers,

i.e., whenever it has a chance. In addition, each bot maintains a list of known peers with which to

communicate, such that it tends to contact the same hosts repeatedly.

• Human-driven versus Machine-driven: A more fundamental difference between bots and file-

sharing hosts is that, while file-sharing activities are mainly human-driven, bots are almost entirely

automated. This causes much of their traffic to exhibit temporal similarity that is rarely seen among

those from human activities.

We use these characteristics in combination to build a technique for separating P2P bots from P2P file-

sharing hosts. Evaluated on network traffic observed at the border of the Carnegie Mellon University

campus network, our technique can detect Storm bots with up to 87.50% true positive rate and only 0.47%

false positives, for example.

Another contribution of our work is in quantifying the degree to which malware would need to alter

their behaviors to evade detection. We show that evading ourtechniques would require significant behav-

ioral changes to existing botnets, and, due to the way in which our tests are constructed, it would typically

not be evident to the bots how much change would be sufficient for evasion. Details of our technique and

evaluations are presented in Chapter 4.
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1.2.4 Revisiting Analytical Botnet Models

An analytical approach to studying botnets, adopted by several previous works [36, 41, 90, 91], is to apply

graph models from network theory to P2P botnets. Each node inthe network represents an infected host,

and edges reflect communications between the hosts. Networkmodels allow the “usefulness” of botnets

to be quantified using properties of the graph, such as the diameter, the size of the largest connected

component, and the average shortest distance between nodes. More importantly, the models can be used

to assess the effectiveness of strategies aimed at taking down a botnet. For example, one strategy that

was found to be effective for some network topologies is to target nodes with high degree, i.e., that

communicate with many hosts [36, 41, 158].

We observe that previous works applying graph models to P2P botnets do not consider an important

property of networks — assortative mixing [102]. Assortativity refers to the tendency for a node to

attach to other “similar” nodes, and is commonly examined interms of a node’s degree, i.e., high-degree

nodes are likely to be neighbors of other high-degree nodes.This property is also called the degree

correlation. The existence of this correlation between neighboring nodes has been observed in many real-

world networks [102, 104, 111]. It has also been found to be a property of growing networks [19, 86],

where the network increases in size as nodes join over time, as is true in a botnet as more hosts become

infected.

In Chapter 5, we show that assortativity plays an important role in network structure, such that ne-

glecting it can lead to an over-estimation of the effectiveness of botnet takedown strategies. By generating

networks with varying levels of degree correlation, we demonstrate that a higher level of assortativity al-

lows the network to be more resilient to certain takedown strategies, including those found to be effective

by previous works. Moreover, since bots are dynamic entities that can react and adapt to changes in the

network, the botnet can potentially “heal” itself after a fraction of its nodes are removed. We specifically

explore cases where nodes can compensate for lost neighborsby creating edges to other nearby nodes,

e.g., that are withinh hops. Our simulations show that the graph can recover significantly after takedown

attempts, even whenh is small, and that higher levels of assortativity can allow the network to recover

more effectively.

We also identify alternative takedown strategies that are more effective than those explored in previous

works. By targeting nodes with both high degree and low clustering coefficient, the connectivity and

communication efficiency of the network will decrease significantly, such that it is considerably more

difficult for the network to recover from the takedown attempt.
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1.3 Outline

This thesis is organized as follows:

• Chapter 2 describes the T̄AMD system, including algorithms for efficiently aggregating “similar”

network traffic, and evaluations performed on network traffic collected at the border of our univer-

sity campus network and those generated by real bot instances.

• Chapter 3 describes an approach to passively determine a remote host’s web browser implementa-

tion using only information contained in network flow records, and its application to improving the

platform aggregation in T̄AMD .

• Chapter 4 presents techniques for distinguishing peer-to-peer bots from file-sharing hosts. Evalu-

ations are performed on network traffic collected at the border of our university campus network,

and also traffic from P2P bots in honeynets running in the wild. We also quantify operational costs

required for bots to evade detection.

• Chapter 5 studies analytical network models and their application to peer-to-peer botnets. We ex-

plore in detail the effect that assortativity has on the resiliency of the network and on its healing

ability.

• Chapter 6 summarizes key contributions of this thesis, its limitations, and potential future directions.
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Chapter 2

Traffic Aggregation for Malware Detection

It is clearly in the interest of network administrators to detect computers within their networks that are

infiltrated by malware. Infected hosts, i.e., bots, can exfiltrate sensitive data to adversaries, or lie in

wait for commands from a bot-master to forward spam or launchdenial-of-service attacks, for example.

Unfortunately, it is hard to detect such hosts, since by default they do little to arouse suspicion: e.g.,

generally their communications neither consume significant bandwidth nor involve a large number of

targets. While this changes if the bots are enlisted in aggressive scanning for other vulnerable hosts or in

denial-of-service attacks — in which case they can easily bedetected using known techniques (e.g., [101,

133]) — it would be better to detect the bots prior to such a disruptive event, in the hopes of averting it.

We hypothesize that even stealthy, previously unseen malware is likely to exhibit communication that

is detectable, if viewed in the right light. First, since emerging malware rarely infects only a single victim,

we expect its characteristic communications, however subtle, to appear roughly coincidentally at multiple

hosts in a large network. Second, we expect these communications to share certain features that differ-

entiate them from other communications typical of that network. Of course, these two observations may

pertain equally well to a variety of communications that arenot induced by malware, and consequently the

challenge is to refine these observations so as to be useful for detecting malware in an operational system.

In this chapter, we describe such a system, called TĀMD , an abbreviation for “Traffic Aggregation for

Malware Detection”. As its name suggests, TĀMD distills traffic aggregatesfrom the traffic passing the

edge of a network, where each aggregate is defined by certain characteristics that the traffic grouped within

it shares in common. By refining these aggregates to include only traffic that shares multiple relevant

characteristics, and by using past traffic as precedent to justify discarding certain aggregates as normal,

TĀMD constructs a small set of new aggregates (i.e., without previous precedent) that it recommends for
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examination, for example, by more targeted (e.g., signature-based) intrusion detection tools. The key

to maximizing the data-reducing precision of TĀMD is the characteristics on which it aggregates traffic,

which include:

• Common destinations: TĀMD analyzes the networks with which internal hosts communicate, in

order to identify aggregates of communication to busier-than-normal external destinations. Spyware

reporting to the attacker’s site or bots communicating witha bot-master (e.g., via IRC, HTTP, or

another protocol) might thus form an aggregate under this classification.

• Similar payload: TĀMD identifies traffic with similar payloads or, more specifically, payloads for

which a type of edit distance (string edit distance matching with moves[30]) is small. Intuitively,

command-and-control traffic between a bot-master and his bots should share significant structure

and hence, we expect, would have a low edit distance between them.

• Common internal-host platforms: TĀMD passively fingerprints platforms of internal hosts, and

forms aggregates of traffic involving internal hosts that share a common platform. Traffic caused by

malware infections that are platform-dependent should form an aggregate by use of this character-

istic.

Alone, each of these methods of forming traffic aggregates would be far too coarse to be an effective

data-reduction technique for identifying malware, as legitimate traffic can form aggregates under these

characterizations as well. In combination, however, they can be quite powerful at extracting aggregates of

malware communications (and relatively few others). To demonstrate this, we detail a particular configu-

ration of TĀMD that employs these aggregation techniques to identify internal hosts infected by malware

that reports to a controller site external to the network. Indeed, botnets have been observed to switch

controllers or download updates frequently, as often as every two or three days [51, 80]; each such event

gives TĀMD an opportunity to identify these communications. We show that with traffic generated from

real spyware and bot instances, TĀMD was able to reliably extract this traffic from all traffic passing the

edge of a university network, while the number of other aggregates reported is very low.

In addition to identifying aggregates and ways of combiningthem to find malware-infected hosts, the

contributions of T̄AMD include algorithms for computing these aggregates efficiently. Our algorithms

draw from diverse areas including signal processing, data mining and metric embeddings. We also detail

each of these algorithms in this chapter.
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2.1 Related Work

Bot Detection. Previous works on bot detection are described in Chapter 1.1, where they are roughly

categorized into signature-based techniques, behavior-based techniques, or those that focus on identifying

specific operations of botnets. We believe our approach to befundamentally different from previous works

in the following respect. While previous approaches largely work from known models of malware oper-

ation, we focus on behavioral characteristics that are fundamental to the method by which infected hosts

and the bot-master are engaged, and simply seek to identify new aggregates of communication that are

not explained by past behavior on the network being monitored. Like all anomaly-detection approaches,

our challenge is to demonstrate that the number of identifiedanomalous aggregates is manageable, but

it has the potential to identify a wider range of as-yet-unseen malware. In particular, the assumptions

underlying previous systems present opportunities for attackers to evade these systems by changing the

activities performed by the bots.

More related to T̄AMD are behavior-based techniques that incorporate aspects ofusing aggregation

for detecting bots. For example, BotSniffer [55] looks for infected hosts displaying spatial-temporal

similarity. It identifies hosts with similar suspicious network activities, namely scanning and sending

spam emails, and who also share common communication contents, defined by the number of shared

bi-grams. BotMiner [54] groups together hosts based on destination or connection statistics (i.e., the

byte count, the packet count, the number of flows, etc.), and on their suspected malicious activities (i.e.,

scanning, spamming, downloading binaries, or sending exploits). BotMiner is more similar to T̄AMD in

the sense that they both identify hosts sharing multiple common characteristics, but the characteristics on

which TĀMD and BotMiner cluster hosts are different. BotSniffer seeksto identify known bot activities,

such as scanning or spamming, and limits its attention only to bots using IRC or HTTP to communicate

with a centralized bot-master.

Techniques. The techniques we employ for aggregation, specifically on the basis of external subnets to

which communication occurs, include some drawn from the statistics domain. While others have drawn

from this domain in the detection of network traffic anomalies, our approach has different goals and

hence applies these techniques differently. Coarsely speaking, past approaches extract packet header

information, such as the number of bytes or packets transferred for each flow, counts of TCP flags, in

search of volume anomalies like denial-of-service attacks, flash crowds, or network outages [8, 83, 143].

Lakhina et al. [89] studied the structure of network flows by decomposing OD flows (flows originating
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and exiting from the same ingress and egress points in the network) using Principal Component Analysis

(PCA). They expressed each OD flow as a linear combination of smaller “eigenflows”, which may belong

to deterministic periodic trends, short-lived bursts, or noise, in the traffic. Terrell et al. [144] grouped

network traces into time-series data and selecting features of the traffic from each time bin, including

the number of bytes, packets, flows, and the entropy of the packet size and port numbers. They applied

Singular Value Decomposition (SVD) to the time-series data, and were able to detect denial-of-service

attacks by examining the low-order components.

In general, transient and light-weight events would go unnoticed by these approaches, such as spam-

mers that send only a few emails over the course of a few minutes [122]. Our work, on the other hand,

is targeted at such lighter-weight events and so employs these techniques differently, not to mention tech-

niques from other domains (e.g., metric embeddings, passive fingerprinting). Ramachandran et al. [121],

in assuming that spammers exhibit similar email-sending behaviors across domains, constructed patterns

corresponding to the amount of emails sent to each domain by known spammers. The patterns are cal-

culated from the mean of the clusters generated through spectral clustering [22]. This is similar to our

method of finding flows destined to the same external subnets;however, they do not look at other aspects

of spamming besides the destination.

Another technique we employ is payload inspection, specifically to aggregate flows based on similar

content. Payload inspection has been applied within methods for detecting worm outbreaks and generating

signatures. Many previous approaches assume that malicious traffic is significantly more frequent or wide-

spread than other traffic, and so the same content will be repeated in a large number of different packets

or flows (e.g., [79, 82, 108, 114, 133]); we do not make this assumption here. Previous approaches to

comparing payloads includes matching substrings [79, 105]or n-grams [55, 108, 146], hashing blocks of

the payload [83, 133], or searching for the longest common substring [87]. Compared to these methods,

our edit distance metric is more sensitive and accurate in cases where parts of the message are simply

shifted or replaced. ARAKIS from CERT Polska1 is an early-warning system that generates signatures

for new threats. Assuming new attacks will have payloads notseen previously, they examine traffic from

honeypots and darknets to cluster flows with similar content(determined by comparing Rabin hashes) not

seen before, and that are performing similar activities, i.e., port scanning. A signature is generated from

the longest common substrings of the similar flows. However,ARAKIS currently only focuses on threats

that propagate through port scanning.

1http://www.arakis.pl
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Another tool for intrusion analysis is the commercial product StealthWatch from Lancope2. Stealth-

Watch monitors all traffic at the network border, checking for policy violations or signs of anomalous

behavior by looking for higher-than-usual traffic volumes.Although this is similar to our approach of us-

ing past traffic as a baseline for identifying busier-than-normal external destinations, they does not refine

this information using, e.g., payload or platform aggregation as we do here. Thus, it is primarily useful

for detecting large-volume anomalies like port scanning and denial-of-service attacks.

2.2 Defining Aggregates

Given a collection of bi-directional flow records observed at the edge of an enterprise network, our system

aims to identify infected internal hosts by finding communication “aggregates”, which consist of flows

that share common network characteristics. Specifically, TĀMD deploys three aggregation functions to

identify flows with the following characteristics: those that contribute to busier-than-usual destinations,

that have payloads for which a type of edit distance is small,or that involve internal hosts of a common

software platform.

The aggregation functions take as input collections of flow records,Λ, and output either groups (ag-

gregates) of internal hosts that share particular properties or a value indicating the amount of similarity

between the input flow record collections. We presume that each flow recordλ ∈ Λ includes the IP ad-

dress of the internal hostλ.internal involved in the communication and the external subnetλ.external with

which it communicates.λ also includes some portion of the payloadλ.payload of that communication,

packet header fields, and the start and end time of the communication.

2.2.1 Destination Aggregates

Previous studies show that the destination IP addresses with which a group of hosts communicates exhibit

stability over time, both in the amount of traffic sent and in the set-membership of the destinations [2, 84].

Malware activities are thus likely to exhibit communication patterns outside the norm, i.e., contacting

destinations that the internal hosts would not have contacted otherwise.

The destination aggregation functionByDestτ (Λ,Λpast) takes as input two setsΛ, Λpast of commu-

nication records. The variableτ is a parameter to the function, as described later in this section. By

analyzing the external addresses with which internal hostscommunicate inΛ and Λpast, the function

2http://www.lancope.com
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outputs a setSuspiciousSubnets of destination subnets for which there is a larger-than-usual number of

interactions with the internal network, usingΛpast as a baseline. The function also outputs an integer

numAggs and a setAggi (1 ≤ i ≤ numAggs), whereAggi are internal hosts (IP addresses) that originated

traffic in Λ, and who contributed to larger-than-usual number of interactions with an external destination

subnet inSuspiciousSubnets.

At a high level, the setSuspiciousSubnets of selected “suspicious” external destinations is determined

after filtering out periodic and regular activities in the communications of the network as represented in

the past trafficΛpast. External destinations observed inΛ that do not follow the norm, i.e., that according

to Λpast are busier than usual or have not been contacted before, are thus output inSuspiciousSubnets.

Below we describe the three processing steps inByDestτ (Λ,Λpast): (i) Trend filtering, which selects

the set of suspicious external destinations; (ii) Dimension reduction, which first characterizes each host by

a vector indicating which suspicious destinations it interacted with, and then reduces the dimensionality

of these vectors while preserving most of the information; and (iii) Clustering, which forms clusters of the

vectors (i.e., internal hosts) by the destinations they contacted.

Trend Filtering. Trend filtering aims to remove regular and periodic communications fromΛ, so that

external destinations showing behavior outside the norm are identified. In particular, the “norm” is defined,

for each external destination subnet, by the average numberof internal hosts that communicated with that

subnet in various periodic intervals, as recorded inΛpast. For example, periodic patterns, such as Windows

machines connecting to the Windows update server on a weeklybasis or banking websites experiencing

traffic spikes on pay day each month, can be inferred fromΛpast. The change in activity of a destination

in Λ can then be measured by how much more traffic it received inΛ compared to its average values

for previous time intervals inΛpast. In the current implementation, a destination is selected to be in

SuspiciousSubnets if no internal host has been seen to communicate with it for all previous periodic time

intervals inΛpast.

Dimension Reduction. Given SuspiciousSubnets, each internal host can be represented as a binary

vectorv = (v[1], v[2], · · · , v[k]) for which the dimensionalityk is equal to the number of destinations

in SuspiciousSubnets. A dimensionv[i] is set to 1 if the internal host communicated with destination

i in SuspiciousSubnets (according toΛ), and 0 otherwise. However, the dimensions may be redundant

or dependent on one another; e.g., retrieving a web page can cause other web servers to be contacted.

To identify such relationships between the destinations and reduce the vectors’ dimensionality, we apply
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Principal Component Analysis (PCA).

PCA [74] is a method for analyzing multivariate data. It enables data reduction by transforming the

original vectors onto a new set of orthogonal axes, i.e., principal components, while preserving most of the

original information. This is done by having each principalcomponent capture as much of the variance in

the data as possible.

While a vector originally has length equal to the number of suspicious destinations inSuspiciousSubnets,

the transformed vector after PCA has a dimensionality that is the number of selected principal components,

with each dimension now representing a linear combination of the external destinations. The number of

selected principal components depends on the amount of variance we want to capture in the data, denoted

as the parameterτ . The more variance to be captured, the more accurate the transformation represents the

original data, but, at the same time, more principal components are needed, increasing the dimensionality.

Clustering. PCA reduces the vector dimensionality significantly, afterwhich hosts connecting to the

same combinations of destinations can be identified efficiently through clustering. We form clusters of

the vectors (i.e., internal hosts) using a modified version of the K-means clustering algorithm [81], which

does not require the number of clusters to be known in advance.

1. Randomly select a vector as the first cluster hub. Assign all vectors to this cluster.

2. Select the vector furthest away from its hub as a new cluster hub. Re-assign all vectors to the cluster

whose hub it is closest to.

3. Repeat step 2 until no vector is further from its hub than half of the average hub-hub distance.

Cosine distance is used for comparing vector distances. Fortwo vectorsv1 andv2, their distance is defined

asCosineDist(v1, v2) = cos−1((v1 • v2)/(|v1||v2|)), where the symbol• is the dot product between the

two vectors, and|v1| is the length of vectorv1. Cosine distance is essentially a normalized dot product of

the vectors, where a particular dimension would contributeto the final sum if and only if both vectors have

a nonzero value in that dimension. In our case, each vector represents a particular internal source host,

and each dimension represents a linear combination of destination subnets. Cosine distance thus captures

well the relationship between internal hosts based on the common destinations they contacted.

LetnumAggs denote the number of clusters from the above algorithm, and letAggi (i = 1 . . . numAggs)

denote the hosts comprising thei-th cluster. As such,Aggi is an aggregate of internal hosts interacting with
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the same busier-than-usual external subnets. All ofSuspiciousSubnets, numAggs and{Aggi}1≤i≤numAggs

are output fromByDestτ (Λ,Λpast).

2.2.2 Payload Aggregates

Payload inspection algorithms for malware detection have previously focused on either modeling byte-

frequency distributions (e.g., [79, 82, 108, 133]), which assumes that malicious traffic should exhibit

an observably different byte-frequency distribution fromthat of normal traffic, or substring matching

(e.g., [105, 146]). In contrast to these approaches, our measure of payload similarity isedit distance with

substring moves, which we choose because it is capable of capturing syntactic similarities between strings,

even if parts of one string are simply shifted or replaced. Toour knowledge, ours is the first work that

detects malicious traffic by computing (a type of) string edit distance between payloads, using techniques

that scale these computations to high data rate environments.

For two character stringss1 and s2, EditDist(s1, s2) is defined as the number of character inser-

tions, deletions, substitutions, or substring moves, required to turn s1 into s2. Given a strings =

s[1] · · · s[len(s)], a substring move with parametersi, j, andk transformss intos[1] · · · s[i−1], s[j] · · · s[k−

1], s[i] · · · s[j − 1], s[k] · · · s[len(s)] for some1 ≤ i ≤ j ≤ k ≤ len(s). For example, swapping labeled

parameters in a parameter list would be a substring move in a command string.

The payload comparison functionByPayloadδEd(Λ) that we introduce takes as input a setΛ of com-

munication records, and outputs a value in the range[0, 1]. It is parameterized by an edit distance threshold

δEd that determines if communication recordsλ, λ’ are “close enough”, i.e., ifEditDist(λ.payload, λ′.payload) ≤

δEd. Its output indicates from among all pairs(λ, λ′) ∈ Λ×Λ such thatλ.external = λ′.external (i.e., that

involve the same external subnet) andλ.internal 6= λ′.internal (i.e., that are not from the same internal

host), the (approximate, see below) fraction for whichEditDist(λ.payload, λ′.payload) ≤ δEd.

SinceΛ can be large, computingByPayloadδEd(Λ) by computingEditDist(λ.payload, λ′.payload)

for each relevant(λ, λ′) pair individually can be prohibitively expensive, i.e., requiring time proportional

to |Λ| · |Λ|, where |Λ| denotes the cardinality ofΛ. A contribution of our work is an algorithm for

approximating the fraction of relevant record pairs(λ, λ′) that satisfyEditDist(λ.payload, λ′.payload) ≤

δEd in time roughly proportional to|Λ| if δEd is small.

To perform this approximation, we firstembedtheEditDist metric within L1 distance. For two vectors

v1 = v1[1 . . . m] andv2 = v2[1 . . . m], their L1 distance is defined asL1Dist(v1, v2) =
∑m

i=1 |v1[i] −

v2[i]|. That is, we transform eachλ.payload into a vectorvλ so that ifEditDist(λ.payload, λ′.payload) ≤
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δEd thenL1Dist(vλ, vλ′) ≤ δL1 for a known valueδL1. We do so using an algorithm due to Cormode et

al. [30] calledEdit Sensitive Parsing(ESP). For this algorithm, the ratio ofδL1 over δEd is bounded by

O(log n log∗ n), wheren is the length ofλ.payload. 3 In our evaluations,n = 64 and we setδL1 =

δEd · log10 64.

The embedding ofEditDist into L1Dist is essential to our efficiency gains, since it enables us to utilize

an approximate nearest-neighbor algorithm calledLocality Sensitive Hashing(LSH) [39] to find vectors

(and hence payload strings) near one another in terms ofL1Dist (and hence in terms ofEditDist), in

time roughly proportional to|Λ|. Briefly, LSH hashes each vector using several randomly selected hash

functions; each hash function maps the vector to abucket. LSH ensures that ifL1Dist(v1, v2) ≤ δL1,

then the buckets to whichv1 and v2 are hashed will overlap with high probability (and will overlap

with much lower probability if not), where probabilities are taken with respect to the random selec-

tion of the hash functions. Consequently, we hashvλ for eachλ ∈ Λ, and explicitly confirm that

EditDist(λ.payload, λ′.payload) ≤ δEd only for pairs(λ, λ′) for which vλ andvλ′ hash to at least one

overlapping bucket.

2.2.3 Platform Aggregates

Forming traffic aggregates based on platform can be useful inidentifying malware infections that are plat-

form dependent. That is, suspicious traffic common to a collection of hosts becomes even more suspicious

if the hosts share a common software platform.

Much host platform information can be inferred from traffic observed passively. Passive tools, un-

like active fingerprinting tools like Nmap4, do not probe hosts, but rather observe their communications

silently. The most comprehensive passive operating systemfingerprinting tool of which we are aware is

p0f 5, which extracts various IP and TCP header fields from SYN packets and uses a rule-based com-

parison algorithm. However, p0f cannot be applied to traffictraces in flow records, since most individual

packet information (including for SYN packets) is not retained. Other network intrusion detection systems

also employ fingerprints of host software platforms when detecting intrusions, though most generate these

fingerprints actively, e.g., building profiles of the network topology to remove ambiguities in how hosts

interpret network traffic [131].

3log∗
n denotes theiterated logarithmof n, i.e., the number of times the logarithm must be iterativelyapplied before the

result is less than or equal to one.
4http://nmap.org
5http://lcamtuf.coredump.cx/p0f.shtml
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TĀMD employs two heuristics for fingerprinting internal host operating systems passively. The first

employs time-to-live (TTL) fields witnessed at the network border in packets from internal hosts. It is

well-known that in many cases, different operating system types select different initial TTL values6.

With a detailed map of the internal network, the observed TTLvalues can be used to infer the exact initial

TTL value and so narrow the possibilities for operating system the host is running. However, a detailed

map is typically unnecessary, as routes in most enterprise networks are sufficiently short that witnessing

TTLs of packets as they leave the network enables the initialTTL values to be inferred well enough.

The second heuristic employed in TĀMD watches for host communications characteristic of a partic-

ular operating system platform. For example, Windows machines connect to the Microsoft time server by

default during system boot for time synchronization, and the FreeBSD packages FTP server is more likely

to be accessed by FreeBSD machines to install software updates. Once characteristic communications for

platforms are identified, T̄AMD can monitor for these to learn the platform of an internal host.

There are at least three limitations of such passive fingerprinting approaches for our purposes. First,

DHCP-assigned IP addresses can be assigned to hosts with different operating systems over time, leading

to inconsistent indications of the host operating system associated with an IP address. This suggests that

TĀMD should weigh recent indications more heavily than older (and hence potentially stale) indications.

Second, a machine with a compromised kernel could, in theory, alter its behavior to masquerade as a dif-

ferent operating system. In the absence of a possible IP address reassignment (e.g., for address ranges not

assigned via DHCP), such a shift in behavior should itself bedetectable evidence that a compromise may

have occurred. In general, however, this limitation is intrinsic toanyfingerprinting technique, passive or

active, except those based on attestations from trusted hardware (e.g., TCG’s Trusted Platform Module7).

While we are unaware of malware that employs such a masquerading strategy, should platform-based ag-

gregation for malware detection become commonplace, such systems would presumably need to migrate

to attestation-based platform identification as it matures, in order to detect kernel-level compromises. The

third limitation to forming aggregates based on platform isthat it is likely for an enterprise to have the

majority of its hosts running the same operating system. Thus ByPlatform would be more effective for

networks with a diverse host population; for example, in a university setting.

TĀMD uses the aforementioned heuristics based on TTL values and communication with characteristic

sites to identify platforms. We embody this in a functionByPlatform(Λ) that returns the largest fraction

of internal hosts inΛ (i.e., among the hosts{λ.internal : λ ∈ Λ}) that can be identified as having the same

6http://www.binbert.com/blog/2009/12/default-time-to-live-ttl-values/
7https://www.trustedcomputinggroup.org/developers/trusted platform module
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operating system, based on these heuristics applied to the traffic recordsΛ.

2.3 Example Configuration

We detail a configuration of T̄AMD that identifies internal hosts infected by malware by employing the ag-

gregation functionsByDestτ (Λ,Λpast), ByPayloadδEd(Λ), andByPlatform(Λ). This configuration iden-

tifies platform-dependent malware infections that report to common sites, e.g., IRC channels for receiv-

ing commands, public servers for downloading binaries, denial-of-service victims to attack, or database

servers for uploading stolen information, and is based on several observations about such malware:

O1. For even moderately aggressive malware, it is rarely thecase that only a single victim exists in a

large enterprise network, and so we hypothesize that stealthy malware is likely to generate traffic

that appears within the same, coarse window of time (e.g., within the same hour) from multiple

infected hosts. Moreover, we would expect that the controller site is located in a subnet that would

not be a common one with which benign hosts interact, as majorservices with substantial client

populations are typically better managed. As such, infected hosts interacting with the controller site

should generate a noticeable increase in the number of interactions with the controller’s subnet in

that window of time.

O2. We expect that the multiple instances of the malware communication to the controller site would be

syntactically similar to each other, since the malware instances are communicating using the same

protocol, and likely to be receiving or responding to similar commands.

O3. In the case of platform-dependent malware, the malware communications to the controller site will

involve internal hosts all having the same host platform.

Using these observations, we have assembled the aggregation functions described in Section 2.2 into

an algorithmFindSuspiciousAggregates to identify such malware infections, shown in Figure 2.1. The

input to this function is a setΛ of traffic records observed in a fixed time interval (e.g., onehour) at

the border of the network, and a setΛpast of records previously observed at the border of the network.

FindSuspiciousAggregates assembles and returns (in line 108) a setSuspiciousAggregates comprised of

suspicious aggregates, where each aggregate is a set of internal hosts (IP addresses) that is suspected of

being infected by malware.
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FindSuspiciousAggregates(Λ,Λpast)

100: SuspiciousAggregates← ∅
101: (SuspiciousSubnets, numAggs, {Aggi}1≤i≤numAggs)← ByDestτ (Λ,Λpast)

/∗ Form aggregates by external subnet∗/
102: for i = 1 . . . numAggs do
103: Λi ← {λ ∈ Λ : λ.internal ∈ Aggi} /∗ Traffic from hosts inAggi ∗/
104: Λsusp

i ← {λ ∈ Λi : λ.external ∈ SuspiciousSubnets}
/∗ Traffic from hosts inAggi to suspicious subnets∗/

105: if ByPayloadδEd(Λsusp
i ) > 0.3 then

/∗ Keep if traffic to same external subnet is self-similar∗/
106: if ByPlatform(Λsusp

i ) > 0.9 then
/∗ Keep if most of aggregate consists of one platform∗/

107: SuspiciousAggregates← SuspiciousAggregates ∪ {Aggi}
108: return SuspiciousAggregates

Figure 2.1: The function used to find suspicious aggregates in the example configuration.ByDestτ

(line 101), ByPayloadδEd (line 105), andByPlatform (line 106) are defined in Sections 2.2.1, 2.2.2
and 2.2.3, respectively.

FindSuspiciousAggregates first exploits observation O1, usingByDestτ from Section 2.2.1 to find

suspicious external subnetsSuspiciousSubnets responsible for noticeably greater communication with the

monitored network than in the past, and to find aggregates{Aggi}1≤i≤numAggs, each of which includes

internal hosts that interacted with one or more of these subnets. In line with observation O2, each aggregate

is tested in line 105 to determine if distinct hosts in the aggregate communicate with suspicious subnets

using similar payload. Finally, as motivated by observation O3, for each aggregate that has survived these

tests, the platforms of the hosts in the aggregate are inferred usingByPlatform and, if the aggregate is

adequately homogeneous (line 106), then it is added toSuspiciousAggregates (line 107).

There are numerous constants in Figure 2.1 that we have chosen on the basis of our evaluation that we

will present in the next section. These constants includeτ = 90% or 95% forByDestτ , 0.3 in line 105

and 0.9 in line 106. In addition, as we will describe in Section 2.4, the data on which we perform our

evaluation includes 64 bytes of payload per recordλ, for which we foundδEd = 15 to be an effective

value. We show that with traffic generated from real spyware and bot instances, and traces from real bots

captured in a honeynet, this configuration of TĀMD was able to reliably extract malware traffic from all

traffic passing the edge of a university network, while the number of other aggregates reported is very

low. This reliability is achieved even in tests where the number of simulated infected hosts comprise only

about 0.0097% of the total number of internal hosts in the network, calculated as the maximum number

of internal IP addresses observed communicating in any one hour period during our data collection (see
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Section 2.4), which was over 33,000.

2.4 Evaluation

We present an evaluation of the particular configuration of TĀMD , described in Section 2.3, using traffic

from real spyware and bot instances, which were overlaid onto flow records recorded at the edge of our

university campus network.

2.4.1 Data Collection

Our network traffic traces were obtained from the edge routers on the Carnegie Mellon University campus

network, which consists of two /16 subnets. The packets wereorganized into bi-directional flow records

by Argus (Audit Record Generation and Utilization System)8, which is a real time flow monitor based

on the RTFM flow model [18, 61]. Argus inspects each packet andgroups together those with the same

attribute values into one bi-directional record. In particular, TCP and UDP flows are identified by the

5-tuple (source IP address, destination IP address, sourceport, destination port, protocol)9, and packets

in both directions are recorded as a summary of the communication, namely, an Argus flow record.

IP Header Transport Header Flow Attribute

Source IP Source Port Byte Count

Destination IP Destination Port Packet Count

Protocol TCP Sequence NumberPayload (64 bytes)

TTL TCP Window Size

Table 2.1: Extracted Flow Fields

The fields extracted from Argus

records are listed in Table 2.1. The

rate of the traffic from the edge of our

campus network is about 5,000 flow

records per second. The traces were col-

lected daily from 9 AM to 3 PM for

three weeks in November and Decem-

ber 2007. In our evaluation, we focused on TCP and UDP traffic.

We also obtained network traffic traces for several malware.The malware traces used for testing are

grouped into two sets, Class-I and Class-II, as described below.

Class-I Traces. We obtained four instances of malware: Bagle, IRCbot, Mybotand SDbot, and collected

their traffic by infecting virtual machines hosts with each malware. The virtual hosts were all running

8http://www.qosient.com/argus
9Since Argus records are bi-directional, the source and destination IP addresses are swappable in the logic that matches

packets to flows. However, the source IP address in the recordis set to the IP address of the host that initiated the connection.
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the Windows XP Professional operating system with the same VMWare image file. Each run of traffic

collection was one hour long, and included the communications from eight instances of Bagle, three

instances of IRCbot, five instances of Mybot, or five instances of SDbot. These numbers of instances were

chosen to represent a very small fraction of the total campushosts, specifically at most 0.0097% based

upon the number of campus hosts observed sending traffic in the busiest hour, which has over 33,000

distinct IP addresses.

Briefly, the characteristics of these four malware instances are as follows:

1. Bagle10 is spyware that, on execution, runs as a background process and attempts to download

other malicious executables from various sites, while generating pop-up windows and hijacking the

web browser to advertising websites. As with other types of spyware and adware, Bagle initiates

connections to numerous destinations that are set up to exclusively host advertisements or other

malicious content.

2. IRCbot 11 is a backdoor trojan that connects to an IRC server and waits for commands from the

bot-master. In addition, after successfully connecting tothe command-and-control server, the bot

downloads an update executable from a designated web server, and goes on to scan the local /16

subnet attacking other machines with the LSASS vulnerability on port 44512 and the NetBIOS

vulnerability on port 13913.

3. Mybot14 is spyware, a worm, and a bot that connects to an IRC server to wait for commands, and

also records keystrokes and steals other personal information on the victim host. This malware is

especially subtle in its communications. When it is only waiting for commands on the IRC server,

the bot initiates one connection every 90 seconds, in the form of IRC PING/PONG messages. In

the hour of our traffic collection, Mybot simply waited for commands on the IRC channel, and its

only outbound connections were these PING/PONG messages.

4. SDbot15 is a trojan and a bot that opens a back door to connect to an IRC server. Similar to Mybot,

when it is waiting for commands from the attacker, SDbot onlymakes outbound connections once

every 90 seconds, in the form of IRC PING/PONG messages.

10http://www.trendmicro.com/vinfo/virusencyclo.
11http://www.symantec.com/security response/writeup.jsp?docid=2002-070818-0630-99.
12http://www.microsoft.com/technet/security/Bulletin/MS04-044.mspx.
13http://support.microsoft.com/kb/269239.
14http://www.sophos.com/security/analyses/w32rbotxf.html.
15http://www.symantec.com/security response/writeup.jsp?docid=2003-050714-1919-99.
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Class-II Traces. We also obtained network traces of botnets gathered from honeynets, including the

IRC-based Spybot, a HTTP-based botnet [55], and a large IRC botnet from a honeynet running in the

wild [54]. The Spybot trace contains communications from four bots for the duration of 32 minutes; the

HTTP-bot trace contains communications from four bots overthe course of three hours; and the large

botnet trace contains traffic from more than three hundred bots over seven minutes.

For testing, we overlaid flows from these malware instances onto one hour of our recorded campus net-

work traffic, and assigned the malware traffic to originate from randomly selected internal hosts observed

to be active during that hour. More specifically, we assignedmalware traffic to random internal hosts

running the operating system that the malware exploits, as determined by the time-to-live (TTL) field in

packets. This makes our testing scenario much more realistic, since the internal hosts to be identified still

exhibit their normal connection patterns, in addition to subtle malware activities. While certain aspects of

the hosts’ network behaviors (e.g., the volume of traffic generated by the host) would be affected by this

method of overlaying malware traffic, it does not impact the characteristics on which T̄AMD operates. We

hence believe that this experiment setup is adequate for thepresent purpose.

For the trace that spans multiple contiguous hours, i.e., the HTTP botnet trace, we overlaid it onto the

same number of contiguous hours in the campus network traffic, performed analysis on each of the hours

“covered” by the malware trace, and reported the hour that TĀMD detected the malware aggregate. This

time window was then shifted by one hour, and the experiment repeated until we reached the end date of

our campus traffic collection.

2.4.2 Outlier Hosts

In the early stages of our analysis, we found that often TĀMD failed to detect the malware-laden hosts,

but rather identified other internal hosts as more symptomatic of malware. Upon further inspection, we

identified the internal hosts that resulted in these false alarms: PlanetLab nodes [25] and a Tor node [142].

In the case of PlanetLab nodes, we noticed that during the destination aggregation function, the vec-

tors after PCA analysis often had very low dimensionality, e.g., two, where a small number of principal

components were able to capture over 90% of the data variance. Clustering these vectors resulted in a few

outliers forming their own individual clusters, unlike anyof the vectors fromΛpast (the “old vectors”), or

even those inΛ (i.e., the “new vectors”). This is shown in Figure 2.2. The two axes correspond to the

top two principal components onto which the original data isprojected. Cluster hubs are shown in rectan-

gles. The outliers forming their own individual clusters were found to be PlanetLab nodes, which, being
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Figure 2.2: Clustering results after dimension reduction by PCA. The three outliers were found to be
PlanetLab nodes.

a development and testing platform, exhibit behavior deviating from that of other hosts. Their existence

was also the reason why PCA analysis was able to reduce the vector dimensionality down to only two,

since PlanetLab nodes’ behavior is so different from other hosts that only two principal components were

needed to capture most of the data variance.

In another example from experiments involving the Bagle trojan spyware, we noticed that even though

TĀMD was able to form a final aggregate containing all spyware traffic and spyware traffic only, at times

it also combined another unknown host into the spyware-hosts aggregate, both in theByDestτ and the

ByPayloadδEd functions. Similar investigations revealed that this additional node is a Tor router inside

the campus network. Tor offers online anonymity by routing packets over random routes between Tor

servers so that the source and destination of the packet is obfuscated. Because the traffic originates from

multiple hosts, it is possible that, even though the Tor router itself is not infected, another host routing

traffic through the Tor node may be a spyware victim.

For this work, we removed PlanetLab and Tor nodes from our analysis.

2.4.3 Detecting Malware

As described in Section 2.4.1, T̄AMD was given all TCP and UDP traffic collected at the edge of our

university network in hourly batches, overlaid with malware traffic assigned to randomly selected internal

hosts. The same analysis steps were repeated for each hour over three weeks in November and December

2007.
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The granularity of external destinations was set to be /24 subnets. While the communication records

from the current hour were given toFindSuspiciousAggregates asΛ, the setΛpast was selected from

communication records in the past (specifically, from the beginning of our traffic collection dating to

the first week of September 2007) that represented the general trend and the periodicity in the traffic.

Specifically,Λpast consisted of traffic from, in reference to the time frame forΛ, (i) the same hour from

the same days of the week, (ii) the same hour from the same daysof the month, (iii) the same hour from

the previous two days, and (iv) the previous two hours. For example, ifΛ consists of traffic from 2 to

3 PM on Wednesday, November 28th, thenΛpast will include traffic from 2 to 3 PM every Wednesday

before that, from 2 to 3 PM in the previous two days (November 27th and 26th), and from 12 to 2 PM on

November 28th.

In all experiments, T̄AMD was able to identify all the infected hosts (with the exception of the Class-II

large IRC trace, as described later) while the number of additional aggregates reported was only 1.23 per

hour on average. For the Class-II HTTP-botnet trace that spans multiple hours, T̄AMD always detected the

infected hosts in the very first hour. For the case of the Class-II large IRC botnet trace, which contains 340

infected bots, T̄AMD was able to identify 87.5% of the bots on average, and these bots were all grouped

in a single aggregate. We suspect that the reason not every bot in the botnet was detected is due to the

randomness in our choice of selected internal hosts to whichthe malware traffic was assigned, such that a

selected internal host that was also contacting other suspicious subnets (not relevant to the botnet) is likely

to bias the dimension reduction and clustering algorithms.

Figure 2.3 shows, for each malware experiment (the rows), the number of aggregates remaining after

applying each aggregation function (the columns), averaged over all test hours. The number of aggregates

is reduced after each aggregation function, as they become more refined to satisfy multiple characteristics.

The single aggregate consisting solely of infected hosts was always identified, in every malware experi-

ment. As shown in the figure, even for homogeneous networks where the majority of internal hosts are of

the same platform, applyingByDestτ andByPayloadδEd would still yield good results.

2.4.4 Unknown Aggregates

As indicated in Figure 2.3, our methodology detected a smallnumber of unknown aggregates (about 1.23

per hour, on average) in addition to the one aggregate of infected hosts that we overlaid on the trace. We

found that some of these same unknown aggregates regularly appeared for that hour of input data, across

different malware experiments. Further investigation based on the 64 bytes of flow payload available to
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Malware ByDestτ ByPayloadδEd ByPlatform

traces (line 101) (line 105) (line 106)

Class-I
Bagle 47.46(± 23.13) 4.19(± 2.34) 2.55(± 1.33)

IRCbot 35.10(± 20.51) 2.74(± 1.41) 1.98(± 0.98)
Mybot 45.60(± 25.10) 3.19(± 1.76) 2.13(± 1.09)
SDbot 52.15(± 43.87) 3.55(± 1.88) 2.34(± 1.16)

Class-II
Spybot 39.18(± 22.31) 2.95(± 1.44) 2.04(± 0.92)

HTTP bot 53.97(± 26.54) 3.31(± 1.91) 2.22(± 1.21)
Large IRC bot 44.54(± 16.16) 4.39(± 2.75) 2.39(± 1.32)
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Figure 2.3: Mean number of aggregates (± standard deviation) remaining after each function in Figure 2.1

us, port numbers, and protocol field (for privacy reasons, the IP addresses were anonymized), showed

that these aggregates included NetBIOS messages on port 137, DNS name server queries, SMTP con-

nection timeout messages, and advertising-related HTTP requests; several of these suggest that additional

investigation may be warranted. Others included connections to online game servers and large flows over

non-standard ports, which we suspect to be peer-to-peer (P2P) transfers. All of these aggregates consisted

of internal hosts contacting rare sites, and often include less than five hosts sharing one or two common

destination subnets.

In theory, a group of internal hosts visiting a new popular website (i.e., the “slashdot” effect) could

also form an aggregate. However, it is unlikely that all of the hosts would come from the same platform,

and in our experiments, we believe we saw very few such aggregates. We thus believe that T̄AMD is a

useful data reduction tool for malware identification.
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2.4.5 Performance

The left half of Table 2.2 shows the run times in seconds for each aggregation function and for each

malware instance, averaged over the traffic (in one-hour intervals) we used to perform our experiments. In

our implementation of T̄AMD , ByDestτ is implemented in Matlab, andByPayloadδEd andByPlatform are

implemented in C. For the numbers reported in Table 2.2,ByDestτ was executed on a PC with a Pentium

IV 3.2 GHz processor and 3 GB of RAM, andByPayloadδEd andByPlatform were executed on a Dell

PowerEdge server with dual core 3 GHz processors and 4 GB of RAM.

Malware ByDestτ ByPayloadδEd Total time Size of Internal
traces (line 101) andByPlatform SuspiciousSubnets hosts contacting

(lines 105, 106) SuspiciousSubnets

Class-I
Bagle 79.48(± 264.54) 14.08(± 18.07) 93.48(± 271.51) 701.87(± 596.78) 754.73(± 812.75)

IRCBot 94.67(± 350.13) 20.19(± 16.78) 114.86(± 356.72) 927.23(± 561.33) 742.13(± 836.55)
Mybot 63.82(± 177.34) 10.96(± 15.28) 70.93(± 183.43) 686.03(± 565.11) 728.45(± 708.65)
SDbot 102.34(± 355.25) 10.21(± 19.51) 112.55(± 359.23) 749.01(± 577.49) 952.96(± 1191.66)

Class-II
Spybot 86.30(± 276.81) 63.42(± 38.56) 151.15(± 286.99) 850.14(± 609.19) 777.71(± 848.43)

HTTP bot 83.12(± 278.76) 15.75(± 20.62) 99.31(± 287.11) 697.36(± 609.15) 776.76(± 848.43)
Large IRC Bot 110.64(± 253.78) 46.00(± 34.78) 156.64(± 260.42) 760.83(± 548.48) 1104.42(± 799.58)

Table 2.2: Mean run times of each phase in seconds of algorithm in Figure 2.1 and means of measures
impacting performance (± std. dev.)

The running times of the aggregation functions depend on several factors, including the number of

external destinations identified as suspicious (i.e.,SuspiciousSubnets as computed byByDestτ ) and the

number of flows to those suspicious destinations; averages for these numbers are also listed in the right half

of Table 2.2. The amount of traffic inΛpast is especially critical to the performance ofByDestτ (Λ,Λpast),

since it accesses significant amounts of historical data (i.e.,Λpast) to define the “normal” behavior for this

network. While the implementation of T̄AMD is not optimized, retrieving historical data from the database

contributed to the majority of the slowdown. This problem can be alleviated in the future by performing

these calculations in advance and update incrementally as more data is collected.

2.5 Discussion

In this section, we discuss potential limitations to TĀMD , and explore alternative ways of assembling the

three aggregation functionsByDestτ , ByPayloadδEd , andByPlatform.

30



2.5.1 Potential Limitations

An approach by which malware writers might attempt to avoid detection by our technique is to encrypt

their malware traffic, so that our payload comparisons will be ineffective. To accommodate encryption, our

technique can be generalized to define encrypted content (which itself is generally easy to detect) as “simi-

lar”. Malware writers could go further and have their malware communicate steganographically, though at

the cost of greater sophistication and lower bandwidth. Detecting steganographic communication is itself

an active area of research (e.g., [118]) from which TĀMD could benefit. However, a better method perhaps

is to move away from payload inspection altogether, since such information is not typically included in

flow records, e.g., NetFlow records [1].

Another way that malware writers could try to avoid detection is by exploiting cross-platform appli-

cations (e.g., web browsers), so that the malware is no longer operating system-dependent. We address

application-dependent malware in Chapter 3, and particularly focus on web browser-dependent malware,

since browsers are one of the most common attack vectors today.

Bot-masters can also evade TĀMD by utilizing alternative botnet architectures, such as those built

over P2P networks. However, bots participating in other architectures may still exhibit characteristics that

should be detectable by T̄AMD . For example, the Storm botnet [52, 66, 116, 138], while using a P2P

network to transfer addresses of compromised web servers among the infected hosts, still require bots to

connect to those web servers to download malicious executables for sending spam or performing denial-

of-service attacks. This activity of collectively contacting web servers matches the behavior that our

technique successfully detected in our evaluations. Vogt et al. [145] suggested a “super-botnet”, where the

botnet is composed of individual smaller centralized botnets, and the controllers from each smaller botnet

peer together in a P2P network. Since the individual smallerbotnets still use a centralized architecture,

this should be still be detectable via our technique. Wang etal. [147] proposed a hybrid P2P botnet where

each bot maintains its own peer list and polls other bots periodically for new commands. However, in

order to monitor the IP addresses and resources associated with the bots, the botnet supports a command

by which the bot-master can solicit all bots to report to a specific server. Again, this behavior should be

detectable by T̄AMD .

That said, P2P bots can still avoid contacting a common server for the transfer of executables or other

tasks. For example, Phatbots find peers by registering themselves as Gnutella clients, and the Sinit trojan

sends out random probes for peer discovery [135]. In these cases, forming aggregates based on payload

similarity should remain effective, provided that similarity is generalized as described above to accommo-
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date encrypted traffic (which Phatbot utilizes). However, amore challenging aspect of their detection is in

distinguishing P2P bot traffic from those of P2P file-sharinghosts. We address this challenge in Chapter 4.

2.5.2 Alternative Configurations

The default T̄AMD configuration, described in Section 2.3, assembles the aggregation functionsByDestτ ,

ByPayloadδEd , ByPlatform, in that order. The priority given to the common destinationcharacteristic (in

ByDestτ ) is motivated by the centralized nature in how such malware communicates with the bot-master.

Furthermore, the relatively expensive computations required byByPayloadδEd and the coarse granularity

of ByPlatform also allows the default configuration to be more efficient andaccurate compared to others

that applyByPayloadδEd or ByPlatform initially.

To illustrate how the ordering of the aggregation functionsaffects T̄AMD ’s ability at detecting mal-

ware, we repeated our experiments for each of the malware traces described in Section 2.4 overlaid on

one day of traffic collected from the border of the Carnegie Mellon University campus. Figure 2.4 shows

the number of aggregates identified by each TĀMD configuration, averaged over all malware experiments.

The first aggregation function applied largely determines the final number of aggregates output by TĀMD ,

since functions applied in later stages simply refine identified aggregates. We omit plotting cases when

platform aggregates are formed first (usingByPlatform) as this characteristic is too coarse to allow aggre-

gates to be refined successfully.

Among the configurations we explore, the default (i.e.,ByDestτ , ByPayloadδEd , ByPlatform) results in

the least number of unknown aggregates (outside of the single aggregate containing the overlaid malware

traffic) that require additional inspection by network administrators.

2.6 Chapter Summary

In this chapter, we presented TĀMD , a system that identifies hosts internal to a network that areinfected

by stealthy malware. Our approach is to find those hosts that share unusual network communications. In

particular, T̄AMD employs three aggregation functions to group hosts based onthe following characteris-

tics. First, the destination aggregation function,ByDestτ , forms aggregates of internal hosts that contact

the same combination of busier-than-usual external destinations. A binary vector is formed for each in-

ternal host, with each dimension representing one of the selected external destinations. The vectors are

processed by PCA for dimension reduction, and clustered by amodified version of K-means clustering.
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Figure 2.4: The number of aggregates identified by alternative TĀMD configurations, averaged over all
malware experiments over one day of traffic.

New clusters are selected as those that do not conform to preceding communication patterns. Second, the

payload aggregation function,ByPayloadδEd , identifies communications with similar payloads in terms of

a type of edit distance. This is done by first embedding the payload strings into vectors in L1 space, and

then finding close vectors by an approximate nearest-neighbor algorithm. Third, the platform aggrega-

tion function,ByPlatform, forms aggregates that involve hosts running on common operating systems, as

inferred using TTL (time-to-live) values or platform-specific sites to which they connect.

We detailed a configuration of T̄AMD that employs these functions in combination to identify platform-

dependent malware infections that report to common sites. Acommon site might be an IRC channel for

receiving commands, a public web server for downloading binaries, a denial-of-service victim they are

instructed to attack, or a database server for uploading stolen information, as is typical of most bots and

spyware. Our experiments show that, with traffic generated from real spyware and bot instances, this

configuration of T̄AMD reliably extracted malware traffic from all traffic passing the edge of a university

network, while the number of other aggregates reported is very low. This is achieved even in tests where

the number of simulated infected hosts comprised only about0.0097% of over 33,000 internal hosts in the

network.
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Chapter 3

Browser Fingerprinting from Coarse

Traffic Summaries

One of the characteristics on which the TĀMD system aggregates traffic is theplatform of the internal

hosts involved in sending or receiving that traffic, which isuseful for identifying platform-dependent mal-

ware infections. That is, suspicious traffic common to a collection of hosts becomes even more suspicious

if the hosts share a common software platform. Previously, forming platform aggregates in T̄AMD was

based solely on the hosts’ operating systems. As such, malware that is application-dependent, might span

multiple aggregates formed by O/S fingerprinting alone (if the exploit works on multiple operating sys-

tems) or might represent a small subset of an O/S aggregate (e.g., all Windows machines). In either case,

the mismatch between the software fingerprinted (the O/S) and the software exploited (the application)

can cause platform aggregation to fail to detect an exploit.

We address such malware by focusing on a specific application, namely web browsers. Our focus on

web browsers is partly due to their relative importance among applications today, but is also due to the

proliferation of attacks that exploit their vulnerabilities. By extending the platform aggregation in TĀMD

to incorporate browser fingerprinting, we aim to detect bothoperating system-dependent and browser-

dependent malware.

While the browser implementation on a client host is transmitted to the web server as part of the HTTP

request header, we do not make use of the payload informationto perform browser fingerprinting. Our

reason for evading payload inspection is two-fold: 1) It is becoming increasingly common for malware

to encrypt their communications; 2) Payload information isnot typically recorded in flow records (e.g.,
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NetFlow [1]). Rather, we construct a browser fingerprintingtechnique that utilizes only the start and end

times of each flow, as well as the byte and packet counts. We show that this information, available in coarse

flow records, reflect behavioral features of the traffic in which browsers are involved when interacting with

regular sites, hence allowing browser implementations to be distinguished. It is arguably surprising that

browsers could be discerned in this way, since a browser’s network behavior is primarily determined

by the content and structure of the pages it accesses. Moreover, classification could be complicated by

various factors that are inherent in traffic, including variations in users’ browsing behavior or browser

configuration, differences in the web page content being retrieved (both across different websites and in

the same website over time), the client hardware configuration, and the different geographic locations

from which the content is retrieved. A contribution of this work is in evaluating the impact of the above

factors on the browser classification accuracy.

In this chapter, we first describe the construction of our browser fingerprinting technique, and present

evaluations performed on real user traffic collected from the edge routers of our university campus net-

work. We then incorporate browser fingerprinting into the platform aggregation function in T̄AMD and

quantify the resulting overhead.

3.1 Related Work

Many fingerprinting tools areactivein nature, probing services with carefully crafted queries(e.g., those

produced byNmap 1) to detect implementation-specific characteristics [28, 107]. More relevant to our

work arepassivefingerprinting techniques that infer the implementations of network applications or oper-

ating systems based solely on observing the traffic they send. Passive fingerprinting tools and techniques

are numerous, though most focus on identifying TCP/IP implementations and utilize specific informa-

tion [13, 92, 112] that is unavailable in coarse flow records.While passive techniques have more re-

cently been proposed to identify theapplication (e.g., peer-to-peer file transfers versus web retrievals)

or the class of application (e.g., interactive sessions versus bulk-data transfers) reflected in packet traces

[12, 33, 62, 78, 124], few proposals (e.g., [26, 44, 99, 159])have done so from coarse flow records.

Moreover, to the best of our knowledge, none of these proposed techniques attempt to identify particular

implementationsof an application (e.g., the browser) from passive observations of flow records alone.

1http://nmap.org
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3.2 Data Sets

Our analysis takes advantage of several sources of data recorded in the Argus (Audit Record Generation

and Utilization System2) flow format, similar to those used in the evaluation of TĀMD in Section 2.4. The

browser fingerprinting technique we describe in this chapter requires only that each flow record include

the source and destination IP addresses and ports, the protocol, and the total bytes and packets sent in each

direction. While the Argus records that are available to us also include the first 64 bytes of payload from

each flow record, we use this information solely for the purpose of determining ground truth of certain

attributes to use in our evaluation. To be clear, this additional information is not used by our classifiers,

and is only taken into consideration when determining the accuracy of our techniques and for extracting

testing instances from live network data.

We use the following data sources in our evaluations:

The CMU dataset. Similar to that used in the evaluation of T̄AMD in Section 2.4, this dataset consists

of anonymized traffic from the edge routers of the wired CMU campus network, which includes one /16

subnet. We do not consider hosts (that is, IP addresses) fromthe wireless network, since those hosts

typically have short-lived DHCP-assigned IP addresses, such that hosts using different browsers may be

associated with the same address, leading to inconsistencies in the data. The rate of the traffic in the CMU

dataset is about 5,000 flow records per second, and was collected daily from 9 AM to 3 PM over six weeks

from October to December 2007. We are interested in reducingthis dataset only to web retrievals for the

purposes of evaluating our browser classifier, but one of thechallenges in processing live network data is

in accurately identifying the boundaries that separate website retrievals (c.f., [32, 134]). Here we leverage

the first 64 bytes of each flow to identify the start boundary ofa website retrieval from a host internal to the

CMU network. More specifically, we define a web retrieval to begin with a port-80 connection comprised

of an HTTP request of the form “GET / ”, as such a connection would be highly unlikely to be part of

another retrieval. The web retrieval is then comprised of this flow and all subsequent flows originating

from the same host in the next 10 seconds. Our choice of 10 seconds is based on empirical evaluations.

The use of the flow payload for parsing web retrievals can be replaced, for example, by checking for a

certain amount of idle time before a burst of web traffic [85],though we do not explore this alternative

here. Incomplete retrievals, or those with less than three flows, do not carry enough information about

the browser implementation in order for the classifier to make a well-grounded decision, and so we only

2http://www.qosient.com/argus
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consider retrievals with more than three flows in our analysis.

As mentioned earlier, we examine the 64 bytes of available payload in each flow to infer the browser

involved in the retrieval. Specifically, for the purposes ofground-truth, a host is identified to be using the

Opera browser if the user-agent string in its HTTP request starts with the string “Opera”. Firefox hosts

are identified by the special “safe-browsing” requests issued by the browser to check the validity of the

website being contacted3. Due to the 64-byte restriction in the available payload length, we were not able

to reliably identify hosts using IE and Safari in the CMU dataset.

The PlanetLab-Native dataset. In order to perform our evaluations in which the CMU dataset serves

as the testing data, we would like a training dataset from hosts that are diverse in terms of geography

and hardware platform. PlanetLab [25] offers a platform that is generally available and that enables the

retrieval of web pages from a wide range of hosts with different hardware configurations and geographic

locations. To collect this dataset, we deployed a program tofourteen hosts across five PlanetLab networks;

this program sequentially retrieved the front page (i.e., generating “GET / ” HTTP requests) of the top

150 most popular websites in the U.S.4. repeatedly over the course of one month. Each web retrieval

was comprised of the flows observed in the thirty seconds since the start of the retrieval. Machines on

PlanetLab are required to run a Linux operating system, so weperformed retrievals from Linux-compatible

browsers, namely Firefox and Opera5. Recall that these two browsers are also the only ones reliably

identifiable in the CMU dataset, and so the PlanetLab-Nativedataset can serve well as training data for

testing with the CMU dataset.

The PlanetLab-QEMU dataset. In an effort to develop a dataset that includes traffic for allof the

major browsers (IE, Firefox, Opera and Safari), we utilizeda processor emulator, QEMU [11], to run an

emulated Windows operating system on PlanetLab hosts. As inthe PlanetLab-Native dataset, we ran an

automated program to sequentially retrieve the front page of the top 150 most popular websites in the U.S.

repeatedly over the course of one month. Each web retrieval was comprised of the flows observed in the

thirty seconds since the start of the retrieval. We deployedthis emulated version of Windows on seven

hosts across three PlanetLab networks6.

Arguably, the PlanetLab datasets may not accurately represent website retrievals generated by actual

3http://www.mozilla.com/en-US/firefox/phishing-protection/
4According toalexa.com
5To generate our PlanetLab-Native dataset, we used Firefox 2.0.0.16 and Opera 9.51.
6To generate our PlanetLab-QEMU dataset, we used IE 7.0, Firefox 2.0.0.13, Opera 9.51 and Safari 3.1.
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user activities, where frequent visits to a particular website may result in much of the content being

cached. To compensate for this effect, we set the browser cache sizes to be sufficiently large (400 MB) so

that objects are less likely to be evicted from the cache.

Flow Byte count (in each direction)
Statistics Packet count (in each direction)

Flow duration
Number of flows active simultaneously to this one
Start time minus most closely preceding flow start time

Retrieval Total number of flows
Statistics Cumulative byte count from destination

Cumulative flow duration
Retrieval duration

Table 3.1: Main features extracted for each web retrieval.

Feature Selection

To capture browser-specific characteristics in network traffic, we extracted nine main features from each

website retrieval, listed in Table 3.1. The mean, standard deviation, maximum, minimum, median, first and

third quartile, inter-quartile range, and the cumulative sum, were also calculated for each flow statistic. Our

feature selection strategy is based on examining the information gain associated with each of the statistics

for the aforementioned nine main features. More specifically, using the PlanetLab-Native dataset, we

selected the top statistics whose cumulative information gain accounted for at least 90% of the overall

information gain. These selected statistics were combinedinto a feature vectorFr for website retrievalr.

Among the most important features are those associated withthe byte and packet counts in each

direction, the cumulative flow duration, and the retrieval duration. While we have not fully explored

the root cause for all of these differences, they are relatedto the different orders in which the browsers

retrieve objects on a given page, different numbers of objects retrieved in one connection, and the numbers

of connections that can be active simultaneously.

Of course, while these features play an important role in distinguishing different browser implementa-

tions in our tests, we acknowledge that they may not be optimal for distinguishing browsers not included

in the training data, or future browser versions that behavefundamentally differently from the ones cov-

ered in this study. That said, the methodology outlined in this chapter can be easily applied to incorporate

new browser types into the classifier.
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3.3 Browser Identification from Flow Records

As discussed earlier in this chapter, our goal is to develop techniques for inferring the browser implemen-

tation from web traffic recorded in the form of flow records. Atfirst, it might seem that distinguishing

the browser should be difficult, since a browser primarily serves to interpret and render the HTML and

other types of content it receives. As such, its behavior should be primarily dictated by the content it is

accessing.

An example of why this intuition might not be true is shown in Figures 3.1 and 3.2. Each figure shows

one feature (see Table 3.1) for the four most popular browsers (IE, Firefox, Opera, and Safari) when

each retrievedhttp://www.cnn.com/ at nearly the same time and from a host in the University of

North Carolina campus network. The feature pictured in Figure 3.1 is the number of packets sent from

the browser, accumulated over all flows that comprise the retrieval. It is evident that in these retrievals,

Firefox initiates more flows than the other browsers, Opera sends more packets in earlier flows, and Safari

sends fewer packets overall. Figure 3.2 shows the start timeof each flow minus the most closely preceding

flow start time, accumulated over all flows in the retrieval. This feature clearly shows that certain browsers

(e.g., Firefox) try to improve response time by multiplexing the retrieval of content across substantially

more flows than other browsers.
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Figure 3.1: Number of packets sent from the browser,
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However, using these differences to reliably determine thebrowser from flow records is not as straight-

forward as it may seem, and in particular is not as easy to automate as Figures 3.1–3.2 might suggest.

Aside from the content and structure of the websites, users’browsing behavior, browser configuration,
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geographic location, and the client hardware configurationcan also affect browser network behavior. As

such, in the remainder of this section we test with what precision and recall an automatic classifier can

distinguish among browsers in different scenarios.

More specifically, the classifier type that we utilize is Support Vector Machine (SVM) [31]7, which

has been widely applied to many supervised learning problems (e.g., text classification [73], face recogni-

tion [106]). For classification problems with a small numberof resulting classes, SVM usually performs

better than other types of classifiers [160]. Given two sets of labeled data, SVM finds a hyperplane that

separates the data and maximizes the distance to each data set. When multiple classes are involved, the

SVM generates a group of pair-wise binary classifiers. Each binary classifier gives a vote to a class, and

the final classification is the class with the highest vote. Loosely speaking, since an instance is classified

depending on which side of the separating hyperplane it lieson, and not necessarily on how far from

the hyperplane it is, there can be cases where an instance is misclassified if it is located “close” to the

separating hyperplane.

To aid in our classification, we modify the aforementioned application of SVM to incorporate a notion

of “confidence”. The confidence threshold is the minimum distance of the hyperplane from the testing

instance, where only instances with distance to the hyperplane greater than the confidence threshold are

classified. This allows the classifier to avoid making decisions in ambiguous situations that would likely

result in incorrect classifications.

The general structure of each test described below is that wefirst train a browser classifier on one

dataset and then classify each retrieval in another datasetto obtain a guess of the browser used in that

retrieval. Each website retrieval is classified only if its distance to the separating hyperplanes is greater

than the confidence threshold. The browser used by hosts is determined to be the browser classified

most often ins’s retrievals. To avoid errors due to a host having a small number of retrievals, we only

consider hosts with more than thirty classified retrievals in our analysis. Our choice of thirty retrievals was

determined empirically, and provides a good balance between precision and the number of hosts classified

from the dataset.

We denote the classification for hosts to bebrowserguess(s), and the actual browser used by hosts

to bebrowser(s). Note thatbrowser(s) = ⊥ if the actual browser fors could not be determined, which

occurred in the CMU dataset in some cases; see Section 3.2. Also,browserguess(s) = ⊥ can result if the

classifier makes no classification fors, since no overwhelming choice arises fors’s retrievals (e.g., all of

7We utilize the SVM implementation included in the Weka machine learning package [150].
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the testing instances being close to the SVM hyperplane). The precision and recall across all hosts in the

test dataset is defined as follows:

Precision = Pr[browser(s) = b | browserguess(s) = b 6= ⊥]

=
|{s : browserguess(s) = browser(s)}|

|{s : browserguess(s) 6= ⊥}|

Recall = Pr[browserguess(s) = b | browser(s) = b 6= ⊥]

=
|{s : browserguess(s) = browser(s)}|

|{s : browser(s) 6= ⊥}|

A classifier that makes random guesses, i.e., classifying each host as a particular browser with1n probabil-

ity, wheren is the number of browsers, and a network where the browsers are distributed evenly among

the hosts, the precision can only be expected to be1
n2 .

3.3.1 Tests on PlanetLab-QEMU Dataset

In an ideal web browsing scenario, only one website retrieval is taking place at any time, such that bound-

aries between consecutive retrievals are clearly delineated, and each web page is allowed to fully download

before the next one. While this idealistic scenario will be compounded by many other issues in practice,

we argue that tests in a controlled environment are valuablein that they enable us to better understand

what factors influence classification the most.

We evaluated our browser classifier under this setting usingthe PlanetLab-QEMU dataset. To simu-

late multiple hosts, each running a specific browser implementation, data from each PlanetLab host was

separated by the browser that generated the traffic. This traffic pertaining to a specific browser from one

host served as testing data, while the classifier was trainedon traffic from all other hosts, for each exper-

iment. Since in some applications it will not be possible to obtain retrievals from every website that may

be present in the testing data, we set the training data to be traffic from the top 100 websites, and used

traffic from the remaining 50 websites (from top 100 to 150) for testing.

The precision and recall are shown in Figure 3.3, for confidence thresholds set to one of{0.35, 0.65,

0.95, 1.15, 1.30, 1.50}. The rise in precision with the increase in confidence threshold is likely due to

incorrect classifications being filtered out, to the point that most of a host’s classified retrievals are then

correct. On the other hand, recall decreases with the confidence since more hosts are unclassified (i.e.,

{s : browserguess(s) = ⊥}). In all cases the correct browser can be identified with at least 71% precision

and recall, and the precision grows to 100% with recall at 43%as the confidence threshold is increased.
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Figure 3.3: Precision and recall for browser classifi-
cation on the PlanetLab-QEMU dataset.
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Figure 3.4: Precision and recall for browser classifi-
cation on the CMU dataset (Train: PlanetLab-Native,
Test: CMU).

These results show that browser implementations exhibit different traffic behaviors that can be identified

even in coarse flow records.

3.3.2 Tests on CMU Dataset

Unlike the controlled setting of the PlanetLab experiments, the CMU dataset provides a setting for evalu-

ating our techniques on traffic recorded in the real world. That said, we remind the reader that for purposes

of ground truth, we could only reliably identify hosts usingFirefox and Opera in the CMU dataset, and

consequently, our analysis here is restricted to these cases. Out of those hosts, the vast majority of them

used Firefox, and to not bias our results to that of a single-browser evaluation, we randomly select Fire-

fox hosts in the CMU dataset but ensure that we have an equal number of Firefox and Opera hosts. The

browser classifier is trained on the PlanetLab-Native dataset.

Figure 3.4 shows the precision and recall for the CMU dataset, for confidence thresholds set to one

of {0.35, 0.65, 0.95, 1.15, 1.30, 1.50}. The precision generally increases slightly with the confidence

threshold, as incorrectly classified instances were filtered out (because they were too close to the separating

hyperplane), while recall decreases as a higher threshold leads to more unclassified instances (i.e.,{s :

browserguess(s) = ⊥}). As the confidence threshold increases, some hosts whose majority of retrievals

were correctly classified now have those correct classifications filtered out, so that these hosts are left with

more misclassified retrievals that cause the browser to be identified incorrectly; this results in a decrease

in precision at the end of the curve. The peak in precision is 74.56%, when the confidence threshold is
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1.30. We note that in this test (where the number of Firefox and Opera hosts are balanced) our precision

is substantially greater than that of random guessing (i.e., 25%).

3.4 Incorporating Browser Fingerprinting into TĀMD

In this section, we consider the impact of reliable browser fingerprinting on T̄AMD . Specifically, we

modified its platform aggregation functionByPlatform so that a platform aggregate is identified when

the largest fraction of hosts sharing the same O/Sor the same web browser is above a given threshold.

In doing so, we aim to detect both platform-dependent and browser-dependent malware, while incurring

only slight overhead.

To quantify this overhead, we followed the same experimentsthat were performed for T̄AMD in Sec-

tion 2.4, which involved seven types of O/S-specific (but notbrowser-specific) malware. Recorded net-

work traffic from the malware were overlaid onto the CMU dataset by assigning malware traffic to origi-

nate from randomly selected internal hosts. This combined data, consisting of the CMU dataset overlaid

with malware traffic, was then given to T̄AMD— configured to identify common host platforms based on

their O/S or browsers, but otherwise configured identicallyas in Section 2.3 — in hourly batches, where

the goal is to identify the single aggregate consisting of the malware traffic. The same experiment was

repeated for each hour of traffic collected over three weeks in November and December 2007, for each of

the seven different malware.

Figure 3.5 shows the number of browser aggregates identifiedby this new version of T̄AMD in each

malware experiment, in addition to the malware aggregate and other O/S aggregates, for different thresh-

olds on the homogeneity of the platform aggregate. When the threshold is set to 90%, meaning that at

least 90% of the hosts in the aggregate are required to share acommon browser (which cannot be⊥),

the number of additional aggregates reported due to browsersimilarity on average per hour is 0.0229.

This shows that incorporating browser fingerprinting into TĀMD induces a limited amount of additional

cost, while giving T̄AMD the ability to detect a wider range of malware, i.e., both O/S-dependent and

browser-dependent malware.

For network administrators, it is possible that a mapping ofinternal hosts to their browser implemen-

tations is available, or can be built by examining the payload of sampled packets. In these cases, we

expect that T̄AMD can be improved further, since errors from browser classification are eliminated. We

thus believe that the results reported here for TĀMD augmented by our browser classifier should serve as
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Malware Traces Homogeneity threshold
70% 80% 90%

Bagle 0.25(±4.95) 0.09(±3.05) 0.09(±3.05)
IRCbot 0.05(±2.18) 0.01(±0.99) 0.01(±0.99)
Mybot 0.03(±1.39) 0.00(±0.00) 0.00(±0.00)
SDbot 0.06(±1.94) 0.00(±0.00) 0.00(±0.00)
Spybot 0.02(±1.40) 0.00(±0.00) 0.00(±0.00)

HTTP bot 0.03(±1.39) 0.00(±0.00) 0.00(±0.00)
Large IRC bot 0.19(±3.05) 0.06(±2.19) 0.06(±2.19)
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Figure 3.5: Mean number of aggregates per hour (± standard deviation) due to browser similarity, in
addition to the identified malware cluster and to O/S aggregates.

a rough lower bound for what can be achieved in host infectionclassification.

In addition to enhancing the T̄AMD system, applications that can potentially benefit from our passive

browser fingerprinting technique include other intrusion detection systems that operate on flow records

(e.g., [27, 48, 54, 80]), and approaches for profiling network traffic (e.g., [2, 78, 153]).

3.5 Chapter Summary

In this chapter, we develop a browser classification that passively identifies browser implementations from

coarse flow records. We show that browser implementations can be identified with substantial precision

and recall, even within flow records from real user traffic that is recorded at a different time and on a

different network from the traffic used to train the classifier.

We also demonstrate how browser identification can be used toimprove TĀMD , our network intrusion

detection system described in Chapter 2, by permitting the system to identify aggregates of hosts on the

network that share the same browser. Suspicious traffic is even more suspect when coming from such
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an aggregate, since this may indicate that these hosts have succumbed to a browser-specific exploit. Our

browser fingerprinting techniques would enable TĀMD to detect more types of malware, i.e., those that

are browser-dependent, while incurring slight overhead.

In addition to enhancing network intrusion detection systems, we also show that knowledge of the

browser implementation can be used to improve the accuracy of traffic deanonymization. The details of

this study can be found in Appendix A.
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Chapter 4

Are Your Hosts Trading or Plotting?

Peer-to-peer (P2P) networks were used as botnet communication channels as early as 2003 [52]. The de-

centralized nature of these networks overcame the single-point-of-attack limitation in centralized control,

making the botnet resilient to individual peer failures andalso harder to detect and take down. These mo-

tivations for using P2P substrates are similar to those underlying the use of P2P protocols for file-sharing;

the takedown of Napster, for example, highlighted the limitations of a centralized “command-and-control”

infrastructure in that domain. It is thus not surprising that P2P substrates now commonly support both ac-

tivities.

A consequence of this common use of P2P technologies is that infected hosts may not communicate

with the same destinations, such that theByDestτ function TĀMD can fail. Moreover, botnet command-

and-control traffic will tend to “blend into” a background ofP2P file-sharing, making it difficult to separate

these two types of traffic. In both types of P2P networks, status information about available peers needs

to be maintained constantly to ensure the connectivity of the network; peers experience a high connection

failure rate due to the dynamics of nodes joining and leaving(i.e., “churn”); and peers participate in client

and server activities simultaneously. This commonality ispunctuated by the fact that one highly publicized

and well-studied P2P botnet, Storm, built its communication protocol based on the Overnet network,

whose distributed hash table implementation [97] is incorporated in both eDonkey1 and BitTorrent2

file-sharing applications.

In light of this, the primary problem facing the detection ofsuch bots is differentiating them from

other P2P hosts. We focus specifically on the problem of P2P botnet detection given this challenge, and

1http://wiki.amule.org/index.php/FAQ eD2k-Kademlia
2http://bittorrent.org/beps/bep 0005.html
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construct a series of tests on network traffic to separate P2Pbots from P2P file-sharing hosts, to which we

will refer as Plotters and Traders, respectively. Our testswork exclusively on traffic summaries (e.g., flow

records) with no access to individual packets (much less payloads), and so can scale to very busy networks

where per-packet logging may not be cost-effective. Our technique is thus also unaffected by encryption

of bot payload contents.

Given the varied nature of malware behaviors, we focus on characteristics of the traffic that do not

depend on particular attack activities performed by the infected hosts (e.g., spam forwarding, denial-of-

service attacks), but rather that are basic properties of Plotters that operate over P2P networks. At a high

level, these characteristics include:

• Volume: Since Traders generally perform large multi-media file transfers (e.g., MP3, movies), but

Plotters almost never do, traffic volume should be a good indicator of suspicious activity. However,

as we will show, examining volume alone yields many false positives.

• Peer churn: The peer membership of a file-sharing network is very dynamic, due to peers con-

stantly joining and leaving the network, the availability of the desired file, and connections between

hosts being terminated soon after the completion of the file transfer. Previous studies [58, 126, 140]

also showed that most Traders appear only once a day, and remain connected for short durations

(minutes). Plotters, by contrast, are likely to experienceless churn in peer membership due to

several reasons. First, without a centralized command-and-control server, Plotters are required to

maintain connectivity to their peers in order to receive andexecute commands from the bot-master.

Second, the Plotter cannot control when network access willbe available, and so it is often oppor-

tunistic in communicating with peers, i.e., whenever it hasa chance. Lastly, each Plotter maintains

a list of known peers with which to communicate, such that they tend to contact the same hosts

repeatedly.

• Human-driven versus Machine-driven: Perhaps a more basic difference between Plotters and

Traders is that, while file-sharing activities are mainly human-driven, Plotters are almost entirely

automated. This causes much of their traffic to exhibit temporal similarity that is rarely seen among

those from human activities. Previous studies on distinguishing humans and bots in Internet chat

rooms also observed that human behaviors are more complex than bots [49].

We construct measures of each of these characteristics, framing them into tests that distinguish Plotters

from Traders. To our knowledge, our work is the first to targetPlotters from the perspective of their
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commonality (or the lack thereof) with other P2P protocols.

We evaluate the ability of our technique to identify Plotters within traffic observed at the Carnegie

Mellon University campus network. Our results show that Storm bots can be identified with up to 87.50%

true positive rate and only 0.47% false positives, despite the fact that Traders using thesameP2P substrate

were present in our tests. We also perform tests with Nugachebots, where we show that for a false positive

rate of 0.57%, we can detect 34.80% of the bots. We will explore the reasons behind our lower — though

still substantial — detection rate in this case.

A final contribution of this chapter is to examine how much malware behavior would need to change

to evade our technique. We quantify for each of our componenttests the degree to which Plotters would

need to alter their behaviors to evade them. The results suggest that evading our technique would require

significant behavioral changes of existing botnets. Moreover, due to the way in which our tests are con-

structed, it would typically not be evident to the Plotters how much change would be sufficient to evade

them.

4.1 Related Work

Much work on Plotters focused on understanding how such botnets operate, including Storm [52, 66, 116,

138], Nugache [138], Waledac [17, 132, 136], and Conficker [117]. Early work on disrupting Plotters

(targeting Storm, in particular) injected a large number offake nodes into the network to perform various

Sybil attacks [41, 60, 66], such as content poisoning or eclipsing certain nodes from the rest of the P2P

network. These studies show that the effectiveness of the attack depends on the attack duration as well as

the number of Sybils. Kang et al. [77] developed a P2P monitorthat infiltrated the Storm botnet to identify

the IP addresses of infected hosts. Their monitor was able todetect bots behind firewalls or NAT devices,

achieving a broader coverage than others that actively crawl the network.

Behavior-based detection techniques, described in Chapter 1.1, also target Plotters by examining cor-

related characteristics of network traffic. This includes identifying hosts performing suspicious activities

(e.g., scanning, spamming) and sharing common communication contents [55], or exhibiting similar traffic

statistics and suspicious activities [54]. However, theseapproaches may be evaded by changes in malware

behavior, many of which have already taken place, such as turning to social engineering as an infection

vector instead of scanning, or using encryption to make payload analysis difficult. Still others (e.g. [20])

use behavioral analysis to identify P2P-bot behaviors exhibited over non-P2P protocols.
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In contrast to previous work, we focus specifically on distinguishing Plotters, whose command-and-

control channel is implemented in a P2P fashion, from Traders. We do so by observing network-level

characteristics inherent to P2P applications, but that areable to distinguish Plotters from Traders due to

the different goals and circumstances behind how they utilize the P2P protocol. For example, Plotters com-

municate over P2P networks mainly for subtlety and resilience, instead of large file exchanges. They are

also incentivized to maintain persistent connections to other peers in the network, in contrast to Traders,

who have been observed to go offline after the completion of file transfers [58].

Jelasity et al. [72] studied techniques that can be deployedby Plotters to evade P2P traffic detection.

However, they only consider the case where traffic dispersion graphs (TDGs) [70] are used to identify

P2P traffic. The TDG-approach assumes a global view of the network, constructing a communication

graph between all nodes to check if the average degree and thefraction of nodes with both incoming and

outgoing connections are above a threshold. To evade such detection, the authors specifically focused

on reducing the number of peers each Plotter contacts, such that most of the botnet’s traffic are routed

through a few fixed nodes. While this approach may limit the number of detectable Plotters using TDGs,

its impact on other methods for identifying P2P traffic (thatdo not require the communication graph) is

not evaluated.

One of the characteristics explored in this work is the difference between human-driven and machine-

driven traffic. This observation has also been applied in other contexts, including cheat detection in online

games [129], distributed denial-of-service attack defenses [59, 75], and chat bot detection in Internet chat

rooms [49]. While most approaches to identifying automatedtraffic were host-based (e.g., deploying

trusted software components on the client host), Gianvecchio et al. [49] found that the network traffic

from human activities shows a higher entropy than those frombots for the case of Internet chat room

traffic. Giroire et al. [50] proposed a method to detect centralized botnet command-and-control traffic by

monitoring persistent and regular connections made to the same group of destination IP addresses, i.e.,

the command-and-control server. Since legitimate user traffic can also appear to be persistent and regular,

this approach requires whitelisting common sites users visit, and is not suitable for detecting Plotters that

communicate over P2P networks. BotProbe [56] exploits the determinism in the bots’ pre-programmed

behavior in response to commands from the bot-master. It actively replays, modifies, and intercepts pack-

ets of suspicious connections, and utilizes hypothesis testing to distinguish bot traffic from those of human

users. However, this approach is hindered by encryption, and may require human participation.
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4.2 Data Collection

As in the TĀMD system (see Chapter 2), we assume the role of a network administrator that aims to

identify Plotters internal to her network by observing onlytraffic crossing the border of the network.

The network traffic utilized in our analysis was organized into bi-directional Argus3 flow records. In

addition to the source and destination IP addresses and ports, the protocol, the start and end times of the

flow, and the packet and byte counts, each Argus record also includes the first 64 bytes of the payload on

the connection. In contrast to T̄AMD , we do not use the payload in our technique. Rather, the payload

information is used solely for determining ground truth, that is, determining whether the host is a Plotter

or a Trader.

We use the following datasets in our analysis:

CMU dataset. Similar to that used in the evaluation of T̄AMD in Section 2.4, this dataset consists of

anonymized traffic from the edge routers of the Carnegie Mellon University campus network, which has

two /16 subnets. The rate of this traffic is about 5,000 flows per second, and was collected from 9 AM to

3 PM over eight days in November 2007. We focus on only TCP and UDP traffic in this dataset.

Trader dataset. We identified those hosts in the CMU dataset that participated in known P2P file-

sharing networks (i.e., the Traders), using the 64 bytes of payload in each flow record available to us.

Specifically, we focus on three popular file-sharing applications: Gnutella, eMule, and BitTorrent. Hosts

running Gnutella were identified by the protocol keywords “GNUTELLA”, “CONNECT BACK”, and

“LIME” in their payload. 4 eMule hosts were identified by the initial byte ‘0xe3’ or ‘0xc5’, followed by

various byte sequences as specified in the protocol specification [88]. BitTorrent hosts were identified

by the protocol keyword “BitTorrent protocol”, web requests to trackers beginning with “GET /scrape”

or “GET /announce”, and distributed hash table control messages with the substrings “d1:ad2:id20” or

“d1:rd2:id20”. 5

Plotter dataset. We also obtained Plotter traffic traces gathered from honeynets running in the wild in

late 2007 [54]. These include a 24-hour trace of Storm, whichcontains traffic from 13 bots, and a 24-hour

trace of Nugache, which contains traffic from 82 bots. Spamming and scanning activities were blocked

3http://www.qosient.com/argus
4http://rfc-gnutella.sourceforge.net/src/rfc-0 6-draft.html
5http://wiki.theory.org/BitTorrentSpecification
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during the collection of these traces, and so the remaining traffic consists mostly of botnet control traffic,

e.g., for peer discovery. As we show in this chapter, these traces were used in our evaluation, where they

were overlaid onto the CMU traffic by assigning them to randomly selected internal hosts that were active

in the CMU dataset. This method of overlaying malware trafficonto the CMU dataset is similar to that

performed in Chapter 2 for the T̄AMD system, which was evaluated using traces from centralized bots.

4.3 Methodology

Given network traffic observed at the border of an enterprisenetwork, our goal is to identify internal hosts

that are Plotters, where the main challenge in doing so is to distinguish them from Traders. We construct

a set of tests that quantify the characteristics volume, peer churn, and human-driven versus machine-

driven, which aim to take advantage of the different goals and circumstances behind how Plotters and

Traders utilize P2P networks. Each test takes as input a collection of traffic,Λ, which involves a group

S of internal hosts over one day, and outputs a subset of hosts in S that exhibit characteristics for which

the test evaluates. In the following, we detail the rationale behind each of the characteristics, how they

can be useful indicators for distinguishing Plotters from Traders in particular, and the construction of the

corresponding test functions. We then describe how multiple tests can be combined to refine the results to

narrow in on Plotters within the local network.

4.3.1 Volume

The first distinguishing characteristic we consider between Plotters and Traders is the amount of traffic

each host contributes to the network. A common purpose of Traders is to exchange data, and much of

the data found on popular P2P file-sharing applications are large multi-media files (e.g., several MBytes

in size [126]). By contrast, the use of P2P architectures by Plotters is not so much for the sharing of

information as for resilience and subtlety. Their traffic hence tends to be much lower in volume. In fact,

the Storm botnet was observed to use the P2P protocol only forexchanging control messages, while file

transfers were performed over HTTP [52, 138].

We examine traffic volume for a host in terms of the average number of bytes per flow that it con-

tributes to the network (i.e., uploaded by the host). Compared to the cumulative byte count, this metric

is less likely to be biased by the number of flows generated by ahost, since a Plotter that is chatty can

accumulate a large byte count over a short time window, whileeach individual flow is quite light-weight.
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Figure 4.1: Cumulative distribution of the average flow sizeper host in each dataset over one day.

Figure 4.1 shows the cumulative distribution of this value per host, plotted from a single day of traffic

from the CMU dataset, the Trader dataset, and the Plotter traces. This figure shows that the amount of

data contributed by the Plotters (i.e., the Storm and Nugache bots) is significantly smaller than Traders.

Tests on Volume By quantifying a host’s traffic volume using the average number of bytes sent per flow,

we can define a test functionθvol that uses this characteristic to distinguish between Traders and Plotters.

The function takes as input a collection of traffic,Λ, which involves a groupS of internal hosts over one

day, and a thresholdτvol. Hosts whose average flow size is less thanτvol are returned in the setSvol.

In practice,τvol can be set dynamically depending on the current traffic makeup, for example, as the

median value observed across all hosts inS. This can make it more difficult for a Plotter to masquerade

itself as a Trader; e.g., the amount of data it sends per flow needs to be larger than the majority of the hosts

in the local network, though the Plotter would presumably beunaware of that amount that it must exceed.

4.3.2 Peer Churn

Peer churn refers to the dynamics of peers joining and leaving the network, and is a common phenomenon

among both Traders and Plotters. This characteristic is often reflected in the high ratio of failed connec-

tions observed in P2P networks [9, 26]. Previous studies on P2P file-sharing networks have shown that

peers are often connected for only short durations (a few minutes on average) [58, 126, 140], and many of

them leave the network permanently after requesting a single file [58].

We hypothesize that even though the dynamism in peer membership is present in both systems, peer

churn is less significant among Plotters than among Traders.This is because Plotters have motivation to

keep up persistent communications with each other and maintain the connectivity of the botnet, since the
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bot-master needs to be able to control her bots. The Plotter also cannot control when network access will

be available on the infected machine, and so it is often opportunistic in initiating communications, i.e.,

whenever it has a chance, making a Plotter’s network activities more persistent in doing so. In addition,

most Plotters store a list of known peers with which it maintains communications, both for bootstrapping

itself into the network [17, 52, 66, 116, 138] and to limit thenumber of active connections. Such behaviors

make it more likely for Plotters to contact the same hosts than Traders, whose sets of peers are mainly

determined by file availability.

This observation allows us to characterize peer churn usingthe set membership of the destination IPs

that a host contacts. We quantify this by the fraction of new IP addresses that a host contacts in one day, or

more specifically, the ratio of (i) the number of IP addressesthat a host first contacts after its first hour of

activity on that day, and (ii) the total number of IP addresses it contacts in that day. A higher percentage

of new contacts indicates a higher amount of churn. Figure 4.2 shows the percentage of new addresses

contacted by Plotters and Traders (in one-day’s worth of traffic from the Plotter and Trader datasets). Most

Nugache Plotters do not contact any more new IPs after their first hour of activity, while around 60% of

the IPs contacted by Storm Plotters were new. By contrast, the majority of Traders contact more than 85%

new destinations.
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Figure 4.2: Cumulative distribution of the percentage of new IPs contacted by Traders and Plotters over
one day.

Tests on Peer Churn Similar to the test for volume, we also distinguish Plottersfrom Traders using

churn by performing a coarse separation between the two setsof hosts. The test function for peer churn,

θchurn, identifies hosts that have a relatively “low” churn (which are likely Plotters) using a threshold
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τchurn. By taking as input a collection of trafficΛ involving hostsS and a thresholdτchurn, the peer churn

testθchurn(Λ,S, τchurn) outputs a setSchurn of hosts that contact a percentage of new IP addresses less than

τchurn.

In practice, a Plotter could attempt to evade detection by increasing the fraction of new hosts it con-

tacts, for example, by performing random scanning or initiating connections to different peers on its peer

list at every communication attempt. This approach is risky, since it could make the Plotter detectable via

other means (e.g., by identifying scanning activities) andreduces the stealthiness of the Plotter. We discuss

evasion techniques that can be carried out by Plotters and quantify their induced costs in Section 4.5.

4.3.3 Human-driven vs. Machine-driven

Several works on botnet detection have studied the difference between human and machine-driven ac-

tivities [54, 55, 56, 94, 95, 119], particularly focusing onthe automated and synchronized nature of

machine-driven behaviors. Only a few of these previous works have applied their technique to detect-

ing P2P Plotters [54, 55]. However, these approaches rely onthe presence of specific attack activities

performed by the infected hosts.

We approach this problem by directly using timing-related information to characterize the similarity

of machine-driven activities, such as periodic keep-alive/status messages exchanged between peers or

scheduled checks performed by the Plotters to download new commands. Specifically, for each host, we

examine the interstitial time distribution of its “activities” to the same destination IP, where an “activity”

is a group of flows that overlap in time, such as multiple connections that are initiated in parallel. This

distribution is observed across all destinations contacted by the host, since we do not know which ones

are P2P peers. Since Plotters in the same botnet are likely torun similar versions of the bot binary, the

timers used in triggering their activities should also follow the same algorithm. Hence the per-destination

interstitial time distributions for Plotters should not only stand out from those of Traders, whose activities

lack the regularity seen in automated traffic, but also appear “similar” to each other.

Tests on Human-driven vs. Machine-driven To compare the per-destination interstitial time distribu-

tion between hosts, we define a function,θhm, that uses a non-parametric approach to construct a histogram

that approximates the underlying distribution for each host [47]. The Earth Mover’s Distance [125] is then

applied as the distance metric for comparing distributions. This allows us to identify clusters of hosts

who exhibit similar timing patterns in their network traffic, where hosts whose traffic are mainly machine-
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(b) Nugache bots
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(d) Gnutella hosts

Figure 4.3: Earth Mover’s Distance between pairs of hosts within one day’s worth of traffic.σhm is set to
2%.

driven, e.g., Plotters, should have different interstitial time distributions from hosts that are human-driven,

e.g., Traders, and thus fall within separate clusters.

• Constructing Histograms. Given a collection of the observed interstitial time samples v(s) for

a hosts, we approximate its underlying distribution by constructing a histogram. The choice of

histogram bin width is critical in this approximation, since a large value leads to over-smoothing,

and a small value increases the sampling error. Moreover, applying a fixed bin width makes it

straightforward for a Plotter to manipulate its traffic to evade detection.

In this work, we follow a method proposed by Freedman et al. [47] to identify the optimal bin

width, where the goal is to minimize the mean-squared error between the true distribution and the

histogram. They show that the bin width can be computed as a function of the sample size|v(s)|

(i.e., the number of observed interstitial time values for hosts) and the “spread” of the samples, as

represented by the inter-quartile range of the sample values, IQR(v(s)). Specifically, the bin width

for hosts, bs, is calculated bybs = 2× IQR(v(s))× |v(s)|−1/3.

• Clustering Histograms. One of the metrics for comparing distributions is the EarthMover’s Dis-

tance (EMD) [125]. Briefly, EMD is defined as the amount of workthat is required to change one

distribution into the other by moving “distribution mass” around. It is based on the transportation

problem [37], where the challenge is to find routes that will minimize the cost of shipping goods

from a group of suppliersI to a group of consumersJ . That is, find a set of routesfij to minimize
∑

i∈I

∑
j∈J cijfij, wherecij is the cost of shipping from supplieri to consumerj. By definingcij

as the distance between theith andjth bins in the histograms, the “distribution masses” are prefer-

ably moved between nearby bins. In this way, EMD is especially useful when the distributions are

shifts of each other, but otherwise identical.
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To find hosts whose network traffic exhibit similar timing patterns, we perform clustering on the

histograms using an agglomerative hierarchical algorithm. In each step, we merge the two existing

clusters for which the distance between host histograms, averaged over all ways of drawing one

host from the first cluster and one from the second, is minimized (average linkage clustering[81]).

This iterative process constructs a hierarchical clustering tree with the weight of each link being the

distance (as described above) between the two existing clusters it connects. The final set of clusters

is formed by cutting the topσhm percentage of links with the largest weights.

Figures 4.3(a) and 4.3(b) show the Earth Mover’s Distance among pairs of Storm and Nugache bots6

from our Plotter traces, whenσhm is set to 2%. Compared to pairs of Traders, as shown in Figures4.3(c)

and 4.3(d), the Plotters have much “closer” distributions.

In addition toσhm, θhm also takes as input a threshold parameter,τhm; θhm filters out clusters whose

diameters exceedτhm. Similar to the two previous tests,τhm can be set dynamically as a function

of the diameters across all clusters. The output from the human-driven versus machine-driven test,

θhm(Λ,S, τhm, σhm), is the union of the host clusters not filtered out in this way.

4.3.4 Combining the Tests

Each of the above tests,θvol, θchurn, andθhm, aims to find Plotters using behavioral characteristics of

a host’s network traffic. Alone, each test may be too coarse tobe effective at identifying Plotters. In

Section 4.4, though, we show that when used in combination, they can narrow in on the Plotters, while

largely eliminating other hosts.

Specifically, we combine the tests into an algorithm,FindPlotters, shown in Figure 4.4. The algorithm

takes as input a collection of trafficΛ involving a set of hostsS observed over one day, and outputs hosts

who pass our various tests, i.e., that are likely to be Plotters.

4.4 Evaluation

We present an evaluation of the tests described in Section 4.3, using traffic from Plotters overlaid onto

flow records recorded at the edge of the CMU network (the CMU dataset). For each day of traffic in the

CMU dataset, we overlay the bot traces by assigning them to randomly selected internal hosts that are

6Specifically, here we used the top 25% Nugache bots in terms ofthe number of flows they generate. We will return to this in
Section 4.4.2
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FindPlotters(Λ,S)

200: Svol ← θvol(Λ,S, τvol) /∗ Returns hosts with low traffic volume∗/
201: Schurn ← θchurn(Λ,S, τchurn) /∗ Returns hosts with low peer churn∗/
202: Shm ← θhm(Λ,Svol ∪ Schurn, τhm, σhm)

/∗ Returns hosts with similar timing patterns in their traffic∗/
203: return Shm

Figure 4.4: The algorithm used to find suspected Plotters by combining the tests on volume (line 200),
peer churn (line 201), and human-driven versus machine-driven traffic (line 202), described in Sec-
tion 4.3.1, 4.3.2, and 4.3.3.

active during that day (including possibly Traders). This makes our testing scenario more realistic, since

those hosts still exhibit their normal behaviors, in addition to Plotter activities.

4.4.1 Initial Data Reduction

To serve as an initial data reduction step in our analysis, wefirst deploy a simple method to filter out hosts

that are unlikely to be running P2P applications at all, by considering only hosts that have relatively high

failed connection rates. The failed connection rate has been utilized in previous works that identify P2P

traffic (e.g., [9, 26]), and here we use it simply as a coarse data-reduction step for eliminating hosts that

are likely not running P2P applications at all, i.e., that are neither a Trader nor a Plotter.

Figure 4.5 shows the cumulative distribution of the percentage of failed connections per host, plotted

from a single day of traffic from the CMU dataset, the Trader dataset, and the Plotter traces. Only hosts

that initiated successful connections within that day wereincluded. There is a clear distinction between the

curves for the CMU\Trader and Trader datasets, pointing out that P2P hosts do exhibit significantly higher

failed connection rates compared to non-P2P hosts. A closerexamination of the Traders with a small

percentage of failed connections (e.g., less than 10%) revealed that they are BitTorrent hosts downloading

Torrent files from trackers over HTTP, but that are not otherwise involved in P2P file-sharing activities.

Surprisingly, the Plotter traces also exhibit very different failed connection rates. In particular, many

of the peer discovery messages sent by Nugache Plotters in our trace were unsuccessful, because the

remote peer was either not active or not responding. This causes all Nugache Plotters to have more than

65% failed connections. Note that the curves for Storm and Nugache in Figure 4.5 are generated from the

Plotter tracesonly. When they are overlaid onto the CMU dataset (Section 4.4.2), the percentage of failed

flows can be biased by the traffic from the CMU host to which we assigned the Plotter traces.

As a data-reduction step to filter out those hosts who are likely not involved in P2P activities—while

retaining hosts that are in fact running P2P applications—we use the median value among hosts in the
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Figure 4.5: Cumulative distribution of the percentage of failed connections per host in each dataset over
one day.

CMU dataset with Plotters overlaid (and that initiated successful flows) as the threshold for deciding

which hosts to remove from consideration. This value is determined anew for each day of traffic. For

example, for the case of Figure 4.5, the threshold for failedconnection rate would be roughly 5% (i.e.,

5.75%, the median value for the CMU dataset, then adjusted due to the overlaid Plotter data). Hosts with

failed connection rates higher than the threshold are selected as “possibly P2P”. This approach not only

allows us to eliminate half of the hosts that are not likely tobe Plotters, but is also more difficult for a

Plotter to evade compared to setting a fixed threshold.

4.4.2 Identifying Plotters

We overlaid the Storm and Nugache Plotter traces onto each day of traffic in the CMU dataset by assigning

them to originate from randomly selected internal hosts in the CMU campus network active on that day.

This combined traffic is first passed through the initial datareduction step, and then given as input to the

tests, where each returns a set of hosts that survived the test.

Figures 4.6, 4.7, 4.8 show ROC (Receiver Operating Characteristic) curves for the volume, churn, and

human-driven vs. machine-driven tests. The input to the volume and churn tests is the setS of hosts that

passed the initial data reduction step described in Section4.4.1. The ROC curves are generated by setting

the thresholdτvol to be the 10, 30, 50, 70, or 90th percentile of the average bytes sent per flow per host, and

τchurn to be the 10, 30, 50, 70, or 90th percentile of the fraction of new IP addresses contacted per host.

The input to the human-driven vs. machine-driven test,θhm, are those hosts that were retained by one of

the volume or churn tests (i.e.,Svol ∪ Schurn) with their respective thresholds set at the 50th percentiles
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(and by the initial data reduction step). To generate the ROCcurve in Figure 4.8, the thresholdτhm for

θhm is set to be the 10, 30, 50, 70, or 90th percentile of the cluster diameters, andσhm is set to be 2%, 5%,

or 10%. We emphasize that each ROC curve plots the true and false positive ratesrelative to its input set

(i.e.,S for θvol andθchurn, andSvol ∪ Schurn for θhm), as opposed to the overall CMU dataset with Plotters

overlaid, in order to highlight the independent discriminating power of each test.
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Figure 4.6: ROC curves for the volume testθvol

when the Storm and Nugache traces are overlaid
onto the CMU dataset, after filtering as in Sec-
tion 4.4.1. Results are averaged over the eight
days in the CMU dataset.
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Figure 4.7: ROC curves for the churn testθchurn

when the Storm and Nugache traces are overlaid
onto the CMU dataset, after filtering as in Sec-
tion 4.4.1. Results are averaged over the eight
days in the CMU dataset.
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(a) Storm Plotters.
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(b) Nugache Plotters.

Figure 4.8: ROC curves for the human-driven vs. machine-driven testθhm when the Storm and Nugache
traces are overlaid onto hosts in the CMU dataset, after filtering as in Section 4.4.1 and byθvol andθchurn.
Results are averaged over the eight days in the CMU dataset.

Two observations from Figures 4.6–4.8 are evident. First, the true positive rates for Storm are higher
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than Nugache across all three tests, often reaching 100%. Wewill explore the reasons for this difference

at the end of this section. The second observation is that alone, each of the tests would be too coarse to be

effective at identifying Plotters, producing high false positive rates that can reach to 90% (e.g., the volume

test).

In combination, however, they can be powerful at extractingPlotters from Trader-like hosts. To show

this, we utilized the tests together as in the algorithmFindPlotters (Figure 4.4). To strike a balance be-

tween the true positive and false positive rates, we use the 50th percentile among the hosts as the threshold

for both τvol andτchurn, the 70th percentile of the cluster diameters forτhm, and 2% forσhm. Figure 4.9

shows how the results are refined at each step, where the maximum false positive rate (across tests for

Storm and Nugache) is reduced to 0.57% (i.e., 0.47% and 0.57%for Storm and Nugache, respectively),

while maintaining a true positive rate of 87.50% for Storm and 34.80% for Nugache. The percentage of

Traders (from the Trader dataset) that remain after each test is also shown for comparison. The maximum

percentage (across tests for Storm and Nugache) of remaining Traders is 5.47%, which comprises 13.14%

of all the hosts returned byFindPlotters.
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Figure 4.9: Results after applying the tests in sequence, averaged over eight days in the CMU dataset with
overlaid Plotter traffic.

We took a closer look at those hosts that were identified as Plotters, but to which we did not assign

malware traffic. Since our datasets were anonymized, we madeuse of the port numbers, protocol, and

the 64 bytes of flow payload available to us. Among those identified hosts, many of them appeared to

be running P2P-like applications. The same non-standard source port was used across communications

with multiple IP addresses, and the host also received incoming connections on that port. These could be

Traders that were online but not actively transferring files. Other hosts were found to be running instant
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messaging applications, such as Yahoo! Messenger or MSN, ormail clients that periodically contacted

mail servers to check for incoming messages (e.g., via the POP3 or IMAP protocol). In practice, a network

administrator can easily whitelist these applications to reduce the false positive rate even further.

We now return to the differences in detection rates between Nugache and Storm. As shown in Fig-

ure 4.9, most false negatives for Nugache resulted fromθhm. Further investigation into these results

showed that each test, but particularlyθhm, tended to filter out less communicative Plotters, as shown in

Figure 4.10. We have been unable to confirm a reason behind thelarge variance in the activity levels of the

Nugache bots in our trace, though those who originally recorded the trace suggested that this may be due

to the limited viability of the Nugache botnet at the time this trace was recorded.7 A Plotter that is unable

to connect to a given peer may attempt to contact several other Plotters before approaching the failed peer

a second time, if it does so at all. Such uncertainties in the Plotter’s state before successfully engaging in

the botnet results in irregular behaviors that render our tests less effective, as shown in Figures 4.6–4.8.
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Figure 4.10: Cumulative fractions of the number of flows generated by the Nugache Plotters that remain
after each test, in base-10 log scale. Results are accumulated over the eight days in the CMU dataset.

4.5 Evasion

A Plotter could attempt to change its network behaviors to evade our tests, e.g., by increasing its traffic

volume so that it will escape the volume test. However, sincethe thresholds used in our tests are not fixed

at set values, but instead are dependent on traffic statistics from all active hosts in the local network, a

Plotter would have difficulty in determining the precise thresholds that will allow it to masquerade as a

Trader.
7Guofei Gu, personal communication, October 2009.
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(a) The thresholdτvol in the testθvol compared to values ob-
served from hosts with overlaid Plotter traffic.
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(b) The thresholdτchurn in the testθchurn compared to values ob-
served from hosts with overlaid Plotter traffic.

Figure 4.11: Challenges for detected Plotters to evadeθvol or θchurn. Each of the eight days in the CMU
dataset is shown.

Figures 4.11(a) and 4.11(b) show, for the volume testθvol and churn testθchurn conducted on each day

of traffic in the CMU dataset, the detection threshold used (i.e., the median among the hosts) versus the

median value among the Plotters that were detected, once assigned to hosts. To evade the volume test,

θvol, the median Storm Plotter would need to generate more than20 times its original traffic volume per

flow. The corresponding multiplicative factor for the median Nugache Plotter is roughly 1.3. To evade the

churn test,θchurn, a Plotter can either refrain from contacting hosts it had previously communicated with,

or generate connections to a large number of new hosts it talks to only once. As an example of the latter

case, a Plotter who wants to raise its percentage of new IPs from 60% to 90% (a typical value ofτchurn),

while still maintaining the same number of hosts with which it communicates, would need to increase

the fraction of new hosts it contacts by a factor of 1.5. Such evasion attempts from Plotters that increase

their traffic volume or the number of new hosts (such as through random scanning) can compromise their

stealthiness, making their presence in the network observable through other means (e.g., scan detection)

or even by the owner of the infected machine.

The human-driven vs. machine-driven test,θhm, clusters hosts based on the distribution of their per-

destination interstitial activity times, and identifies hosts that have similar timing patterns in their com-

munications. Plotters belonging to the same botnet can avoid falling into the same cluster or increase

the cluster diameter, for example, by having each Plotter select a different frequency at which to con-

tact peers. This could affect our choice of bin width in histogram construction — which is dependent

on both the number of interstitial time samples observed andthe inter-quartile range of the samples (see
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Figure 4.12: Challenges for Plotters to evadeθhm. The y-axis is the true positive rate averaged over eight
days of the CMU dataset with overlaid Plotter traffic.

Section 4.3.3) — and therefore alter the Earth Mover’s Distance (EMD) between Plotters.

To quantify the operational cost for Plotters that want to evadeθhm, we simulated Plotters who, instead

of initiating communications at regular intervals, alwaysadd (or subtract) a random delay before each

activity. By manipulating the distribution from which the interstitial times are drawn, the Plotters may

disrupt our algorithm so that they no longer fall within the same cluster, or that the cluster diameter

exceeds the thresholdτhm.

We use the same Plotter traces that were used in the evaluation for this simulation, but add (or subtract)

a random delay before every activity a Plotter initiates to apeer with which it had previously communi-

cated. The delay is drawn from a uniform distribution over the interval±d, for each activity. Figure 4.12

shows the decay in the true positive rate as a function ofd, ranging from 30 seconds to three hours. This

suggests that Plotters must randomize their activities by minutes in order to evade detection via this test,

potentially slowing the responsiveness of the botnet. Moreover, the per-destination interstitial activity

time distribution of other machines in the local network also affects the needed value ofd, which may be

difficult for Plotters to measure.

4.6 Discussion

The experiments we reported above used network traffic collected in November 2007. The dominant pro-

tocols in this data (based on the port numbers and the 64 byte of flow payload available to us) include

HTTP, DNS, HTTPS, SMTP, BitTorrent, and instant messaging (e.g., AOL, MSN). Today, there are a

number of other popular peer-to-peer protocols for conducting activities other than file sharing, e.g., con-
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tent distribution systems (e.g., SopCast8, PPLive9, Zattoo10) and Internet telephony (e.g., Skype11).

Traffic to the default Skype port12 accounted for less than 50 flows per day in our dataset, and so we

believe that our false positives include a very small numberof Skype hosts, if any. The prevalence of these

other peer-to-peer systems in our data are even smaller.

That said, these newer protocols that gained popularity after our data collection raise the question of

whether our techniques would be effective on today’s networks. While we have not conducted a thorough

analysis of this issue, it does appear that Skype, for example, would be at risk of being classified as a

Plotter network due to its machine-like characteristics, particularly the exchange of periodic and low-

volumed keep-alive messages between clients for maintaining connectivity [10]. The use of non-standard

ports and encryption further makes it difficult to whitelistthis application.

Certain features of Skype may enable a classifier to effectively distinguish it from Plotter networks,

however. First, each Skype client is required to connect to asuper node, which is a host running Skype that

has high network bandwidth, high computing power, and a public IP address. The online duration of Skype

super nodes has been observed to be quite high, e.g., over fivehours on average [57], such that clients are

likely to experience less peer churn than Plotters. Second,even though Skype clients do exchange keep-

alive messages that are only a few bytes long [10], voice and video calls (the latter consisting of more than

a quarter of all Skype-to-Skype calls13) will cause Skype clients to generate a higher volume of traffic

than Plotters. If these or other features do not provide a sufficiently sound basis for separating Skype

traffic from Plotter networks, then it may also be possible for administrators to identify Skype nodes by

using known Skype instances to interact with them, in a way analogous to how administrators might try to

infiltrate a botnet. Several works also proposed detecting Skype traffic by observing connection statistics

(e.g., the packet arrival rate, packet size [16]) or by identifying relayed traffic [141].

4.7 Chapter Summary

In networks where P2P file-sharing is commonplace, a challenge in identifying bots managed via P2P

infrastructures is the similarities that their network behaviors share with P2P file-sharing applications.

In this chapter, we develop a series of tests for separating the two classes of P2P applications, and in

8http://www.sopcast.org/
9http://pplive.en.softonic.com/

10http://zattoo.com/
11http://www.skype.com
12According tohttp://en.wikipedia.org/wiki/List of TCP and UDP port numbers
13http://blogs.skype.com/en/2008/04/interview with skype ceo josh.html
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particular for identifying bots within a network prior to their engaging in overt attacks. Our tests work on

flow records, without access to individual packets. As such,our technique is scalable to busy networks

where packet capture (or even packet header capture) is not cost-effective, and is also immune to bot

payload encryption.

Using bot traces and traces of traffic collected at the edge ofa university network, we show that our

technique enabled the identification of Storm and Nugache bots with false positive rates of only 0.47%

and 0.57% on average, respectively. At these false positiverates, we identified 87.50% of the implanted

Storm bots, and 34.80% of the Nugache bots. Our lower detection rate for Nugache derives from the

low and variable activity of the bots in our data (see Section4.4.2), and so we believe this number to

be conservative. We further evaluate the changes in bot behavior needed to evade our technique, and

show that bots would need to increase their average flow size by roughly a factor of 1.3; increase the

fraction of new IP addresses they contact by a factor of 1.5; or randomize their interstitial connection

times significantly (e.g., ranging from minutes to hours). Moreover, the bots would need to accomplish

this despite other traffic from the host it occupies, and since we defined our tests’ thresholds relative to

the background traffic, the behavior necessary to evade detection in any given network would typically be

unknown to the attacker.

Since our tests focus on characteristics that describe differences in Plotter and Trader behavior, a

limitation of this approach is in identifying Plotters thatonly affect Traders, e.g., a Plotter binary that

spreads through P2P file-sharing networks. In this case, thePlotter traffic could be obscured by activities

from the Trader, if the Trader is a heavy file-sharing user generating high volumes of traffic, for example.

One method of distinguishing between Plotter and Trader traffic on a host might be to separate traffic by

application, such as determined using port numbers. Trafficfrom each port, or a group of associated ports,

can then be applied individually to the tests in Section 4.3.However, in our evaluations, the hosts to which

we assigned bot traces were sometimes Traders, and were still effectively identified by theFindPlotters

algorithm.
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Chapter 5

Revisiting Botnet Models and Their

Implications for Takedown Strategies

In this chapter, we turn to an analytical approach to study peer-to-peer botnets by applying graph models

from network theory. Such models have been used in the study of many real-world networks, including

social, biological, and computer networks [4, 46, 139]. Forexample, Erdös-Rényi random graphs [43]

model networks where the edges are created with uniform probability between every pair of nodes. Watts-

Strogatz small-world graphs [149] model networks where thediameter of the network is small, i.e., in-

creasing logarithmically with the size of the network. Barabási-Albert scale-free graphs [5] model net-

works with a few highly connected “hub” nodes and many leaf nodes. These models allow the spread

of information (or infection) [110, 149] to be analyzed in various network topologies, as well as their

resilience to node and edge failures [3, 35, 63].

Recently, several works have also applied graph models fromnetwork theory to study decentralized

peer-to-peer (P2P) botnets [36, 41, 90, 158]. Each node in the network represents an infected host, and

edges reflect communications between the hosts. Propertiesof the graph can quantify the botnet’s “use-

fulness”. For instance, the diameter of the network measures the efficiency of bot communications, and

the size of the largest connected component is the number of bots that are reachable by the attacker and

can carry out her instructions. Assuming that P2P botnets are structured according to known models,

these works aim to assess the effectiveness of strategies totake down a botnet. For example, one strategy

that was found to be effective for some network topologies isto target nodes with high degree, i.e., that

communicate with many hosts [36, 41, 158].
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We observe that previous works applying graph models to P2P botnets do not consider an important

property of networks — assortative mixing [102]. Assortativity refers to the tendency for a node to

attach to other “similar” nodes, and is commonly examined interms of a node’s degree, i.e., high-degree

nodes are likely to be neighbors of other high-degree nodes.This property is also referred to asdegree

correlation. The existence of this correlation between neighboring nodes has been observed in many

real-world networks [102, 104, 111]. More importantly, it has been found to be a property ofgrowing

networks [19, 86], where the network increases in size as nodes join over time, as is true in a botnet as

more hosts become infected.

We show that assortativity plays an important role in network structure, such that neglecting it can

lead to an over-estimation of the effectiveness of botnet takedown strategies. By generating networks with

varying levels of degree correlation, we demonstrate that ahigher level of assortativity allows the network

to be more resilient to certain takedown strategies, including those found to be effective by previous works.

Moreover, we note that bots are dynamic entities that can react and adapt to changes in the network, and

so the botnet can potentially “heal” itself after a fractionof its nodes are removed. We specifically explore

cases where nodes can compensate for lost neighbors by creating edges to other nearby nodes, e.g., that are

within h hops. Our simulations show that the graph can recover significantly after takedown attempts, even

whenh is small, and that higher levels of assortativity can allow the network to recover more effectively.

Another contribution in this chapter is in identifying alternative takedown strategies that are more

effective than those explored by previous works. Specifically, we show that targeting nodes with both

high degree and low clustering coefficient will decrease theconnectivity and communication efficiency of

the network significantly, and also makes it considerably more difficult for the network to recover from

the takedown attempt.

5.1 Related Work

Botnet models Several previous works have studied botnets using network models. Cooke et al. [29]

described three potential botnet topologies: centralized, P2P, and random, and discussed their design com-

plexity, detectability, message latency, and survivability. Other works [36, 90] apply theoretical network

models to botnets, including Erdös-Rényi random graphs [43], Watts-Strogatz small world graphs [149],

and Barabási-Albert scale-free graphs [5]. This allows the effectiveness of takedown strategies to be

quantitatively evaluated using graph properties, such as the network diameter, the average shortest dis-
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tance between pairs of nodes, and the size of the largest connected component. Davis et al. [41] compared

Overnet, which is utilized by the Storm botnet [66, 116], with random and scale-free networks to justify

the choice of structured P2P networks made by bot-masters. They simulated takedown efforts on the net-

works by removing nodes at random, in descending order of node degree, or in a “tree-like” fashion by

identifying nodes reachable from an initial node, and foundOvernet to be more resilient than other graph

models.

To our knowledge, no previous work on botnet modeling has considered the effect ofdegree assor-

tativity in networks [102]. This property, defined as the correlationcoefficient between the degrees of

neighboring nodes, has been found to be high in many real-world social, biological, and computer net-

works [103, 111]. It has been studied analytically in the statistical physics literature, and found to be an

inherent property ofgrowing networks where nodes join and edges are created over time [19, 86], since

older nodes are likely to have higher degree and connect to each other. Studies in this domain focus on

understanding the underlying interactions between nodes that would result in a network that matches one

empirically measured in the real world. By contrast, a network of bots is elusive and difficult to quantify

in practice [120]. Making assumptions about the graph structure or node correlation (e.g., that there is

none) is thus unfounded.

Network takedown strategies. The resilience of networks to attacks or failures have been explored in

the physics branch of complex networks [3, 35, 63]. A scale-free network, which consists of a few highly-

connected “hub” nodes and many “leaf” nodes, has been found to be particularly vulnerable to attacks

where high-degree nodes are removed first. A takedown strategy that targets high-degree nodes is also

recommended by previous works that studied botnet models [36, 41, 158], particularly for unstructured

P2P networks where there are “super-peers” present.

Other types of takedown efforts on networks have also been explored in the complex networks litera-

ture, such as cascaded node removals [34, 148], removing nodes according to their betweenness central-

ity, or removing edges instead of nodes [63]. These works focus on the resilience of different network

topologies, and do not take assortativity into account. Newman et al. [103] studied the prevalence of

assortativity in real-world networks. Even though their focus is on measuring and generating assortative

networks, they also showed, through simulation, that higher assortativity allows a network to have a larger

connected component after a small fraction of high-degree nodes are removed. However, they did not

explore other takedown strategies, the effect on other graph properties, or the network’s ability to “heal”
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itself. In our work, we explicitly study the effect of assortativity on network resilience and the ability of

dynamic networks (such as P2P botnets) to recover from takedown attempts.

5.2 Constructing and Measuring Assortative Networks

We first define degree assortativity, following the definition by Newman et al. [102], and perform an

empirical analysis of the assortativity of a portion of the Storm botnet [66, 116, 138]. We then describe

our algorithm for adjusting the level of assortativity in simulated networks, and the metrics we use to

quantify the “usefulness” of a network. The metrics are aimed at capturing notions of communication

efficiency between nodes and the number of reachable bots, which are likely to be of importance to the

attacker.

5.2.1 Degree Assortativity

Degree assortativity, defined as the correlation coefficient between the degrees of neighboring nodes,

measures the tendency for nodes to be connected to others whoare “similar” in terms of their degree. For

example, this property is especially significant in social networks, where gregarious people are likely to

be friends with each other [71, 104]. It is also found to be a property of growing networks, where the

network size increases as new nodes join and edges are created [19, 86].

We define assortativity following the definition of Newman etal. [102]. Let the fraction of nodes in a

network graph with degreek be denotedpk. If we choose an edge from the graph at random, and follow

it to one of its ends, the probability that the node at which wearrive has a degree ofk is proportional tok.

This is because we are more likely to end up at a node with high degree, which has more edges connected

to it. To account for the edge from which we arrived, theremaining degreeof the node is its degree minus

one. The probabilityqk that we arrive at a node with remaining degreek is then

qk =
(k + 1)pk+1∑∞

j=0 jpj
(5.1)

Let ej,k be the probability that a randomly selected edge connects nodes of remaining degreej andk,

where
∑

j,k ej,k = 1. The assortativityγ of the network, being the correlation coefficient between the
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Figure 5.1: The assortativity for 13 Storm bots in a honeynetrunning in the wild.

degrees of neighboring nodes, is

γ =
1

σ2
q

∑

j,k

jk(ej,k − qjqk) (5.2)

whereσ2
q is the variance of the distribution ofqk, i.e., σ2

q =
∑

k k2qk − [
∑

k kqk]
2. A higher value of

γ indicates that there is higher correlation between the degrees of two neighboring nodes. In a random

graph, where every pair of nodes is connected with uniform probability, no correlation exists andγ = 0.

Even though high assortativity is found in many real-world networks, measuring it in practice can be

challenging, for example, due to difficulties in observing all interactions between nodes in a large network.

This is especially true for botnets. As an estimate of what the assortativity would be for a real botnet, we

performed an empirical analysis by obtaining network traffic from a honeynet running in the wild in late

2007 [54]. This consists of a consecutive 24-hour trace from13 hosts participating in the Storm botnet,

whose peer-to-peer communications have been studied extensively in previous works [66, 116, 138].

Figure 5.1 shows the assortativity measured among the 13 Storm bots, where snapshots of their com-

munications are taken on an hourly basis. The “degree” of a bot is represented by 1) the number of distinct

source IP addresses from which it receives packets (the in-degree), 2) the number of distinct destination

IPs to which it sends packets (the out-degree), or 3) the total number of distinct IPs with which it interacts.

Since the rest of the Storm botnet is not directly observable, we calculated the assortativity from traffic be-

tween only the 13 Storm bots. However, this value is still quite high, ranging from 0.48 to 0.84, while that

of social networks is only around 0.3 [103]. This suggests that a botnet may be significantly assortative,

and highlights the importance of this property in considering botnet network models.
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5.2.2 Generating Assortative Networks

To study the effect of assortativity on networks, we need to be able to generate networks with varying

levels of assortativity. One method for this is to rewire edges in a given network [154]: At each step, select

two edges at random, and shuffle them so that the two nodes withlarger remaining degrees are connected,

and the two nodes with smaller remaining degrees are connected. Repeating this step will result in the

network becoming increasingly assortative. However, rewiring causes the shortest path length between

nodes to increase rapidly [154], which may bias the comparison between networks with different levels of

assortativity.

We apply another method for constructing assortative networks, similar to that described by Newman

et al. [103]. This method takes as input the number of nodes inthe network, the desired degree distribution

pk, and the edge probabilitiesej,k. Each node in the network is assigned a degree drawn frompk. The

remaining degree distributionqk can then be calculated frompk, and edges are added by connecting each

pair of nodes of remaining degreej andk with probabilityej,k.

To control the level of assortativity in the resulting network, we specifyej,k as follows. For a fixed

valuej, assume thatej,k follows a normal distribution centered atj, where the standard deviationσ is the

adjustable knob for tuning the level of assortativity. Figure 5.2 illustratesej,k centered atj. A smaller

σ causes the normal distribution to become more peaked, wherenodes with remaining degreej have a

higher probability of sharing edges with other nodes of remaining degree close toj, resulting in a more

assortative network.

In our simulations,pk is chosen so that the resulting network is scale-free, specifically, pk ∼ k−3.
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Figure 5.3: The interstitial activity time values for a Storm bot in a honeynet running in the wild.

We focus on scale-free networks because it is representative of many real-world networks, including

unstructured P2P networks [96]. Empirical analysis by Dagon et al. [36] also suggest that the Nugache P2P

botnet [138] has a scale-free structure. We set the number ofnodes to 5,000 to represent a small botnet,

following the simulation settings in previous work [36]. All of the edges are assumed to be undirected.

5.2.3 Metrics

We utilize the following two properties of graphs to quantify the “usefulness” of a botnet: 1) the size of

the largest connected component, and 2) the inverse geodesic length. These metrics have been used by

Dagon et al. [36] to compare the utility of different botnet topologies, and were also used in analyzing the

resilience of various networks in the physics literature [63].

The fractionS of nodes in the largest connected component is an upper boundon the number of

bots that are directly under the control of the attacker (assuming that she is part of one of the connected

components). The more hosts that can carry out the attacker’s commands, the larger the scale of the attack

that can be launched, e.g., in performing denial-of-service attacks or sending spam.

In addition to controlling many infected hosts, another property that is likely to be of importance to the

attacker is the efficiency of communication, i.e., how long it takes for messages to be relayed through the

botnet. In practice, this is dependent on both the number of hops between nodes and their communication

frequency. For example, if nodes communicate with their neighbors everyT seconds, then the time it

takes for a node to reach a peerh hops away would be roughlyhT
2 seconds. As an estimate of the value

of T for real bots, Figure 5.3 shows the interstitial activity time values (see Section 4.3.3) observed for a

Storm bot in a honeynet running in the wild. The horizontal bars in the figure reflect regularities in the
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bot’s activities, with the dominant frequency of communication being every 250 seconds or so. Setting

T = 250, reaching a node 10 hops away would take roughly 1,250 seconds (around 20 minutes). This

suggests that a larger hop count between nodes can increase the communication delay by minutes or even

hours.

We focus on the average number of hops between pairs of nodes as a measure of the botnet commu-

nication efficiency. Specifically, letN be the total number of nodes,V be the set of nodes,|V | = N , and

d(u, v) be the length of the shortest path between nodeu and nodev. The inverse geodesic length [63] is

defined as

L−1 =
1

N(N − 1)

∑

u∈V

∑

v 6=u,v∈V

1

d(u, v)
(5.3)

Measuring the inverse geodesic length is particularly useful in cases where the graph may be disconnected,

since the distanced(u, v) between two nodesu andv that belong to separate connected components would

be infinite (and so its contribution toL−1 is zero). The largerL−1 is, the shorter the distances between

nodes, and hence more efficient their communication. In evaluating the effect of assortativity on network

takedown attempts, we are more interested in measuring thenormalizedinverse geodesic length, which is

defined as

L̂−1 =

∑
u∈V

∑
v 6=u,v∈V

1
d′(u,v)∑

u∈V

∑
v 6=u,v∈V

1
d(u,v)

(5.4)

whered′(u, v) is themodifiedlength of the shortest path between nodesu andv, that is, after takedown

efforts or after the network tries to heal itself. Note that both the numerator and denominator in̂L−1

are summed over the original set of nodes,V . However, nodes that are removed have infinite distance

to the rest of the network, the inverse of which is zero, and sodo not contribute to the sum in Eqn. 5.4.

The value that̂L−1 takes ranges from 0 to 1, where a smaller value indicates moredisruption to network

communication, and lower communication efficiency.

We measurêL−1 andS of a network before and after takedown to evaluate the effectiveness of the

takedown strategy (Section 5.3), and also measure them after the network attempts to “heal” itself to assess

the effectiveness of recovery mechanisms (Section 5.4).
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5.3 Network Resilience

In attempts to take down a P2P botnet, network administrators may wish to prioritize their efforts to focus

on the more “important” nodes first, i.e., nodes whose removal will cause the most disruption to botnet

operation. Using the two metrics described in Section 5.2.3, we investigate the effectiveness of botnet

takedown strategies, and how they may be sensitive to the assortativity of the network.

5.3.1 Uniform and Degree-Based Takedown Strategies

We first focus on strategies explored in previous works that study botnet models [36, 41, 90, 158]:

• Uniform takedown: removing nodes from the network by selecting them uniformly at random.

• Degree-based takedown: removing nodes from the network in descending order of nodedegree,

that is, targeting high-degree nodes first.

Uniform takedown is similar to that which occurs when users and network administrators patch infected

hosts as they are discovered, without coordinating bot discoveries or patching activities. It has also been

used to study random failures in the context of communication networks or biological networks [3]. While

most networks are found to be resilient to uniform takedown,they are much more vulnerable to a degree-

based strategy. This targeted takedown strategy is especially effective against scale-free networks, since

the few highly-connected “hub” nodes responsible for maintaining the connectivity of the network are

removed first, e.g., the “super-peers” that are found in unstructured P2P networks. Using edges to indicate

communication between nodes, the degree can be interpretedas the number of hosts with which a node

communicates, and has also been used in network intrusion detection systems (e.g., [98, 128, 130]). In

practice, these strategies do not necessarily require access to the entire network graph, but can be applied

to takedown efforts within a subgraph as well, e.g., within alocal network. We further discuss implemen-

tation challenges in Section 5.5.

As described in Section 5.2.2, we adjust the standard deviation σ of the edge probability distribution

ej,k to generate networks of varying assortativity. For a scale-free network with 5,000 nodes, we setσ

to 1, 5, 10, and 15 to obtain networks covering a range of assortativity from 0.04 to 0.87. Figures 5.4

and 5.5 show how networks with varying levels of assortativity respond to uniform and degree-based

takedown, when 2%, 4%, 6%, 8%, or 10% of nodes are removed according to each strategy. The numbers

are averaged over 50 networks generated for each value ofσ. We omit the standard deviations from the

plots since they are generally small, that is, within 0.007 for bothL̂−1 andS.
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(a) Uniform takedown.
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(b) Degree-based takedown.

Figure 5.4: The average normalized inverse geodesic lengthafter uniform or degree-based takedown
strategies.
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(a) Uniform takedown.
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(b) Degree-based takedown.

Figure 5.5: The average fraction of nodes in the largest connected component after uniform or degree-
based takedown strategies.

We find the degree-based strategy to be much more effective attaking down a network compared to

uniform takedown, in agreement with previous works. However, as shown in Figure 5.4(b), the effec-

tiveness of the degree-based strategy is highly dependent on the level of assortativity of the network. A

lower assortativity, e.g., toward the left of Figure 5.4(b), results in the network experiencing a larger de-

crease inL̂−1 after takedown attempts. The difference between the decrease inL̂−1 for assortative and

non-assortative networks grows as more nodes are removed. When 10% of the nodes are removed via the

degree-based strategy, this difference can be as much as 0.26. A similar phenomenon can be observed
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in Figure 5.5(b) for the fractionS of nodes in the largest connected component. With the exception of

highly assortative networks (e.g., greater than 0.6), the fraction of nodes retained in the largest connected

component increases with the level of assortativity. That is, more bots remain reachable to the attacker in

moderately assortative networks.

The higher resilience in assortative networks can be attributed to nodes of similar degree “clustering”

together. When the high-degree nodes are removed due to the degree-based strategy, only a connected

subset of neighboring nodes are lost in effect. Moreover, since high-degree nodes tend to connect to each

other, fewer of their edges are attached to nodes of low degree — who would be prone to isolation if their

neighbors were removed. However, this also means that thereare fewer high-degree nodes that can act

as “bridges” between clusters of nodes with varying degrees. As more high-degree nodes are removed,

the loss of those “bridging” nodes eventually cancels out other factors contributing to resilience as as-

sortativity increases, and the network can disintegrate, as shown on the far right of Figure 5.5(b). These

discrepancies in how networks are affected by the same takedown strategy underline the importance of

taking assortativity into account, both in evaluating takedown strategies and in considering botnet network

models.

5.3.2 Other Takedown Strategies

While the degree-based strategy is much more effective thanthe uniform strategy, the former is sensitive

to the level of assortativity in the network, as shown in Figures 5.4 and 5.5. In the search for a takedown

strategy that would be effective even for assortative networks, we explore alternative approaches based on

other graph properties, described below.

• Neighborhood connected components: We define the local neighborhood of a nodeu to be those

reachable withinh hops from it. Figure 5.6(a) shows an example of the neighborhood of nodeu

within three hops, where the edge labels indicate distancesto u. If we were to removeu from the

network, its local neighborhood would be split into separate “connected components”, as shown

in Figure 5.6(b). Without a view of the entire network, the number of “connected components”

that remains in the neighborhood of a node can be an approximation of its local importance, since

communication between components may have to be routed through u. Hence, as an alternative

takedown strategy, we remove nodes in descending order of the number of connected components

in their local neighborhood. A similar metric has also been used to detect hit-list worms [27].
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• Closeness centrality: Closeness centrality for a nodeu is defined as the sum of the inverse geodesic

distance fromu to all other nodes in the network. A larger value indicates that the node is at a more

“centered” location, and has more influence over the spread of information within the network. In

this takedown strategy, we remove nodes in descending orderof their closeness centrality.

• Clustering coefficient with degree: The clustering coefficient measures how dense the connections

are between the neighbors of a node. For a nodeu, it is defined as the number of edges that

exist betweenu’s neighbors, divided by the number of possible edges between u’s neighbors. For

example, in Figure 5.7, this value foru is 4/10, while that for all other nodes is 1. A smaller value

means that the neighbors ofu may be disconnected if it were not foru. Ignoring nodes with the

smallest degrees — in our tests, nodes with degree less than one-fifth of the maximum degree —

we remove nodes in increasing order of their clustering coefficient, and among those with the same

clustering coefficient, in decreasing order of degree.

• Breadth-first traversal (BFS): Given an initial nodeu, this strategy remove nodes from the network

according to a breadth-first traversal withu as the root. That is, we remove nodeu, the one-hop

neighbors ofu, the two-hop neighbors ofu, and so on, in that order. The choice of the initial node

is biased in favor of higher degree nodes, i.e., the probability of a degreek node chosen as the initial

root is proportional tok. This strategy simulates that of network administrators discovering other

infected hosts by examining the peer list of a bot that is already captured. It is also similar to the

“tree-like” bot disinfection strategy studied by Davis et al. [41], and to cascaded node failures in

complex networks [34, 148].

• Uniform set expansion: Another strategy to identifying nodes to take down is to examine the

setB of bots that are already discovered, e.g., through the uniform strategy, and then expandB

by uniformly select among all one-hop neighbors of nodes inB. In practice, this strategy can be

performed by examining the peer lists of captured bots, similar to the breadth-first traversal.

Figures 5.8 and 5.9 show the fractionS of nodes in the largest connected component, and the normal-

ized inverse geodesic lengtĥL−1 after each of the above takedown strategies, for networks ofdifferent

levels of assortativity. The results are plotted after removing 2% or 10% of the nodes, and averaged over

50 networks generated for each level of assortativity. The standard deviations are all within 0.03 for both

L̂−1 andS. Compared with the uniform and degree-based strategies discussed earlier, the connected com-

ponents strategy seems more effective at lowering the connectivity of the network, as shown in Figure 5.8,
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(a) Before removing nodeu. (b) After removing nodeu.

Figure 5.6: An example of the connected components within the neighborhood of nodeu. The edge labels
indicate number of hops tou.

Figure 5.7: An example of the edges between the neighbors of nodeu.

while the clustering coefficient strategy is more effectiveat decreasing the network communication effi-

ciency, as shown in Figure 5.9. In both of these cases, the alternative takedown strategy out-performs the

degree-based strategy that previous works found to be effective [36, 41, 158].

One of the reasons that the clustering coefficient strategy works well is because nodes that “cluster”

together in assortative networks are likely to have higher clustering coefficient as well, since their neigh-

bors also have similar degree. However, while the nodes at the center of a “cluster” may have a clustering

coefficient close to 1, this value is likely to be much smallerfor those connecting the cluster to the rest

of the network. For example, all nodes in Figure 5.7 have a clustering coefficient of 1 except for nodeu,

who turns out to be the “bridge” between the two clusters of degree two and three nodes. The removal of

nodes with small clustering coefficient in this strategy is hence likely to affect communications within the

network.
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(a) After removing 2% of the nodes.
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(b) After removing 10% of the nodes.

Figure 5.8: The average fraction of nodes in the largest connected component after removing 2% or 10%
of the nodes according to each takedown strategy.
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(a) After removing 2% of the nodes.
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Figure 5.9: The average normalized inverse geodesic lengthafter removing 2% or 10% of the nodes
according to each takedown strategy.

5.4 Network Recovery

The dynamism inherent in peer-to-peer networks means that each individual bot is required to adapt to

changes in its surroundings, for example, due to newly infected hosts joining the network or current peers

going offline, even without takedown attempts taking place.These mechanisms for nodes to discover

previously unknown peers and create new edges hence provideopportunities for the network torecover

itself, i.e., restoring connectivity or reconstructing shortest paths between nodes, in the face of takedown

attempts.
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While previous works tend to regard a botnet as a static entity, and evaluate changes to the network

immediately after takedown efforts as a measure of their effectiveness, we explicitly consider the ability

of dynamic networks to heal themselves. Specifically, we model a recovery process where nodes can

“look out” to a distanceh and find peers that are withinh hops. When a node loses a neighbor, e.g., due

to takedown, it compensates for that lost neighbor by creating a new edge to a randomly selected node

within distanceh from it. As has been documented in P2P bot studies [17, 66, 116, 132, 138], a bot has

only a local view of the network according to its peer-list, which it updates by constant exchanges with

its neighbors. Theh-neighborhood of a nodeu hence represents those hosts that are onu’s peer-list, to

whichu looks for maintaining connectivity with the rest of the botnet.

5.4.1 Recovering from Uniform and Degree-Based Takedown Attempts

We first consider the ability of botnets to recover after takedown attempts employing the uniform or

degree-based strategies described in Section 5.3.1. We focus on the inverse geodesic length metric, since

it better illustrates the difference between networks of varying levels of assortativity. Figure 5.10 shows

the normalized inverse geodesic distanceL̂−1 for networks after they attempt to recover from uniform or

degree-based takedown strategies, when 2% or 10% of the nodes are removed. The look-out distanceh is

set to 2, 5, 7, and 10. Ash increases,̂L−1 increases as well, even reaching above 1 in Figure 5.10(a), i.e.,

the shortest distance between nodes becomes even shorter than before the takedown! However, while the

increase in̂L−1 for networks with lower assortativity falls flat after a small h (even decreasing slightly, as

in Figure 5.10(d)), the increase for networks with higher assortativity continues.

One reason for the continued recovery benefit enjoyed by assortative networks is high-degree nodes

“clustering” together, since nodes tend to connect to others of similar degree. A node that is able to reach

a high-degree node upon “looking out” is likely to be able to reach other high-degree nodes as well at a

similar distance. This increases the probability that a compensation edge attaches to a high-degree node,

hence shortening path lengths within the network and resulting in a higherL̂−1. This phenomenon is more

pronounced in networks recovering from uniform takedown (see Figures 5.10(a) and 5.10(c)), since fewer

high-degree nodes remain after the degree-based strategy.

5.4.2 Recovering from Takedown Attempts Using Other Strategies

Figures 5.11 and 5.12 show how networks of high and low assortativity recover from those alternative

takedown strategies described in Section 5.3.2, when 2% or 10% of the nodes are removed. We observe a
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(a) Recovery after uniform takedown by removing 2% nodes.
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(b) Recovery by degree-based takedown by removing 2% nodes.
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(c) Recovery after uniform takedown by removing 10% nodes.
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(d) Recovery after degree-based takedown by removing 10% nodes.

Figure 5.10: The average normalized inverse geodesic length after recovering from uniform or degree-
based takedown, when 2% or 10% of the nodes are removed, for various values of the look-out distance
h.

trend similar to the recovery from uniform and degree-basedstrategies, where networks with higher lev-

els of assortativity experience continued recovery benefits with the look-out distanceh (Figure 5.11(a)).

Less assortative networks, on the other hand, do not benefit much after a look-out distance of 2 or 3 (Fig-

ure 5.11(b)). Regardless of the takedown strategy, assortative networks still have higher communication

efficiency after recovery, in terms of̂L−1, than less assortative networks.

In addition to being one of the most effective strategies (see Section 5.3.2), we also find takedown

attempts based on clustering coefficient with degree to be the most difficult one for a network to recover

from, as shown by low values of̂L−1 in Figures 5.11 and 5.12. In fact, when 10% of the nodes are

removed from the same network, the difference betweenL̂−1 after recovering from the uniform and the
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(b) Networks with assortativity at 0.04.

Figure 5.11: Recovery for networks of high and low assortativity when 2% of the nodes are removed
according to each strategy.
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(a) Networks with assortativity at 0.87.
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Figure 5.12: Recovery for networks of high and low assortativity when 10% of the nodes are removed
according to each strategy.

clustering coefficient strategies can be as much as 0.28 (Figure 5.12). Similarly, thêL−1 after recovering

from the clustering coefficient strategy is up to 0.2 less than the L̂−1 after recovering from the degree-

based strategy. This shows that the clustering coefficient takedown strategy can be a better alternative to

one based solely on degree.
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5.5 Discussion

In this section, we discuss implementation challenges to takedown strategies studied in this chapter, and

alternative methods of analytically modeling networks.

Applying takedown strategies in practice. Perhaps one of the reasons for the widespread study of the

degree-based strategy is that it can be applied easily in practice. For example, if the degree of a node is

interpreted as the number of hosts with which it communicates in some time interval, then identifying a

node’s degree can be performed on the basis of flow records (e.g., Cisco NetFlows [1]) that are collected

from a router (or routers) that its traffic traverses. Notably, a node’s degree can be determined solely by

observing traffic to and from it, without requiring additional knowledge about the entity at the other end

of the communication.

Other graph properties, however, may not be so straightforward to measure. For instance, takedown

strategies based on clustering coefficient or neighborhoodconnected components depend on observing

communications between the neighbors of a node, and may require collaboration between multiple ad-

ministrative domains, such as that proposed by Xie et al. to trace the origin of worm propagations [152].

Another approach is to examine the peer-lists an infected host receives from its neighbors, assuming that

such data can be captured (i.e., it is not sent encrypted, andfull packet capture is enabled on the network).

If a nodeu has two communicating neighbors, those nodes should be listed on each other’s peer-lists,

and so the fact that they communicate can be inferred by identifying overlaps betweenu’s neighbors and

peer-lists sent tou. Of course, in cases where communications between some neighbors of an infected

node are visible neither directly nor by inference, takedown strategies requiring this information can be

applied considering only those neighbors for which communications are visible.

Modeling networks analytically. Rather than assuming a particular network topology, e.g., random,

scale-free, or small-world, or a specific level of assortativity, another approach to modeling networks is to

specify a set of actions governing the behavior of nodes at each step in time, and analytically determine

properties of the resulting network. This type of growing network models have been used extensively

in the physics domain of complex networks [6, 42, 86, 100, 127]. Given knowledge of individual bot

behaviors and how they interact with each other from P2P bot studies [17, 66, 116, 138], it seems likely

that analytical network models from the physics literaturecan be adapted to characterize P2P botnets. In

fact, a recent work by Li et al. [91] used this approach to derive the degree distribution of a botnet where
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new nodes join the network by “copying” the edges of an existing node that it chooses at random.

However, these analytical approaches do make other assumptions about the underlying network that

they attempt to model in order to simplify calculations. Specifically, by assuming that both the age of

the networkt and the network sizeN is large,t → ∞, N ≫ 1, all actions experienced by a node are

approximated by theexpectedaction, e.g., when a node creates one edge at random, the degree of all

other nodes increases by 1/N , where the denominatorN is also replaced by the expected value. These

assumptions may not be applicable to botnets in practice, since 1) network administrators will be equally,

if not more, concerned about infections in the early stages of a botnet whent is small; 2) botnets have been

found to consist of a few hundred or thousand nodes only, and are commonly rented out in small numbers,

e.g., for sending spam; 3) to a network administrator managing a local network,N certainly does not grow

indefinitely; and 4) approximating aspects of network growth using expected values introduces error that

could potentially be magnified by a bot designed counter to assumptions that these approximations imply.

As a simple demonstration of the separation between analytical models and actual network growth,

we examine a derivation by Callaway et al. [19] of the assortativity of a simple network growth model. In

each time step, the model assumes that one node joins the network, and with probabilityδ an edge forms

between two nodes selected at random. Their derivation of the assortativity is based on a rate equation

specifying theexpectedincrease in the number of edges that connect nodes of remaining degreej andk

at each time step, and makes the same assumptions as described above. Figure 5.13 shows the expected

assortativity of the network as approximated by Callaway etal. for various values ofδ. The actual average

values from simulations are also plotted in the figure, with one standard deviation shown as error bars. To

generate these values, we generated 50 networks for each value ofδ, and set the number of time steps (i.e.,

number of nodes) to 1,000. Figure 5.13 shows that the expected assortativity as predicted by Callaway et

al. can differ from the actual average assortativity by an amount that approaches or, in some cases, exceeds

one standard deviation. This suggests that the simplifyingassumptions typically employed in analytical

models may cause nontrivial deviations from practice.

5.6 Chapter Summary

Peer-to-peer (P2P) botnets, in contrast to their centralized counterparts, do not have a single point-of-

failure and are difficult to take down. Identifying and removing those nodes that are “important” to the

connectivity or communication efficiency of a botnet is hence critical to disrupting its operation. Toward
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Figure 5.13: The expected assortativity, shown in the dashed line, versus the actual average value from
simulations, with one standard deviation shown with error bars.

this goal, several previous works have modeled P2P botnets using theoretical network models [36, 41,

90]. These works compare the resilience of various network topologies to uniform or degree-based node

removals, and quantify the effectiveness of these takedownstrategies using graph properties, including

the inverse geodesic length of the resulting network or the fraction of nodes in the largest connected

component.

In this chapter, we observe that previous works do not consider an important structural property of net-

works, namely assortativity. Empirical measurements on network traffic from bots in a honeynet running

in the wild suggest that this property can be quite high for botnets in practice. We show that in omitting

the presence of assortativity in botnet models, and withoutconsidering the effect of dynamic networks

actively recovering from node failures, previous works mayhave over-estimated the effectiveness of rec-

ommended takedown strategies. In addition, we identify alternative strategies that are more effective than

those in previous works for botnets with high assortativity.
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Chapter 6

Conclusions and Future Work

The work in this dissertation proposes new techniques to detecting hosts infected with stealthy malware.

Infected hosts, i.e., bots, can exfiltrate sensitive data toadversaries, or lie in wait from commands from

a bot-master to forward spam or launch denial-of-service attacks. However, it is difficult to detect bots,

since their activities are subtle and do not disrupt the network. In addition, infected hosts can encrypt their

traffic and utilize existing protocols for communication tofurther mask their activities.

Our key observation is that infected hosts exhibit similar characteristics in their network activities

that are distinct from those of benign hosts. Our approach hence identifies bots by aggregating “similar”

network traffic, which are collected in the form of flow records that contain coarse summaries of each

connection. Under this framework, we present techniques toidentify both infected hosts participating

in centralized botnets and those that communicate over peer-to-peer networks. We further develop a

passive browser fingerprinting method to detect malware that are not confined to hosts of a single operating

system platform. To complement our empirical analyses, we also study peer-to-peer botnets analytically

using models from network theory, and investigate how a structural characteristic of networks affects the

effectiveness of botnet takedown strategies.

In this chapter, we summarize our contributions, and discuss limitations of our approach and potential

future directions.

6.1 Contributions

Behavioral characteristics to detect stealthy malware. We identify characteristics in network traffic

that can distinguish the behaviors of infected and benign hosts. In particular, we focus on characteristics
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that pertain to basic properties of malware operation, including the coordinated and automated nature

of infected hosts, and unique goals and circumstances behind how they utilize existing communication

protocols. Our approach hence does not depend on observing specific malware activities, e.g., sending

spam or performing denial-of-service attacks, and has the potential to detect infected hosts prior to them

engaging in such disruptive events. Moreover, we only utilize information contained in coarse traffic

summaries, e.g., Cisco NetFlow [1] or Argus flows1, to avoid bandwidth and storage requirements for

capturing full packets.

In Chapter 2, we describe a system that detects hosts participating in centralized botnets. Our system,

TĀMD , aggregates network traffic that share the same busier-than-usual destinations, that have similarly

structured payload, and that are also associated with hostsrunning similar software platforms. T̄AMD can

reliably identify network traffic generated from real bot instances among all traffic crossing the border of

our university campus network. Even for homogeneous networks where the majority of internal hosts are

of the same platform (e.g., enterprise networks), forming traffic aggregates based only on the destination

and payload characteristics would still yield accurate results.

Due to P2P technologies being used by both P2P bots and file-sharing hosts, botnet traffic will tend

to “blend into” a background of P2P file-sharing. Being able to separate the two types of traffic hence be-

comes the main challenge in detecting P2P bots. In Chapter 4,we show that distinct goals and motivations

driving the use of the same P2P network protocol will give rise to varying behaviors — particularly those

associated with the hosts’ volume of traffic, the amount of peer churn, and whether their activities are

human-driven or machine-driven — that can be used to distinguish bot traffic from those of file-sharing

hosts.

Efficient algorithms to analyze network traffic. In addition to identifying relevant behavioral charac-

teristics that can detect stealthy malware, our contributions also include algorithms to analyze network

traffic efficiently. The algorithms are drawn from diverse areas, including statistics, machine learning, and

metric embeddings.

To our knowledge, we are the first to detect malicious traffic by computing a type of edit distance using

techniques that can scale to high data rate environments (see Section 2.2.2). The T̄AMD system performs

this by first embedding the edit distance with moves metric into L1-space [30], and then deploying a near-

neighbor search algorithm [39]. As a result, traffic with similar payloads can be found in time roughly

1http://www.qosient.com/argus
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proportional to the number of flows.

We also explored various ways of representing hosts, or representing the characteristics by which we

wish to aggregate network traffic. For example, a binary vector is used to denote the external destinations

each host contacts (Section 2.2.1), allowing statistical methods to be applied to construct destination

aggregates. In Section 4.3.3, we construct histograms of hosts’ interstitial activity times to reflect the

degree to which their behaviors are machine-like.

Adversarial cost to evade detection. In the arms race between attackers and network defenders, new

malware variants have continued to demonstrate ways of circumventing existing intrusion detection sys-

tems. In our technique of detecting peer-to-peer bots by distinguishing them from peer-to-peer file-sharing

hosts, we specifically quantify the operational cost for a bot to evade detection by masquerading as a file-

sharing host (Section 4.5).

In particular, our evaluations show that a P2P bot will be able to escape detection by our tests, but at the

cost of significantly changing its network behavior, e.g., generating more than 20 times its original traffic

volume per flow, and increasing the fraction of new hosts it contacts by a factor of 1.5. Both evasion

attempts can compromise the stealthiness of the bot, makingtheir presence in the network observable

through other means (e.g., scan detection) or even by the owner of the infected machine.

Infected hosts can also attempt to evade our technique to separate human-driven and machine-driven

traffic by randomizing timing patterns in their communications, e.g., by adding random delays between its

activities. This can introduce variances in the bots’ interstitial time distributions, and cause our techniques

to fail to correctly cluster them together. However, for this evasion attempt to be effective, our experiments

show that the bots would need to add significant delay betweentheir activities, e.g., up to minutes or hours,

potentially making the botnet less responsive.

Passive application fingerprinting technique. We develop a new technique to infer the browser im-

plementation on a host by passively observing its traffic to common sites (Chapter 3). In particular, our

technique utilizes only information contained in coarse traffic summaries, including the byte and packet

counts, and the start and end times of each flow. For each flow generated by a browser in retrieving the

contents of a web page, we extract statistics related to its size and duration. The statistics are aimed at

capturing differences related to the order by which browsers download objects on a given page, the num-

ber of objects retrieved in each connection, the number of parallel connections, and other discrepancies in

browser implementations.
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We show that our browser fingerprinting technique can be incorporated into T̄AMD , allowing it to

detect application-dependent malware in addition to thosethat are O/S-dependent. As a second application

of browser fingerprinting, we demonstrate that knowledge ofthe browser implementation can yield a more

precise deanonymization of the websitesthan has previously been achievable from flow records. In our

experiments, a per-browser website classifier achieves up to a 17% accuracy improvement to a generic

website classifier.

Analytical botnet models. To complement our empirical analyses, we also study botnetsanalytically

using models from network theory (Chapter 5). Each node in the network graph represents an infected

host, and edges reflect communications between the hosts. Network models can allow the “usefulness”

of a botnet to be quantified using graph properties (e.g., thenumber of hops between nodes, the size of

the largest connected component), such that the effectiveness of various botnet takedown strategies can be

evaluated.

We focus on studying an important structural property of networks — assortativity [102] — and its

effect on the resilience and recovery ability of botnets. Weshow that, without considering this property,

previous works on modeling botnets may have over-estimatedthe effectiveness of certain botnet takedown

strategies. In addition, we identify alternative strategies that are more effective than those in previous

works for botnets with high assortativity.

6.2 Limitations

Since our stealthy malware detection approach relies on observing similarities in hosts’ network behaviors,

it will be more successful in large networks consisting of hosts with diverse platforms and applications,

and where more than one infected host are present. An enterprise network, for example, will likely have

the majority of its internal hosts running the same operating system, potentially limiting the effectiveness

of the platform aggregation in T̄AMD . That said, in evaluations performed on traffic from our university

campus network and from real bot instances, we find that TĀMD yields good results even with only

destination and payload aggregation (see Section 2.4.3).

We also expect the infected hosts to react to bot-master commands or communicate with each other

in a timely and roughly synchronized manner, e.g., active atleast once an hour or once per day. Botnets

that are less responsive will require longer observation windows, where analysis can be complicated by

other factors, including a higher probability of treating traffic from multiple distinct machines as one,
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e.g., because of DHCP churn. That said, sparse or infrequentcommunications can also result in the bot-

master’s commands requiring more time to propagate throughthe botnet. This may limit the type of

attacks that the bots can perform (for example, distributeddenial-of-service attacks that rely on collected

efforts from a large number of time-synchronized bots), andpotentially the botnet size as well.

In cases where bot-masters plan their attacks well in advance (e.g., to allow time for commands to

propagate to a large number of bots), or where the infected hosts are chosen selectively to perform specific

attacks (and hence do not require frequent communications with the bot-master), activities from infected

hosts can be few and far between. An example of this is the Stuxnet worm [45], which specifically aims

to subvert control of industrial systems. This malware was able to stay under the radar by rate-limiting

the number of hosts each bot infects, and interacting mostlywith other vulnerable or infected hosts on

the same local network. In particular, since the type of hosts it infects typically does not have Internet

access, the operations of the Stuxnet botnet do not rely on bot-master command and control. Detecting

this type of “advanced persistent threats” may require monitoring intra-network traffic, in addition to the

deployment of host-based intrusion detection systems.

As bots become more sophisticated, their activities can become more “human-like” in the future,

e.g., crafting their communications so that they are statistically similar to those of humans. This may

challenge the effectiveness of behavior-based malware detection techniques, such as the human-driven

versus machine-driven test described in Section 4.3.3. However, we believe that malware operations are

still fundamentally distinct from benign user behaviors, particularly in how activities are triggered (e.g.,

the command-driven nature of malware activities) and theirintended goals. Leveraging these underlying

differences will be important for future malware detectionsystems. In particular, rather than relying on

heuristics or empirical observations, a more formal representation of benign host behavior may be required

to characterize the circumstances under which their activities originate.

6.3 Future Work

This section describes directions for future work that address some of our limitations discussed in the

previous section, and potential methods to enhance stealthy malware detection systems.

Quantifying adversarial cost. Intrusion detection and prevention systems today are commonly evalu-

ated by their false positive rate and the detection rate. However, such systems are typically tested only on

particular datasets available to the researchers, e.g., due to difficulties in obtaining public data. It is hence
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difficult to generalize their effectiveness to other environments, or to compare them against each other

without those systems being publicly available. Moreover,considering adaptive adversaries that modify

their strategies based on the detection techniques deployed (as we have seen in the arms race between

attackers and defenders), it is possible that a proposed intrusion detection or anomaly detection system

can be circumvented by new malware variants.

In light of these observations, another useful metric for evaluating intrusion detection systems would

be the operational cost required for the adversaries to evade detection. We explored this metric briefly in

Chapter 4, where we quantified the increase in traffic volume and number of destinations that a Plotter

must contact in order to masquerade as a Trader. This approach can be generalized into a constraint

optimization framework, where the detection rules employed by the intrusion detection system serve as

constraintsimposed on the operations of the adversary, whose goal is to maximize certain aspects of

the botnet, e.g., the number of infected hosts under the adversary’s control, the combined bandwidth

or computing power of the botnet, or the communication latency between infected hosts. This will allow

anomaly detection systems to be evaluated from a more objective point of view that is dataset-independent.

Correlating host profile changes. Infected hosts are often used by the bot-master to provide rogue

network services, such as HTTP proxies or DNS servers that redirect victims to malicious domains, SMTP

servers sending spam emails, or FTP servers providing spam templates. Having bots participate in these

services hides the backend server controlled by the bot-masters, and makes it difficult to disrupt their

operation.

However, these activities are also likely to cause changes to the role that the infected host plays in a

network, since such services are usually performed by designated machines. Upon infection, a host thus

instructed by the bot-master is likely to switch from being aclient to a server, or from one type of server

to another. While benign hosts can exhibit behavioral changes as well, e.g., when new applications are

installed, they are rarely synchronized in their activities (excluding popular events, such as connections

to popular sites likewww.google.com). For this reason, more suspicious are previously independent

hosts that exhibit “coincidental” changes to their networkbehaviors.

As an example, a host’s network behaviors can be profiled by its connection patterns (e.g., whether

they accept inbound connections, the duration and size of the connections, or the number and type of the

hosts with which it interacts). Examined over multiple timewindows, “coincidental” changes involving

multiple hosts can be detected by data mining techniques, such as association rule mining, that identify
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patterns frequently appearing together. Similar data mining approaches have been applied to identify

communication rules in a network, which can be used for monitoring and diagnosis [76]. Based on

changes to hosts’ network profiles, this method of identifying infected hosts has the potential to detect

previously unseen malware. It is also more general than methods that rely on signatures or behaviors

deemed suspicious, which require labor-intensive reverseengineering efforts by human analysts.

Distributed Malware Detection. The malware detection approach described in this thesis makes the

assumption that there are multiple infected hosts within the network. While many malware instances prop-

agate locally, e.g., through open network shares (such as Stuxnet [45], Phatbot [135], Conficker [117]),

and multiple infections are likely to be found in large networks, this assumption may not hold in smaller

networks or be useful for detecting bots belonging to small botnets. In these cases, it is beneficial for

multiple distributed networks to collaborate, so that activities from more than one bot may be observed.

Some of our data analysis algorithms can be readily adapted to distributed data. For example, payload

aggregates in T̄AMD (see Section 2.2.2) can be performed across multiple networks by sharing only the

hash functions and the bucket numbers to which flow payloads are mapped. Distributed versions of sta-

tistical techniques used in this work are also available, e.g., distributed PCA [69]. The challenge in this

setting, however, is in combining data from multiple sources in a privacy-preserving manner, e.g., similar

to that proposed by Xie et al. to trace the origin of worm propagations [152].
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Appendix A

Applications of Browser Fingerprinting to

Traffic Deanonymization

In Chapter 3, we developed a browser fingerprinting technique that infers the browser implementation

on a remote host using flow records. In addition to enhancing an intrusion detection system to detect

a wider range of malware, here we demonstrate a second application of browser identification to the

deanonymization of websitesin flow records that have been anonymized.

In order to retain the utility of anonymized traffic traces for networking research, IP addresses are typ-

ically anonymized in a consistent fashion, i.e., so that thesame real IP address is mapped consistently to

the same pseudonym in the anonymized dataset. This enables the behaviors of the anonymous web servers

to be examined, however, which can sometimes lead to their deanonymization. As a trivial example, the

larger number of bytes typically transmitted from the main page ofcnn.com would enable it to be dif-

ferentiated fromgoogle.com. Moreover, since a page retrieval can involve connections to multiple

physical servers (e.g., image servers or content distribution networks), Coull et al. [32] also found that the

sequential order of the servers contacted to retrieve objects on a webpage can enable websites to be differ-

entiated. While previous works placed emphasis on observing traffic behaviors of the websites [32, 85],

to our knowledge, no study has accounted for this behavior asinfluenced by the particular implementation

of their protocol peers, i.e., the browser. In what follows,we show that classifying the browser first can

yield a more precise deanonymization of websites.
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A.1 Feature Selection

We use the same dataset as that described in Section 3.2. Similar to our browser fingerprinting technique,

we extract nine main flow features from each web page retrieval. While these features were previously

calculated over all flows in a retrieval, here we calculate these features for all flowsper physical server,

for each of the first five servers contacted. The features are then arranged according to the order that

the server was contacted, i.e., for retrievalr, the feature vector is{Fr1, ..., Fr5}, whereFrj refers to the

features derived from the flows to physical serverj, for website retrievalr. Breaking down the retrieval

features by physical server provides a finer-grained representation of the retrieval and an order to the

physical servers, both of which have been utilized in previous website deanonymization efforts (e.g., [32]).

Furthermore, to eliminate redundancies and reduce dimensionality, we selected a subset of those features

that are most relevant, specifically by computing the correlation of each feature from one day of retrievals

to cnn.com in the PlanetLab-Native dataset to one day of such retrievals in the CMU dataset. This

yielded nine features: the byte and packet counts to and fromthe first server contacted, and the number of

flows to each of the first five servers contacted.

We focus on deanonymizing those websites that are “stable”,as judged by their standard deviation for

the total number of flows, bytes, and packets, and also those websites that are complex enough, as judged

by the total number of flows. It has been previously established [32] that websites with a high variability

in their contents (e.g.,espn.com) or those that are too simple (e.g.,google.com, orkut.com) will

typically not be identified accurately. We determine a website to be complex and stable if the average

number of flows from the first five servers contacted is greaterthan one, and the byte and packet counts to

and from the first server has a small standard deviation, i.e., within twice the average value. In this way,

we narrow down the list of websites that we will attempt to deanonymize in traffic traces to 52 of the top

100 websites in the U.S. according toalexa.com.

A.2 Website Classifier

We build our website classifiers using Bayesian belief networks, which have been shown to yield good

results [32]. Given a test instance, the classifier outputs aprobability for each class, which is the likelihood

of the instance belonging to that class, according to the model built from training data. The class with the

highest probability is taken as the classification of the test instance. This may not always yield optimal

classification, for example, in cases where the probabilities for several classes are close to each other, or
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when all of the probabilities are small.

To establish some notion of “confidence” on the classification, one way is to let the classifier make

a decision only from classes with probabilities greater than a cutoff value, and only when there exist

probabilities above the cutoff. Although cases where multiple classes have similar probabilities may still

result in ambiguities or misclassifications, the cutoff value can allow the classifier to provide answers

based on more confident results, avoiding scenarios where uncertainty (small probabilities) are likely to

cause incorrect classifications. The higher the cutoff parameter, the higher the probability of the test

instance belonging to its class must be.

From the PlanetLab-QEMU dataset, we group the data by the browser that generated the traffic, as well

as a combined group with traffic from all four browsers. This allows us to build four per-browser website

classifiers (IE, Firefox, Opera, Safari), and one generic website classifier. The former are each trained

on traffic from a single browser type, while the latter is trained on combined traffic from all browsers.

In the following, we quantify the benefits of first classifying the browser in website deanonymization by

applying these two types of classifier models separately andcomparing their results. When testing with

the CMU dataset, the browser type for each host is determinedby our browser classifier developed in

Section 3.3, using a confidence threshold set at 1.30. The per-browser website classifier is then applied to

a website retrieval based on the browser determined for the host that performed the retrieval.

For each testing instance, i.e., each website retrieval, the classifier returns the class with the high-

est probability above the cutoff. If no probability larger than the cutoff exists, the instance is unclassi-

fied. Let the classification for retrievalr bewebsiteguess(r), and its actual website bewebsite(r), where

website(r) = ⊥ if the ground-truth website for retrievalr cannot be determined in the dataset (which only

happens in the case of the CMU dataset). Then, the precision and recall are

Precision = Pr[website(r) = s | websiteguess(r) = s 6= ⊥]

=
|{r : websiteguess(r) = website(r)}|

|{r : websiteguess(r) 6= ⊥}|

Recall = Pr[websiteguess(r) = s | website(r) = s 6= ⊥]

=
|{r : websiteguess(r) = website(r)}|

|{r : website(r) 6= ⊥}|

In the following tests, we only report results for cutoff values where the classifier is able to make at least

thirty classifications. This is to avoid cases where not enough classifications can be made for the results

to be representative.
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A.3 Tests on PlanetLab-QEMU Dataset

Similar to the experiments described in Section 3.3.1, we first evaluate the results of website deanonymiza-

tion under an ideal setting using the PlanetLab-QEMU dataset. In each experiment, the testing data con-

sists of retrievals from one host, while the training data isfrom all other hosts. We apply each per-browser

website classifier to retrievals determined to have been performed with that browser by our classifier in

Section 3.3, to generate the per-browser results. We generate results for the generic website classifier by

applying that classifier to all retrievals. Our tests are “closed-world”, in the sense that only retrievals of

the 52 selected websites (see Section A.1) are tested.
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Figure A.1: Website classification precision on the
PlanetLab-QEMU dataset.
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Figure A.2: Website classification recall on the
PlanetLab-QEMU dataset.

Figure A.1 and A.2 show the precision and recall from the per-browser and generic website classifiers.

Cutoff values range from 0.01 to 0.99, in steps of 0.01. The precision increases with the cutoff, but the

recall decreases since some instances are not classified at higher cutoff values. The drops in precision are

due to cases where correct classifications that do not have a high enough probability are filtered out by

the cutoff value. The generic classifier was not able to classify more than thirty retrievals after the cutoff

reaches 0.78, so we do not plot its results for cutoff values greater than 0.78.

To present an alternate view depicting our overall accuracy, let Precision(c) and Recall(c) be the

precision and recall, respectively, when the cutoff is set to bec. We then define the precision “integral”,

over the range[cmin, cmax], to be
cmax∑

c=cmin

Precision(c)

and we define the recall “integral” similarly.cmin andcmax are defined as the endpoints of the range where
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Classifier Precision Recall
Generic 26.16 5.34

Per-browser +6.01 +10.93

Table A.1: Comparing the precision and recall integrals on website classification on the PlanetLab-QEMU
dataset.

both the per-browser and generic classifiers were able to make enough classifications. The integral is a

measure of how the classifier performs across different cutoff values, in that larger integrals show higher

precision (or recall) overall. The integral of precision and recall over[0.01, 0.78], in steps of 0.01, are

shown in Table A.1, with the generic case serving as baseline.

While website deanonymization remains a challenging problem in practice, we note that the improve-

ment in recall between per-browser and generic classifiers remains significant, across all cutoff values,

where the average difference is 14.01% and the maximum difference is 16.11%. On the other hand, the

maximum difference in precision for per-browser and generic classifiers is 15.61%.

A.4 Tests on CMU Dataset

To evaluate the impact of first classifying the browser on website deanonymization in a more realistic

setting, we turn to the CMU dataset, with the PlanetLab-Native dataset serving as training data. Since the

IP addresses are anonymized in the CMU data, we have no directknowledge of the websites contacted.

So, to build ground truth for the classification, we examinedinformation available in the first 64 bytes of

each flow payload. Specifically, the “Host” field in HTTP requests are extracted to identify the domain

name of the websites. Of the 52 websites targeted for identification, we found only 23 in the CMU dataset

in this way, and so used only these retrievals for testing (while the training data still consists of traffic to

the 52 websites). Only retrievals from hosts whose ground-truth browser type could be determined were

used (see Section 3.3).

For each retrieval to one of the chosen 52 websites (see Section A.1) in the CMU dataset from a

Firefox or Opera browser, we classify it using both the appropriate per-browser classifier and the generic

website classifier, built using the PlanetLab-Native dataset. The results are shown in Figures A.3 and A.4.

In particular, we test the per-browser website classifiers in two scenarios: (i) when our browser classifier

from Section 3.3 is applied first, and (ii) when we assume perfect browser classification, i.e., the per-

browser website classifier applied to a website retrieval isbased on the actual browser that performed that

111



0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

45

50

55

Cutoff

P
re

ci
si

on
 (

%
)

Per−browser 
Per−browser (perfect)
Generic

Figure A.3: Website classification precision on the
CMU dataset (Train: PlanetLab-Native, Test: CMU).
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Figure A.4: Website classification recall on the CMU
dataset (Train: PlanetLab-Native, Test: CMU).

Classifier Precision Recall
Generic 20.53 11.30

Per-browser +2.73 +1.07
Per-browser (perfect) +7.93 +4.38

Table A.2: The integral of precision and recall on website classification in the CMU dataset (Train:
PlanetLab-Native, Test: CMU).

retrieval, as opposed to the browser determined by our classifier. When our browser classifier is applied,

the difference in precision between the per-browser and generic classifiers can reach close to 17% at high

cutoff values. Table A.2 shows the integral of precision andrecall over cutoff values from 0.01 to 0.99, in

steps of 0.01. The results in Figures A.3 and A.4 are calculated across all 52 websites.

However, for an attacker who is only interested in deanonymizing certain websites, such as those listed

in Table A.3, a classifier that is able to classify those websites well would be more useful than a general

website classifier. For example, the per-browser classifierhas a 84.62% precision fordailymotion.com,

a 27.57% improvement to the generic classifier. These results point out that in live network traffic, classi-

fying the browser first can bring a non-trivial advantage to website deanonymization.
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Website Precision (%) Recall (%)
Per-browser Generic Per-browser Generic

adobe.com 17.59 0.00 9.55 0.00
dailymotion.com 84.62 57.05 50.00 44.95

nytimes.com 21.15 16.26 12.26 9.13
wordpress.com 13.98 0.00 7.15 0.00

yahoo.com 45.52 29.60 29.81 19.78

Table A.3: Comparing the precision and recall between the per-browser and generic website classifiers for
the classification of selected websites in the CMU dataset, when our browser classifier from Section 3.3
is applied first (Train: PlanetLab-Native, Test: CMU).
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