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Abstract

It is clearly in the interest of network administrators taets hosts within their networks that are
infiltrated by stealthy malware. Infected hosts (also cdiety can exfiltrate sensitive data to adversaries,
or lie in wait for commands from a bot-master to forward sp&mnch denial-of-service attacks, or host
phishing sites, for example. Unfortunately, it is diffictitt detect such hosts, since their activities are
subtle and do not disrupt the network.

In this thesis, we hypothesize that malware-infected helsise characteristics in their network behav-
iors, which are distinct from those of benign hosts. Our apph works by aggregating “similar” network
traffic involving multiple hosts. We identify key charadstics that capture basic properties of botnet
operation, and that can be observed even within coarse netvadfic summaries, i.e., flow records. Us-
ing network traffic collected at the edge routers of the Cgim#lellon University campus network, and
network traffic generated from real bot instances in virtimachines and honeynets running in the wild,
we demonstrate that this approach can reliably detecttedeurosts with very few false positives.

In addition to identifying relevant behavioral featureghin hosts’ network activities, another con-
tribution of this thesis is in developing efficient algoritk for analyzing network traffic. Our algorithms
utilize methods from diverse areas, including statistiizga mining, machine learning, and metric embed-
dings. We also introduce a technique to passively infer pipdi@ation implementation on a host given only
anonymized traffic summaries. This technigue enables ustiectimalware that is browser-dependent,
and can also be applied to improve the accuracy of traffic@®anization, i.e., identifying the web sites
in anonymized flow records.

To complement empirical analyses, we apply analytical rsoiem network theory to study peer-to-
peer botnets. We focus on a structural property of netwatksch characterizes the tendency for edges
to exist between “similar’ nodes, and examine its effect etwork resiliency and the network’s ability to
recover after a fraction of the nodes are removed. We shoinptiesious works may have over-estimated
the power of certain botnet takedown strategies, and ifyeauti alternative strategy that is more effective

than those explored previously.
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Chapter 1

Introduction

Stealthy malware is largely responsible for attacks on titerhet infrastructure, for the proliferation
of unsolicited spam e-mails, and for exfiltrating privatéommation from end users and organizations.
Infected hosts (also calldabtg are also used to host, or serve as proxies for, phishing, Sgammer sites,
and those with other malicious content. These activitiespgrformed by infected hosts at the command
of the attacker, i.e., the bot-master, where communicatlmetween bots and the bot-master often take
place over existing network protocols, including InterReflay Chat (IRC), HTTP, and peer-to-peer (P2P)
networks.

Unfortunately, it is difficult to detect hosts infected wihich malware, since by default they do lit-
tle to arouse suspicion: e.g., generally their commurocatineither consume significant bandwidth nor
involve a large number of targets. Analysis can be furthenglicated by infected hosts encrypting their
network traffic, or communicating over peer-to-peer protedo “blend-in” with peer-to-peer file-sharing
traffic. While bots enlisted in aggressive scanning for ptheénerable hosts can be detected using known
techniques, it would be better to detect the infected hasts { them engaging in malicious activities.
For these reasons, bot detection has remained a challepgbtem.

In this thesis, we hypothesize that hosts infected witHtstgaalware share behavioral characteristics
in their network activities that are distinct from those @&nign hosts. We propose methods that detect
infected hosts by simply identifying aggregates of “simfilaommunications, using only information
contained in coarse network traffic summaries. In this adrapte first review existing approaches for bot

detection, and then present our approach and contributions



1.1 Previous Bot Detection Techniques

Generally speaking, communications between bots and thenaster can take place either through a
centralized channel, e.g., Internet Relay Chat (IRC) or RTar in a decentralized manner over peer-to-
peer (P2P) protocols. In a centralized topology, every bpbrts directly to the bot-master, whereas in
a decentralized topology messages are relayed through pdees in the botnet. Examples of botnets
that utilize the former include GTBot, AgoBot, SDBot, SpyHd], Zeus [15], Rustock|[23], Click-
bot [38], MegaD [[24], Torpigl[137], while Sinit, Phatbot [BB Storm [52| 66), 116, 138], Nugache [138],
Waledac|[1i7] 132], Confickel [117] fall into the latter caiegg Some botnets also have a hierarchical
organization that includes both centralized and decenédltopologies at distinct layers (e.g., Storm,
Waledac). The Stuxnet worrn [45], which specifically targetchines in industrial systems that may not
be connected to the Internet, communicates with centchi#€TP command-and-control servers (if the
infected host is online), but also utilizes a P2P comporneatlbw updates to be propagated to other bots
in the local network.

Due to their unusual command-driven and coordinated nabariedetection techniques largely work
by examining network traffic for anomalies. Previous workhis area can be grouped into the following

categories:

Signature-based Techniques. This group of proposals often rely on heuristics that asscen@in mod-
els of botnet architecture or behavior. Such assumptiarisde IRC-based command-and-control [14, 29,
51,198,/ 119], or the presence of scanning activities or defiaervice attacks performed by the infected
hosts [[80]. These approaches, not unlike signature-basrdion detection, can be evaded by malware
that do not conform to their profile.

Other proposals generate traffic signatures that can beinseetwork intrusion detection systems
(e.g., Brol[113]). For example, by examining bot binariesning in controlled environments, Perdisci et
al. [115] clustered suspicious HTTP traffic that share sinstatistical and structural properties. Wurzinger
et al. [151] identified changes in the network behaviors obi Wwhich are assumed to indicate that it re-
ceived commands from the bot-master. Common substrindeitraffic immediately preceding behavior
changes are used to construct signatures. These appraaehigisidered by bots that encrypt their com-

munications, and require access to the malware binary.



Behavior-based Techniques. In contrast to signature-based approaches, which areelintd specific
activities performed by the infected hosts, several work@psed to detect bots by examining behavioral
characteristics of their network traffic. These works foounghe spatial-temporal similarities between the
behaviors of hosts participating in the same botnet, eognneunication with the bot-master's command-
and-control servers and performing the same maliciousities. For instance, BotHunter [53] detects
compromised hosts by identifying events that take placermeéhgulnerable host is infected, and which
show evidence of coordinated activities between the iefittost and the bot-master. BotSniffer! [55]
identifies hosts with similar suspicious network actigtisamely scanning and sending spam emails,
and who also share common communication contents, definéldebilyumber of shared bi-grams. Bot-
Miner [54] groups together hosts based on destination onection statistics (i.e., the byte count, the
packet count, the number of flows, etc.), and on their susdaolicious activities (i.e., scanning, spam-
ming, downloading binaries, or sending exploits). Howetleese approaches still rely on certain models
of bot behavior, using signatures to detect the occurrehitdaxtions and suspicious activities (and hence
may require access to full packets that remain unencrypted)

Lu et al. [94,195] assume bot activities to be more synchemhithan human activities, and detect
infected hosts by looking for hosts with similar byte freqag distributions in their payload within the
same time window, e.g., one second. This approach can thexdoled with encryption, and may not be
applicable to delay-tolerant botnelsi[21]. Giroire et!&l][proposed methods to detect centralized botnet
command-and-control traffic by monitoring persistent aedufar connections made to the same group
of destination IP addresses, i.e., the botnet control sen&ince legitimate user traffic can also appear
to be persistent and regular, this approach requires vigtitej common sites that benign users visit. It
can also be evaded by malware that communicate in a dedeattahanner over peer-to-peer protocols.
BotProbe [[56] exploits the determinism in the bots’ pregresnmed behavior in response to commands
from the bot-master. It actively replays, modifies, andncgets packets of suspicious connections, and
utilizes hypothesis testing to distinguish bot traffic frtmose of human users. However, this approach is

hindered by encryption, and may require human participatio

Detecting Specific Botnet Operations. Another line of work includes techniques for identifyinghae-
iors involving certain botnet operations. Ramachandraah. §123] observed that bot-masters lookup DNS
blacklists to tell whether their bots are blacklisted. Thays monitor lookups to a DNS-based blacklist to

identify bots. Fast-flux is a technique used by botnets te L@ backend control server, or to host spam



campaigns and phishing websites! [67]. It operates by usmardic DNS to establish a proxy network
based on the infected hosts, such that a single domain isiatsb with many different IP addresses.
Methods for identifying fast-flux domains include observilhe number of DNS A records mapping to a
hostname, and the geographic diversity in the IPs assdoigite a domaini[64,, 65, 109]. Hu et al. [68]

also proposed detecting hosts participating in fast-fluwaoeks by identifying HTTP redirection activity.

Infiltration and Disruption.  Since some peer-to-peer botnets are built on existing mktpmtocols,
e.g., the Overnet protocol based on the Kademlia distribbtesh tablel [97], researchers have infiltrated
botnet networks in attempts to enumerate the infected H@gisor to disrupt botnet operation. As an
example of the latter, researchers have injected a largéeuof fake nodes into the network to perform
Sybil attacksl[40, 60, 66], including content poisoning digsing certain nodes from the rest of the P2P
network. These studies showed that the effectiveness a@ltthek depends on the attack duration as well

as the number of Syhbils.

1.2 Thesis Approach and Contributions

Several drawbacks are present in previous works describ&ectio_LIL. First, there are common as-
sumptions about specific models of behavior performed byrtfeeted hosts (e.g., the protocol of com-
munication, the presence of scanning or spamming acsyjta@ reliance on signatures appearing in their
communication content. These assumptions can be evadezihbyalware that encrypt their messages or
that move to alternative communication architectures. (priyate peer-to-peer protocols designed by the
bot-masters). Second, many proposals require informatiotained in network packets, which may not
be feasible to collect in large networks due to bandwidth stodage requirements. Rather than packets,
coarse summaries of each network connection are oftendsiiostead, e.g., Cisco NetFlow [1] or Argus
rowsEl. These drawbacks highlight the tension in the arms racedsetwot-masters and network defend-
ers: while malware is becoming increasingly sophisticateelhave less information on which to base our
investigations.

In this thesis, we take on the perspective of a network aditnator that has access to traffic crossing
the border of her network, and that aims to identify intefmasts that are infected. We hypothesize that
infected hosts share certain characteristics in their odddvehaviors that are distinct from those of benign

hosts. Since malware rarely infects a single victim in adagterprise network, such characteristic behav-

Ihttp: /7 www. gosi ent . conT ar gus
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iors should appear roughly coincidentally at multiple niael in the network. Based on this hypothesis,
our approach simply identifies aggregates of “similar’ matwiraffic that are associated with multiple

hosts. In contrast to previous behavior-based malwarecti@teproposals that focus (in part) on similar
malicious activities performed by multiple hostsi[54, 5&F aim to exploit characteristic behaviors that
are fundamental to the method by which infected hosts aragatywith the bot-master.

We first demonstrate the effectiveness of this approachtectag infected hosts participating in cen-
tralized botnets. In particular, to avoid high bandwidthl @torage requirements in collecting full packet
data, our technique only utilizes information containedetwork flow records, i.e., Argus records, which
include the source and destination addresses and portsstiotrvand end times, packet and byte counts,
and the first 64 bytes of the flow payload. We further addressi#fiection of increasingly sophisticated
malware variants, specifically those that may not be confinadfecting hosts of a particular operating
system, and those that communicate via resilient peeegn-petwork topologies. These later detection
techniques explicitly avoid payload inspection altoge{le®en the partial 64-byte payload) to accommo-
date malware that encrypt their communications.

To complement our empirical analyses, we apply models fretwark theory to peer-to-peer botnets,
and investigate the effectiveness of various botnet takadsirategies. Network models allows the “use-
fulness” of the botnet, as well as the impact of takedowmgits, to be evaluated using graph properties,
e.g., the size of the largest connected component, thegevelistance between pairs of nodes. We fo-
cus on a particular structural characteristic of networksassortativity — that affects the resilience of a
network to takedown attempts and also its ability to rec@aftar a fraction of nodes are removed.

The rest of this section presents an overview of our appraachcontributions.

1.2.1 Aggregating Network Traffic for Malware Detection

To detect infected hosts participating in centralized btstnpwe propose a system, calledMb (an ab-
breviation for “Traffic Aggregation for Malware Detection[L55], that distills traffic aggregates from the
traffic passing the edge of the network. Each traffic aggeegatiefined by certain characteristics that the
traffic grouped within it shares in common. By refining the egmtes to include only traffic that shares
multiple relevant characteristics,AMD constructs a small set of new aggregates (i.e., withoutiguev
precedent) that it recommends for examination, for exampjemore targeted (e.g., signature-based)
intrusion detection tools.

Specifically, the characteristics on whicaWD aggregates traffic include:



e Common destinations TAMD analyzes the external networks with which internal hostaroaini-
cate, and identifies traffic to busier-than-normal extedestinations. Previous studies have shown
that the destination addresses with which a group of hostsmumicates exhibit stability over
time [2,184]. Since common sites are generally better acdstgred and have a small chance of
being compromised by the attacker, malware activities arecé likely to exhibit communication
patterns outside the norm, i.e., contacting destinatibasthe internal hosts would not have con-

tacted otherwise.

e Similar payload: TAMD identifies traffic with similar payloads or, more specifigajpayload pre-
fixes (i.e., the first 64 bytes of each flow) for which a type at distance (string edit distance with
moves [[30]) is small. Intuitively, command-and-contraffic between a bot-master and the bots
should share significant structure, i.e., pertaining topttetocol syntax, and would have a low edit

distance between them.

e Common software platforms TAMD passively fingerprints the platforms of internal hosts, and
identifies traffic associated with hosts with common opegaystems. Most malware tend to be

platform-dependent, e.g., infecting hosts running a paldr operating system.

Alone, each of these characteristics for forming trafficraggtes would be too coarse for identifying
malware, as legitimate traffic can exhibit these charasties as well. In combination, however, they can
be quite powerful at extracting malware communicationg (eatively few others). In Chaptét 2, we
show that with traffic generated from real bot instances, wesvable to reliably extract this traffic from
all traffic passing the edge of the Carnegie Mellon Univgregmpus network, while the number of other
aggregates reported is very low. This is achieved even wieenétwork traffic is recorded in the form of
flow records, and when the number of infected hosts compnige @0097% of all internal hosts in the
network.

In addition to identifying traffic aggregates and ways of &ommg them to find malware-infected
hosts, our contributions also include efficient algorithimsanalyzing network traffic, which are drawn
from diverse areas including signal processing, data mgiramd metric embeddings. We also detail each
of these algorithms in Chaptiér 2.

There are several approaches by which malware writers ¢ampt to avoid detection by AMD.
These approaches include 1) encrypting their traffic, sbdhapayload comparisons will be ineffective,

2) exploiting cross-platform applications (e.g., web bsevs), so that the malware is no longer operating



system-dependent, and 3) switching to alternative botrobiitactures, such as those built over P2P net-
works, where infected hosts do not need to contact a singigadized server. To accommodate the use
of encryption, our techniques can be generalized to defing/pted content as “similar”, though a better
method perhaps is to move away from payload inspection eiliey (even the partial 64-byte payload),
since this information is not typically included in flow reds. We further address the other two meth-
ods of evading AMD by developing techniques to perform passive applicatiogefiprinting (targeting
browser-dependent malware in particular) and techniqoetetect P2P bots, described in the following

subsections.

1.2.2 Passive Browser Fingerprinting from Coarse Traffic Smmaries

A limitation to the TAMD system, described above, is that it only forms platform aggtes based on the
hosts’ operating system. As such, it would not be able toatletalware that is application-dependent, but
otherwise operating system-independent. Such malwage (keTr oj an. PWS. Chr onel nj ect tro-
janH that exploits Mozilla Firefox, th&/BI L. Yaki zake WormH that exploits Mozilla Thunderbird, the

I mspamtrojanH that sends spam through MSN or AOL Messenger) could sparipteuitaffic aggregates
formed by operating system fingerprinting alone, or represaly a small subset of an operating system
aggregate. In either case, the mismatch between the seffivaerprinted (the O/S) and the software
exploited (e.g., the web browser) can allow the infectedshtmsgo unnoticed.

In addressing application-dependent malware, we focugphkarly on those that are browser-dependent,
since web browsers are arguably one of the most importantwwadespread applications in use today.
Rather than examining the traffic payload (e.qg., client datdT TP headers), we present a new technique
to infer the web browser implementation on a host using amflyrimation contained in flow records [157].
Our observation is that differences in browser implemeoist will result in varying network behaviors,
even when the same web page is retrieved. For example, lnowssy retrieve objects on a given page in
different orders, there can be different numbers of objectse connection, and the number of simulta-
neously active connections also varies.

However, aside from the content and structure of the wehysiisers’ browsing behavior, browser
configuration, geographic location, and the client haréwamfiguration can also affect browser network

behavior. To overcome these challenges, we collected mietiskaffic to top web sites using different

2htt p:// www. bl t det ender. com VI RUS- 1000451- en- - Iro] an. PWs. Chronel nj ect. B. ht m
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browser implementations from hosts in PlanetLab [25], Whga geographically distributed network of
machines. This allows us to construct a browser classifieedban Support Vector Machines (SVM)|[31].
Given the limited amount of information contained in flow seds, we demonstrate that our browser
classifier performs well on real user traffic recorded at tbedbr of the Carnegie Mellon University
campus network — even when the training and testing datasefsom different time frames, to different
websites, and collected at different geographic locations

In Section[B, we show that incorporating browser fingerprmptinto the platform aggregation step
in TAMD induces small overhead, while allowing the detection of dewirange of malware (i.e., both
those that are operating system-dependent and browsendept). Moreover, in a second application
of browser fingerprinting, we demonstrate that knowledgéhefclient browser can be used to achieve
a higher accuracy in the deanonymization of vediesthan has previously been achievable from flow
records. In our experiments on traffic from our campus netwtire precision of website identification

can be improved by 17% on average from the case without krigelef the browser implementation.

1.2.3 Telling Peer-to-Peer File-sharing and Bots Apart

In contrast to centralized botnets, peer-to-peer (P2P #otnot communicate with a single server, but
rather relay messages between other peers in the netwoekmblkivations for bots using P2P substrates
are similar to those underlying the use of P2P protocols Persiharing; the takedown of Napster, for ex-
ample, highlighted the limitations of a centralized “comnmdand-control” infrastructure in that domain.
It is thus not surprising that P2P substrates now suppott biat-sharing and botnet activities. Since
no single control server exists for P2P botnets, it also lmasopossible for infected hosts to evade the
destination aggregation step imWD.

A consequence of this common use of P2P technologies is tiia¢tocommand-and-control traffic
will tend to “blend into” a background of P2P file-sharing, kimy it difficult to separate these two types
of traffic. In both cases, status information about avagdgi#ers needs to be maintained constantly to en-
sure the connectivity of the network; peers experience h bannection failure rate due to the dynamics
of nodes joining and leaving (i.e., “churn”); and peers iggsate in both client and server activities. This
commonality is punctuated by the fact that one highly puddid and well-studied P2P botnet, Storm,
built its communication protocol based on the Overnet ndtywyhose distributed hash table implemen-

tation [97] is incorporated in both eDonkE;and BitTorrenH file-sharing applications.

*htt p: /77w Ki . amul e. or g/ 1 ndex. php/ FAQeDZK- Kadem | a
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In light of this, the primary problem facing the detectionsafch bots is differentiating them from
other P2P hosts. We focus specifically on the problem of P2Ridétection given this challengke_[156].
By targeting basic properties of bots that operate over R&Rarks, we construct a series of tests on
network traffic to separate them from P2P file-sharing ho$tse characteristics on which our tests are

based include:

e Volume: Since file-sharing hosts generally perform large multdiaefile transfers (e.g., MP3,

movies), but bots almost never do, traffic volume can be agtrdndicator of suspicious activity.

e Peer churn: The peer membership of a file-sharing network is very dyramue to peers con-
stantly joining and leaving the network. Studieas! [58.| 128)]lhave shown that most file-sharing
hosts appear only once a day, and remain connected for sirati@hs. Bots, by contrast, are likely
to experience less churn in their peer membership, singedteerequired to maintain connectiv-
ity to other peers to receive and execute commands from thenbster. A bot also cannot control
when network access will be available, and so it is often dppastic in communicating with peers,
i.e., whenever it has a chance. In addition, each bot mamtiist of known peers with which to

communicate, such that it tends to contact the same hostatesgly.

¢ Human-driven versus Machine-drivert A more fundamental difference between bots and file-
sharing hosts is that, while file-sharing activities aremyahuman-driven, bots are almost entirely
automated. This causes much of their traffic to exhibit teralpgmilarity that is rarely seen among

those from human activities.

We use these characteristics in combination to build a igolenfor separating P2P bots from P2P file-
sharing hosts. Evaluated on network traffic observed at trddn of the Carnegie Mellon University
campus network, our technigue can detect Storm bots witb 8@.60% true positive rate and only 0.47%
false positives, for example.

Another contribution of our work is in quantifying the degrto which malware would need to alter
their behaviors to evade detection. We show that evadingeatiniques would require significant behav-
ioral changes to existing botnets, and, due to the way inlwbig tests are constructed, it would typically
not be evident to the bots how much change would be sufficigrévasion. Details of our technique and

evaluations are presented in Chajler 4.



1.2.4 Reuvisiting Analytical Botnet Models

An analytical approach to studying botnets, adopted byraépeevious works|[3€, 41, 9D, 91], is to apply
graph models from network theory to P2P botnets. Each notleeinetwork represents an infected host,
and edges reflect communications between the hosts. Netmaodkels allow the “usefulness” of botnets
to be quantified using properties of the graph, such as theal&r, the size of the largest connected
component, and the average shortest distance between rddesimportantly, the models can be used
to assess the effectiveness of strategies aimed at taking ddootnet. For example, one strategy that
was found to be effective for some network topologies is tgahnodes with high degree, i.e., that
communicate with many hosis [36, 41, 158].

We observe that previous works applying graph models to Ritiebs do not consider an important
property of networks — assortative mixing [102]. Assowdyi refers to the tendency for a node to
attach to other “similar” nodes, and is commonly examineteims of a node’s degree, i.e., high-degree
nodes are likely to be neighbors of other high-degree noddss property is also called the degree
correlation. The existence of this correlation betweeglniedring nodes has been observed in many real-
world networks [[102|, 104, 111]. It has also been found to beopgrty of growing networks [19, 36],
where the network increases in size as nodes join over timgs, aue in a botnet as more hosts become
infected.

In Chaptel b, we show that assortativity plays an importaté in network structure, such that ne-
glecting it can lead to an over-estimation of the effectessnof botnet takedown strategies. By generating
networks with varying levels of degree correlation, we destrate that a higher level of assortativity al-
lows the network to be more resilient to certain takedowatetjies, including those found to be effective
by previous works. Moreover, since bots are dynamic estifiat can react and adapt to changes in the
network, the botnet can potentially “heal” itself after adtion of its nodes are removed. We specifically
explore cases where nodes can compensate for lost neighp@eating edges to other nearby nodes,
e.g., that are withirk hops. Our simulations show that the graph can recover Signifiy after takedown
attempts, even wheh is small, and that higher levels of assortativity can allbw hetwork to recover
more effectively.

We also identify alternative takedown strategies that aseereffective than those explored in previous
works. By targeting nodes with both high degree and low elusty coefficient, the connectivity and
communication efficiency of the network will decrease digantly, such that it is considerably more

difficult for the network to recover from the takedown atte¢mp
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1.3 Outline

This thesis is organized as follows:

e Chaptel®2 describes theamD system, including algorithms for efficiently aggregatirgjmilar”
network traffic, and evaluations performed on network tcadfollected at the border of our univer-

sity campus network and those generated by real bot inggance

e ChaptelB describes an approach to passively determine@edrst’'s web browser implementa-
tion using only information contained in network flow recey@nd its application to improving the

platform aggregation in AMD.

e Chaptel}t presents techniques for distinguishing peget-bots from file-sharing hosts. Evalu-
ations are performed on network traffic collected at the boaf our university campus network,
and also traffic from P2P bots in honeynets running in the villig also quantify operational costs

required for bots to evade detection.

e Chaptel(b studies analytical network models and their agftin to peer-to-peer botnets. We ex-
plore in detail the effect that assortativity has on theliexsty of the network and on its healing

ability.

e ChapteEb summarizes key contributions of this thesisintgdtions, and potential future directions.
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Chapter 2

Traffic Aggregation for Malware Detection

It is clearly in the interest of network administrators tdet# computers within their networks that are
infiltrated by malware. Infected hosts, i.e., bots, can &afit sensitive data to adversaries, or lie in
wait for commands from a bot-master to forward spam or lawtehial-of-service attacks, for example.
Unfortunately, it is hard to detect such hosts, since by ulethey do little to arouse suspicion: e.g.,
generally their communications neither consume signifiteandwidth nor involve a large number of
targets. While this changes if the bots are enlisted in aggre scanning for other vulnerable hosts or in
denial-of-service attacks — in which case they can easilgdiected using known techniques (e.g., [101,
133]) — it would be better to detect the bots prior to such augisve event, in the hopes of averting it.
We hypothesize that even stealthy, previously unseen maliwdikely to exhibit communication that
is detectable, if viewed in the right light. First, since egieg malware rarely infects only a single victim,
we expect its characteristic communications, howevelsutat appear roughly coincidentally at multiple
hosts in a large network. Second, we expect these commiamisab share certain features that differ-
entiate them from other communications typical of that retkw Of course, these two observations may
pertain equally well to a variety of communications thatmoeinduced by malware, and consequently the
challenge is to refine these observations so as to be usefigfiecting malware in an operational system.
In this chapter, we describe such a system, callesi T, an abbreviation for “Traffic Aggregation for
Malware Detection”. As its name suggestsyMD distills traffic aggregatedrom the traffic passing the
edge of a network, where each aggregate is defined by cehaiaateristics that the traffic grouped within
it shares in common. By refining these aggregates to inclundie toaffic that shares multiple relevant
characteristics, and by using past traffic as precedentstdyjudiscarding certain aggregates as normal,

TAMD constructs a small set of new aggregates (i.e., withoutigquevprecedent) that it recommends for
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examination, for example, by more targeted (e.g., sigedbaised) intrusion detection tools. The key
to maximizing the data-reducing precision oANID is the characteristics on which it aggregates traffic,

which include:

e Common destinations TAMD analyzes the networks with which internal hosts commuaijciat
order to identify aggregates of communication to busianthormal external destinations. Spyware
reporting to the attacker’s site or bots communicating veithot-master (e.g., via IRC, HTTP, or

another protocol) might thus form an aggregate under tlissification.

e Similar payload: TAMD identifies traffic with similar payloads or, more specifigajpayloads for
which a type of edit distancestfing edit distance matching with mov&€]) is small. Intuitively,
command-and-control traffic between a bot-master and His $fwould share significant structure

and hence, we expect, would have a low edit distance betvireem. t

e Common internal-host platforms: TAMD passively fingerprints platforms of internal hosts, and
forms aggregates of traffic involving internal hosts tharela common platform. Traffic caused by
malware infections that are platform-dependent shoulchfan aggregate by use of this character-

istic.

Alone, each of these methods of forming traffic aggregategldvioe far too coarse to be an effective
data-reduction technique for identifying malware, astlemte traffic can form aggregates under these
characterizations as well. In combination, however, treyloe quite powerful at extracting aggregates of
malware communications (and relatively few others). To destrate this, we detail a particular configu-
ration of TAMD that employs these aggregation techniques to identifyriatdhosts infected by malware
that reports to a controller site external to the networkdeked, botnets have been observed to switch
controllers or download updates frequently, as often asydveo or three days [51, 80]; each such event
gives TAMD an opportunity to identify these communications. We shaoat thith traffic generated from
real spyware and bot instancesaMD was able to reliably extract this traffic from all traffic paggthe
edge of a university network, while the number of other aggtes reported is very low.

In addition to identifying aggregates and ways of combirtimgm to find malware-infected hosts, the
contributions of TARmMD include algorithms for computing these aggregates effiljierOur algorithms
draw from diverse areas including signal processing, daténgn and metric embeddings. We also detail

each of these algorithms in this chapter.
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2.1 Related Work

Bot Detection. Previous works on bot detection are described in Chdpiérwhére they are roughly
categorized into signature-based techniques, behasEmebtechniques, or those that focus on identifying
specific operations of botnets. We believe our approach formamentally different from previous works
in the following respect. While previous approaches largebrk from known models of malware oper-
ation, we focus on behavioral characteristics that aredomehtal to the method by which infected hosts
and the bot-master are engaged, and simply seek to idemifyaggregates of communication that are
not explained by past behavior on the network being moritoteke all anomaly-detection approaches,
our challenge is to demonstrate that the number of identdismimalous aggregates is manageable, but
it has the potential to identify a wider range of as-yet-@msenalware. In particular, the assumptions
underlying previous systems present opportunities f@catrs to evade these systems by changing the
activities performed by the bots.

More related to EAMD are behavior-based techniques that incorporate aspedcisiraf aggregation
for detecting bots. For example, BotSniffer [55] looks fafdcted hosts displaying spatial-temporal
similarity. It identifies hosts with similar suspicious nweirk activities, namely scanning and sending
spam emails, and who also share common communication d¢snefined by the number of shared
bi-grams. BotMinerl|[54] groups together hosts based onirggg&in or connection statistics (i.e., the
byte count, the packet count, the number of flows, etc.), antheir suspected malicious activities (i.e.,
scanning, spamming, downloading binaries, or sendingoésp! BotMiner is more similar to AMD in
the sense that they both identify hosts sharing multiplernomcharacteristics, but the characteristics on
which TaAMD and BotMiner cluster hosts are different. BotSniffer setekislentify known bot activities,
such as scanning or spamming, and limits its attention anlyots using IRC or HTTP to communicate

with a centralized bot-master.

Techniques. The techniques we employ for aggregation, specifically erbidsis of external subnets to
which communication occurs, include some drawn from théssiiss domain. While others have drawn
from this domain in the detection of network traffic anomsli@ur approach has different goals and
hence applies these techniques differently. Coarselykampapast approaches extract packet header
information, such as the number of bytes or packets tramsfeior each flow, counts of TCP flags, in
search of volume anomalies like denial-of-service attaftash crowds, or network outages [8| 83,1143].

Lakhina et al. [[89] studied the structure of network flows l®camposing OD flows (flows originating
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and exiting from the same ingress and egress points in theoridtusing Principal Component Analysis
(PCA). They expressed each OD flow as a linear combinatiomafler “eigenflows”, which may belong
to deterministic periodic trends, short-lived bursts, oise, in the traffic. Terrell et al.| [144] grouped
network traces into time-series data and selecting featafdéhe traffic from each time bin, including
the number of bytes, packets, flows, and the entropy of thkgbaize and port numbers. They applied
Singular Value Decomposition (SVD) to the time-series datad were able to detect denial-of-service
attacks by examining the low-order components.

In general, transient and light-weight events would go tieed by these approaches, such as spam-
mers that send only a few emails over the course of a few nsri&?]. Our work, on the other hand,
is targeted at such lighter-weight events and so employsettechniques differently, not to mention tech-
niques from other domains (e.g., metric embeddings, passigerprinting). Ramachandran et al. [121],
in assuming that spammers exhibit similar email-sendirttabi®rs across domains, constructed patterns
corresponding to the amount of emails sent to each domaimbwihk spammers. The patterns are cal-
culated from the mean of the clusters generated throughrapetustering [22]. This is similar to our
method of finding flows destined to the same external subhetgever, they do not look at other aspects
of spamming besides the destination.

Another technique we employ is payload inspection, spetifico aggregate flows based on similar
content. Payload inspection has been applied within mstfardietecting worm outbreaks and generating
signatures. Many previous approaches assume that malicafic is significantly more frequent or wide-
spread than other traffic, and so the same content will beategan a large number of different packets
or flows (e.g.,|[79| 82, 108, 114, 133]); we do not make thisiaggion here. Previous approaches to
comparing payloads includes matching substringsi[79, d08}gramsi|[55], 108, 146], hashing blocks of
the payload|[83, 133], or searching for the longest commdstsing [87]. Compared to these methods,
our edit distance metric is more sensitive and accurate se<ahere parts of the message are simply
shifted or replaced. ARAKIS from CERT Polsﬂas an early-warning system that generates signatures
for new threats. Assuming new attacks will have payloadsseen previously, they examine traffic from
honeypots and darknets to cluster flows with similar confdetermined by comparing Rabin hashes) not
seen before, and that are performing similar activities, port scanning. A signature is generated from
the longest common substrings of the similar flows. Howe&BAKIS currently only focuses on threats

that propagate through port scanning.

Ihttp: /77 ww. ar aki s. pl
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Another tool for intrusion analysis is the commercial prod8tealthWatch from Lanco;& Stealth-
Watch monitors all traffic at the network border, checking policy violations or signs of anomalous
behavior by looking for higher-than-usual traffic volumédthough this is similar to our approach of us-
ing past traffic as a baseline for identifying busier-thamanal external destinations, they does not refine
this information using, e.g., payload or platform aggregaias we do here. Thus, it is primarily useful

for detecting large-volume anomalies like port scanning éenial-of-service attacks.

2.2 Defining Aggregates

Given a collection of bi-directional flow records observéth@ edge of an enterprise network, our system
aims to identify infected internal hosts by finding commuatiicn “aggregates”, which consist of flows

that share common network characteristics. Specificaly@ deploys three aggregation functions to
identify flows with the following characteristics: thoseatttontribute to busier-than-usual destinations,
that have payloads for which a type of edit distance is smalihat involve internal hosts of a common

software platform.

The aggregation functions take as input collections of flemords,A, and output either groups (ag-
gregates) of internal hosts that share particular progexr a value indicating the amount of similarity
between the input flow record collections. We presume thelh #aw record\ € A includes the IP ad-
dress of the internal hogtinternal involved in the communication and the external subnetternal with
which it communicates\ also includes some portion of the payloagayload of that communication,

packet header fields, and the start and end time of the coneation.

2.2.1 Destination Aggregates

Previous studies show that the destination IP addressbhsuhith a group of hosts communicates exhibit
stability over time, both in the amount of traffic sent andha set-membership of the destinatiorns [2, 84].
Malware activities are thus likely to exhibit communicatipatterns outside the norm, i.e., contacting
destinations that the internal hosts would not have coatbotherwise.

The destination aggregation functi@yDest” (A, Apast) takes as input two sets, Ap,se 0f commu-
nication records. The variable is a parameter to the function, as described later in thisasec By

analyzing the external addresses with which internal hostemunicate inA and Ap,s:, the function

2htt p: /7 WWW. | ancope. conj
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outputs a sebuspiciousSubnets of destination subnets for which there is a larger-tharausumber of
interactions with the internal network, using,.s: as a baseline. The function also outputs an integer
numAggs and a sefAgg; (1 < i < numAggs), whereAgg, are internal hosts (IP addresses) that originated
traffic in A, and who contributed to larger-than-usual number of imtigvas with an external destination
subnet inSuspiciousSubnets.

At a high level, the se$uspiciousSubnets of selected “suspicious” external destinations is deteethi
after filtering out periodic and regular activities in thenmmunications of the network as represented in
the past traffic\ 5. External destinations observedAnthat do not follow the norm, i.e., that according
to Apast @re busier than usual or have not been contacted beforeha®utput irSuspiciousSubnets.

Below we describe the three processing ste8yiDest” (A, Apast): (i) Trend filtering, which selects
the set of suspicious external destinations; (ii) Dimemsemuction, which first characterizes each host by
a vector indicating which suspicious destinations it iatéed with, and then reduces the dimensionality
of these vectors while preserving most of the informatiorg éii) Clustering, which forms clusters of the

vectors (i.e., internal hosts) by the destinations theytamiad.

Trend Filtering. Trend filtering aims to remove regular and periodic commations fromA, so that
external destinations showing behavior outside the noendantified. In particular, the “norm” is defined,
for each external destination subnet, by the average nuailieternal hosts that communicated with that
subnet in various periodic intervals, as recorded jp:. For example, periodic patterns, such as Windows
machines connecting to the Windows update server on a wéalsiy or banking websites experiencing
traffic spikes on pay day each month, can be inferred figun;. The change in activity of a destination
in A can then be measured by how much more traffic it receivel otompared to its average values
for previous time intervals imM\ .. In the current implementation, a destination is selectetie in
SuspiciousSubnets if no internal host has been seen to communicate with it igeravious periodic time

intervals inApas:.

Dimension Reduction. Given SuspiciousSubnets, each internal host can be represented as a binary
vectorv = (v[l], v[2], - - -, v[k]) for which the dimensionality: is equal to the number of destinations

in SuspiciousSubnets. A dimensionu|[i] is set to 1 if the internal host communicated with destimatio

1 in SuspiciousSubnets (according toA), and 0 otherwise. However, the dimensions may be redundant
or dependent on one another; e.g., retrieving a web page ausse other web servers to be contacted.

To identify such relationships between the destinatiortsraduce the vectors’ dimensionality, we apply
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Principal Component Analysis (PCA).

PCA |74] is a method for analyzing multivariate data. It dealdata reduction by transforming the
original vectors onto a new set of orthogonal axes, i.engipal components, while preserving most of the
original information. This is done by having each principamponent capture as much of the variance in
the data as possible.

While a vector originally has length equal to the number gfpécious destinations uspiciousSubnets,
the transformed vector after PCA has a dimensionality ghiiteé number of selected principal components,
with each dimension now representing a linear combinaticime external destinations. The number of
selected principal components depends on the amount afngariwe want to capture in the data, denoted
as the parameter. The more variance to be captured, the more accurate the&fdramation represents the

original data, but, at the same time, more principal comptsare needed, increasing the dimensionality.

Clustering. PCA reduces the vector dimensionality significantly, aftérich hosts connecting to the
same combinations of destinations can be identified effigieghrough clustering. We form clusters of
the vectors (i.e., internal hosts) using a modified versiih® K-means clustering algorithrn_|81], which

does not require the number of clusters to be known in advance
1. Randomly select a vector as the first cluster hub. Assigreators to this cluster.

2. Select the vector furthest away from its hub as a new clbste Re-assign all vectors to the cluster

whose hub it is closest to.
3. Repeat step 2 until no vector is further from its hub thahdfahe average hub-hub distance.

Cosine distance is used for comparing vector distancestweovectorsy; andwvs, their distance is defined
asCosineDist(v1, v2) = cos™((v1 ® v2)/(Jv1||va])), where the symbo is the dot product between the
two vectors, andv | is the length of vector,. Cosine distance is essentially a normalized dot product of
the vectors, where a particular dimension would contribatide final sum if and only if both vectors have
a nonzero value in that dimension. In our case, each vegmwesents a particular internal source host,
and each dimension represents a linear combination ofnadisin subnets. Cosine distance thus captures
well the relationship between internal hosts based on themwon destinations they contacted.
LetnumAggs denote the number of clusters from the above algorithm, etfdslg, (i = 1. .. numAggs)

denote the hosts comprising théh cluster. As suchhgg; is an aggregate of internal hosts interacting with
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the same busier-than-usual external subnets. AbepiciousSubnets, numAggs and{Agg; }1<i<numAggs

are output fromByDest™ (A, Apast ).

2.2.2 Payload Aggregates

Payload inspection algorithms for malware detection haewipusly focused on either modeling byte-
frequency distributions (e.g._[79,182, 108, 133]), whidsames that malicious traffic should exhibit
an observably different byte-frequency distribution frahat of normal traffic, or substring matching
(e.g., [105] 146]). In contrast to these approaches, ousuneaf payload similarity igdit distance with
substring moveswhich we choose because it is capable of capturing syotsiatilarities between strings,
even if parts of one string are simply shifted or replaced.olio knowledge, ours is the first work that
detects malicious traffic by computing (a type of) stringt eéitance between payloads, using techniques
that scale these computations to high data rate envirorsment

For two character strings; and s,, EditDist(s1, s2) is defined as the number of character inser-
tions, deletions, substitutions, or substring moves, irequto turn s; into s;. Given a strings =
s[1]-- - s[len(s)], a substring move with parameteérg, andk transformss into s[1] - - - s[i—1], s[j] - - - s[k—

1], s[i]---s[j — 1], s[k] - - - s[len(s)] for somel < i < j < k < len(s). For example, swapping labeled
parameters in a parameter list would be a substring move amar@and string.

The payload comparison functidyPayload’¢(A) that we introduce takes as input a 8ebf com-
munication records, and outputs a value in the rdfigg. It is parameterized by an edit distance threshold
deq that determines if communication records\’ are “close enough”, i.e., iEditDist(\.payload, \'.payload) <
deq. Its output indicates from among all paits, \') € A x A such that\.external = X .external (i.e., that
involve the same external subnet) akéhternal # ) .internal (i.e., that are not from the same internal
host), the (approximate, see below) fraction for whigtitDist(\.payload, \'.payload) < dgq4.

Since A can be large, computingyPayload®: (A) by computingEditDist(\.payload, \'.payload)
for each relevant), \') pair individually can be prohibitively expensive, i.e.qréring time proportional
to |A| - |A

, where|A| denotes the cardinality ak. A contribution of our work is an algorithm for
approximating the fraction of relevant record paids \') that satisfyEditDist(\.payload, \'.payload) <
deq in time roughly proportional toA| if dgq is small.

To perform this approximation, we firsmbedhe EditDist metric within L1 distance. For two vectors
v1 = v1[l...m] andvy = va[l...m], their L1 distance is defined &4 Dist(vi,v2) = > v, |v1[i] —

vo[i]|. That is, we transform eachpayload into a vectorvy so that ifEditDist(\.payload, \’.payload) <
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deq thenL1Dist(vy, vy) < d11 for a known value’; ;. We do so using an algorithm due to Cormode et
al. |30] calledEdit Sensitive ParsingeSP). For this algorithm, the ratio éf; over dgq is bounded by
O(lognlog* n), wheren is the length of\.payload. H In our evaluationsp = 64 and we seb; =

OEdq - logq( 64.

The embedding diditDist into L1Dist is essential to our efficiency gains, since it enables uslinaut
an approximate nearest-neighbor algorithm calledality Sensitive Hashinfl_SH) [39] to find vectors
(and hence payload strings) near one another in termsgbfst (and hence in terms diditDist), in
time roughly proportional tgA|. Briefly, LSH hashes each vector using several randomlyctslehash
functions; each hash function maps the vector tmueket LSH ensures that iE1Dist(vy,v2) < dp1,
then the buckets to which; and v, are hashed will overlap with high probability (and will olegy
with much lower probability if not), where probabilities eataken with respect to the random selec-
tion of the hash functions. Consequently, we haghfor eachA € A, and explicitly confirm that
EditDist(\.payload, X' .payload) < dgq only for pairs (), \') for which vy and vy, hash to at least one

overlapping bucket.

2.2.3 Platform Aggregates

Forming traffic aggregates based on platform can be usefdeintifying malware infections that are plat-
form dependent. That is, suspicious traffic common to a ctiia of hosts becomes even more suspicious
if the hosts share a common software platform.

Much host platform information can be inferred from traffioserved passively. Passive tools, un-
like active fingerprinting tools like NmeHx do not probe hosts, but rather observe their communication
silently. The most comprehensive passive operating syfitegerprinting tool of which we are aware is
pOfH, which extracts various IP and TCP header fields from SYN etscknd uses a rule-based com-
parison algorithm. However, pOf cannot be applied to trafaces in flow records, since most individual
packet information (including for SYN packets) is not retzd. Other network intrusion detection systems
also employ fingerprints of host software platforms wherdeg intrusions, though most generate these
fingerprints actively, e.g., building profiles of the netkdopology to remove ambiguities in how hosts

interpret network trafficl[131].

%log* n denotes théterated logarithmof n, i.e., the number of times the logarithm must be iteratiaghplied before the
resultis less than or equal to one.

dhttp://nmap. org

*http: // 1 cant uf. cor edunp. cx/ pof . sht m
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TAMD employs two heuristics for fingerprinting internal host mqing systems passively. The first
employs time-to-live (TTL) fields witnessed at the networkder in packets from internal hosts. It is
well-known that in many cases, different operating systgpes select different initial TTL valu
With a detailed map of the internal network, the observed Values can be used to infer the exact initial
TTL value and so narrow the possibilities for operating sgsthe host is running. However, a detailed
map is typically unnecessary, as routes in most enterpesganks are sufficiently short that witnessing
TTLs of packets as they leave the network enables the ififiél values to be inferred well enough.

The second heuristic employed im%WD watches for host communications characteristic of a partic
ular operating system platform. For example, Windows maehiconnect to the Microsoft time server by
default during system boot for time synchronization, arelkRheeBSD packages FTP server is more likely
to be accessed by FreeBSD machines to install software egpdance characteristic communications for
platforms are identified, AMD can monitor for these to learn the platform of an internalthos

There are at least three limitations of such passive fingeipg approaches for our purposes. First,
DHCP-assigned IP addresses can be assigned to hosts vietlewifoperating systems over time, leading
to inconsistent indications of the host operating systesociated with an IP address. This suggests that
TAMD should weigh recent indications more heavily than olded (aence potentially stale) indications.
Second, a machine with a compromised kernel could, in thedisr its behavior to masquerade as a dif-
ferent operating system. In the absence of a possible IRssldeassignment (e.g., for address ranges not
assigned via DHCP), such a shift in behavior should itselidtectable evidence that a compromise may
have occurred. In general, however, this limitation isiitgic to anyfingerprinting technique, passive or
active, except those based on attestations from trustelivbee (e.g., TCG's Trusted Platform Mod
While we are unaware of malware that employs such a masdguogratfategy, should platform-based ag-
gregation for malware detection become commonplace, sgsteras would presumably need to migrate
to attestation-based platform identification as it maturesrder to detect kernel-level compromises. The
third limitation to forming aggregates based on platfornthiat it is likely for an enterprise to have the
majority of its hosts running the same operating system.sBwPlatform would be more effective for
networks with a diverse host population; for example, in wensity setting.

TAMD uses the aforementioned heuristics based on TTL valuescamohanication with characteristic
sites to identify platforms. We embody this in a functiBpPlatform(A) that returns the largest fraction

of internal hosts in\ (i.e., among the hostS\.internal : A € A}) that can be identified as having the same

htt p:// www. bl nbert. com bl og/ 2009/ 12/ default-tine-to-live-ttl-val ues/
ntt ps://wwv. trust edconput| nggr oup. or g/ devel opers/trusted.ppl att or mnodul e
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operating system, based on these heuristics applied teetfie tecordsA.

2.3 Example Configuration

We detail a configuration of AMD that identifies internal hosts infected by malware by emiplpyhe ag-
gregation function8yDest™ (A, Apast), ByPayload?¢d(A), andByPlatform(A). This configuration iden-
tifies platform-dependent malware infections that repertammon sites, e.g., IRC channels for receiv-
ing commands, public servers for downloading binaries jalerf-service victims to attack, or database

servers for uploading stolen information, and is based saraéobservations about such malware:

O1. For even moderately aggressive malware, it is rarelyctse that only a single victim exists in a
large enterprise network, and so we hypothesize that bjeaitlware is likely to generate traffic
that appears within the same, coarse window of time (e.ghinvthe same hour) from multiple
infected hosts. Moreover, we would expect that the comrdlite is located in a subnet that would
not be a common one with which benign hosts interact, as nsgjices with substantial client
populations are typically better managed. As such, infebtests interacting with the controller site
should generate a noticeable increase in the number ofiiiens with the controller's subnet in

that window of time.

02. We expect that the multiple instances of the malware comication to the controller site would be
syntactically similar to each other, since the malwareainsés are communicating using the same

protocol, and likely to be receiving or responding to simdgammands.

03. In the case of platform-dependent malware, the malwamaunications to the controller site will

involve internal hosts all having the same host platform.

Using these observations, we have assembled the aggrefatictions described in SectibnP.2 into
an algorithmFindSuspiciousAggregates to identify such malware infections, shown in Figlrel2.1.eTh
input to this function is a seA of traffic records observed in a fixed time interval (e.qg., trar) at
the border of the network, and a s&}.s; of records previously observed at the border of the network.
FindSuspiciousAggregates assembles and returns (in lin€-108) aSedpiciousAggregates comprised of
suspicious aggregates, where each aggregate is a setrofirtests (IP addresses) that is suspected of

being infected by malware.
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FindSuspiciousAggregates(A, Apast)
100: SuspiciousAggregates « ()
101: (SuspiciousSubnets, numAggs, {Agg; } 1<i<numAggs) < ByDest” (A, Apast)
/x Form aggregates by external submrét

102: for ¢ = 1...numAggs do
103:  A; < {\ € A: \internal € Agg;} I+ Traffic from hosts inAgg, */
104: A" — {X € A; : A.external € SuspiciousSubnets}

/* Traffic from hosts inAgg; to suspicious subnets

105: if ByPayload’ (A"*P) > 0.3 then
/% Keep if traffic to same external subnet is self-sim#ar
106: if ByPlatform(A;"P) > 0.9 then
/% Keep if most of aggregate consists of one platfeym
107: SuspiciousAggregates < SuspiciousAggregates U {Agg; }

108: return SuspiciousAggregates

Figure 2.1: The function used to find suspicious aggregatethé example configurationByDest”
(line [I01), ByPayload’¢ (line [I03), andByPlatform (line [I08) are defined in Sectiofs 221 A2.2
andZ.Z.B, respectively.

FindSuspiciousAggregates first exploits observatiol" @1, usingyDest” from Section[Z.Z11 to find
suspicious external subnésspiciousSubnets responsible for noticeably greater communication with the
monitored network than in the past, and to find aggreg@#&s; }1<i<numages, €ach of which includes
internal hosts that interacted with one or more of these stsbin line with observatidn 2, each aggregate
is tested in lind_I05 to determine if distinct hosts in theraggte communicate with suspicious subnets
using similar payload. Finally, as motivated by observalfid, for each aggregate that has survived these
tests, the platforms of the hosts in the aggregate are @darsingByPlatform and, if the aggregate is
adequately homogeneous (I[D€1L06), then it is addédigpiciousAggregates (line [I0T).

There are numerous constants in Fiduré 2.1 that we have cloosthe basis of our evaluation that we
will present in the next section. These constants include 90% or 95% forByDest”, 0.3 in line[105
and 0.9 in lindZ106. In addition, as we will describe in Setfb4, the data on which we perform our
evaluation includes 64 bytes of payload per recardor which we foundéggy = 15 to be an effective
value. We show that with traffic generated from real spywaue 3ot instances, and traces from real bots
captured in a honeynet, this configuration ofMD was able to reliably extract malware traffic from all
traffic passing the edge of a university network, while thenbar of other aggregates reported is very
low. This reliability is achieved even in tests where the hemof simulated infected hosts comprise only
about 0.0097% of the total number of internal hosts in thevagk, calculated as the maximum number

of internal IP addresses observed communicating in any one freriod during our data collection (see
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SectiorZ1), which was over 33,000.

2.4 Evaluation

We present an evaluation of the particular configuration af1®, described in Sectidn 2.3, using traffic
from real spyware and bot instances, which were overlaid fiotv records recorded at the edge of our

university campus network.

2.4.1 Data Collection

Our network traffic traces were obtained from the edge reuterthe Carnegie Mellon University campus
network, which consists of two /16 subnets. The packets wrganized into bi-directional flow records
by Argus (Audit Record Generation and Utilization Syst@n\)vhich is a real time flow monitor based
on the RTFM flow modell[18, 61]. Argus inspects each packetgndps together those with the same
attribute values into one bi-directional record. In partér, TCP and UDP flows are identified by the
5-tuple (source IP address, destination IP address, sportedestination port, protoccH; and packets
in both directions are recorded as a summary of the commiimicanamely, an Argus flow record.

The fields extracted from Argus

records are listed in TablE_2.1. The!P Header Transport Header Flow Attribute
rate of the traffic from the edge of our Source IP Source Port Byte Count
. Destination IP| Destination Port Packet Count
campus network is about 5,000 flow
Protocol TCP Sequence NumberPayload (64 bytes)

records per second. The traces were COI:I'TL

lected daily from 9 AM to 3 PM for

TCP Window Size

) Table 2.1: Extracted Flow Fields
three weeks in November and Decem-

ber 2007. In our evaluation, we focused on TCP and UDP traffic.
We also obtained network traffic traces for several malwailge malware traces used for testing are

grouped into two sets, Class-I and Class-Il, as describkvbe

Class-1 Traces. We obtained four instances of malware: Bagle, IRCbot, Mot SDbot, and collected

their traffic by infecting virtual machines hosts with eaclhlware. The virtual hosts were all running

8t t p: /7 vwwyv. gOSi ent . cond ar gus
%Since Argus records are bi-directional, the source andirdggin IP addresses are swappable in the logic that matches
packets to flows. However, the source IP address in the réesrt to the IP address of the host that initiated the cororect
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the Windows XP Professional operating system with the sai&Vere image file. Each run of traffic
collection was one hour long, and included the communinatisom eight instances of Bagle, three
instances of IRCbot, five instances of Mybot, or five instarafeSDbot. These numbers of instances were
chosen to represent a very small fraction of the total canimssts, specifically at most 0.0097% based
upon the number of campus hosts observed sending trafficeifbubiest hour, which has over 33,000
distinct IP addresses.

Briefly, the characteristics of these four malware instarexe as follows:

1. Bagl@ is spyware that, on execution, runs as a background processattempts to download
other malicious executables from various sites, while gatiteg pop-up windows and hijacking the
web browser to advertising websites. As with other typespyfrare and adware, Bagle initiates
connections to numerous destinations that are set up taswely host advertisements or other

malicious content.

2. IRCbot L1 is a backdoor trojan that connects to an IRC server and waitsdmmands from the
bot-master. In addition, after successfully connectinghtocommand-and-control server, the bot
downloads an update executable from a designated web sangigoes on to scan the local /16
subnet attacking other machines with the LSASS vulnetgibdn port 44@ and the NetBIOS

vulnerability on port 13%4.

3. Mybot is spyware, a worm, and a bot that connects to an IRC serveaitdiav commands, and
also records keystrokes and steals other personal infamman the victim host. This malware is
especially subtle in its communications. When it is onlytimgi for commands on the IRC server,
the bot initiates one connection every 90 seconds, in tha fdfrIRC PING/PONG messages. In
the hour of our traffic collection, Mybot simply waited formonands on the IRC channel, and its

only outbound connections were these PING/PONG messages.

4, SDbot is a trojan and a bot that opens a back door to connect to anéR@rs Similar to Mybot,
when it is waiting for commands from the attacker, SDbot angkes outbound connections once

every 90 seconds, in the form of IRC PING/PONG messages.

YRttp: /7 www. t rendm cro. com Vi nf o/ Vi rusencycl 0.

Uhttp: /7 ww. synmant ec. coni securityresponse/ Wit eup. | sp?doci d=2002- 070818- 0630- 99.
Yhttp: //www. m crosoft.com technet/security/ Bul | et n/ MS04- 044. nspX.
BRttp://support. m crosoft.com Kb/ 269239,

YRttt p: /7 WwW. SOphos. conf securi ty/ anal yses/ W32r bot xt . ht ni .

Rt t p: /7 WWW. Synant ec. coni Securityresponse/ Wit eup. | sp?doci d=2003- 0507/14- 1919- 99.
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Class-1l Traces. We also obtained network traces of botnets gathered froneyrais, including the
IRC-based Spybot, a HTTP-based botne: [55], and a large i@ebfrom a honeynet running in the
wild [24]. The Spybot trace contains communications fromrfbots for the duration of 32 minutes; the
HTTP-bot trace contains communications from four bots dliercourse of three hours; and the large
botnet trace contains traffic from more than three hundred beer seven minutes.

For testing, we overlaid flows from these malware instanc#s one hour of our recorded campus net-
work traffic, and assigned the malware traffic to originatarfrandomly selected internal hosts observed
to be active during that hour. More specifically, we assignedware traffic to random internal hosts
running the operating system that the malware exploitsetarohined by the time-to-live (TTL) field in
packets. This makes our testing scenario much more reakstice the internal hosts to be identified still
exhibit their normal connection patterns, in addition tbtdeimalware activities. While certain aspects of
the hosts’ network behaviors (e.g., the volume of trafficegated by the host) would be affected by this
method of overlaying malware traffic, it does not impact tharacteristics on whichAMD operates. We
hence believe that this experiment setup is adequate f@résent purpose.

For the trace that spans multiple contiguous hours, i.e.HRTP botnet trace, we overlaid it onto the
same number of contiguous hours in the campus network tratfiformed analysis on each of the hours
“covered” by the malware trace, and reported the hour thra# T detected the malware aggregate. This
time window was then shifted by one hour, and the experimgpeated until we reached the end date of

our campus traffic collection.

2.4.2 Outlier Hosts

In the early stages of our analysis, we found that oftam® failed to detect the malware-laden hosts,
but rather identified other internal hosts as more symptonadtmalware. Upon further inspection, we
identified the internal hosts that resulted in these falaerad: PlanetLab nodes [25] and a Tor nade [142].
In the case of PlanetLab nodes, we noticed that during thindéen aggregation function, the vec-
tors after PCA analysis often had very low dimensionalitg.,etwo, where a small number of principal
components were able to capture over 90% of the data vari@lustering these vectors resulted in a few
outliers forming their own individual clusters, unlike aaf/the vectors from\p,: (the “old vectors”), or
even those im\ (i.e., the “new vectors”). This is shown in Figure2.2. Theotaxes correspond to the
top two principal components onto which the original datarigected. Cluster hubs are shown in rectan-

gles. The outliers forming their own individual clustersrevdound to be PlanetLab nodes, which, being
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Figure 2.2: Clustering results after dimension reductignPCA. The three outliers were found to be
PlanetLab nodes.

a development and testing platform, exhibit behavior dewgafrom that of other hosts. Their existence
was also the reason why PCA analysis was able to reduce therbmensionality down to only two,
since PlanetLab nodes’ behavior is so different from otlsthithat only two principal components were
needed to capture most of the data variance.

In another example from experiments involving the Bagl@mspyware, we noticed that even though
TAMD was able to form a final aggregate containing all spywarditrahd spyware traffic only, at times
it also combined another unknown host into the spywareshaggregate, both in theyDest™ and the
ByPayload®¢ functions. Similar investigations revealed that this &ddal node is a Tor router inside
the campus network. Tor offers online anonymity by routiraglets over random routes between Tor
servers so that the source and destination of the packefusadied. Because the traffic originates from
multiple hosts, it is possible that, even though the Torepitself is not infected, another host routing
traffic through the Tor node may be a spyware victim.

For this work, we removed PlanetLab and Tor nodes from oulyaisa

2.4.3 Detecting Malware

As described in Section Z.4.1,AMD was given all TCP and UDP traffic collected at the edge of our
university network in hourly batches, overlaid with malearaffic assigned to randomly selected internal
hosts. The same analysis steps were repeated for each hesuhme weeks in November and December
2007.
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The granularity of external destinations was set to be /hsts. While the communication records
from the current hour were given teindSuspiciousAggregates as A, the setA,,s: was selected from
communication records in the past (specifically, from thgifmaing of our traffic collection dating to
the first week of September 2007) that represented the deinena and the periodicity in the traffic.
Specifically, Ap,s: consisted of traffic from, in reference to the time frame Agr(i) the same hour from
the same days of the week, (ii) the same hour from the sameaddlygs month, (iii) the same hour from
the previous two days, and (iv) the previous two hours. FargXe, if A consists of traffic from 2 to
3 PM on Wednesday, November 28th, thegn.: will include traffic from 2 to 3 PM every Wednesday
before that, from 2 to 3 PM in the previous two days (Novemb&h2nd 26th), and from 12 to 2 PM on
November 28th.

In all experiments, AMD was able to identify all the infected hosts (with the exaaptf the Class-II
large IRC trace, as described later) while the number oftexidil aggregates reported was only 1.23 per
hour on average. For the Class-Il HTTP-botnet trace thatspaultiple hours, AMD always detected the
infected hosts in the very first hour. For the case of the Glidssge IRC botnet trace, which contains 340
infected bots, AMD was able to identify 87.5% of the bots on average, and thetsevsre all grouped
in a single aggregate. We suspect that the reason not eveig tiee botnet was detected is due to the
randomness in our choice of selected internal hosts to whielmalware traffic was assigned, such that a
selected internal host that was also contacting other ciosigi subnets (not relevant to the botnet) is likely
to bias the dimension reduction and clustering algorithms.

Figure[Z.B shows, for each malware experiment (the rows)ntimber of aggregates remaining after
applying each aggregation function (the columns), avetayger all test hours. The number of aggregates
is reduced after each aggregation function, as they becomne mefined to satisfy multiple characteristics.
The single aggregate consisting solely of infected hosts ali@ays identified, in every malware experi-
ment. As shown in the figure, even for homogeneous networksemine majority of internal hosts are of

the same platform, applyingyDest” andByPayload’& would still yield good results.

2.4.4 Unknown Aggregates

As indicated in Figur€2]13, our methodology detected a smatiber of unknown aggregates (about 1.23
per hour, on average) in addition to the one aggregate oftedehosts that we overlaid on the trace. We
found that some of these same unknown aggregates regugnaeed for that hour of input data, across

different malware experiments. Further investigationdaasn the 64 bytes of flow payload available to
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Malware ByDest™ ByPayload®®¢ | ByPlatform

traces (line[I01) (line[10%) (line[108)
Class-|
Bagle || 47.46(+ 23.13| 4.19(+ 2.34) 2.55(+ 1.33
IRCbot |[35.10(+ 20.51)| 2.74(+ 1.41) 1.98(+ 0.98
Mybot ||45.60(+ 25.10| 3.19(+ 1.76| 2.13(+ 1.09)
SDbot || 52.15(+ 43.87| 3.55(+ 1.88| 2.34(+ 1.16

Class-lI
Spybot || 39.18(+ 22.31) 2.95(+ 1.44) 2.04(+ 0.92
HTTP bot || 53.97(4+ 26.54) 3.31(+ 1.91) 2.22(+ 1.2])
Large IRC bot|| 44.54(+ 16.16| 4.39(+ 2.75 2.39(+ 1.32

60

— Bagle

= = = |RCbot
“““““ Mybot
‘‘‘‘‘ SDbot
—E©— Spybot
—}— HTTP bot
—B— Large IRC bot|

Number of Aggregates

‘ 3
ByPayload ByPlatform
Aggregation Phases

0
ByDest

Figure 2.3: Mean number of aggregatesgtandard deviation) remaining after each function in Fe@d

us, port numbers, and protocol field (for privacy reasons, [h addresses were anonymized), showed
that these aggregates included NetBIOS messages on porDNE name server queries, SMTP con-
nection timeout messages, and advertising-related HTqirests; several of these suggest that additional
investigation may be warranted. Others included connestio online game servers and large flows over
non-standard ports, which we suspect to be peer-to-pe&) @Pihsfers. All of these aggregates consisted
of internal hosts contacting rare sites, and often incleds than five hosts sharing one or two common
destination subnets.

In theory, a group of internal hosts visiting a new populabsite (i.e., the “slashdot” effect) could
also form an aggregate. However, it is unlikely that all af ttosts would come from the same platform,
and in our experiments, we believe we saw very few such agtgeg We thus believe thata®p is a

useful data reduction tool for malware identification.
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2.4.5 Performance

The left half of TabldZIl2 shows the run times in seconds fahesggregation function and for each
malware instance, averaged over the traffic (in one-hoervats) we used to perform our experiments. In
our implementation of AMD, ByDest” is implemented in Matlab, arflyPayload’& andByPlatform are
implemented in C. For the numbers reported in Table ByNest” was executed on a PC with a Pentium
IV 3.2 GHz processor and 3 GB of RAM, arR}Payload’¢ and ByPlatform were executed on a Dell

PowerEdge server with dual core 3 GHz processors and 4 GB M .RA

Malware ByDest” ByPayload & Total time Size of Internal
traces (line[I02) andByPlatform SuspiciousSubnets hosts contacting
(lines[I05[106) SuspiciousSubnets
Class-I
Bagle || 79.48(+ 264.54| 14.08(+ 18.07 93.48(+ 271.5])| 701.87(+ 596.78| 754.73(+ 812.75
IRCBot || 94.67(+ 350.13] 20.19(+ 16.78| 114.86(+ 356.72|| 927.23(+ 561.33| 742.13(+ 836.55
Mybot || 63.82(+ 177.34 10.96(+ 15.28| 70.93(+ 183.43|| 686.03(+ 565.11 728.45(+ 708.65
SDbot || 102.34(+ 355.25 10.21(+ 19.51) 112.55(+ 359.23|| 749.01(+ 577.49 952.96(+ 1191.66
Class-II
Spybot | 86.30(+ 276.8] 63.42(+ 38.56| 151.15(+ 286.99|| 850.14(+ 609.19 777.71(+ 848.43
HTTP bot | 83.12(£ 278.76| 15.75(+ 20.62| 99.31(+ 287.1)|| 697.36(+ 609.15| 776.76(+ 848.43
Large IRC Bot || 110.64(+ 253.78| 46.00(+ 34.78| 156.64(+ 260.42|| 760.83(+ 548.48| 1104.42(+ 799.58

Table 2.2: Mean run times of each phase in seconds of algoiithFigure[Z and means of measures
impacting performancet std. dev.)

The running times of the aggregation functions depend omraévactors, including the number of
external destinations identified as suspicious (baspiciousSubnets as computed bByDest™) and the
number of flows to those suspicious destinations; averagelsdse numbers are also listed in the right half
of Table[Z2. The amount of traffic ifip,s: is especially critical to the performance BfDest” (A, Apast),
since it accesses significant amounts of historical datg {i,.s:) to define the “normal” behavior for this
network. While the implementation ofAMD is not optimized, retrieving historical data from the datsé
contributed to the majority of the slowdown. This problenm ¢ alleviated in the future by performing

these calculations in advance and update incrementallyoas data is collected.

2.5 Discussion

In this section, we discuss potential limitations taMb, and explore alternative ways of assembling the

three aggregation functioriyDest”, ByPayload’®, andByPlatform.
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2.5.1 Potential Limitations

An approach by which malware writers might attempt to avaitiedtion by our technique is to encrypt
their malware traffic, so that our payload comparisons vélifeffective. To accommodate encryption, our
technique can be generalized to define encrypted contemthutself is generally easy to detect) as “simi-
lar”. Malware writers could go further and have their malezaommunicate steganographically, though at
the cost of greater sophistication and lower bandwidthebBtetg steganographic communication is itself
an active area of research (e.(., 1118]) from whigtMb could benefit. However, a better method perhaps
is to move away from payload inspection altogether, sinad snformation is not typically included in
flow records, e.g., NetFlow records [1].

Another way that malware writers could try to avoid deteatis by exploiting cross-platform appli-
cations (e.g., web browsers), so that the malware is no loogerating system-dependent. We address
application-dependent malware in Chagifier 3, and partigulacus on web browser-dependent malware,
since browsers are one of the most common attack vectorg.toda

Bot-masters can also evade\Wip by utilizing alternative botnet architectures, such asséhbuilt
over P2P networks. However, bots participating in othehigectures may still exhibit characteristics that
should be detectable byAMD. For example, the Storm botnet [52, 66, [116,1138], while gisinP2P
network to transfer addresses of compromised web servess@mhe infected hosts, still require bots to
connect to those web servers to download malicious exedestétr sending spam or performing denial-
of-service attacks. This activity of collectively contact web servers matches the behavior that our
technique successfully detected in our evaluations. Vogit {145] suggested a “super-botnet”, where the
botnet is composed of individual smaller centralized bisthend the controllers from each smaller botnet
peer together in a P2P network. Since the individual smalignets still use a centralized architecture,
this should be still be detectable via our technique. Warad,. §147] proposed a hybrid P2P botnet where
each bot maintains its own peer list and polls other botsoparally for new commands. However, in
order to monitor the IP addresses and resources associdtethesbots, the botnet supports a command
by which the bot-master can solicit all bots to report to acffgeserver. Again, this behavior should be
detectable by AMD.

That said, P2P bots can still avoid contacting a common séovéhe transfer of executables or other
tasks. For example, Phatbots find peers by registering tlgasas Gnutella clients, and the Sinit trojan
sends out random probes for peer discoveryi[135]. In theses¢cdorming aggregates based on payload

similarity should remain effective, provided that simitgiis generalized as described above to accommo-
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date encrypted traffic (which Phatbot utilizes). Howevanae challenging aspect of their detection is in

distinguishing P2P bot traffic from those of P2P file-shatiogts. We address this challenge in Chdgter 4.

2.5.2 Alternative Configurations

The default BMD configuration, described in SectibnR.3, assembles theeggtion function8yDest”,
ByPayload®¢, ByPlatform, in that order. The priority given to the common destinatitraracteristic (in
ByDest") is motivated by the centralized nature in how such malwararaunicates with the bot-master.
Furthermore, the relatively expensive computations meqguby ByPayload’:¢ and the coarse granularity
of ByPlatform also allows the default configuration to be more efficient accurate compared to others
that applyByPayload’ or ByPlatform initially.

To illustrate how the ordering of the aggregation functiafiects TamMD’s ability at detecting mal-
ware, we repeated our experiments for each of the malwacedrdescribed in Secti¢nP.4 overlaid on
one day of traffic collected from the border of the CarnegidldfteUniversity campus. Figule3d.4 shows
the number of aggregates identified by eaetD configuration, averaged over all malware experiments.
The first aggregation function applied largely determiresfinal number of aggregates output bymb,
since functions applied in later stages simply refine idietiaggregates. We omit plotting cases when
platform aggregates are formed first (usiBgPlatform) as this characteristic is too coarse to allow aggre-
gates to be refined successfully.

Among the configurations we explore, the default (ByDest”, ByPayload’®, ByPlatform) results in
the least number of unknown aggregates (outside of theesaggregate containing the overlaid malware

traffic) that require additional inspection by network adrsirators.

2.6 Chapter Summary

In this chapter, we presentedhWiD, a system that identifies hosts internal to a network thatrdeeted

by stealthy malware. Our approach is to find those hosts trmesunusual network communications. In
particular, Tamp employs three aggregation functions to group hosts baséideciollowing characteris-
tics. First, the destination aggregation functi@yDest”, forms aggregates of internal hosts that contact
the same combination of busier-than-usual external desgiims. A binary vector is formed for each in-
ternal host, with each dimension representing one of thectsd external destinations. The vectors are

processed by PCA for dimension reduction, and clustered fapdified version of K-means clustering.
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Figure 2.4: The number of aggregates identified by alterealamD configurations, averaged over all
malware experiments over one day of traffic.

New clusters are selected as those that do not conform tegires communication patterns. Second, the
payload aggregation functioByPayload®¢, identifies communications with similar payloads in termhs o
a type of edit distance. This is done by first embedding théopalystrings into vectors in L1 space, and
then finding close vectors by an approximate nearest-nergalgorithm. Third, the platform aggrega-
tion function,ByPlatform, forms aggregates that involve hosts running on commorabipgrsystems, as
inferred using TTL (time-to-live) values or platform-spiéc sites to which they connect.

We detailed a configuration ofAMD that employs these functions in combination to identifytfolan-
dependent malware infections that report to common sitesorAmon site might be an IRC channel for
receiving commands, a public web server for downloadingt@s, a denial-of-service victim they are
instructed to attack, or a database server for uploadingrsinformation, as is typical of most bots and
spyware. Our experiments show that, with traffic generatethfreal spyware and bot instances, this
configuration of TAMD reliably extracted malware traffic from all traffic passitgetedge of a university
network, while the number of other aggregates reportedrng losv. This is achieved even in tests where
the number of simulated infected hosts comprised only ab@@97% of over 33,000 internal hosts in the

network.
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Chapter 3

Browser Fingerprinting from Coarse

Traffic Summaries

One of the characteristics on which thaMD system aggregates traffic is tpétform of the internal
hosts involved in sending or receiving that traffic, whiclugeful for identifying platform-dependent mal-
ware infections. That is, suspicious traffic common to asmibn of hosts becomes even more suspicious
if the hosts share a common software platform. Previousiyning platform aggregates inAMD was
based solely on the hosts’ operating systems. As such, mathat is application-dependent, might span
multiple aggregates formed by O/S fingerprinting alonel# exploit works on multiple operating sys-
tems) or might represent a small subset of an O/S aggregate g Windows machines). In either case,
the mismatch between the software fingerprinted (the O/8)tla@ software exploited (the application)
can cause platform aggregation to fail to detect an exploit.

We address such malware by focusing on a specific applicatenmely web browsers. Our focus on
web browsers is partly due to their relative importance agnapplications today, but is also due to the
proliferation of attacks that exploit their vulnerabiéi. By extending the platform aggregation iaMb
to incorporate browser fingerprinting, we aim to detect boplerating system-dependent and browser-
dependent malware.

While the browser implementation on a client host is trattadito the web server as part of the HTTP
request header, we do not make use of the payload informaiiperform browser fingerprinting. Our
reason for evading payload inspection is two-fold: 1) It é&cdming increasingly common for malware

to encrypt their communications; 2) Payload informatiomas typically recorded in flow records (e.qg.,
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NetFlow [1]). Rather, we construct a browser fingerprintteghnique that utilizes only the start and end
times of each flow, as well as the byte and packet counts. We ttad this information, available in coarse
flow records, reflect behavioral features of the traffic inethbrowsers are involved when interacting with
regular sites, hence allowing browser implementationsetalistinguished. It is arguably surprising that
browsers could be discerned in this way, since a browsetwork behavior is primarily determined
by the content and structure of the pages it accesses. Mawedassification could be complicated by
various factors that are inherent in traffic, including a#ions in users’ browsing behavior or browser
configuration, differences in the web page content beingexetd (both across different websites and in
the same website over time), the client hardware confiqumatand the different geographic locations
from which the content is retrieved. A contribution of thigmk is in evaluating the impact of the above
factors on the browser classification accuracy.

In this chapter, we first describe the construction of ounts&r fingerprinting technique, and present
evaluations performed on real user traffic collected from éldge routers of our university campus net-
work. We then incorporate browser fingerprinting into thatfirm aggregation function in AvD and

guantify the resulting overhead.

3.1 Related Work

Many fingerprinting tools aractivein nature, probing services with carefully crafted quefesg., those
produced berrapEl) to detect implementation-specific characteristics [28{]1 More relevant to our
work arepassivefingerprinting technigues that infer the implementatioheaiwork applications or oper-
ating systems based solely on observing the traffic they. Seasksive fingerprinting tools and techniques
are numerous, though most focus on identifying TCP/IP imgletations and utilize specific informa-
tion [13,192,1112] that is unavailable in coarse flow recordfghile passive techniques have more re-
cently been proposed to identify tlaplication (e.g., peer-to-peer file transfers versus web retrievals)
or the class of application (e.g., interactive sessionsugebulk-data transfers) reflected in packet traces
[12, 133,162, 78] 124], few proposals (e.d../[26) 44, 199, 15@Ne done so from coarse flow records.
Moreover, to the best of our knowledge, none of these praptesehniques attempt to identify particular

implementation®f an application (e.g., the browser) from passive obsematof flow records alone.

Inttp: // nmap. org
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3.2 Data Sets

Our analysis takes advantage of several sources of datedeztm the Argus (Audit Record Generation
and Utilization Systelg) flow format, similar to those used in the evaluation @D in Sectior Z}K. The
browser fingerprinting technique we describe in this chaptquires only that each flow record include
the source and destination IP addresses and ports, thepkatod the total bytes and packets sent in each
direction. While the Argus records that are available tolge anclude the first 64 bytes of payload from
each flow record, we use this information solely for the psgof determining ground truth of certain
attributes to use in our evaluation. To be clear, this agidi#i information is not used by our classifiers,
and is only taken into consideration when determining thmugscy of our techniques and for extracting
testing instances from live network data.

We use the following data sources in our evaluations:

The CMU dataset. Similar to that used in the evaluation oAWiD in SectioZH, this dataset consists
of anonymized traffic from the edge routers of the wired CMthpas network, which includes one /16
subnet. We do not consider hosts (that is, IP addresses) threrwireless network, since those hosts
typically have short-lived DHCP-assigned IP addresses that hosts using different browsers may be
associated with the same address, leading to inconsisteimcihe data. The rate of the traffic in the CMU
dataset is about 5,000 flow records per second, and wastealldaily from 9 AM to 3 PM over six weeks
from October to December 2007. We are interested in redubiisgdataset only to web retrievals for the
purposes of evaluating our browser classifier, but one ottfalenges in processing live network data is
in accurately identifying the boundaries that separatesiteletrievals (c.f. [32, 134]). Here we leverage
the first 64 bytes of each flow to identify the start boundarg efebsite retrieval from a host internal to the
CMU network. More specifically, we define a web retrieval tgipewith a port-80 connection comprised
of an HTTP request of the form “GET / ", as such a connection ldidne highly unlikely to be part of
another retrieval. The web retrieval is then comprised & flow and all subsequent flows originating
from the same host in the next 10 seconds. Our choice of 1(hdsds based on empirical evaluations.
The use of the flow payload for parsing web retrievals can ptaoed, for example, by checking for a
certain amount of idle time before a burst of web traffic [8B5hugh we do not explore this alternative
here. Incomplete retrievals, or those with less than thmesfl do not carry enough information about

the browser implementation in order for the classifier to enakvell-grounded decision, and so we only

2http: /7 Www, gosi ent . cont ar gus
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consider retrievals with more than three flows in our analysi

As mentioned earlier, we examine the 64 bytes of availabjéopd in each flow to infer the browser
involved in the retrieval. Specifically, for the purposegyobund-truth, a host is identified to be using the
Opera browser if the user-agent string in its HTTP requestsivith the string “Opera”. Firefox hosts
are identified by the special “safe-browsing” requestsadsoy the browser to check the validity of the
website being contactﬁj Due to the 64-byte restriction in the available payloadjtenwe were not able

to reliably identify hosts using IE and Safari in the CMU dag.

The PlanetLab-Native dataset. In order to perform our evaluations in which the CMU datagstas

as the testing data, we would like a training dataset fromshttet are diverse in terms of geography
and hardware platform. PlanetLeb [25] offers a platfornt teagenerally available and that enables the
retrieval of web pages from a wide range of hosts with diffiéfeardware configurations and geographic
locations. To collect this dataset, we deployed a prografourdeen hosts across five PlanetLab networks;
this program sequentially retrieved the front page (i.enegating “GET / ” HTTP requests) of the top
150 most popular websites in the UBS.repeatedIy over the course of one month. Each web retrieval
was comprised of the flows observed in the thirty secondsedine start of the retrieval. Machines on
PlanetLab are required to run a Linux operating system, spasfermed retrievals from Linux-compatible
browsers, namely Firefox and OpgraRecall that these two browsers are also the only ones hgliab
identifiable in the CMU dataset, and so the PlanetLab-Natataset can serve well as training data for

testing with the CMU dataset.

The PlanetLab-QEMU dataset. In an effort to develop a dataset that includes traffic forodlthe

major browsers (IE, Firefox, Opera and Safari), we utilizepgrocessor emulator, QEMU_[11], to run an
emulated Windows operating system on PlanetLab hosts. &wmifPlanetLab-Native dataset, we ran an
automated program to sequentially retrieve the front pdgleestop 150 most popular websites in the U.S.
repeatedly over the course of one month. Each web retriesalcemprised of the flows observed in the
thirty seconds since the start of the retrieval. We deplayésl emulated version of Windows on seven

hosts across three PlanetLab nethrks

Arguably, the PlanetLab datasets may not accurately reptegebsite retrievals generated by actual

*http: /7 www. mozi | [ a. cond en- US/ T 1 ref ox/ phi shi ng- pr ot ection/

4According toal exa. com

5To generate our PlanetLab-Native dataset, we used Firefb8.26 and Opera 9.51.

5To generate our PlanetLab-QEMU dataset, we used IE 7.0fpki2e0.0.13, Opera 9.51 and Safari 3.1.
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user activities, where frequent visits to a particular viteebsay result in much of the content being
cached. To compensate for this effect, we set the browséecsizes to be sufficiently large (400 MB) so

that objects are less likely to be evicted from the cache.

Flow Byte count (in each direction)

Statistics|| Packet count (in each direction)

Flow duration

Number of flows active simultaneously to this one
Start time minus most closely preceding flow start time
Retrieval || Total number of flows

Statistics|| Cumulative byte count from destination
Cumulative flow duration

Retrieval duration

Table 3.1: Main features extracted for each web retrieval.

Feature Selection

To capture browser-specific characteristics in networKitrawe extracted nine main features from each
website retrieval, listed in Tab[e=3.1. The mean, standavibation, maximum, minimum, median, first and
third quartile, inter-quartile range, and the cumulativenswere also calculated for each flow statistic. Our
feature selection strategy is based on examining the irdtiom gain associated with each of the statistics
for the aforementioned nine main features. More specificaising the PlanetLab-Native dataset, we
selected the top statistics whose cumulative informatiaim @ccounted for at least 90% of the overall
information gain. These selected statistics were combhimecda feature vectoF’. for website retrievat.

Among the most important features are those associatedthattbyte and packet counts in each
direction, the cumulative flow duration, and the retrievatation. While we have not fully explored
the root cause for all of these differences, they are reltwidtie different orders in which the browsers
retrieve objects on a given page, different numbers of @ajestrieved in one connection, and the numbers
of connections that can be active simultaneously.

Of course, while these features play an important role itirdjgishing different browser implementa-
tions in our tests, we acknowledge that they may not be opfionaistinguishing browsers not included
in the training data, or future browser versions that beHamdamentally differently from the ones cov-
ered in this study. That said, the methodology outlined im ¢hapter can be easily applied to incorporate

new browser types into the classifier.
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3.3 Browser Identification from Flow Records

As discussed earlier in this chapter, our goal is to devedohriiques for inferring the browser implemen-
tation from web traffic recorded in the form of flow records. fist, it might seem that distinguishing
the browser should be difficult, since a browser primarilyves to interpret and render the HTML and
other types of content it receives. As such, its behavioukhbe primarily dictated by the content it is
accessing.

An example of why this intuition might not be true is shown iglred 3.1 anf3]12. Each figure shows
one feature (see Table“B.1) for the four most popular brasvfiér, Firefox, Opera, and Safari) when
each retrieve(t t p: // Ww\ . cnn. cond]| at nearly the same time and from a host in the University of
North Carolina campus network. The feature pictured in FeBL1 is the number of packets sent from
the browser, accumulated over all flows that comprise theered. It is evident that in these retrievals,
Firefox initiates more flows than the other browsers, Operals more packets in earlier flows, and Safari
sends fewer packets overall. Figlirel 3.2 shows the startdfreach flow minus the most closely preceding
flow start time, accumulated over all flows in the retrievahisifeature clearly shows that certain browsers
(e.g., Firefox) try to improve response time by multiplexithe retrieval of content across substantially

more flows than other browsers.
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Figure 3.1: Number of packets sent from the browsé:r,Igure 3.2: Cumulative time between the start of

accumulated over all flows that comprise the ré:_onsecutive flows that comprise the retrieval. Each

trieval. Each retrieval is tamwv. cnn. com retrieval is towwy. cnn. com

However, using these differences to reliably determindotoevser from flow records is not as straight-
forward as it may seem, and in particular is not as easy tonaat® as Figures_3.0=8.2 might suggest.

Aside from the content and structure of the websites, udemvsing behavior, browser configuration,
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geographic location, and the client hardware configuratieam also affect browser network behavior. As
such, in the remainder of this section we test with what greni and recall an automatic classifier can
distinguish among browsers in different scenarios.

More specifically, the classifier type that we utilize is Sagpip/ector Machine (SVM)L[3 H which
has been widely applied to many supervised learning prableng., text classification_[i73], face recogni-
tion [106]). For classification problems with a small numbéresulting classes, SVM usually performs
better than other types of classifiers [160]. Given two sélalmeled data, SVM finds a hyperplane that
separates the data and maximizes the distance to each tat&lsen multiple classes are involved, the
SVM generates a group of pair-wise binary classifiers. Eacar} classifier gives a vote to a class, and
the final classification is the class with the highest voteodady speaking, since an instance is classified
depending on which side of the separating hyperplane itdigsand not necessarily on how far from
the hyperplane it is, there can be cases where an instancisdtassified if it is located “close” to the
separating hyperplane.

To aid in our classification, we modify the aforementioneglaation of SVM to incorporate a notion
of “confidence”. The confidence threshold is the minimumatist of the hyperplane from the testing
instance, where only instances with distance to the hyprepgreater than the confidence threshold are
classified. This allows the classifier to avoid making decisiin ambiguous situations that would likely
result in incorrect classifications.

The general structure of each test described below is thdirstetrain a browser classifier on one
dataset and then classify each retrieval in another datasgitain a guess of the browser used in that
retrieval. Each website retrieval is classified only if iistdnce to the separating hyperplanes is greater
than the confidence threshold. The browser used by histdetermined to be the browser classified
most often ins’s retrievals. To avoid errors due to a host having a small emof retrievals, we only
consider hosts with mare than thirty classified retrievalsur analysis. Our choice of thirty retrievals was
determined empirically, and provides a good balance batyeecision and the number of hosts classified
from the dataset.

We denote the classification for hosto bebrowserguess(s), and the actual browser used by hest
to bebrowser(s). Note thatbrowser(s) = L if the actual browser fos could not be determined, which
occurred in the CMU dataset in some cases; see Sdciibn &8, bAdwserguess(s) = L can result if the

classifier makes no classification farsince no overwhelming choice arises & retrievals (e.g., all of

"We utilize the SVM implementation included in the Weka maeHiearning package [150].
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the testing instances being close to the SVM hyperplaneg. pféacision and recall across all hosts in the

test dataset is defined as follows:

Precision = Pr[browser(s) = b | browserguess(s) = b # L]
|{s : browserguess(s) = browser(s)}|
|{s : browserguess(s) # L}
Recall = Pr[browserguess(s) = b | browser(s) =b # L]
|{s : browserguess(s) = browser(s)}|
|{s : browser(s) # L}|

A classifier that makes random guesses, i.e., classifyioly least as a particular browser wi%hprobabil-
ity, wheren is the number of browsers, and a network where the browserdiatributed evenly among

the hosts, the precision can only be expected tggbe

3.3.1 Tests on PlanetLab-QEMU Dataset

In an ideal web browsing scenario, only one website retlisv@aking place at any time, such that bound-
aries between consecutive retrievals are clearly deletea@nd each web page is allowed to fully download
before the next one. While this idealistic scenario will lmenpounded by many other issues in practice,
we argue that tests in a controlled environment are valuimbthat they enable us to better understand
what factors influence classification the most.

We evaluated our browser classifier under this setting usiag”lanetLab-QEMU dataset. To simu-
late multiple hosts, each running a specific browser implaaten, data from each PlanetLab host was
separated by the browser that generated the traffic. THigctpeertaining to a specific browser from one
host served as testing data, while the classifier was trangdaffic from all other hosts, for each exper-
iment. Since in some applications it will not be possible btamn retrievals from every website that may
be present in the testing data, we set the training data tecaffec tfrom the top 100 websites, and used
traffic from the remaining 50 websites (from top 100 to 150)tésting.

The precision and recall are shown in Figlird 3.3, for confidahresholds set to one §8.35, 0.65,
0.95, 1.15, 1.30, 1.50 The rise in precision with the increase in confidence ttolesis likely due to
incorrect classifications being filtered out, to the poirgttmost of a host’s classified retrievals are then
correct. On the other hand, recall decreases with the card@&since more hosts are unclassified (i.e.,
{s : browserguess(s) = L}). In all cases the correct browser can be identified withagtl&1% precision

and recall, and the precision grows to 100% with recall at 43%he confidence threshold is increased.
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Figure 3.3: Precision and recall for browser classiflFigure 3.4: Precision and recall for browser classifi-
cation on the PlanetLab-QEMU dataset. cation on the CMU dataset (Train: PlanetLab-Native,
Test: CMU).

These results show that browser implementations exhifférdnt traffic behaviors that can be identified

even in coarse flow records.

3.3.2 Tests on CMU Dataset

Unlike the controlled setting of the PlanetLab experimetite CMU dataset provides a setting for evalu-
ating our techniques on traffic recorded in the real worldafdaid, we remind the reader that for purposes
of ground truth, we could only reliably identify hosts usiRgefox and Opera in the CMU dataset, and
consequently, our analysis here is restricted to thesesc&3at of those hosts, the vast majority of them
used Firefox, and to not bias our results to that of a singbsvber evaluation, we randomly select Fire-
fox hosts in the CMU dataset but ensure that we have an equaberuof Firefox and Opera hosts. The
browser classifier is trained on the PlanetLab-Native ddtas

Figure[3:4 shows the precision and recall for the CMU datdsetconfidence thresholds set to one
of {0.35, 0.65, 0.95, 1.15, 1.30, 1.60The precision generally increases slightly with the caenfick
threshold, as incorrectly classified instances were fitterg (because they were too close to the separating
hyperplane), while recall decreases as a higher threskalds|to more unclassified instances (¥e.;
browserguess(s) = L}). As the confidence threshold increases, some hosts whgsetgnaf retrievals
were correctly classified now have those correct classifioaffiltered out, so that these hosts are left with
more misclassified retrievals that cause the browser to dxgtifted incorrectly; this results in a decrease

in precision at the end of the curve. The peak in precision4i86%, when the confidence threshold is
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1.30. We note that in this test (where the number of Firefax @pera hosts are balanced) our precision

is substantially greater than that of random guessing @5%%).

3.4 Incorporating Browser Fingerprinting into TAMD

In this section, we consider the impact of reliable browsegdiprinting on BMD. Specifically, we
modified its platform aggregation functiddyPlatform so that a platform aggregate is identified when
the largest fraction of hosts sharing the same @/ghe same web browser is above a given threshold.
In doing so, we aim to detect both platform-dependent andideo-dependent malware, while incurring
only slight overhead.

To quantify this overhead, we followed the same experimtraswere performed for AMD in Sec-
tion[2Z:4, which involved seven types of O/S-specific (but Immwser-specific) malware. Recorded net-
work traffic from the malware were overlaid onto the CMU datasy assigning malware traffic to origi-
nate from randomly selected internal hosts. This combirsd,tonsisting of the CMU dataset overlaid
with malware traffic, was then given toAMb— configured to identify common host platforms based on
their O/S or browsers, but otherwise configured identicallyin Sectiofi’2]3 — in hourly batches, where
the goal is to identify the single aggregate consisting efritalware traffic. The same experiment was
repeated for each hour of traffic collected over three weeRédvember and December 2007, for each of
the seven different malware.

Figure[3 shows the number of browser aggregates idenbfjetlis new version of AMD in each
malware experiment, in addition to the malware aggregatieatimer O/S aggregates, for different thresh-
olds on the homogeneity of the platform aggregate. Whenhteshold is set to 90%, meaning that at
least 90% of the hosts in the aggregate are required to shewenmnon browser (which cannot he),
the number of additional aggregates reported due to brogisgtarity on average per hour is 0.0229.
This shows that incorporating browser fingerprinting inteMb induces a limited amount of additional
cost, while giving TAMD the ability to detect a wider range of malware, i.e., both -@¢pendent and
browser-dependent malware.

For network administrators, it is possible that a mappinmternal hosts to their browser implemen-
tations is available, or can be built by examining the paylod sampled packets. In these cases, we
expect that AMD can be improved further, since errors from browser clasgifin are eliminated. We

thus believe that the results reported here faMb augmented by our browser classifier should serve as
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Malware Traces Homogeneity threshold
70% \ 80% \ 90%
Bagle || 0.25(4+4.95) 0.09(+3.05| 0.09(+3.05

IRCbot || 0.05(+2.18| 0.01(+0.99| 0.01(+0.99
Mybot || 0.03(£1.39) 0.00(=-0.00)| 0.00(=-0.00)
SDbot || 0.06(+1.94) 0.00(+0.00| 0.00(+0.00)
Spybot || 0.02(+1.40| 0.00(+0.00| 0.00(+0.00)
HTTP bot || 0.03(+1.39| 0.00(+0.00| 0.00(+0.00)
Large IRC bot|| 0.19(£3.05)| 0.06(:2.19) 0.06(+2.19)
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Figure 3.5: Mean number of aggregates per hatrsfandard deviation) due to browser similarity, in
addition to the identified malware cluster and to O/S aggega

a rough lower bound for what can be achieved in host infeatlassification.
In addition to enhancing theAMD system, applications that can potentially benefit from assive
browser fingerprinting technique include other intrusictettion systems that operate on flow records

(e.g., [277] 48, 54, 80]), and approaches for profiling nekntaaffic (e.g., [2/ 78, 153]).

3.5 Chapter Summary

In this chapter, we develop a browser classification thatipely identifies browser implementations from
coarse flow records. We show that browser implementationseadentified with substantial precision
and recall, even within flow records from real user trafficttisarecorded at a different time and on a
different network from the traffic used to train the classifie

We also demonstrate how browser identification can be usiesiimve TAMD, our network intrusion
detection system described in Chagfler 2, by permitting yiséem to identify aggregates of hosts on the

network that share the same browser. Suspicious trafficaa evore suspect when coming from such
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an aggregate, since this may indicate that these hosts bawersbed to a browser-specific exploit. Our
browser fingerprinting techniques would enableMD to detect more types of malware, i.e., those that
are browser-dependent, while incurring slight overhead.

In addition to enhancing network intrusion detection systewe also show that knowledge of the
browser implementation can be used to improve the accurbtrgftic deanonymization. The details of

this study can be found in Append A.

45



Chapter 4

Are Your Hosts Trading or Plotting?

Peer-to-peer (P2P) networks were used as botnet commionicdiannels as early as 20031[52]. The de-
centralized nature of these networks overcame the sirmjlg-pf-attack limitation in centralized control,
making the botnet resilient to individual peer failures atgb harder to detect and take down. These mo-
tivations for using P2P substrates are similar to those nlyidg the use of P2P protocols for file-sharing;
the takedown of Napster, for example, highlighted the ktiiins of a centralized “command-and-control”
infrastructure in that domain. It is thus not surprisingttRaP substrates now commonly support both ac-
tivities.

A consequence of this common use of P2P technologies isrfeatéd hosts may not communicate
with the same destinations, such that By®est” function TAMD can fail. Moreover, botnet command-
and-control traffic will tend to “blend into” a background B2P file-sharing, making it difficult to separate
these two types of traffic. In both types of P2P networksustatformation about available peers needs
to be maintained constantly to ensure the connectivity @histwork; peers experience a high connection
failure rate due to the dynamics of nodes joining and leaviieg, “churn”); and peers participate in client
and server activities simultaneously. This commonalifusctuated by the fact that one highly publicized
and well-studied P2P botnet, Storm, built its communicatiwotocol based on the Overnet network,
whose distributed hash table implementatibn [97] is inocaped in both eDonkeﬂ and BitTorrenH
file-sharing applications.

In light of this, the primary problem facing the detectionsafch bots is differentiating them from

other P2P hosts. We focus specifically on the problem of PZRebdetection given this challenge, and

Ihttp: /7w Ki . anul e. or g/ 1 ndex. php/ FAQeDZK- Kaden 1 a
htt p://birttorrent. org/ beps/ bep 0005. it m
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construct a series of tests on network traffic to separateld®g”from P2P file-sharing hosts, to which we
will refer as Plotters and Traders, respectively. Our tesigk exclusively on traffic summaries (e.g., flow
records) with no access to individual packets (much lesbpdg), and so can scale to very busy networks
where per-packet logging may not be cost-effective. Oumrapie is thus also unaffected by encryption
of bot payload contents.
Given the varied nature of malware behaviors, we focus omaciexistics of the traffic that do not

depend on particular attack activities performed by thedtéd hosts (e.g., spam forwarding, denial-of-
service attacks), but rather that are basic propertiesaifd?$ that operate over P2P networks. At a high

level, these characteristics include:

e Volume: Since Traders generally perform large multi-media filesfars (e.g., MP3, movies), but
Plotters almost never do, traffic volume should be a goodcatdr of suspicious activity. However,

as we will show, examining volume alone yields many falsatpes.

e Peer churn: The peer membership of a file-sharing network is very dyrcamue to peers con-
stantly joining and leaving the network, the availabilifitloe desired file, and connections between
hosts being terminated soon after the completion of thertilesfer. Previous studies |58, 126, 140]
also showed that most Traders appear only once a day, andnreoranected for short durations
(minutes). Plotters, by contrast, are likely to experiefess churn in peer membership due to
several reasons. First, without a centralized commandeanttol server, Plotters are required to
maintain connectivity to their peers in order to receive ardcute commands from the bot-master.
Second, the Plotter cannot control when network accesswillvailable, and so it is often oppor-
tunistic in communicating with peers, i.e., whenever it hahance. Lastly, each Plotter maintains
a list of known peers with which to communicate, such thay ttemd to contact the same hosts

repeatedly.

e Human-driven versus Machine-driven Perhaps a more basic difference between Plotters and
Traders is that, while file-sharing activities are mainlyrtan-driven, Plotters are almost entirely
automated. This causes much of their traffic to exhibit teralpgimilarity that is rarely seen among
those from human activities. Previous studies on diststyng humans and bots in Internet chat

rooms also observed that human behaviors are more comg@axtits [[49].

We construct measures of each of these characteristiesjnigathem into tests that distinguish Plotters

from Traders. To our knowledge, our work is the first to tar§éatters from the perspective of their
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commonality (or the lack thereof) with other P2P protocols.

We evaluate the ability of our technique to identify Pladtevithin traffic observed at the Carnegie
Mellon University campus network. Our results show thatr@tbots can be identified with up to 87.50%
true positive rate and only 0.47% false positives, deshiddct that Traders using tsameP2P substrate
were present in our tests. We also perform tests with Nughotee where we show that for a false positive
rate of 0.57%, we can detect 34.80% of the bots. We will expthe reasons behind our lower — though
still substantial — detection rate in this case.

A final contribution of this chapter is to examine how much weade behavior would need to change
to evade our technique. We quantify for each of our compotests the degree to which Plotters would
need to alter their behaviors to evade them. The resultsestidigat evading our technique would require
significant behavioral changes of existing botnets. Moegostue to the way in which our tests are con-
structed, it would typically not be evident to the Plottemwmuch change would be sufficient to evade

them.

4.1 Related Work

Much work on Plotters focused on understanding how suchdt®wperate, including Storin |52, 66, 116,
138], Nugachel[138], Waledac [17, 132, 136], and Confické&i]1 Early work on disrupting Plotters
(targeting Storm, in particular) injected a large numbefase nodes into the network to perform various
Sybil attacks|[41, 60, 66], such as content poisoning opstig certain nodes from the rest of the P2P
network. These studies show that the effectiveness of thekatlepends on the attack duration as well as
the number of Sybils. Kang et al. [77] developed a P2P mothtrinfiltrated the Storm botnet to identify
the IP addresses of infected hosts. Their monitor was atdetert bots behind firewalls or NAT devices,
achieving a broader coverage than others that activelyl¢reernetwork.

Behavior-based detection techniques, described in CHagdlealso target Plotters by examining cor-
related characteristics of network traffic. This includesrnitifying hosts performing suspicious activities
(e.g., scanning, spamming) and sharing common commuaiicetintents [55], or exhibiting similar traffic
statistics and suspicious activitiesi[54]. However, theggaroaches may be evaded by changes in malware
behavior, many of which have already taken place, such agto social engineering as an infection
vector instead of scanning, or using encryption to makeqgaay/bnalysis difficult. Still others (e.q..[20])

use behavioral analysis to identify P2P-bot behaviorshkitdd over non-P2P protocols.
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In contrast to previous work, we focus specifically on digtirshing Plotters, whose command-and-
control channel is implemented in a P2P fashion, from Tmd&We do so by observing network-level
characteristics inherent to P2P applications, but thaghte to distinguish Plotters from Traders due to
the different goals and circumstances behind how theyatitie P2P protocol. For example, Plotters com-
municate over P2P networks mainly for subtlety and resikgnnstead of large file exchanges. They are
also incentivized to maintain persistent connections @iopeers in the network, in contrast to Traders,
who have been observed to go offline after the completion etifiinsfers|[58].

Jelasity et al.l[72] studied techniques that can be deplbye@lotters to evade P2P traffic detection.
However, they only consider the case where traffic dispargi@phs (TDGs)L[70] are used to identify
P2P traffic. The TDG-approach assumes a global view of theamkt constructing a communication
graph between all nodes to check if the average degree arichtitien of nodes with both incoming and
outgoing connections are above a threshold. To evade suehtida, the authors specifically focused
on reducing the number of peers each Plotter contacts, siathrtost of the botnet's traffic are routed
through a few fixed nodes. While this approach may limit thenbar of detectable Plotters using TDGs,
its impact on other methods for identifying P2P traffic (tdatnot require the communication graph) is
not evaluated.

One of the characteristics explored in this work is the défece between human-driven and machine-
driven traffic. This observation has also been applied ietiontexts, including cheat detection in online
gamesl[129], distributed denial-of-service attack dedsri§9, 75], and chat bot detection in Internet chat
rooms [49]. While most approaches to identifying automataffic were host-based (e.g., deploying
trusted software components on the client host), Gianvecehal. [49] found that the network traffic
from human activities shows a higher entropy than those foorts for the case of Internet chat room
traffic. Giroire et al. [50] proposed a method to detect adisted botnet command-and-control traffic by
monitoring persistent and regular connections made to dheesgroup of destination IP addresses, i.e.,
the command-and-control server. Since legitimate us#ittigan also appear to be persistent and regular,
this approach requires whitelisting common sites uselis @isd is not suitable for detecting Plotters that
communicate over P2P networks. BotProbe [56] exploits #terchinism in the bots’ pre-programmed
behavior in response to commands from the bot-master. iltedereplays, modifies, and intercepts pack-
ets of suspicious connections, and utilizes hypothedimte® distinguish bot traffic from those of human

users. However, this approach is hindered by encryptioth naay require human participation.
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4.2 Data Collection

As in the TaAMD system (see ChaptEl 2), we assume the role of a network airator that aims to
identify Plotters internal to her network by observing omtgffic crossing the border of the network.
The network traffic utilized in our analysis was organizetbibi-directional Argug flow records. In
addition to the source and destination IP addresses ansl ploetprotocol, the start and end times of the
flow, and the packet and byte counts, each Argus record atbadies the first 64 bytes of the payload on
the connection. In contrast toAMD, we do not use the payload in our technique. Rather, the pdylo
information is used solely for determining ground truthattis, determining whether the host is a Plotter
or a Trader.

We use the following datasets in our analysis:

CMU dataset. Similar to that used in the evaluation olAWiD in Section[ 2.}, this dataset consists of
anonymized traffic from the edge routers of the Carnegie dfellniversity campus network, which has
two /16 subnets. The rate of this traffic is about 5,000 flowsspeond, and was collected from 9 AM to

3 PM over eight days in November 2007. We focus on only TCP db@ Waffic in this dataset.

Trader dataset. We identified those hosts in the CMU dataset that particib@teknown P2P file-
sharing networks (i.e., the Traders), using the 64 bytesagfgad in each flow record available to us.
Specifically, we focus on three popular file-sharing appioces: Gnutella, eMule, and BitTorrent. Hosts
running Gnutella were identified by the protocol keywordsNIGTELLA’, “CONNECT BACK”, and
“LIME" in their payload.H eMule hosts were identified by the initial byte ‘0xe3’ or ‘®cfollowed by
various byte sequences as specified in the protocol speifici88]. BitTorrent hosts were identified
by the protocol keyword “BitTorrent protocol”, web requgesb trackers beginning with “GET /scrape”
or “GET /announce”, and distributed hash table control ragss with the substrings “d1:ad2:id20” or
“d1:rd2:id20".H

Plotter dataset. We also obtained Plotter traffic traces gathered from hoegsyrunning in the wild in
late 20071[54]. These include a 24-hour trace of Storm, whantitains traffic from 13 bots, and a 24-hour

trace of Nugache, which contains traffic from 82 bots. Spamgnaind scanning activities were blocked

*http: // Www. gosi ent . cont ar gus
Nttp //TTC-gnut el a. Sourcerorge. net/src/ric-Ub-draft. htm
Shttp:// W Ki . theory. org/ Bit Tor rent Speci fication
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during the collection of these traces, and so the remaimaffic consists mostly of botnet control traffic,
e.g., for peer discovery. As we show in this chapter, themees were used in our evaluation, where they
were overlaid onto the CMU traffic by assigning them to rantjoselected internal hosts that were active
in the CMU dataset. This method of overlaying malware tradiito the CMU dataset is similar to that

performed in Chaptdd 2 for theAMD system, which was evaluated using traces from centralinésl b

4.3 Methodology

Given network traffic observed at the border of an enterpr@vork, our goal is to identify internal hosts
that are Plotters, where the main challenge in doing so isstonduish them from Traders. We construct
a set of tests that quantify the characteristics volumer pbarn, and human-driven versus machine-
driven, which aim to take advantage of the different goald @incumstances behind how Plotters and
Traders utilize P2P networks. Each test takes as input eatmh of traffic, A, which involves a group

S of internal hosts over one day, and outputs a subset of hoStshiat exhibit characteristics for which
the test evaluates. In the following, we detail the ratienathind each of the characteristics, how they
can be useful indicators for distinguishing Plotters froraders in particular, and the construction of the
corresponding test functions. We then describe how maltigsts can be combined to refine the results to

narrow in on Plotters within the local network.

4.3.1 Volume

The first distinguishing characteristic we consider betwBéotters and Traders is the amount of traffic
each host contributes to the network. A common purpose aléfgis to exchange data, and much of
the data found on popular P2P file-sharing applicationsagelmulti-media files (e.g., several MBytes
in size [125]). By contrast, the use of P2P architectures lbyté?s is not so much for the sharing of
information as for resilience and subtlety. Their trafficibe tends to be much lower in volume. In fact,
the Storm botnet was observed to use the P2P protocol onlgxfdranging control messages, while file
transfers were performed over HTTIP[[%2, 138].
We examine traffic volume for a host in terms of the average bemof bytes per flow that it con-

tributes to the network (i.e., uploaded by the host). Comgdo the cumulative byte count, this metric
is less likely to be biased by the number of flows generated bgst, since a Plotter that is chatty can

accumulate a large byte count over a short time window, wéaleh individual flow is quite light-weight.
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Figure 4.1: Cumulative distribution of the average flow giee host in each dataset over one day.

Figure[Z1 shows the cumulative distribution of this vale post, plotted from a single day of traffic
from the CMU dataset, the Trader dataset, and the PlotteedraThis figure shows that the amount of

data contributed by the Plotters (i.e., the Storm and Nugé#dits) is significantly smaller than Traders.

Tests on Volume By quantifying a host’s traffic volume using the average nandj bytes sent per flow,
we can define a test functidgh), that uses this characteristic to distinguish between Tsaaled Plotters.
The function takes as input a collection of traffic, which involves a grou of internal hosts over one
day, and a threshold,,;. Hosts whose average flow size is less thapare returned in the sé&t,.

In practice,r,o can be set dynamically depending on the current traffic makien example, as the
median value observed across all hostS.inThis can make it more difficult for a Plotter to masquerade
itself as a Trader; e.g., the amount of data it sends per fl@dsito be larger than the majority of the hosts

in the local network, though the Plotter would presumablyibaware of that amount that it must exceed.

4.3.2 Peer Churn

Peer churn refers to the dynamics of peers joining and lgavia network, and is a common phenomenon
among both Traders and Plotters. This characteristic enatflected in the high ratio of failed connec-
tions observed in P2P networks [9) 26]. Previous studies2i file-sharing networks have shown that
peers are often connected for only short durations (a fewatagon average) [68, 126, 140], and many of
them leave the network permanently after requesting asesifilgl |58].

We hypothesize that even though the dynamism in peer mehipdsspresent in both systems, peer
churn is less significant among Plotters than among Traddrs. is because Plotters have motivation to

keep up persistent communications with each other and eiaitiie connectivity of the botnet, since the
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bot-master needs to be able to control her bots. The Pldgercannot control when network access will
be available on the infected machine, and so it is often dppistic in initiating communications, i.e.,
whenever it has a chance, making a Plotter's network aigtivihore persistent in doing so. In addition,
most Plotters store a list of known peers with which it mamgacommunications, both for bootstrapping
itself into the networkl[17, 52, 66, 1116, 138] and to limit tnember of active connections. Such behaviors
make it more likely for Plotters to contact the same hosta fhiaders, whose sets of peers are mainly
determined by file availability.

This observation allows us to characterize peer churn utieget membership of the destination IPs
that a host contacts. We quantify this by the fraction of nevadldresses that a host contacts in one day, or
more specifically, the ratio of (i) the number of IP addredbas a host first contacts after its first hour of
activity on that day, and (i) the total number of IP addresseontacts in that day. A higher percentage
of new contacts indicates a higher amount of churn. Figifleshows the percentage of new addresses
contacted by Plotters and Traders (in one-day’s worth fi¢rixom the Plotter and Trader datasets). Most
Nugache Plotters do not contact any more new IPs after tmsirfour of activity, while around 60% of

the IPs contacted by Storm Plotters were new. By contrastydgority of Traders contact more than 85%

new destinations.
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Figure 4.2: Cumulative distribution of the percentage ofiiés contacted by Traders and Plotters over

one day.

Tests on Peer Churn Similar to the test for volume, we also distinguish Plottcsn Traders using
churn by performing a coarse separation between the twa$éissts. The test function for peer churn,

f-hurn, identifies hosts that have a relatively “low” churn (whicte dikely Plotters) using a threshold
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Tehurn- BY taking as input a collection of traffig involving hostsS and a threshold.y,., the peer churn
testOchurn (A, S, Tchurn ) OUtPULS a sebqy,,, OF hosts that contact a percentage of new IP addresses ¢&ss th
Tchurn-

In practice, a Plotter could attempt to evade detection byessing the fraction of new hosts it con-
tacts, for example, by performing random scanning or itiitgaconnections to different peers on its peer
list at every communication attempt. This approach is riskyce it could make the Plotter detectable via
other means (e.qg., by identifying scanning activities) mattlices the stealthiness of the Plotter. We discuss

evasion techniques that can be carried out by Plotters amctifjitheir induced costs in Sectin}.5.

4.3.3 Human-driven vs. Machine-driven

Several works on botnet detection have studied the difterdretween human and machine-driven ac-
tivities [54, 155,156, 94| 95, 119], particularly focusing ¢me automated and synchronized nature of
machine-driven behaviors. Only a few of these previous wdrve applied their technique to detect-
ing P2P Plotters_ [54, 55]. However, these approaches reljh@mpresence of specific attack activities
performed by the infected hosts.

We approach this problem by directly using timing-relatetbimation to characterize the similarity
of machine-driven activities, such as periodic keep-aiizgus messages exchanged between peers or
scheduled checks performed by the Plotters to download wemwtands. Specifically, for each host, we
examine the interstitial time distribution of its “activs” to the same destination IP, where an “activity”
is a group of flows that overlap in time, such as multiple catinas that are initiated in parallel. This
distribution is observed across all destinations conthbtethe host, since we do not know which ones
are P2P peers. Since Plotters in the same botnet are likelynteimilar versions of the bot binary, the
timers used in triggering their activities should alsodalithe same algorithm. Hence the per-destination
interstitial time distributions for Plotters should notlpstand out from those of Traders, whose activities

lack the regularity seen in automated traffic, but also apfsilar” to each other.

Tests on Human-driven vs. Machine-driven To compare the per-destination interstitial time distribu
tion between hosts, we define a functiég,,, that uses a non-parametric approach to construct a héstogr
that approximates the underlying distribution for eachti4s]. The Earth Mover’s Distance [125] is then
applied as the distance metric for comparing distributiomfis allows us to identify clusters of hosts

who exhibit similar timing patterns in their network traffiwhere hosts whose traffic are mainly machine-
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Figure 4.3: Earth Mover’s Distance between pairs of hosthiwione day’s worth of trafficoy,,, is set to

2%.

driven, e.g., Plotters, should have different interdtiiime distributions from hosts that are human-driven,

e.g., Traders, and thus fall within separate clusters.

e Constructing Histograms. Given a collection of the observed interstitial time sa@spl(s) for

a hosts, we approximate its underlying distribution by constrogtia histogram. The choice of
histogram bin width is critical in this approximation, sa large value leads to over-smoothing,
and a small value increases the sampling error. Moreovglyiag a fixed bin width makes it

straightforward for a Plotter to manipulate its traffic taade detection.

In this work, we follow a method proposed by Freedman et|al] [¢ identify the optimal bin
width, where the goal is to minimize the mean-squared eretwben the true distribution and the
histogram. They show that the bin width can be computed asctifun of the sample sizg(s)|
(i.e., the number of observed interstitial time values fosts) and the “spread” of the samples, as
represented by the inter-quartile range of the sample saldgR(v(s)). Specifically, the bin width
for hosts, b, is calculated by, = 2 x IQR(v(s)) x |v(s)|~/3.

Clustering Histograms. One of the metrics for comparing distributions is the Edvitbver's Dis-
tance (EMD) [[125]. Briefly, EMD is defined as the amount of wtht is required to change one
distribution into the other by moving “distribution masgband. It is based on the transportation
problem [3¥], where the challenge is to find routes that withimize the cost of shipping goods
from a group of supplierg to a group of consumer$. That is, find a set of routef; to minimize
Y ier E]EJ cij fij,» wherec;; is the cost of shipping from suppli¢ito consumey. By definingc;;
as the distance between tHe and;** bins in the histograms, the “distribution masses” are prefe
ably moved between nearby bins. In this way, EMD is espgrciakful when the distributions are

shifts of each other, but otherwise identical.
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To find hosts whose network traffic exhibit similar timing fgehs, we perform clustering on the
histograms using an agglomerative hierarchical algoritihmreach step, we merge the two existing
clusters for which the distance between host histogramsaged over all ways of drawing one
host from the first cluster and one from the second, is mireshi@verage linkage clusterinf@1]).

This iterative process constructs a hierarchical clusgetiee with the weight of each link being the
distance (as described above) between the two existingecduis connects. The final set of clusters

is formed by cutting the topy, percentage of links with the largest weights.

Figured4.3(a) and 4.3(b) show the Earth Mover's Distanceranpairs of Storm and Nugache ths

from our Plotter traces, whem,,, is set to 2%. Compared to pairs of Traders, as shown in Fi§liBgs}
and4:3(d), the Plotters have much “closer” distributions.

In addition too,m, Onm also takes as input a threshold parametgy, 6 filters out clusters whose
diameters exceed,,,. Similar to the two previous tests;,,, can be set dynamically as a function
of the diameters across all clusters. The output from theamidriven versus machine-driven test,

Ohm (A, S, Thm, ohm ), IS the union of the host clusters not filtered out in this way.

4.3.4 Combining the Tests

Each of the above test8,., 0chum, @andbnm,, aims to find Plotters using behavioral characteristics of
a host’s network traffic. Alone, each test may be too coardeeteffective at identifying Plotters. In
SectionC4}, though, we show that when used in combinatiay, tan narrow in on the Plotters, while
largely eliminating other hosts.

Specifically, we combine the tests into an algorittiimdPlotters, shown in Figuré&Zl4. The algorithm
takes as input a collection of traffit involving a set of hostS observed over one day, and outputs hosts

who pass our various tests, i.e., that are likely to be Ratte

4.4 Evaluation

We present an evaluation of the tests described in Selci@ruding traffic from Plotters overlaid onto
flow records recorded at the edge of the CMU network (the CMtask). For each day of traffic in the

CMU dataset, we overlay the bot traces by assigning themrtdoraly selected internal hosts that are

bSpecifically, here we used the top 25% Nugache bots in terrfeafumber of flows they generate. We will return to this in
Sectio 24P
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FindPlotters(A, S)
200: Syo < Ovor (A, S, Tyol) /x Returns hosts with low traffic volumé
201: Schurn < Ochurn (A,'S, Tehurn) /x Returns hosts with low peer chush
202: Shm — Hhm(A; SvoI U Schurm Thm Uhm)

/x Returns hosts with similar timing patterns in their traffic
203: return Sy

Figure 4.4: The algorithm used to find suspected Plottersooybining the tests on volume (liie_200),
peer churn (lind2d1), and human-driven versus machinexdriraffic (line[2Z0R), described in Sec-

tion[A31[Z3P, and4.3.3.

active during that day (including possibly Traders). Thiakaes our testing scenario more realistic, since

those hosts still exhibit their normal behaviors, in additto Plotter activities.

4.4.1 Initial Data Reduction

To serve as an initial data reduction step in our analysidinstedeploy a simple method to filter out hosts
that are unlikely to be running P2P applications at all, bysidering only hosts that have relatively high
failed connection rates. The failed connection rate hag léigzed in previous works that identify P2P
traffic (e.g., [9/26]), and here we use it simply as a coarsa-taduction step for eliminating hosts that
are likely not running P2P applications at all, i.e., tha aeither a Trader nor a Plotter.

Figure[4} shows the cumulative distribution of the peragatof failed connections per host, plotted
from a single day of traffic from the CMU dataset, the Traddadet, and the Plotter traces. Only hosts
that initiated successful connections within that day vireckuded. There is a clear distinction between the
curves for the CMUTrader and Trader datasets, pointing out that P2P hoststdoiesignificantly higher
failed connection rates compared to non-P2P hosts. A clesmmination of the Traders with a small
percentage of failed connections (e.g., less than 10%gakeddhat they are BitTorrent hosts downloading
Torrent files from trackers over HTTP, but that are not othsewnvolved in P2P file-sharing activities.

Surprisingly, the Plotter traces also exhibit very differéailed connection rates. In particular, many
of the peer discovery messages sent by Nugache Plottersr itrame were unsuccessful, because the
remote peer was either not active or not responding. Thisesall Nugache Plotters to have more than
65% failed connections. Note that the curves for Storm angdshe in Figur€4l5 are generated from the
Plotter trace®nly. When they are overlaid onto the CMU dataset (Sedfionl4.th2)percentage of failed
flows can be biased by the traffic from the CMU host to which wsggeed the Plotter traces.

As a data-reduction step to filter out those hosts who aréyliket involved in P2P activities—while

retaining hosts that are in fact running P2P application®-use the median value among hosts in the
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Figure 4.5: Cumulative distribution of the percentage dethconnections per host in each dataset over
one day.

CMU dataset with Plotters overlaid (and that initiated ssstul flows) as the threshold for deciding
which hosts to remove from consideration. This value is eitged anew for each day of traffic. For
example, for the case of Figure 1.5, the threshold for fadednection rate would be roughly 5% (i.e.,
5.75%, the median value for the CMU dataset, then adjustedalthe overlaid Plotter data). Hosts with
failed connection rates higher than the threshold are welegs “possibly P2P”. This approach not only
allows us to eliminate half of the hosts that are not likehbPlotters, but is also more difficult for a

Plotter to evade compared to setting a fixed threshold.

4.4.2 Identifying Plotters

We overlaid the Storm and Nugache Plotter traces onto eacbfdeaffic in the CMU dataset by assigning
them to originate from randomly selected internal hosthan@€MU campus network active on that day.
This combined traffic is first passed through the initial da@uction step, and then given as input to the
tests, where each returns a set of hosts that survived the tes

Figured4.5 417,218 show ROC (Receiver Operating Chaistitg curves for the volume, churn, and
human-driven vs. machine-driven tests. The input to thamel and churn tests is the $eof hosts that
passed the initial data reduction step described in Sdétlid. The ROC curves are generated by setting
the threshold,, to be the 10, 30, 50, 70, or 90th percentile of the averagestsgnt per flow per host, and
Tehurn 10 be the 10, 30, 50, 70, or 90th percentile of the fractionex P addresses contacted per host.
The input to the human-driven vs. machine-driven tést,, are those hosts that were retained by one of

the volume or churn tests (i.65,0 U Schurn) With their respective thresholds set at the 50th percestil
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(and by the initial data reduction step). To generate the RGQ@e in Figurd4l8, the thresholgl,, for
fnm IS set to be the 10, 30, 50, 70, or 90th percentile of the adluséeneters, and,,, is set to be 2%, 5%,
or 10%. We emphasize that each ROC curve plots the true aswl ffakitive rateselative to its input set

(i.e.,S for 0,0 andfcpyurm, @aNdSyer U Schurn fOr 0hm), @s opposed to the overall CMU dataset with Plotters

overlaid, in order to highlight the independent discrinting power of each test.

Figure 4.6: ROC curves for the volume tekt,
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Figure 4.7: ROC curves for the churn test,,,
when the Storm and Nugache traces are overlaighen the Storm and Nugache traces are overlaid
onto the CMU dataset, after filtering as in Secento the CMU dataset, after filtering as in Sec-

tion [£4]. Results are averaged over the eighion [£47]. Results are averaged over the eight
days in the CMU dataset.

days in the CMU dataset.
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Figure 4.8: ROC curves for the human-driven vs. machineedrtest),,, when the Storm and Nugache
traces are overlaid onto hosts in the CMU dataset, afterifijeas in Sectioii 4411 and Wy, andfpun-
Results are averaged over the eight days in the CMU dataset.

Two observations from FigurésS$[6-1.8 are evident. Fingt ttue positive rates for Storm are higher
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than Nugache across all three tests, often reaching 100%wviN\explore the reasons for this difference
at the end of this section. The second observation is thatakach of the tests would be too coarse to be
effective at identifying Plotters, producing high falsesjtive rates that can reach to 90% (e.g., the volume
test).

In combination, however, they can be powerful at extrackhgiters from Trader-like hosts. To show
this, we utilized the tests together as in the algorithimdPlotters (Figure[Z4). To strike a balance be-
tween the true positive and false positive rates, we useQtieggrcentile among the hosts as the threshold
for both 1,0) and 7¢hum, the 70th percentile of the cluster diametersfgy,, and 2% foroy,,,. Figure[49
shows how the results are refined at each step, where the miaxfaise positive rate (across tests for
Storm and Nugache) is reduced to 0.57% (i.e., 0.47% and 0f6r%torm and Nugache, respectively),
while maintaining a true positive rate of 87.50% for Stornud &4.80% for Nugache. The percentage of
Traders (from the Trader dataset) that remain after eatlistatso shown for comparison. The maximum
percentage (across tests for Storm and Nugache) of rengainirders is 5.47%, which comprises 13.14%

of all the hosts returned byindPlotters.
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Figure 4.9: Results after applying the tests in sequenegaged over eight days in the CMU dataset with
overlaid Plotter traffic.

We took a closer look at those hosts that were identified at$elPdo but to which we did not assign
malware traffic. Since our datasets were anonymized, we madaf the port numbers, protocol, and
the 64 bytes of flow payload available to us. Among those ifledthosts, many of them appeared to
be running P2P-like applications. The same non-standaicts@ort was used across communications
with multiple IP addresses, and the host also received immpronnections on that port. These could be

Traders that were online but not actively transferring fil€ther hosts were found to be running instant
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messaging applications, such as Yahoo! Messenger or MSiadbrclients that periodically contacted
mail servers to check for incoming messages (e.qg., via teFRDIMAP protocol). In practice, a network
administrator can easily whitelist these applicationsetuce the false positive rate even further.

We now return to the differences in detection rates betweegahe and Storm. As shown in Fig-
ure[£9, most false negatives for Nugache resulted fégm Further investigation into these results
showed that each test, but particulafly,, tended to filter out less communicative Plotters, as shawn i
Figure[Z.T0. We have been unable to confirm a reason behindrtfeevariance in the activity levels of the
Nugache bots in our trace, though those who originally medithe trace suggested that this may be due
to the limited viability of the Nugache botnet at the timesthraice was recordﬂjA Plotter that is unable
to connect to a given peer may attempt to contact several Bibders before approaching the failed peer
a second time, if it does so at all. Such uncertainties in th#d?’s state before successfully engaging in

the botnet results in irregular behaviors that render osistkess effective, as shown in Figukes £.61-4.8.

1 . . : ‘ N
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Figure 4.10: Cumulative fractions of the number of flows gatexl by the Nugache Plotters that remain
after each test, in base-10 log scale. Results are accedwaer the eight days in the CMU dataset.

4.5 Evasion

A Plotter could attempt to change its network behaviors devour tests, e.g., by increasing its traffic
volume so that it will escape the volume test. However, stheghresholds used in our tests are not fixed
at set values, but instead are dependent on traffic statifstion all active hosts in the local network, a

Plotter would have difficulty in determining the preciseds$inolds that will allow it to masquerade as a

Trader.

"Guofei Gu, personal communication, October 2009.
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Figure 4.11: Challenges for detected Plotters to evggleor 6.,.n- Each of the eight days in the CMU
dataset is shown.

Figured 4.11(a) ar{d 4.11{b) show, for the volume figgtand churn tesfl.,,., conducted on each day

of traffic in the CMU dataset, the detection threshold used,(the median among the hosts) versus the
median value among the Plotters that were detected, ongneadsto hosts. To evade the volume test,
Ovol, the median Storm Plotter would need to generate more 20dimes its original traffic volume per
flow. The corresponding multiplicative factor for the meuidugache Plotter is roughly 1.3. To evade the
churn testf..rm, @ Plotter can either refrain from contacting hosts it haal/fmusly communicated with,
or generate connections to a large number of new hosts & talknly once. As an example of the latter
case, a Plotter who wants to raise its percentage of new tBs#0% to 90% (a typical value o),
while still maintaining the same number of hosts with whitltommunicates, would need to increase
the fraction of new hosts it contacts by a factor of 1.5. Suas®n attempts from Plotters that increase
their traffic volume or the number of new hosts (such as thnaagdom scanning) can compromise their
stealthiness, making their presence in the network obskntarough other means (e.g., scan detection)
or even by the owner of the infected machine.

The human-driven vs. machine-driven tet,,, clusters hosts based on the distribution of their per-
destination interstitial activity times, and identifiesskthat have similar timing patterns in their com-
munications. Plotters belonging to the same botnet carddatiing into the same cluster or increase
the cluster diameter, for example, by having each Plottexcsa different frequency at which to con-
tact peers. This could affect our choice of bin width in hggtom construction — which is dependent

on both the number of interstitial time samples observedthadnter-quartile range of the samples (see
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Figure 4.12: Challenges for Plotters to evégg. The y-axis is the true positive rate averaged over eight
days of the CMU dataset with overlaid Plotter traffic.

Sectio4.31B) — and therefore alter the Earth Mover’s Dista(EMD) between Plotters.

To quantify the operational cost for Plotters that want tad®d,,,,, we simulated Plotters who, instead
of initiating communications at regular intervals, alwadd (or subtract) a random delay before each
activity. By manipulating the distribution from which thetérstitial times are drawn, the Plotters may
disrupt our algorithm so that they no longer fall within thenge cluster, or that the cluster diameter
exceeds the threshofd,,.

We use the same Plotter traces that were used in the evaldiatithis simulation, but add (or subtract)
a random delay before every activity a Plotter initiates fwear with which it had previously communi-
cated. The delay is drawn from a uniform distribution oves thterval+d, for each activity. Figure4.12
shows the decay in the true positive rate as a functiafy odinging from 30 seconds to three hours. This
suggests that Plotters must randomize their activities imyitas in order to evade detection via this test,
potentially slowing the responsiveness of the botnet. egg the per-destination interstitial activity
time distribution of other machines in the local networkoaddfects the needed value @fwhich may be

difficult for Plotters to measure.

4.6 Discussion

The experiments we reported above used network trafficatelein November 2007. The dominant pro-
tocols in this data (based on the port numbers and the 64 hytewopayload available to us) include
HTTP, DNS, HTTPS, SMTP, BitTorrent, and instant messagag.{ AOL, MSN). Today, there are a

number of other popular peer-to-peer protocols for cornidgcctivities other than file sharing, e.g., con-
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tent distribution systems (e.g., SopCEsPPLiveH, Zattoo) and Internet telephony (e.g., Sky%.
Traffic to the default Skype po@ accounted for less than 50 flows per day in our dataset, andeso w
believe that our false positives include a very small nunté&kype hosts, if any. The prevalence of these
other peer-to-peer systems in our data are even smaller.

That said, these newer protocols that gained popularigr afir data collection raise the question of
whether our technigues would be effective on today’s ndta:oWhile we have not conducted a thorough
analysis of this issue, it does appear that Skype, for exampbuld be at risk of being classified as a
Plotter network due to its machine-like characteristicattipularly the exchange of periodic and low-
volumed keep-alive messages between clients for maintatonnectivity |[10]. The use of non-standard
ports and encryption further makes it difficult to whitelibts application.

Certain features of Skype may enable a classifier to effegtiglistinguish it from Plotter networks,
however. First, each Skype client is required to connectsigeeer node, which is a host running Skype that
has high network bandwidth, high computing power, and aipuBladdress. The online duration of Skype
super nodes has been observed to be quite high, e.g., oveofive on average [57], such that clients are
likely to experience less peer churn than Plotters. Seceveh though Skype clients do exchange keep-
alive messages that are only a few bytes long [10], voice amb\calls (the latter consisting of more than
a quarter of all Skype-to-Skype cag,)‘ will cause Skype clients to generate a higher volume ofitraf
than Plotters. If these or other features do not provide &cseriitly sound basis for separating Skype
traffic from Plotter networks, then it may also be possiblegdministrators to identify Skype nodes by
using known Skype instances to interact with them, in a wajagous to how administrators might try to
infiltrate a botnet. Several works also proposed detectkyp&traffic by observing connection statistics

(e.g., the packet arrival rate, packet size [16]) or by ideginig relayed traffic [141].

4.7 Chapter Summary

In networks where P2P file-sharing is commonplace, a chgdlen identifying bots managed via P2P
infrastructures is the similarities that their network belors share with P2P file-sharing applications.

In this chapter, we develop a series of tests for separaliagwo classes of P2P applications, and in
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particular for identifying bots within a network prior toglr engaging in overt attacks. Our tests work on
flow records, without access to individual packets. As sath,technique is scalable to busy networks
where packet capture (or even packet header capture) isostetfective, and is also immune to bot
payload encryption.

Using bot traces and traces of traffic collected at the edgeuwfiversity network, we show that our
technique enabled the identification of Storm and Nugache Wwith false positive rates of only 0.47%
and 0.57% on average, respectively. At these false posaies, we identified 87.50% of the implanted
Storm bots, and 34.80% of the Nugache bots. Our lower detectite for Nugache derives from the
low and variable activity of the bots in our data (see Sedidh2), and so we believe this number to
be conservative. We further evaluate the changes in botvimhaeeded to evade our technique, and
show that bots would need to increase their average flow sizelmghly a factor of 1.3; increase the
fraction of new IP addresses they contact by a factor of Ir5andomize their interstitial connection
times significantly (e.g., ranging from minutes to hours)orbver, the bots would need to accomplish
this despite other traffic from the host it occupies, andeiwe defined our tests’ thresholds relative to
the background traffic, the behavior necessary to evadetit#ien any given network would typically be
unknown to the attacker.

Since our tests focus on characteristics that describerdiites in Plotter and Trader behavior, a
limitation of this approach is in identifying Plotters thanly affect Traders, e.g., a Plotter binary that
spreads through P2P file-sharing networks. In this caseRltbteer traffic could be obscured by activities
from the Trader, if the Trader is a heavy file-sharing useregating high volumes of traffic, for example.
One method of distinguishing between Plotter and Tradé&idran a host might be to separate traffic by
application, such as determined using port numbers. Tifadfim each port, or a group of associated ports,
can then be applied individually to the tests in Sediioh Bi@wever, in our evaluations, the hosts to which
we assigned bot traces were sometimes Traders, and werffetitively identified by theFindPlotters

algorithm.
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Chapter 5

Revisiting Botnet Models and Their

Implications for Takedown Strategies

In this chapter, we turn to an analytical approach to studyrp@peer botnets by applying graph models
from network theory. Such models have been used in the stlichaay real-world networks, including
social, biological, and computer networks [4] 46,1139]. Erample, Erdds-Rényi random graphs| [43]
model networks where the edges are created with uniformgtitity between every pair of nodes. Watts-
Strogatz small-world graphs_[149] model networks wheredizneter of the network is small, i.e., in-
creasing logarithmically with the size of the network. Bzai-Albert scale-free graphs [5] model net-
works with a few highly connected “hub” nodes and many lealeso These models allow the spread
of information (or infection) [[110,_149] to be analyzed inrieaus network topologies, as well as their
resilience to node and edge failuresl[3, 135, 63].

Recently, several works have also applied graph models fretwork theory to study decentralized
peer-to-peer (P2P) botneis [36] 41}, 90,1158]. Each nodecimétwork represents an infected host, and
edges reflect communications between the hosts. Propefttes graph can quantify the botnet’s “use-
fulness”. For instance, the diameter of the network meastime efficiency of bot communications, and
the size of the largest connected component is the numbentsfthat are reachable by the attacker and
can carry out her instructions. Assuming that P2P botneisstauctured according to known models,
these works aim to assess the effectiveness of strategiaket@own a botnet. For example, one strategy
that was found to be effective for some network topologie® iarget nodes with high degree, i.e., that

communicate with many hosls [36, 41, 158].
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We observe that previous works applying graph models to Ritiels do not consider an important
property of networks — assortative mixing_[102]. Assow#yi refers to the tendency for a node to
attach to other “similar” nodes, and is commonly examineteims of a node’s degree, i.e., high-degree
nodes are likely to be neighbors of other high-degree nodiass property is also referred to aegree
correlation The existence of this correlation between neighboringesddas been observed in many
real-world networks|[102, 104, 111]. More importantly, éishbeen found to be a property gfowing
networks [19] 86], where the network increases in size agsn@mn over time, as is true in a botnet as
more hosts become infected.

We show that assortativity plays an important role in nek&tructure, such that neglecting it can
lead to an over-estimation of the effectiveness of botrietdawn strategies. By generating networks with
varying levels of degree correlation, we demonstrate tiglaer level of assortativity allows the network
to be more resilient to certain takedown strategies, irinlyithose found to be effective by previous works.
Moreover, we note that bots are dynamic entities that cact sead adapt to changes in the network, and
so the botnet can potentially “heal” itself after a fractmfrits nodes are removed. We specifically explore
cases where nodes can compensate for lost neighbors bingredges to other nearby nodes, e.g., that are
within A hops. Our simulations show that the graph can recover signifiy after takedown attempts, even
whenh is small, and that higher levels of assortativity can allbe hetwork to recover more effectively.

Another contribution in this chapter is in identifying aitative takedown strategies that are more
effective than those explored by previous works. Speclficate show that targeting nodes with both
high degree and low clustering coefficient will decreasecttrenectivity and communication efficiency of
the network significantly, and also makes it considerablyardifficult for the network to recover from

the takedown attempt.

5.1 Related Work

Botnet models Several previous works have studied botnets using netwarttets. Cooke et all [29]
described three potential botnet topologies: centraiP&P, and random, and discussed their design com-
plexity, detectability, message latency, and survivabilDther works|[36, 90] apply theoretical network
models to botnets, including Erdds-Rényi random gradlb$, [Watts-Strogatz small world graphis [149],
and Barabasi-Albert scale-free graphs [5]. This allowes dffectiveness of takedown strategies to be

guantitatively evaluated using graph properties, sucthasetwork diameter, the average shortest dis-
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tance between pairs of nodes, and the size of the largeséctathcomponent. Davis et al. [41] compared
Overnet, which is utilized by the Storm botneti[66,/116],iwiindom and scale-free networks to justify
the choice of structured P2P networks made by bot-mastéiesy Simulated takedown efforts on the net-
works by removing nodes at random, in descending order oé misgjree, or in a “tree-like” fashion by
identifying nodes reachable from an initial node, and fohernet to be more resilient than other graph
models.

To our knowledge, no previous work on botnet modeling hasictamed the effect oflegree assor-
tativity in networks I[102]. This property, defined as the correlamoefficient between the degrees of
neighboring nodes, has been found to be high in many redtveorcial, biological, and computer net-
works [103,111]. It has been studied analytically in theistiaal physics literature, and found to be an
inherent property ofjrowing networks where nodes join and edges are created overtim&§]9since
older nodes are likely to have higher degree and connectdio ether. Studies in this domain focus on
understanding the underlying interactions between ndusaould result in a network that matches one
empirically measured in the real world. By contrast, a nekna bots is elusive and difficult to quantify
in practice [120]. Making assumptions about the graph sirecor node correlation (e.g., that there is

none) is thus unfounded.

Network takedown strategies. The resilience of networks to attacks or failures have begioead in
the physics branch of complex networksl[3, 35, 63]. A scade-hetwork, which consists of a few highly-
connected “hub” nodes and many “leaf” nodes, has been four tparticularly vulnerable to attacks
where high-degree nodes are removed first. A takedown girdtet targets high-degree nodes is also
recommended by previous works that studied botnet modéls43, 158], particularly for unstructured
P2P networks where there are “super-peers” present.

Other types of takedown efforts on networks have also beploed in the complex networks litera-
ture, such as cascaded node removals|[34, 148], removirgsremtording to their betweenness central-
ity, or removing edges instead of nodesl| [63]. These workadam the resilience of different network
topologies, and do not take assortativity into account. iMaw et al. |[[103] studied the prevalence of
assortativity in real-world networks. Even though theicds is on measuring and generating assortative
networks, they also showed, through simulation, that higiseortativity allows a network to have a larger
connected component after a small fraction of high-degges are removed. However, they did not

explore other takedown strategies, the effect on othertgpapperties, or the network’s ability to “heal”
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itself. In our work, we explicitly study the effect of assativity on network resilience and the ability of

dynamic networks (such as P2P botnets) to recover from takeattempts.

5.2 Constructing and Measuring Assortative Networks

We first define degree assortativity, following the defimtiby Newman et al..[102], and perform an
empirical analysis of the assortativity of a portion of thieré botnet|[66| 116, 138]. We then describe
our algorithm for adjusting the level of assortativity inailated networks, and the metrics we use to
qguantify the “usefulness” of a network. The metrics are almaé capturing notions of communication
efficiency between nodes and the number of reachable botshare likely to be of importance to the

attacker.

5.2.1 Degree Assortativity

Degree assortativity, defined as the correlation coefficiemtween the degrees of neighboring nodes,
measures the tendency for nodes to be connected to otherare/lsimilar” in terms of their degree. For
example, this property is especially significant in societworks, where gregarious people are likely to
be friends with each other [[71L, 104]. It is also found to be @pprty of growing networks, where the
network size increases as new nodes join and edges arecc|&aIS6].

We define assortativity following the definition of Newmaraét|102]. Let the fraction of nodes in a
network graph with degrek be denotegy. If we choose an edge from the graph at random, and follow
it to one of its ends, the probability that the node at whichanése has a degree éfis proportional tok.
This is because we are more likely to end up at a node with hegjnesé, which has more edges connected
to it. To account for the edge from which we arrived, thmaining degre®f the node is its degree minus

one. The probabilityy;, that we arrive at a node with remaining degreis then

(k 4+ 1)pr4a

qk = - (5.1)
2 j=0JP;

Let e; ;. be the probability that a randomly selected edge conneassof remaining degregandk,

where}_; , e;, = 1. The assortativityy of the network, being the correlation coefficient betwees th
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Figure 5.1: The assortativity for 13 Storm bots in a honeyoehing in the wild.

degrees of neighboring nodes, is

— > ik(ejn — i) (5.2)
q 4.k
whereo? is the variance of the distribution af,, i.e.,07 = >, k*qx — [, kqx]. A higher value of
~ indicates that there is higher correlation between theateyof two neighboring nodes. In a random
graph, where every pair of nodes is connected with uniforabability, no correlation exists ang= 0.
Even though high assortativity is found in many real-woredworks, measuring it in practice can be
challenging, for example, due to difficulties in observitigraeractions between nodes in a large network.
This is especially true for botnets. As an estimate of whatassortativity would be for a real botnet, we
performed an empirical analysis by obtaining network teafifom a honeynet running in the wild in late
2007 [54]. This consists of a consecutive 24-hour trace fi@hosts participating in the Storm botnet,
whose peer-to-peer communications have been studiedsgéxnin previous works [66, 116, 138].
Figure[5.1 shows the assortativity measured among the ¥th3tots, where snapshots of their com-
munications are taken on an hourly basis. The “degree” ot &sbepresented by 1) the number of distinct
source IP addresses from which it receives packets (thedneg), 2) the number of distinct destination
IPs to which it sends packets (the out-degree), or 3) thénataber of distinct IPs with which it interacts.
Since the rest of the Storm botnet is not directly observakéecalculated the assortativity from traffic be-
tween only the 13 Storm bots. However, this value is stiltehigh, ranging from 0.48 to 0.84, while that
of social networks is only around 0.3 [103]. This sugges#t ¢hbotnet may be significantly assortative,

and highlights the importance of this property in considgnbotnet network models.
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Figure 5.2: Edge probabilities as a normal distributiontesed atj with different values for the standard
deviationo.

5.2.2 Generating Assortative Networks

To study the effect of assortativity on networks, we needdable to generate networks with varying
levels of assortativity. One method for this is to rewire eslgn a given network [154]: At each step, select
two edges at random, and shuffle them so that the two nodedangér remaining degrees are connected,
and the two nodes with smaller remaining degrees are caosthe®epeating this step will result in the
network becoming increasingly assortative. However, rnenyicauses the shortest path length between
nodes to increase rapidly [154], which may bias the comparietween networks with different levels of
assortativity.

We apply another method for constructing assortative nedsyaimilar to that described by Newman
et al. [103]. This method takes as input the number of noddwinetwork, the desired degree distribution
Pk, and the edge probabilities ;. Each node in the network is assigned a degree drawn fronThe
remaining degree distributiog), can then be calculated frop, and edges are added by connecting each
pair of nodes of remaining degrgeandk with probability e; ;..

To control the level of assortativity in the resulting netkiowe specifye; 5, as follows. For a fixed
valuej, assume that; ;. follows a normal distribution centered atwhere the standard deviationis the
adjustable knob for tuning the level of assortativity. Fegik.2 illustrates; ;, centered aj. A smaller
o causes the normal distribution to become more peaked, witates with remaining degreehave a
higher probability of sharing edges with other nodes of neiing degree close tg, resulting in a more
assortative network.

In our simulationsp;, is chosen so that the resulting network is scale-free, fipally, p, ~ k3.
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Figure 5.3: The interstitial activity time values for a Stobot in a honeynet running in the wild.

We focus on scale-free networks because it is represemtafimany real-world networks, including
unstructured P2P networks [96]. Empirical analysis by Deefal. [36] also suggest that the Nugache P2P
botnet [13B] has a scale-free structure. We set the numheodds to 5,000 to represent a small botnet,

following the simulation settings in previous wortk [36].lAlf the edges are assumed to be undirected.

5.2.3 Metrics

We utilize the following two properties of graphs to quayntifie “usefulness” of a botnet: 1) the size of
the largest connected component, and 2) the inverse geddesgith. These metrics have been used by
Dagon et al.l[36] to compare the utility of different botnepologies, and were also used in analyzing the
resilience of various networks in the physics literaturg][6

The fractionS of nodes in the largest connected component is an upper boaridle number of
bots that are directly under the control of the attackerujadsg that she is part of one of the connected
components). The more hosts that can carry out the attack@mmands, the larger the scale of the attack
that can be launched, e.qg., in performing denial-of-serattacks or sending spam.

In addition to controlling many infected hosts, anothemgendy that is likely to be of importance to the
attacker is the efficiency of communication, i.e., how lonigkes for messages to be relayed through the
botnet. In practice, this is dependent on both the numbeop$ lnetween nodes and their communication
frequency. For example, if nodes communicate with theiginieors everyl’ seconds, then the time it
takes for a node to reach a peéehops away would be roughliy% seconds. As an estimate of the value
of T for real bots, Figur€5l3 shows the interstitial activitymé values (see Sectién 413.3) observed for a

Storm bot in a honeynet running in the wild. The horizontaiska the figure reflect regularities in the
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bot’s activities, with the dominant frequency of commutia being every 250 seconds or so. Setting
T = 250, reaching a node 10 hops away would take roughly 1,250 sec@mdund 20 minutes). This
suggests that a larger hop count between nodes can incteasemmunication delay by minutes or even
hours.

We focus on the average number of hops between pairs of ngdesn@asure of the botnet commu-
nication efficiency. Specifically, IeV be the total number of nodeg, be the set of nodes$’| = N, and
d(u,v) be the length of the shortest path between noded nodev. The inverse geodesic length [63] is

defined as

_ 1 1
RS iy D IR DR e 63

u€V v#u,weV

Measuring the inverse geodesic length is particularlyulsefcases where the graph may be disconnected,
since the distancé(u, v) between two nodes andv that belong to separate connected components would
be infinite (and so its contribution th~! is zero). The largel~! is, the shorter the distances between
nodes, and hence more efficient their communication. Iruetialg the effect of assortativity on network
takedown attempts, we are more interested in measuringadimealizednverse geodesic length, which is

defined as

R > eV DvtuneV Tow]
o1 _ 2oueV ZwtuveV Tuo) (5.4)

1
ZuGV Zv;ﬁu,UEV d(u,v)

whered'(u,v) is themodifiedlength of the shortest path between nodeandv, that is, after takedown
efforts or after the network tries to heal itself. Note thattbthe numerator and denominator in?
are summed over the original set of nod&s, However, nodes that are removed have infinite distance
to the rest of the network, the inverse of which is zero, andsmot contribute to the sum in Edn.b.4.
The value that. ! takes ranges from 0 to 1, where a smaller value indicates disreption to network
communication, and lower communication efficiency.

We measurd.~! and S of a network before and after takedown to evaluate the éffswess of the
takedown strategy (Secti@n’b.3), and also measure thentladtaetwork attempts to “heal” itself to assess

the effectiveness of recovery mechanisms (Se¢fidn 5.4).
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5.3 Network Resilience

In attempts to take down a P2P botnet, network adminissatay wish to prioritize their efforts to focus
on the more “important” nodes first, i.e., nodes whose refnailhcause the most disruption to botnet
operation. Using the two metrics described in Seclion b. & investigate the effectiveness of botnet

takedown strategies, and how they may be sensitive to tloetaseity of the network.

5.3.1 Uniform and Degree-Based Takedown Strategies

We first focus on strategies explored in previous works thatysbotnet models [86, 41,190, 158]:

e Uniform takedown: removing nodes from the network by selecting them unifgratlrandom.

e Degree-based takedownremoving nodes from the network in descending order of raetgree,

that is, targeting high-degree nodes first.

Uniform takedown is similar to that which occurs when userd aetwork administrators patch infected
hosts as they are discovered, without coordinating bobdstes or patching activities. It has also been
used to study random failures in the context of communicatietworks or biological networksl[3]. While
most networks are found to be resilient to uniform takedailvay are much more vulnerable to a degree-
based strategy. This targeted takedown strategy is edlpefctive against scale-free networks, since
the few highly-connected “hub” nodes responsible for naiihg the connectivity of the network are
removed first, e.g., the “super-peers” that are found inruosired P2P networks. Using edges to indicate
communication between nodes, the degree can be interpaistdte number of hosts with which a node
communicates, and has also been used in network intrusiectote systems (e.gl, [98, 128, 130]). In
practice, these strategies do not necessarily requiresatoghe entire network graph, but can be applied
to takedown efforts within a subgraph as well, e.g., withloaal network. We further discuss implemen-
tation challenges in Secti®én’®.5.

As described in Sectidn5.2.2, we adjust the standard dewiatof the edge probability distribution
e;.r to generate networks of varying assortativity. For a séae-network with 5,000 nodes, we set
to 1, 5, 10, and 15 to obtain networks covering a range of &atsoty from 0.04 to 0.87. Figures3.4
and[&b show how networks with varying levels of assortgtivespond to uniform and degree-based
takedown, when 2%, 4%, 6%, 8%, or 10% of nodes are removeddingdo each strategy. The numbers
are averaged over 50 networks generated for each valae Wfe omit the standard deviations from the

plots since they are generally small, that is, within 0.0870foth L~ and.S.

74



0Qf == === - = e e e oo 1 0.9t

0.8} ' ! ! — 0.8

I I
+J0.7r 1 *J0.7r

Remove 2% nodes
0.6- = = = Remove 4% nodes | | 0.6-
—e— Remove 6% nodes
—}— Remove 8% nodes

Remove 2% nodes
= = = Remove 4% nodes
—e— Remove 6% nodes
—}— Remove 8% nodes

-
-
-

-

o5r e Remove 10% nodes| ] osr | oL Remove 10% nodes| |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Assortativity Assortativity
(a) Uniform takedown. (b) Degree-based takedown.

Figure 5.4. The average normalized inverse geodesic leafgén uniform or degree-based takedown
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Figure 5.5. The average fraction of nodes in the largest eciea component after uniform or degree-
based takedown strategies.

We find the degree-based strategy to be much more effectiakiag down a network compared to
uniform takedown, in agreement with previous works. Howgas shown in Figurg 5.4(b), the effec-
tiveness of the degree-based strategy is highly dependetiiiedevel of assortativity of the network. A
lower assortativity, e.g., toward the left of Figyre 5.4(®sults in the network experiencing a larger de-
crease inL ! after takedown attempts. The difference between the deerned. ! for assortative and
non-assortative networks grows as more nodes are removiedn\A0% of the nodes are removed via the

degree-based strategy, this difference can be as much @s A.8&imilar phenomenon can be observed
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in Figure[5.5(0) for the fractiort' of nodes in the largest connected component. With the exeept
highly assortative networks (e.g., greater than 0.6), thetion of nodes retained in the largest connected
component increases with the level of assortativity. Thatriore bots remain reachable to the attacker in
moderately assortative networks.

The higher resilience in assortative networks can be ateibto nodes of similar degree “clustering”
together. When the high-degree nodes are removed due tetreedbased strategy, only a connected
subset of neighboring nodes are lost in effect. Moreovageshigh-degree nodes tend to connect to each
other, fewer of their edges are attached to nodes of low degrevho would be prone to isolation if their
neighbors were removed. However, this also means that dreréewer high-degree nodes that can act
as “bridges” between clusters of nodes with varying degréesmore high-degree nodes are removed,
the loss of those “bridging” nodes eventually cancels oheotactors contributing to resilience as as-
sortativity increases, and the network can disintegraesh@wn on the far right of Figufe 5.5[b). These
discrepancies in how networks are affected by the same dakedtrategy underline the importance of
taking assortativity into account, both in evaluating tien strategies and in considering botnet network

models.

5.3.2 Other Takedown Strategies

While the degree-based strategy is much more effectivetti@anniform strategy, the former is sensitive
to the level of assortativity in the network, as shown in Fegl5.2 an5]5. In the search for a takedown
strategy that would be effective even for assortative ngtgjove explore alternative approaches based on

other graph properties, described below.

¢ Neighborhood connected componenidie define the local neighborhood of a nad be those
reachable withim hops from it. Figurd 5.6(h) shows an example of the neighdmmthof nodeu
within three hops, where the edge labels indicate distatwes If we were to remove: from the
network, its local neighborhood would be split into separatonnected components”, as shown
in Figure[5.6(0). Without a view of the entire network, thenther of “connected components”
that remains in the neighborhood of a node can be an appragmef its local importance, since
communication between components may have to be routedghra Hence, as an alternative
takedown strategy, we remove nodes in descending ordeeafumber of connected components

in their local neighborhood. A similar metric has also beeadito detect hit-list worms [27].
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¢ Closeness centrality Closeness centrality for a nodes defined as the sum of the inverse geodesic
distance fromu to all other nodes in the network. A larger value indicates the node is at a more
“centered” location, and has more influence over the spréadfarmation within the network. In

this takedown strategy, we remove nodes in descending ofdkeir closeness centrality.

e Clustering coefficient with degree The clustering coefficient measures how dense the commmecti
are between the neighbors of a node. For a nodé is defined as the number of edges that
exist between:’'s neighbors, divided by the number of possible edges betwé&eneighbors. For
example, in Figur€Xhl7, this value faris 4/10, while that for all other nodes is 1. A smaller value
means that the neighbors ofmay be disconnected if it were not far Ignoring nodes with the
smallest degrees — in our tests, nodes with degree less tiefifth of the maximum degree —
we remove nodes in increasing order of their clusteringft@eht, and among those with the same

clustering coefficient, in decreasing order of degree.

e Breadth-first traversal (BFS): Given an initial node, this strategy remove nodes from the network
according to a breadth-first traversal withas the root. That is, we remove nodethe one-hop
neighbors ofu, the two-hop neighbors af, and so on, in that order. The choice of the initial node
is biased in favor of higher degree nodes, i.e., the proivabil a degreek node chosen as the initial
root is proportional tds. This strategy simulates that of network administratoscaovering other
infected hosts by examining the peer list of a bot that isaglyecaptured. It is also similar to the
“tree-like” bot disinfection strategy studied by Davis ¢t[41], and to cascaded node failures in

complex networks [34, 148].

e Uniform set expansion Another strategy to identifying nodes to take down is toreixe the
set B of bots that are already discovered, e.g., through the umifstrategy, and then exparis
by uniformly select among all one-hop neighbors of node®&inin practice, this strategy can be

performed by examining the peer lists of captured bots,lamo the breadth-first traversal.

Figured5.B and 5l 9 show the fractiérof nodes in the largest connected component, and the normal-
ized inverse geodesic lengfhi! after each of the above takedown strategies, for networldiffefrent
levels of assortativity. The results are plotted after reimg 2% or 10% of the nodes, and averaged over
50 networks generated for each level of assortativity. Thedard deviations are all within 0.03 for both
L~1 andS. Compared with the uniform and degree-based strategieasdied earlier, the connected com-

ponents strategy seems more effective at lowering the obinitg of the network, as shown in Figuieh.8,
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Figure 5.6: An example of the connected components witldm#ighborhood of node. The edge labels
indicate number of hops to.

Figure 5.7: An example of the edges between the neighboredsdwmn

while the clustering coefficient strategy is more effectatadecreasing the network communication effi-
ciency, as shown in Figufe™.9. In both of these cases, thmative takedown strategy out-performs the
degree-based strategy that previous works found to betistgB6,141,) 158].

One of the reasons that the clustering coefficient strategkswvell is because nodes that “cluster”
together in assortative networks are likely to have higtestering coefficient as well, since their neigh-
bors also have similar degree. However, while the nodeseatdhter of a “cluster” may have a clustering
coefficient close to 1, this value is likely to be much smalterthose connecting the cluster to the rest
of the network. For example, all nodes in Figlirel 5.7 have stehing coefficient of 1 except for node
who turns out to be the “bridge” between the two clusters giree two and three nodes. The removal of
nodes with small clustering coefficient in this strategyésdte likely to affect communications within the

network.
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5.4 Network Recovery

The dynamism inherent in peer-to-peer networks means #edt mdividual bot is required to adapt to
changes in its surroundings, for example, due to newly tefitbosts joining the network or current peers
going offline, even without takedown attempts taking pladdese mechanisms for nodes to discover
previously unknown peers and create new edges hence propjtunities for the network taecover
itself, i.e., restoring connectivity or reconstructingogiest paths between nodes, in the face of takedown

attempts.
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While previous works tend to regard a botnet as a staticyemtitd evaluate changes to the network
immediately after takedown efforts as a measure of thegcsiffeness, we explicitly consider the ability
of dynamic networks to heal themselves. Specifically, we eh@drecovery process where nodes can
“look out” to a distanceh and find peers that are withinhops. When a node loses a neighbor, e.g., due
to takedown, it compensates for that lost neighbor by angadi new edge to a randomly selected node
within distanceh from it. As has been documented in P2P bot studies|[17, 66,135/ 138], a bot has
only a local view of the network according to its peer-listiigh it updates by constant exchanges with
its neighbors. Thé-neighborhood of a node hence represents those hosts that ara’sipeer-list, to

which u looks for maintaining connectivity with the rest of the betn

5.4.1 Recovering from Uniform and Degree-Based Takedown Ag¢mpts

We first consider the ability of botnets to recover after thkgn attempts employing the uniform or
degree-based strategies described in SeEfionl 5.3.1. We totthe inverse geodesic length metric, since
it better illustrates the difference between networks af/ivey levels of assortativity. FiguleZ5110 shows
the normalized inverse geodesic distadce for networks after they attempt to recover from uniform or
degree-based takedown strategies, when 2% or 10% of the moeleemoved. The look-out distancés
setto 2, 5, 7, and 10. Alsincreases[ ! increases as well, even reaching above 1 in Fipure 5]110¢a), i
the shortest distance between nodes becomes even sharidydfore the takedown! However, while the
increase in.~! for networks with lower assortativity falls flat after a sinal(even decreasing slightly, as
in Figure[5.10(d)), the increase for networks with highescatativity continues.

One reason for the continued recovery benefit enjoyed byrtasise networks is high-degree nodes
“clustering” together, since nodes tend to connect to atbésimilar degree. A node that is able to reach
a high-degree node upon “looking out” is likely to be abledach other high-degree nodes as well at a
similar distance. This increases the probability that a pensation edge attaches to a high-degree node,
hence shortening path lengths within the network and riesgith a higherZ —*. This phenomenon is more

pronounced in networks recovering from uniform takedowae(Bigure$§ 5.10(h) afid 5.14(c)), since fewer

high-degree nodes remain after the degree-based strategy.

5.4.2 Recovering from Takedown Attempts Using Other Stratgies

Figures[5. Il anf’5:12 show how networks of high and low ety recover from those alternative

takedown strategies described in Seclion.3.2, when 2%%rdf the nodes are removed. We observe a
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trend similar to the recovery from uniform and degree-bastegtegies, where networks with higher lev-

els of assortativity experience continued recovery benefith the look-out distancé (Figure[5.11(d)).

Less assortative networks, on the other hand, do not benedih mfter a look-out distance of 2 or 3 (Fig-

ure[5.11{0)). Regardless of the takedown strategy, asisertaetworks still have higher communication

efficiency after recovery, in terms d@f 1, than less assortative networks.

In addition to being one of the most effective strategie® Sectior 5.312), we also find takedown

attempts based on clustering coefficient with degree to éertbst difficult one for a network to recover

from, as shown by low values df ! in Figures[5.1lL anf5.12. In fact, when 10% of the nodes are

removed from the same network, the difference betwkeh after recovering from the uniform and the
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according to each strategy.

clustering coefficient strategies can be as much as 0.28r@Ig12). Similarly, the. ! after recovering
from the clustering coefficient strategy is up to 0.2 lessttiee L—! after recovering from the degree-
based strategy. This shows that the clustering coefficamdown strategy can be a better alternative to

one based solely on degree.
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5.5 Discussion

In this section, we discuss implementation challengeskedawn strategies studied in this chapter, and

alternative methods of analytically modeling networks.

Applying takedown strategies in practice. Perhaps one of the reasons for the widespread study of the
degree-based strategy is that it can be applied easily otipea For example, if the degree of a node is
interpreted as the number of hosts with which it commungatesome time interval, then identifying a
node’s degree can be performed on the basis of flow recorgs &sco NetFlows [1]) that are collected
from a router (or routers) that its traffic traverses. Noyabl node’s degree can be determined solely by
observing traffic to and from it, without requiring additairknowledge about the entity at the other end
of the communication.

Other graph properties, however, may not be so straighfaivwo measure. For instance, takedown
strategies based on clustering coefficient or neighborhtmmrthected components depend on observing
communications between the neighbors of a node, and mayreecpllaboration between multiple ad-
ministrative domains, such as that proposed by Xie et atatetthe origin of worm propagations [152].
Another approach is to examine the peer-lists an infectet feaeives from its neighbors, assuming that
such data can be captured (i.e., it is not sent encryptediudinmhcket capture is enabled on the network).
If a nodew has two communicating neighbors, those nodes should leel la each other’s peer-lists,
and so the fact that they communicate can be inferred byifgleng overlaps between’s neighbors and
peer-lists sent ta. Of course, in cases where communications between sombheegyof an infected
node are visible neither directly nor by inference, takedatrategies requiring this information can be

applied considering only those neighbors for which comroatidns are visible.

Modeling networks analytically. Rather than assuming a particular network topology, eamdom,
scale-free, or small-world, or a specific level of assoritati another approach to modeling networks is to
specify a set of actions governing the behavior of nodest step in time, and analytically determine
properties of the resulting network. This type of growingwerk models have been used extensively
in the physics domain of complex networks [6] 42, 86,1 100]]1Z37iven knowledge of individual bot
behaviors and how they interact with each other from P2P tooliess [17) 66l 116, 138], it seems likely
that analytical network models from the physics literatca® be adapted to characterize P2P botnets. In

fact, a recent work by Li et all. [91] used this approach towdethe degree distribution of a botnet where
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new nodes join the network by “copying” the edges of an exgstiode that it chooses at random.
However, these analytical approaches do make other assunspibout the underlying network that
they attempt to model in order to simplify calculations. 8fieally, by assuming that both the age of
the networkt and the network sizéV is large,t — oo, N > 1, all actions experienced by a node are
approximated by thexpectedaction, e.g., when a node creates one edge at random, theedefgall
other nodes increases byN/ where the denominataV¥ is also replaced by the expected value. These
assumptions may not be applicable to botnets in practineesi) network administrators will be equally,
if not more, concerned about infections in the early stadesotnet whert is small; 2) botnets have been
found to consist of a few hundred or thousand nodes only, endanmonly rented out in small numbers,
e.g., for sending spam; 3) to a network administrator marpgilocal network/V certainly does not grow
indefinitely; and 4) approximating aspects of network glowsing expected values introduces error that
could potentially be magnified by a bot designed counter sam@agtions that these approximations imply.
As a simple demonstration of the separation between analytiodels and actual network growth,
we examine a derivation by Callaway et al.|[19] of the asswita of a simple network growth model. In
each time step, the model assumes that one node joins therkedmd with probabilityd an edge forms
between two nodes selected at random. Their derivationeofisortativity is based on a rate equation
specifying theexpectedncrease in the number of edges that connect nodes of remgaileigreej andk
at each time step, and makes the same assumptions as désddve. Figur€5.13 shows the expected
assortativity of the network as approximated by Callawasl €for various values af. The actual average
values from simulations are also plotted in the figure, witle standard deviation shown as error bars. To
generate these values, we generated 50 networks for eaghofdl and set the number of time steps (i.e.,
number of nodes) to 1,000. Figure3.13 shows that the expestortativity as predicted by Callaway et
al. can differ from the actual average assortativity by aonant that approaches or, in some cases, exceeds
one standard deviation. This suggests that the simplifgggumptions typically employed in analytical

models may cause nontrivial deviations from practice.

5.6 Chapter Summary

Peer-to-peer (P2P) botnets, in contrast to their ceng@lizounterparts, do not have a single point-of-
failure and are difficult to take down. Identifying and renmay those nodes that are “important” to the

connectivity or communication efficiency of a botnet is heedtical to disrupting its operation. Toward
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this goal, several previous works have modeled P2P botrsitg theoretical network models [36.141,

90]. These works compare the resilience of various netwapklbgies to uniform or degree-based node
removals, and quantify the effectiveness of these takedsivategies using graph properties, including
the inverse geodesic length of the resulting network or thetion of nodes in the largest connected
component.

In this chapter, we observe that previous works do not censid important structural property of net-
works, namely assortativity. Empirical measurements dwokk traffic from bots in a honeynet running
in the wild suggest that this property can be quite high fanbts in practice. We show that in omitting
the presence of assortativity in botnet models, and witloousidering the effect of dynamic networks
actively recovering from node failures, previous works nhaye over-estimated the effectiveness of rec-
ommended takedown strategies. In addition, we identigratitive strategies that are more effective than

those in previous works for botnets with high assortativity
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Chapter 6

Conclusions and Future Work

The work in this dissertation proposes new techniques tectiag hosts infected with stealthy malware.
Infected hosts, i.e., bots, can exfiltrate sensitive dadi@rsaries, or lie in wait from commands from
a bot-master to forward spam or launch denial-of-servitecks. However, it is difficult to detect bots,
since their activities are subtle and do not disrupt the ngtwin addition, infected hosts can encrypt their
traffic and utilize existing protocols for communicationftmther mask their activities.

Our key observation is that infected hosts exhibit similaaracteristics in their network activities
that are distinct from those of benign hosts. Our approacitdéentifies bots by aggregating “similar”
network traffic, which are collected in the form of flow recerthat contain coarse summaries of each
connection. Under this framework, we present techniquesdntify both infected hosts participating
in centralized botnets and those that communicate overtpgaeer networks. We further develop a
passive browser fingerprinting method to detect malwaredifganot confined to hosts of a single operating
system platform. To complement our empirical analyses, la@ study peer-to-peer botnets analytically
using models from network theory, and investigate how actitiral characteristic of networks affects the
effectiveness of botnet takedown strategies.

In this chapter, we summarize our contributions, and dstinstations of our approach and potential

future directions.

6.1 Contributions

Behavioral characteristics to detect stealthy malware. We identify characteristics in network traffic

that can distinguish the behaviors of infected and benigtshdn particular, we focus on characteristics
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that pertain to basic properties of malware operation,uidiclg the coordinated and automated nature
of infected hosts, and unique goals and circumstances thétuw they utilize existing communication
protocols. Our approach hence does not depend on obsepéifis malware activities, e.g., sending
spam or performing denial-of-service attacks, and has tienpial to detect infected hosts prior to them
engaging in such disruptive events. Moreover, we only adilinformation contained in coarse traffic
summaries, e.g., Cisco NetFlow [1] or Argus floﬂlsto avoid bandwidth and storage requirements for
capturing full packets.

In ChaptefR, we describe a system that detects hosts pattity in centralized botnets. Our system,
TAMD, aggregates network traffic that share the same busierttbaal destinations, that have similarly
structured payload, and that are also associated with hasténg similar software platforms. AMD can
reliably identify network traffic generated from real bosiances among all traffic crossing the border of
our university campus network. Even for homogeneous ndtswhere the majority of internal hosts are
of the same platform (e.g., enterprise networks), formmaffit aggregates based only on the destination
and payload characteristics would still yield accurateiltss

Due to P2P technologies being used by both P2P bots and éitergthosts, botnet traffic will tend
to “blend into” a background of P2P file-sharing. Being abls¢parate the two types of traffic hence be-
comes the main challenge in detecting P2P bots. In Chidptex dhow that distinct goals and motivations
driving the use of the same P2P network protocol will give tis varying behaviors — particularly those
associated with the hosts’ volume of traffic, the amount arpghurn, and whether their activities are
human-driven or machine-driven — that can be used to distiigbot traffic from those of file-sharing

hosts.

Efficient algorithms to analyze network traffic. In addition to identifying relevant behavioral charac-
teristics that can detect stealthy malware, our contrilmstialso include algorithms to analyze network
traffic efficiently. The algorithms are drawn from diverseas, including statistics, machine learning, and
metric embeddings.

To our knowledge, we are the first to detect malicious traffictmputing a type of edit distance using
techniques that can scale to high data rate environmerdsS@etiol 2.212). The AMD system performs
this by first embedding the edit distance with moves mettig iri-spacel[30], and then deploying a near-

neighbor search algorithm_[39]. As a result, traffic with 8&npayloads can be found in time roughly

Ihttp: /7 www, gosi ent . cont ar gus
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proportional to the number of flows.

We also explored various ways of representing hosts, oesgntting the characteristics by which we
wish to aggregate network traffic. For example, a binaryaeistused to denote the external destinations
each host contacts (Sectibn2]2.1), allowing statisticathmds to be applied to construct destination
aggregates. In Sectidn 4.B.3, we construct histograms stEhmterstitial activity times to reflect the

degree to which their behaviors are machine-like.

Adversarial cost to evade detection. In the arms race between attackers and network defenders, ne
malware variants have continued to demonstrate ways afroiventing existing intrusion detection sys-
tems. In our technique of detecting peer-to-peer bots hindisishing them from peer-to-peer file-sharing
hosts, we specifically quantify the operational cost for etb@vade detection by masquerading as a file-
sharing host (Sectidn4.5).

In particular, our evaluations show that a P2P bot will beablescape detection by our tests, but at the
cost of significantly changing its network behavior, e.@nerating more than 20 times its original traffic
volume per flow, and increasing the fraction of new hosts ittacts by a factor of 1.5. Both evasion
attempts can compromise the stealthiness of the bot, makaig presence in the network observable
through other means (e.g., scan detection) or even by theravirthe infected machine.

Infected hosts can also attempt to evade our technique toatephuman-driven and machine-driven
traffic by randomizing timing patterns in their communicais, e.g., by adding random delays between its
activities. This can introduce variances in the bots’ istiial time distributions, and cause our techniques
to fail to correctly cluster them together. However, fosteivasion attempt to be effective, our experiments
show that the bots would need to add significant delay betdhes@nactivities, e.g., up to minutes or hours,

potentially making the botnet less responsive.

Passive application fingerprinting technique. We develop a new technique to infer the browser im-
plementation on a host by passively observing its trafficdmmon sites (Chapté&i 3). In particular, our

technique utilizes only information contained in coarsdfit summaries, including the byte and packet
counts, and the start and end times of each flow. For each floergted by a browser in retrieving the

contents of a web page, we extract statistics related tozésamd duration. The statistics are aimed at
capturing differences related to the order by which browskiwnload objects on a given page, the num-
ber of objects retrieved in each connection, the number i@lighconnections, and other discrepancies in

browser implementations.
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We show that our browser fingerprinting technique can berpmated into BMD, allowing it to
detect application-dependent malware in addition to thloseare O/S-dependent. As a second application
of browser fingerprinting, we demonstrate that knowledgietbrowser implementation can yield a more
precise deanonymization of the welbesthan has previously been achievable from flow records. In our
experiments, a per-browser website classifier achieve® @pli7% accuracy improvement to a generic

website classifier.

Analytical botnet models. To complement our empirical analyses, we also study botedbytically
using models from network theory (Chaplér 5). Each node énntwork graph represents an infected
host, and edges reflect communications between the hostaiotkemodels can allow the “usefulness”
of a botnet to be quantified using graph properties (e.g.ntlmber of hops between nodes, the size of
the largest connected component), such that the effeetbgeof various botnet takedown strategies can be
evaluated.

We focus on studying an important structural property ofnoeks — assortativityl[102] — and its
effect on the resilience and recovery ability of botnets. &ew that, without considering this property,
previous works on modeling botnets may have over-estinmadffectiveness of certain botnet takedown
strategies. In addition, we identify alternative stragsgihat are more effective than those in previous

works for botnets with high assortativity.

6.2 Limitations

Since our stealthy malware detection approach relies oereiog) similarities in hosts’ network behaviors,
it will be more successful in large networks consisting oftsowith diverse platforms and applications,
and where more than one infected host are present. An eiseemetwork, for example, will likely have
the majority of its internal hosts running the same opegasiystem, potentially limiting the effectiveness
of the platform aggregation inAvD. That said, in evaluations performed on traffic from our ensity
campus network and from real bot instances, we find thaud yields good results even with only
destination and payload aggregation (see SeEfion2.4.3).

We also expect the infected hosts to react to bot-master @msior communicate with each other
in a timely and roughly synchronized manner, e.g., actideadt once an hour or once per day. Botnets
that are less responsive will require longer observationdaws, where analysis can be complicated by

other factors, including a higher probability of treatingffic from multiple distinct machines as one,
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e.g., because of DHCP churn. That said, sparse or infrequeninunications can also result in the bot-
master's commands requiring more time to propagate thrabghbotnet. This may limit the type of
attacks that the bots can perform (for example, distribdeial-of-service attacks that rely on collected
efforts from a large number of time-synchronized bots), poténtially the botnet size as well.

In cases where bot-masters plan their attacks well in advéag., to allow time for commands to
propagate to a large number of bots), or where the infectststaze chosen selectively to perform specific
attacks (and hence do not require frequent communicatidtistiae bot-master), activities from infected
hosts can be few and far between. An example of this is then8tuxorm [45], which specifically aims
to subvert control of industrial systems. This malware whlg & stay under the radar by rate-limiting
the number of hosts each bot infects, and interacting megitly other vulnerable or infected hosts on
the same local network. In particular, since the type of $idsinfects typically does not have Internet
access, the operations of the Stuxnet botnet do not rely tmhbster command and control. Detecting
this type of “advanced persistent threats” may require nooimg intra-network traffic, in addition to the
deployment of host-based intrusion detection systems.

As bots become more sophisticated, their activities camiecmore “human-like” in the future,
e.g., crafting their communications so that they are diediby similar to those of humans. This may
challenge the effectiveness of behavior-based malwaectiet techniques, such as the human-driven
versus machine-driven test described in Sedfion¥.3.3. eédewy we believe that malware operations are
still fundamentally distinct from benign user behaviorartgularly in how activities are triggered (e.g.,
the command-driven nature of malware activities) and tieénded goals. Leveraging these underlying
differences will be important for future malware detecti®ystems. In particular, rather than relying on
heuristics or empirical observations, a more formal repnéation of benign host behavior may be required

to characterize the circumstances under which their dietsvoriginate.

6.3 Future Work

This section describes directions for future work that addrsome of our limitations discussed in the

previous section, and potential methods to enhance syeaklifware detection systems.

Quantifying adversarial cost. Intrusion detection and prevention systems today are camnevalu-
ated by their false positive rate and the detection rate. é¥ew such systems are typically tested only on

particular datasets available to the researchers, e.gtoddifficulties in obtaining public data. It is hence
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difficult to generalize their effectiveness to other enmimeents, or to compare them against each other
without those systems being publicly available. Moreogensidering adaptive adversaries that modify

their strategies based on the detection techniques daepi@gewe have seen in the arms race between
attackers and defenders), it is possible that a proposedsioh detection or anomaly detection system

can be circumvented by new malware variants.

In light of these observations, another useful metric faleating intrusion detection systems would
be the operational cost required for the adversaries toestlatection. We explored this metric briefly in
Chaptel#, where we quantified the increase in traffic volumd reumber of destinations that a Plotter
must contact in order to masquerade as a Trader. This agprat be generalized into a constraint
optimization framework, where the detection rules empibipg the intrusion detection system serve as
constraintsimposed on the operations of the adversary, whose goal isatanmze certain aspects of
the botnet, e.g., the number of infected hosts under thersayés control, the combined bandwidth
or computing power of the botnet, or the communication leydmetween infected hosts. This will allow

anomaly detection systems to be evaluated from a more olgguiint of view that is dataset-independent.

Correlating host profile changes. Infected hosts are often used by the bot-master to provigaero
network services, such as HTTP proxies or DNS servers thaet victims to malicious domains, SMTP
servers sending spam emails, or FTP servers providing spanplates. Having bots participate in these
services hides the backend server controlled by the botemsasand makes it difficult to disrupt their
operation.

However, these activities are also likely to cause changdiset role that the infected host plays in a
network, since such services are usually performed by datg machines. Upon infection, a host thus
instructed by the bot-master is likely to switch from beingliant to a server, or from one type of server
to another. While benign hosts can exhibit behavioral cbarags well, e.g., when new applications are
installed, they are rarely synchronized in their actigt{excluding popular events, such as connections
to popular sites lik@wwv. googl e. con). For this reason, more suspicious are previously independ
hosts that exhibit “coincidental” changes to their netwbekaviors.

As an example, a host's network behaviors can be profiledsbgdtnection patterns (e.g., whether
they accept inbound connections, the duration and sizeeofdhnections, or the number and type of the
hosts with which it interacts). Examined over multiple tim@dows, “coincidental” changes involving

multiple hosts can be detected by data mining techniques, asi association rule mining, that identify
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patterns frequently appearing together. Similar data mgirapproaches have been applied to identify
communication rules in a network, which can be used for nooim¢ and diagnosis_[F6]. Based on

changes to hosts’ network profiles, this method of idemtifyinfected hosts has the potential to detect
previously unseen malware. It is also more general than odstlthat rely on signatures or behaviors

deemed suspicious, which require labor-intensive revenggneering efforts by human analysts.

Distributed Malware Detection. The malware detection approach described in this thesiestie
assumption that there are multiple infected hosts withémistwork. While many malware instances prop-
agate locally, e.g., through open network shares (suchwae&t[45], Phatbot [135], Conficker [117]),
and multiple infections are likely to be found in large netl) this assumption may not hold in smaller
networks or be useful for detecting bots belonging to smathéts. In these cases, it is beneficial for
multiple distributed networks to collaborate, so that\atiéis from more than one bot may be observed.
Some of our data analysis algorithms can be readily adaptéidtributed data. For example, payload
aggregates in AMD (see Sectiofi.Z.2.2) can be performed across multiple nksawy sharing only the
hash functions and the bucket numbers to which flow payloeslsnapped. Distributed versions of sta-
tistical techniques used in this work are also availablg,, elistributed PCAL[€9]. The challenge in this
setting, however, is in combining data from multiple sogroea privacy-preserving manner, e.g., similar

to that proposed by Xie et al. to trace the origin of worm pggtaons [152].
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Appendix A

Applications of Browser Fingerprinting to

Traffic Deanonymization

In Chaptel B, we developed a browser fingerprinting techmitipat infers the browser implementation
on a remote host using flow records. In addition to enhancm@ntusion detection system to detect
a wider range of malware, here we demonstrate a second afipticof browser identification to the
deanonymization of webitesin flow records that have been anonymized.

In order to retain the utility of anonymized traffic traces fetworking research, IP addresses are typ-
ically anonymized in a consistent fashion, i.e., so thatsémme real IP address is mapped consistently to
the same pseudonym in the anonymized dataset. This enablbshaviors of the anonymous web servers
to be examined, however, which can sometimes lead to thaitatg/mization. As a trivial example, the
larger number of bytes typically transmitted from the maage ofciiit._comwould enable it to be dif-
ferentiated fromgoogl e. com Moreover, since a page retrieval can involve connectionsitltiple
physical servers (e.g., image servers or content distabutetworks), Coull et all [32] also found that the
sequential order of the servers contacted to retrieve th{@ta webpage can enable websites to be differ-
entiated. While previous works placed emphasis on obsgivaific behaviors of the websites [32 85],
to our knowledge, no study has accounted for this behavimflagnced by the particular implementation
of their protocol peers, i.e., the browser. In what folloma show that classifying the browser first can

yield a more precise deanonymization of websites.
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A.1 Feature Selection

We use the same dataset as that described in Sécfion 3.2arSmrour browser fingerprinting technique,
we extract nine main flow features from each web page retriegdhile these features were previously
calculated over all flows in a retrieval, here we calculatsthfeatures for all flowger physical server
for each of the first five servers contacted. The featurestae arranged according to the order that
the server was contacted, i.e., for retrievathe feature vector i$F,1, ..., F,5}, whereF,; refers to the
features derived from the flows to physical seryefor website retrievat. Breaking down the retrieval
features by physical server provides a finer-grained remtasion of the retrieval and an order to the
physical servers, both of which have been utilized in presiavebsite deanonymization efforts (e.g.| [32]).
Furthermore, to eliminate redundancies and reduce diroeakty, we selected a subset of those features
that are most relevant, specifically by computing the catieh of each feature from one day of retrievals
to cimit._cuimin the PlanetLab-Native dataset to one day of such retgewathe CMU dataset. This
yielded nine features: the byte and packet counts to andtherfirst server contacted, and the number of
flows to each of the first five servers contacted.

We focus on deanonymizing those websites that are “staédgfydged by their standard deviation for
the total number of flows, bytes, and packets, and also thebsites that are complex enough, as judged
by the total number of flows. It has been previously estabtisi32] that websites with a high variability
in their contents (e.ggspii. cor) or those that are too simple (e.ggogl e. comlor Kut . .comn) will
typically not be identified accurately. We determine a wiebgd be complex and stable if the average
number of flows from the first five servers contacted is gretéi@n one, and the byte and packet counts to
and from the first server has a small standard deviation,wiéhin twice the average value. In this way,
we narrow down the list of websites that we will attempt tortaaymize in traffic traces to 52 of the top

100 websites in the U.S. accordingagbexa. com

A.2 Website Classifier

We build our website classifiers using Bayesian belief ndtaowhich have been shown to yield good
results[3R]. Given a test instance, the classifier outpptelbability for each class, which is the likelihood
of the instance belonging to that class, according to theetmdilt from training data. The class with the
highest probability is taken as the classification of the itestance. This may not always yield optimal

classification, for example, in cases where the probadslitor several classes are close to each other, or

108


cnn.com
espn.com
google.com
orkut.com
alexa.com

when all of the probabilities are small.

To establish some notion of “confidence” on the classificatmne way is to let the classifier make
a decision only from classes with probabilities greatenthacutoff value, and only when there exist
probabilities above the cutoff. Although cases where mldtclasses have similar probabilities may still
result in ambiguities or misclassifications, the cutoffualcan allow the classifier to provide answers
based on more confident results, avoiding scenarios whaxertaimty (small probabilities) are likely to
cause incorrect classifications. The higher the cutoff ipatar, the higher the probability of the test
instance belonging to its class must be.

From the PlanetLab-QEMU dataset, we group the data by thedemthat generated the traffic, as well
as a combined group with traffic from all four browsers. THiewas us to build four per-browser website
classifiers (IE, Firefox, Opera, Safari), and one generibsite classifier. The former are each trained
on traffic from a single browser type, while the latter is i on combined traffic from all browsers.
In the following, we quantify the benefits of first classifgithe browser in website deanonymization by
applying these two types of classifier models separatelycangparing their results. When testing with
the CMU dataset, the browser type for each host is determtiyedur browser classifier developed in
Sectior3B, using a confidence threshold set at 1.30. Therpesser website classifier is then applied to
a website retrieval based on the browser determined fordethat performed the retrieval.

For each testing instance, i.e., each website retrieval cliassifier returns the class with the high-
est probability above the cutoff. If no probability largéran the cutoff exists, the instance is unclassi-
fied. Let the classification for retrievalbe websiteguess(r), and its actual website beebsite(r), where
website(r) = L if the ground-truth website for retrievalcannot be determined in the dataset (which only

happens in the case of the CMU dataset). Then, the precismbnegall are

Precision = Pr[website(r) = s | websiteguess(r) = s # L]
|{r : websiteguess(r) = website(r)}|
|{r : websiteguess(r) # L}|
Recall = Pr|websiteguess(r) = s | website(r) = s # L]

|{r : websiteguess(r) = website(r)}|
[{r : website(r) # L}|

In the following tests, we only report results for cutoff wak where the classifier is able to make at least
thirty classifications. This is to avoid cases where not ghotlassifications can be made for the results

to be representative.
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A.3 Tests on PlanetLab-QEMU Dataset

Similar to the experiments described in Secfion 3.3.1, veedivaluate the results of website deanonymiza-
tion under an ideal setting using the PlanetLab-QEMU datdseeach experiment, the testing data con-
sists of retrievals from one host, while the training datfras all other hosts. We apply each per-browser
website classifier to retrievals determined to have beefopeed with that browser by our classifier in
Section 3B, to generate the per-browser results. We genersults for the generic website classifier by
applying that classifier to all retrievals. Our tests aresed-world”, in the sense that only retrievals of

the 52 selected websites (see Sedfiofd A.1) are tested.
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Figure A.1: Website classification precision on thEigure A.2: Website classification recall on the
PlanetLab-QEMU dataset. PlanetLab-QEMU dataset.

Figure[A1 andCAR show the precision and recall from thelpewser and generic website classifiers.
Cutoff values range from 0.01 to 0.99, in steps of 0.01. Theigion increases with the cutoff, but the
recall decreases since some instances are not classifigghat butoff values. The drops in precision are
due to cases where correct classifications that do not haighaehough probability are filtered out by
the cutoff value. The generic classifier was not able to dlassore than thirty retrievals after the cutoff
reaches 0.78, so we do not plot its results for cutoff valueatgr than 0.78.

To present an alternate view depicting our overall accyréatyPrecision(c) and Recall(c) be the
precision and recall, respectively, when the cutoff is edidc. We then define the precision “integral”,

over the rang€cuin, ¢max|, t0 be

Z Precision (c)

C=Cmin

and we define the recall “integral” similarly,,;, andc,,.« are defined as the endpoints of the range where
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Classifier|| Precision| Recall
Generic 26.16 5.34
Per-browser| +6.01| +10.93

Table A.1: Comparing the precision and recall integrals ebsite classification on the PlanetLab-QEMU
dataset.

both the per-browser and generic classifiers were able tereakugh classifications. The integral is a
measure of how the classifier performs across differentficuadues, in that larger integrals show higher
precision (or recall) overall. The integral of precisiondarecall over[0.01,0.78], in steps of 0.01, are
shown in Tabl€AlL, with the generic case serving as baseline

While website deanonymization remains a challenging gmkh practice, we note that the improve-
ment in recall between per-browser and generic classifarsams significant, across all cutoff values,
where the average difference is 14.01% and the maximunrelifée is 16.11%. On the other hand, the

maximum difference in precision for per-browser and genelassifiers is 15.61%.

A.4 Tests on CMU Dataset

To evaluate the impact of first classifying the browser on sitebdeanonymization in a more realistic
setting, we turn to the CMU dataset, with the PlanetLabNatiataset serving as training data. Since the
IP addresses are anonymized in the CMU data, we have no #iveatledge of the websites contacted.
So, to build ground truth for the classification, we examimddrmation available in the first 64 bytes of
each flow payload. Specifically, the “Host” field in HTTP regtseare extracted to identify the domain
name of the websites. Of the 52 websites targeted for ideatiifin, we found only 23 in the CMU dataset
in this way, and so used only these retrievals for testingléathe training data still consists of traffic to
the 52 websites). Only retrievals from hosts whose grouatifitorowser type could be determined were
used (see Sectidn_B.3).

For each retrieval to one of the chosen 52 websites (seeoc8€&fi) in the CMU dataset from a
Firefox or Opera browser, we classify it using both the appede per-browser classifier and the generic
website classifier, built using the PlanetLab-Native dettaBhe results are shown in Figufes]A.3 &ndl A.4.
In particular, we test the per-browser website classifiesvio scenarios: (i) when our browser classifier
from Section3B is applied first, and (ii) when we assumegutrbrowser classification, i.e., the per-

browser website classifier applied to a website retrievabised on the actual browser that performed that
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Figure A.3: Website classification precision on thEigure A.4: Website classification recall on the CMU
CMU dataset (Train: PlanetLab-Native, Test: CMUWataset (Train: PlanetLab-Native, Test: CMU).

Classifier|| Precision| Recall

Generic 20.53| 11.30
Per-browser +2.73| +1.07
Per-browser (perfect +7.93| +4.38

Table A.2: The integral of precision and recall on websitassification in the CMU dataset (Train:
PlanetLab-Native, Test: CMU).

retrieval, as opposed to the browser determined by ouritiersaNhen our browser classifier is applied,
the difference in precision between the per-browser angmenlassifiers can reach close to 17% at high
cutoff values. TablEZA]2 shows the integral of precision eswhll over cutoff values from 0.01 to 0.99, in
steps of 0.01. The results in Figufes1A.3 andlA.4 are caledlatross all 52 websites.

However, for an attacker who is only interested in deanomymgicertain websites, such as those listed
in Table[A3, a classifier that is able to classify those welsivell would be more useful than a general
website classifier. For example, the per-browser classifisra 84.62% precision fdai | ynot 1 on. com
a 27.57% improvement to the generic classifier. These gepalht out that in live network traffic, classi-

fying the browser first can bring a non-trivial advantage tbsite deanonymization.
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Website Precision (%) Recall (%)
Per-browser| Generic| Per-browser Generic
adobe. com 17.59 0.00 9.55 0.00
dai I ynotion. com 84.62 57.05 50.00 44.95
nyt1 mes. com 21.15 16.26 12.26 9.13
WOr dpr ess. com 13.98 0.00 7.15 0.00
yahoo. com 45,52 29.60 29.81 19.78

Table A.3: Comparing the precision and recall between thdpmvser and generic website classifiers for
the classification of selected websites in the CMU dataseémvour browser classifier from Sectibnl3.3
is applied first (Train: PlanetLab-Native, Test: CMU).
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