
Efficient, Usable Proof-Construction Strategies

for Distributed Access-Control Systems

Scott Garriss

July 22, 2008

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Lujo Bauer

Michael K. Reiter

Peter Lee

Somesh Jha

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2008 Scott Garriss





Contents

1 Introduction 15

1.1 Distributed Proof Construction . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Techniques for Efficient Proof Construction . . . . . . . . . . . . . . . . . . 19

1.3 Detecting and Resolving Policy Misconfigurations . . . . . . . . . . . . . . . 20

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Distributed Proof Construction 27

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Access-Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Tactical Theorem Provers . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Distributed Proof Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Proving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 A General Tactical Theorem Prover . . . . . . . . . . . . . . . . . . 32

2.2.3 Distributed Proving with Multiple Tactic Sets . . . . . . . . . . . . . 34

2.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Constructing a Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 First Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4 Effects of Caching on a Second Access . . . . . . . . . . . . . . . . . 40

2.3.5 Automatic Tactic Generation . . . . . . . . . . . . . . . . . . . . . . 41

2.3.6 Simulating a User’s Experience in a Deployed System . . . . . . . . 43

2.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Efficient Proving for Practical Systems 49

3.1 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



4 CONTENTS

3.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.2 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Forward Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Path Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Completeness of PC . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Backward Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 Delayed Backward Chaining . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.2 Large Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.3 Tabling Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.4 Effects of Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Generality of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Detecting and Resolving Policy Misconfigurations 83

4.1 Techniques for Identifying Misconfigurations . . . . . . . . . . . . . . . . . . 84

4.1.1 Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Using mined rules to make predictions . . . . . . . . . . . . . . . . . 86

4.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Techniques for Repairing Misconfigurations . . . . . . . . . . . . . . . . . . 91

4.2.1 Users to contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Directing resolution requests . . . . . . . . . . . . . . . . . . . . . . 92

4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Rule Mining with Partial Data . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Partitioning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



CONTENTS 5

5 Conclusion 109

A Proof of Theorems 121

A.1 Proof of Termination for a Distributed Prover . . . . . . . . . . . . . . . . . 121

A.1.1 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1.2 Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1.3 Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2 Completeness of PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3 Completeness of Delayed Backward Chaining . . . . . . . . . . . . . . . . . 127

A.4 Completeness of LR Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



6 CONTENTS



List of Tables

3.1 Worst-case cache characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 74

7



8 LIST OF TABLES



List of Figures

2.1 bc-ask, our proving algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Algorithm for determining the target of a request . . . . . . . . . . . . . . . 34

2.3 The authorization scheme for physical space in Hamerschlag Hall, home of

the Carnegie Mellon Electrical & Computer Engineering Department . . . . 37

2.4 The authorization scheme for Hamerschlag Hall, modified for use in an digital

access-control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Proof of key(KCMU ) says action(resource, nonce) . . . . . . . . . . . . . . . 39

2.6 Performance of initial access with different caching strategies . . . . . . . . 40

2.7 Performance of subsequent access to a different resource by a different principal 41

2.8 Sequential access of four resources by same principal in a (2,4,10) tree . . . 42

2.9 Average of 10 simulations with 1500 random accesses in a (4,4,25) tree . . . 43

3.1 PC, an incremental path-compression algorithm . . . . . . . . . . . . . . . . 56

3.2 bc-askD, a delayed version of bc-ask . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Example construction of LR tactics from an inference rule . . . . . . . . . . 62

3.4 Credentials on Alice’s phone . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Credentials on Charlie’s phone . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Alice’s prover generates complete proof or list of credentials that Alice can

create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Aggregate proving time: Charlie’s before help request + Alice’s + Charlie’s

after help request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Number of formulas investigated by Alice . . . . . . . . . . . . . . . . . . . 67

3.9 An access-control policy presented in Section 2.3.1 . . . . . . . . . . . . . . 67

3.10 Proof generation in larger policies with missing credential . . . . . . . . . . 69

3.11 Size of knowledge base in larger policies with missing credential . . . . . . . 69

3.12 Proof-generation time in example policy with tabling enabled . . . . . . . . 70

3.13 Proof-generation time in larger policies with missing credential and tabling

enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9



10 LIST OF FIGURES

3.14 Precomputation time for example policy on phone . . . . . . . . . . . . . . 72

3.15 Cache size for example policy . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.16 Precomputation time for larger policies . . . . . . . . . . . . . . . . . . . . . 73

3.17 Cache size for larger policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Prediction accuracy (exercised policy) . . . . . . . . . . . . . . . . . . . . . 87

4.2 Prediction accuracy (intended policy) . . . . . . . . . . . . . . . . . . . . . 87

4.3 Coverage of exercised policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Coverage of intended policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Prediction accuracy versus time . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Success rate of resolution strategies . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Number of high-latency accesses . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Proactive user interruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Total user interaction time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.10 Additional high-latency accesses incurred by removal of each resource partition101

4.11 Total user interaction time with removal of each resource partition . . . . . 101

4.12 Additional high-latency accesses incurred by removal of each user partition 102

4.13 Total user interaction time with removal of each user partition . . . . . . . 102

A.1 bcD, a wrapper to process partial proofs returned by bc-askD . . . . . . . . 128



Abstract

Distributed access-control systems implemented using formal logic have several advantages

over conventional access-control systems; namely, they allow for decentralized policy ad-

ministration, can express a wide variety of policies without ambiguity, and provide greater

assurance that granted accesses comply with access-control policy. Access is granted only

if the system can construct a proof, in formal logic, that demonstrates that the access is

authorized. The efficiency of the proof-construction algorithm is therefore of great interest,

as it resides on the critical path to an access being granted. Any delay in proof construc-

tion will delay access, which can significantly impact the usability and effectiveness of the

system.

However, it can be challenging to efficiently construct a proof in such a system. The

credentials that encode access-control policy may be distributed among distant nodes in the

system, or may not have been created yet. Users should be able to extend access-control

policy in response to a requested access, and they should be guided through this process to

ensure that the new credential will result in access being granted. Additionally, user input

must be considered to ensure that, e.g., a request that Alice create a new credential does

not disturb her at an inappropriate time.

The objective of this thesis is therefore to describe a suite of techniques that enable the

efficient construction of a proof of access. We demonstrate that these techniques are practi-

cal using policies, data, and experience drawn from an experimental access-control system

deployed at our university. This suite of techniques consists of three main components:

an algorithm for distributing the proof construction process, an efficient proof-construction

strategy that incorporates human interaction, and techniques for identifying and resolving

misconfigurations in access-control policy before they delay or deny a legitimate access.

Distributed proof construction We introduce a distributed approach to proof con-

struction and show that this approach substantially reduces the amount of communication

required to construct a proof when compared to prior work, which employs a centralized ap-

proach with straightforward extensions for collecting credentials from remote nodes. These

gains result from both ensuring that each component of the proof is assembled by the party

with the most relevant knowledge and effectively utilizing a distributed cache. We show

analytically that our approach will find a proof whenever the centralized approach will do

so.

The distributed approach allows each party a great deal of flexibility as to how they

attempt to construct a proof. This flexibility enables us to explore the efficient, usable

proof-construction techniques that represent the second component of this thesis.
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Efficient, usable proof construction Preliminary experience with our access-control

testbed indicated that a practical proof-construction strategy must allow users to direct the

proof search (as it might, e.g., involve bothering another user), identify situations in which

the proof could be completed with the creation of a new credential, and to maximize the

usage of locally cached credentials. We present a strategy for constructing proofs in such an

environment and show that, through the effective use of precomputed results, we achieve

dramatic improvements over prior work in terms of computational efficiency at the time of

access. As before, we show that these gains do not entail any loss in proving ability. These

techniques have been deployed for almost two years, and their efficiency is instrumental to

the continued success of our experimental system.

Identifying and resolving policy misconfigurations A misconfiguration in access-

control policy can result in a legitimate access being delayed or denied. This can be highly

annoying to users, and may have severe consequences if timely access is critical. We show

how rule mining techniques may be applied to access logs to identify potential misconfigu-

rations in policy before they result in an access being denied. We also describe a technique

by which past user behavior can be utilized to direct requests for policy corrections to

the appropriate administrator. Using data collected from our testbed, we show that these

techniques can correct a significant faction of misconfigurations before they impact a legit-

imate access, and that we can detect most of the discrepancies between the policy that an

administrator implemented and the policy that was intended.

The three components of this thesis, when combined, represent a cohesive strategy for

constructing proofs of access in an efficient and usable manner in a distributed access-control

system that is implemented using formal logic. To our knowledge, this thesis represents the

first such strategy to effectively address the requirements of such a system that is deployed

and in active use.
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Chapter 1

Introduction

The need to restrict access to precious resources is a common theme throughout human

history. However, the recent proliferation of advanced computing technology has drastically

increased both the number and variety of the resources that must be protected. This, in

turn, makes it increasingly difficult to effectively create and enforce access-control policy. In

particular, an access-control system must often guard access to resources that are distributed

across a network and governed by policy that is created by multiple entities. The need for

distributed policy creation can be the result of scale, i.e., there are too many resources for

a single person to administer, or because the resources belong to a federation in which no

single entity can dictate global access-control policy.

Much work has given credence to the notion that formal reasoning can be used to

buttress the assurance one has in an access-control system. While early work in this vein

modeled access-control systems using formal logics (e.g., [26, 50]), recent work has imported

logic into the system as a means to implement access control (e.g., [18]). In these systems,

the resource monitor evaluating an access request requires a proof, in formal logic, that

the access satisfies access-control policy. The use of formal logic offers several advantages,

namely, that it enables an unambiguous specification of access-control policy, and that a

proof conveys a greater degree of confidence in the correctness of an access-control decision.

In such a proof, digitally signed credentials are used to instantiate formulas of the

logic (e.g., “KAlice signed delegate(Alice,Bob, resource)” or “KCA signed KAlice speaksfor

KCA.Alice”), and then inference rules are used to derive a proof that a required policy is

satisfied (e.g., “manager says open(resource)”). The resource monitor, then, need only

validate that each request is accompanied by a valid proof of the required policy.

Because the resource monitor accepts any valid proof of the required policy, this frame-

work offers potentially a high degree of flexibility in how proofs are constructed. This

flexibility, however, is not without its costs. First, it is essential that the logic is sound and

15



16 CHAPTER 1. INTRODUCTION

free from unintended consequences, giving rise to a rich literature in designing appropriate

authorization logics (e.g., [26, 57, 41, 36, 20, 30, 40]). Second, and of primary concern in

this thesis, it must be possible to efficiently find proofs for accesses that should be allowed.

Granting timely access is critical to a positive user experience; any unnecessary delays will

damage users’ perception of the system. As we will see in Chapter 3, the application of

straightforward proof-search techniques to our scenario is so inefficient as to be unusable.

In the context of a practical distributed access-control system, there are several factors

that make it difficult to efficiently construct a proof. First, the credentials that encode

access-control policy are created by multiple entities and distributed throughout the system.

The proof-construction process must therefore be capable of identifying and retrieving the

needed credentials. Requests to distant parties to supply the needed credentials take time

(especially if human interaction is required), so the proof-construction process must be

designed to minimize the number of requests necessary to determine if access should be

granted.

Second, the proof-construction process must consider human factors. A request for

assistance from another principal may carry a social cost, and should be made only if abso-

lutely necessary and with user approval. Similarly, as access-control policy often contains

omissions, the proof-construction process should be able to recognize situations in which the

creation of a new credential would enable the construction of a proof, and present the user

with options for creating this credential. When there are different ways of proceeding in

this manner, the user should be allowed to select which path to follow. This fundamentally

alters the order in which the prover must explore the search space.

Third, access-control policy can contain omissions that prevent the construction of a

proof for a legitimate access from existing credentials. While the proof-construction process

may be able to suggest a credential that would resolve this omission at the time of access, this

would involve an administrator’s intervention, and the ensuing delay could be frustrating

to the user attempting to gain access. Where possible, the system should detect such policy

misconfigurations and prompt the appropriate administrator to resolve them before they

result in a legitimate access being delayed or denied.

The objective of this thesis is therefore to describe a collection of new techniques for

efficiently demonstrating that access should be granted in a distributed access-control sys-

tem based on formal logic. Rather than devising a proving strategy customized to each

application, we would prefer to develop a general proof-building strategy that is effective in

a wide range of applications. Our approach consists of three components: (1) distributed

proof construction to reduce the number of times a remote party must be contacted to con-

struct a proof, (2) techniques for incorporating human guidance into the proof-construction

process in a way that does not result in dramatic increases in computation, and (3) the
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use of data mining techniques to identify and resolve misconfigurations in access-control

policy before they result in legitimate access being delayed or denied. The following thesis

statement summarizes our contributions.

Thesis statement: Access-control systems that require each request to in-

clude a formal proof of compliance with access-control policy can be made ef-

ficient enough for practical deployment through the use of distributed proving

algorithms. These proof-construction algorithms leverage human intuition and

provide guidance to users when policy changes are necessary.

We validate our techniques using experience and data drawn from the Grey system [13],

which is a testbed environment where proof-based access control is used to control access

to both physical resources (e.g., door access) and information resources (e.g., computer

logins). The system has been deployed at Carnegie Mellon University for over two and a

half years, guards access to about 35 resources spanning two floors of our office building,

and is used daily by over 35 users. In this deployment, smartphones are used as the

vehicle for constructing proofs and soliciting consent from users for the creation of new

credentials, and the cellular network is the means by which these smartphones communicate

to retrieve needed proofs of subgoals. To our knowledge, the techniques presented in this

thesis represent the first cohesive strategy for satisfying the requirements detailed in the

preceding paragraphs.

1.1 Distributed Proof Construction

In a distributed access-control system, it is often necessary to request credentials from

remote parties to demonstrate that access should be granted. As described above, these

requests may be time consuming, and it is therefore desirable to minimize the number of

such requests needed to construct a proof. In Chapter 2, we introduce a distributed proof-

construction strategy and show that this strategy is more efficient than prior approaches

in terms of network requests. Prior to our initial publication of these techniques [14], all

works of which we are aware employed what we call an eager strategy, in which the party

that needs to submit the proof∗ (the reference monitor or requesting client) generates it

singlehandedly, retrieving only credentials from others when necessary. Instead, here we

advocate a lazy strategy, in which a party attempting to gain access to a resource enlists

the help of others to prove particular subgoals in the larger proof—versus merely retrieving

credentials from them—yielding a proof that is assembled in a more distributed fashion.

∗In contrast to our goals here, most systems do not submit a formal proof, but (possibly informal)
evidence that a request should be granted.
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A variant of this distributed approach to proof construction was concurrently proposed by

Minami and Kotz [62] in the domain of context-sensitive authorization and subsequently

adopted by PeerAccess [72]. Section 2.4 describes these works in further detail.

There are compelling reasons to depart from the eager strategy employed in previous

works. Fundamentally, the eager strategy places a burden on the proof-construction strat-

egy to request credentials without knowledge of what credentials are available or will be

signed. As such, in systems where authority may be delegated dynamically and at user

discretion, an eager strategy may request a credential from a user that the user will be

unwilling to sign because it conveys too much authority, or that conveys too little authority

and so dooms the user to be interrupted again later. For example, an access-control policy

requiring Alice says action(X) in order to perform X (e.g., open a door) can be satisfied by

a request Bob says action(X) if Alice signs Bob speaksfor Alice. However, as this conveys

far more authority to Bob than merely the authority to perform X—namely, the ability to

perform any action on behalf of Alice—Alice may refuse to sign it. Similarly, asking Alice

for a weak credential, e.g., KAlice signed (Bob says action(X) ⊃ Alice says action(X)),

precludes Alice from making more general statements that will save her from being inter-

rupted later to approve another action Y for Bob. For example, Alice might instead add

Bob to a group (e.g., KAlice signed (Bob speaksfor Alice.Students)) to which she has al-

ready delegated the right to perform X (e.g., Alice says (Alice.Students says action(X)

⊃ Alice says action(X))) as well as other actions. From this, Alice can then assemble a

proof of Alice says (Bob says action(X) ⊃ Alice says action(X)), which is exactly what

was needed. More importantly, Alice need not be contacted the next time Bob needs to

prove access to a resource to which Alice.Students are authorized.

As such, we advocate a distributed (lazy) proving strategy, whereby (continuing our ex-

ample) Bob asks Alice to prove the subgoal (Alice says (Bob says action(X) ⊃ Alice says

action(X))). In addition to permitting Alice more flexibility in choosing how to prove this

(if she chooses to at all), we show empirically that this approach can have significant per-

formance and usability benefits in a system that uses a tactical theorem prover to assemble

this proof. In particular, we demonstrate using an access-control policy for physical access

at our institution that the lazy approach we advocate requires significantly fewer messages

to be sent, which consequently reduces the number of interruptions to users to approve and

respond to requests. We also describe extensions to lazy proving that further improve these

measures, even when compared to the same improvements applied to an eager strategy, and

reduce overheads to practical levels. While some of these extensions, notably caching, have

been explored elsewhere, we demonstrate that caching must be used in unintuitive ways to

achieve its potential. These empirical improvements are achieved despite the fact—which
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we prove here—that our lazy strategy will always succeed in completing a proof when the

eager approach would.

1.2 Techniques for Efficient Proof Construction

In many cases, the credentials known to the principal attempting to gain access to a resource

may be insufficient to prove that the access is authorized. The needed credentials may exist

only on a distant node, or they may not exist at all due to an omission in the specified

access-control policy. The prover’s behavior in such situations can have a dramatic impact

on the users’ perception of the system.

For example, if Bob requests that Alice assist in the proof-construction process, the

request may ultimately incur a social cost by, e.g., interrupting Alice during a meeting or

waking her in the middle of the night. As a result, some requests cannot be made without

human approval. Furthermore, if there are principals other than Alice who could also

render assistance (e.g., the head of Alice’s department), Bob may possess insight as to which

principal is most appropriate to contact. This implies that the proof-construction strategy

should incorporate human guidance so as to avoid following avenues that are unlikely to

succeed or are socially unacceptable.

If Alice’s policy prevents her from constructing a proof in response to Bob’s request,

the prover could simply fail. This, however, does not tell the Alice why the process failed,

or what credential she must create to authorize Bob’s access. Instead, it is preferable

for the prover to identify the needed credential and suggest it to Alice. This helps Alice

understand why the process failed, and gives her a means of implementing the needed policy

if she desires.

Additionally, the prover should not solicit input from the user if a proof can be con-

structed from locally known credentials. The rationale for this requirement is obvious.

However we will see that, when combined with the other requirements, it significantly im-

pacts the manner in which the must prover explore the space of possible solutions.

To address these requirements, we combine a number of new and existing techniques into

a proof-generation strategy that is qualitatively different from those proposed by previous

works. Building upon the distributed proving framework introduced in Chapter 2, we show

that our strategy offers dramatic improvements in the efficiency of proof construction rel-

ative to straightforward implementations, consequently making such systems significantly

more useable in practice. As before, our strategy will find proofs whenever previous algo-

rithms would (and sometimes even when they would not). Our method builds from three

key principles. First, our method strategically delays pursuing “expensive” subgoals until,

through further progress in the proving process, it is clear that these subgoals would be
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helpful to prove. Second, our method precomputes delegation chains between principles in

a way that can significantly optimize the proving process on the critical path of an access.

Third, our method eliminates the need to hand-craft tactics, a fragile and time-intensive

process, to efficiently guide the proof search. Instead, it utilizes a new, systematic approach

to generating tactics from the inference rules of the logic.

We evaluate the performance of our algorithm on policies drawn from our deployment

and on larger, synthetically generated policies in Section 3.6. Additionally, we show em-

pirically that the quantity of precomputed state remains reasonable and the performance

advantage of our approach remains or increases as the policy grows. Our approach has

applications beyond the particular setting in which we describe it; we briefly discuss one

such application in Section 3.7.

1.3 Detecting and Resolving Policy Misconfigurations

At some point, each of us has had a request to access a resource be denied that should have

been granted. Such events are typically the result of a misconfiguration of access-control

policy. Resolving these misconfigurations usually involves a human user to confirm that

policy should be modified to permit the requested access. Misconfigurations are therefore

often disruptive and time-consuming, and can be especially frustrating if the person who

can change the policy cannot be reached when access is needed.

As a result, identifying and correcting misconfigurations before they result in the de-

nial of a legitimate access request is essential to improving the usability of any access-

control system. Eliminating all such misconfigurations in advance of accesses is arguably

an unattainable goal (unless we invent a technique for reading users’ minds). In Chap-

ter 4, we set out to show, however, that many such misconfigurations can be eliminated

in advance. Eliminating a misconfiguration is a two-step process: first we must identify a

potential misconfiguration, then attempt to resolve it by contacting the most appropriate

human.

Identifying misconfigurations Intuitively, identifying misconfigurations is possible be-

cause in most practical settings there is significant similarity in the policy that governs

access to related resources. Consequently, the history of permitted accesses may shed light

on which accesses that have not yet been attempted are likely to be consistent with policy.

The method we explore for identifying access-control misconfigurations is a data-mining

technique called association rule mining [3]. This technique enables the inference of if-then

rules from a collection of multi-attribute records. Intuitively, rule mining identifies subsets

of attributes that appear in multiple records. These subsets are used to construct rules
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that suggest that if all but one of the attributes of a subset are present in a record, then

the last attribute should also be present. We employ association rule mining to identify

potential misconfigurations in access-control policy from a global view of access logs by

representing each resource that is accessed as an attribute, and the set of resources accessed

by an individual as a record. Records for which the mined rules do not hold represent

potential misconfigurations.

Resolving misconfigurations Once a potential misconfiguration has been identified, we

have to resolve the misconfiguration, which entails determining which human is best able

to correct the access-control policy. In systems where policy is governed by a single admin-

istrator, this process is straightforward. In a distributed access-control system, however, it

may not be clear which of potentially many users would be willing or able to extend the

policy to grant the access. Since user interaction has a cost (in time and user aggravation),

our technique must balance the desire to proactively resolve a misconfiguration with the

desire to avoid unnecessary user interaction.

Our proposed resolution technique again relies on past user behavior; specifically, we

determine which users have in the past created policy with respect to the particular user

or resource in question, and suggest to those users that they correct the identified mis-

configuration. In this way the misconfigurations can be resolved before they inconvenience

the users that they affect. Compared to more reactive methods that attempt to resolve a

misconfiguration only after an access that should be allowed fails, our technique can dras-

tically reduce time-of-access latency and even the total time users spend interacting with

the system without increasing the number of interruptions.

We evaluate our techniques using 16 months of data drawn from the Grey deployment.

As expected, the performance of the methods we explore can be tuned to achieve a desired

tradeoff between success in detecting and guiding the repair of misconfigurations, and the

inconvenience to users of suggesting incorrect modifications to policy. For a particular,

reasonable set of parameters, we correctly identify 58% of intended, but not yet implemented

policy, i.e., 58% of the misconfigurations in the implemented policy. Using these predictions,

our technique for resolving misconfigurations is able to proactively implement the needed

policy for 44% of accesses that would otherwise have incurred a costly time-of-access delay.

Each such correction results in significant savings in time-of-access latency. These gains are

achieved without increasing the total time users spend interacting with the system.
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1.4 Related Work

Distributed authorization has received considerable attention from the research commu-

nity. Much of the related research, however, revolves around formalizing and analyzing

the expressive power of authorization systems (c.f., [1, 6, 33, 58]), and only a fraction of

it addresses the practical details and strategies for distributing and collecting credentials.

Here we survey the landscape of related work by providing an overview of works that are

broadly applicable to the entire thesis. We compare the technical details of our techniques

to these works and to additional works that are related to an individual technique in the

chapters in which the techniques are presented. Where appropriate in this section, we refer

to a certificate as the digitally signed representation of a credential.

Taos The Taos operating system made two main contributions to distributed access con-

trol [73]: its access-control mechanism was inspired by a formal logic [2, 50]; and its access-

control mechanism was built in at the OS, rather than application, level. The former quality

inspired a greater degree of trust in the well-foundedness, and therefore correctness, of the

implementation. The latter allowed the notion of identity to be embedded at a lower level,

making it easier, for example, to reason about the security of communication channels

within the OS.

In Taos, authority is initially derived from login credentials, and then partially or fully

delegated via secure channels to other processes. A credential manager module builds,

checks, and stores the credentials as they are passed around. A component of the operating

system called the authentication agent determines whether a requesting process has the

right to execute a particular action by querying the credential manager and referring to

access-control lists (ACLs). A trusted certification authority (CA) maintains the mappings

between cryptographic keys and the names used in ACLs.

PolicyMaker and KeyNote PolicyMaker [24] is a trust-management framework that

blurs the distinction between policies and credentials by expressing them both as (possibly

signed) programs. Determining whether a policy is satisfied involves executing the policy

and the supplied credentials. Execution is local to the entity that is trying to verify whether

a request is valid.

In the general case, allowing credentials to include arbitrary programs causes the eval-

uation of these credentials to become potentially intractable. However, by imposing con-

straints on credentials (in particular, by requiring each to be executable in polynomial time,

monotonic, and authentic) it is possible to specify a polynomial-time algorithm for deter-

mining whether a set of credentials satisfies a policy [25]. These and other constraints led to

the creation of KeyNote [23], which refines the ideas of PolicyMaker into a more practical
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system. The Strongman [48] architecture provides a means of enforcing policies specified in

KeyNote in a distributed system.

Proof-Carrying Authorization The logical foundation of the Grey system is Proof-

Carrying Authorization (PCA). Appel and Felten proposed PCA as a distributed au-

thorization framework that uses a higher-order logic as a language for defining arbitrary

application-specific access-control logics [6]. The underlying higher-order logic allows the

application-specific logics to be remarkably expressive, but its lack of a decision procedure

requires clients to construct and submit a proof that their request satisfies access-control

policy. At the same time, proofs of access constructed in any application-specific logic can

easily be verified by a simple, general checker [7]. The application-specific logic used by

Grey is described in Chapter 2. In addition to Grey, PCA has also served as the foundation

for an access-control system for web pages [18] and as a means for allowing disparate public

key infrastructure technologies to interoperate [54].

Placeless Documents Balfanz et al. have developed a distributed access-control infras-

tructure for Java applications [8], one of the first implemented systems to be built around

a sound formal core. Requests to access resources are accompanied by certificates that can

be used to verify the validity of the request. The system does not specify, however, how

certificates are collected or how a requester determines which certificates should be attached

to a particular request; this is a focus of this thesis.

SD3 and QCM SD3 [45] is a trust-management system that further develops the idea

of automatically distributing and fetching certificates that was introduced in QCM [39].

SD3 is implemented as middleware, shielding users from the details of using cryptographic

primitives and certificate distribution. Unlike many other distributed authorization systems,

but similarly to our approach, it produces easily verifiable proofs of access—this makes it

possible for a potentially complex credential-collection algorithm to reside outside of the

system’s TCB. An SD3 query evaluator automatically fetches remote certificates needed to

fulfill access requests. In addition, it allows certificates to be requested using wildcards and

caches remote certificates after they have been fetched.

SPKI/SDSI SPKI 2.0 [34], a merger of the SPKI [33] and SDSI [66] efforts, is a digital-

certificate scheme that inherits the binding of privileges to keys proposed in SPKI and the

ability of SDSI to support locally defined namespaces. SPKI certificates are represented

as tuples, and can bind names to keys, names to privileges, and privileges to keys. The

authorization process for SPKI involves verifying the validity of certificates, translating the
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uses of names to a canonical form, and computing the intersection of the privileges described

in authorization tuples.

SPKI has been modeled in formal logic [1, 57, 41], and has been implemented as an

access-control mechanism for web pages [28, 61]. In the implemented system, the web

server presents a web browser with the ACL protecting a requested page. It is the browser’s

responsibility to provide the server with a set of certificates which can be used to verify the

browser’s authority. The Greenpass system [38] modifies existing access-control methods

for wireless networks to use SPKI credentials to allow users to delegate access to visitors.

Automated trust negotiation The scenario in which automated trust negotiation (ATN)

protocols (e.g., [55, 21]) operate differs from that of standard authorization protocols in that

the principal requesting access may not be willing to reveal particular credentials (or in-

dividual attributes of those credentials) to the resource monitor. The principal requesting

access maintains a policy that governs what sensitive attributes may be revealed, as well as

to whom and under what conditions they may be revealed. An ATN protocol must not only

determine if the requesting principal has sufficient authority to access the resource, but also

if the resource monitor is authorized to view all of the credentials that demonstrate that

the access request should be granted. All ATN protocols of which we are aware support

negotiations involving only two parties (the requesting principal and the resource monitor).

Context-sensitive authorization The objective of context-sensitive authorization (cf.

[4]) is to permit access-control systems to make decisions on the basis of contextual informa-

tion, such as the user’s location. The sources of this information may be distributed across

distant components of the system, and similarly to ATN, some of this information may be

sensitive and should not be disseminated widely. Minami and Kotz describe a distributed

algorithm for constructing a proof that access should be granted [62]. The Minami and

Kotz technique allows sensitive credentials to be encrypted so that they can only be seen

by the party in possession of the corresponding decryption key. This limits the disclosure

of the credential as long as the recipient is trustworthy. The drawback to this approach is

that the validity of a proof may not be self-evident; in situations where credentials are only

disclosed to selected parties, these parties must be trusted to correctly derive facts from

the private credentials without revealing the derivation itself. This implies that the proof

construction algorithm must be part of the trusted computing base, whereas in the PCA

approach, only the proof checker need be trusted.

Alternative access-control logics While a complete taxonomy of research in access-

control logics is outside the scope of this thesis, we survey a few here. RT [58, 56] is a family
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of languages based on constraint Datalog that blend several desirable properties of role-based

access control [68] and trust management [25]. In particular, Li et al. developed a centralized

algorithm for discovering credential chains (the equivalent of proofs in our terminology)

in an environment with a distributed credential store [59]. Li et al. define Datalog with

constraints, which improves upon previous Datalog-based languages by allowing, among

other things, the definition of structured resources (such as a folder hierarchy).

Becker and Sewell designed Cassandra [19], which is language that is also based on

Datalog with constraints. They illustrate the practical significance of Cassandra’s expres-

siveness by modelling policies for a national health-care system. SecPAL [20] demonstrates

that further gains in expressiveness are possible using Datalog with constraints. Dillaway

presents an access-control system for grid computing that was implemented using Sec-

PAL [31]. DKAL [40] is an authorization language expressed in existential fixed-point logic

rather than Datalog with constraints. This allows DKAL to be strictly more expressive

than SecPAL without increasing the complexity of query evaluation. The focus of SecPAL

and DKAL is the development of a new language; as such, they rely on external mechanisms

to ensure that the needed credentials are present to evaluate a query.

In contrast to most authorization logics, which reason about time using an external

mechanism, DeYoung et al. describe an authorization logic that explicitly models time [30].

They show that existing PCA-based systems can be implemented in their logic. However,

the impact on efficiency of considering time during the proof search is not explored.

1.5 Thesis Structure

This thesis is structured as follows. Chapter 2 introduces and evaluates our distributed

approach to proof construction. These techniques were previously published [14]; this thesis

expands upon those results through additional analysis found in Section 2.3.7. Chapter 3

introduces and evaluates our techniques for efficiently constructing a proof in a manner that

addresses several usability requirements. These techniques were previously published [15,

16]; this thesis includes additional evaluation regarding tabling (Section 3.6.3) and large

caches (Section 3.6.4). Chapter 4 introduces and evaluates our techniques for detecting and

resolving misconfigurations. These techniques were previously published [17]; this thesis

additionally measures the performance of these techniques using partial data in Section 4.3.

Chapter 5 contains concluding remarks.
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Chapter 2

Distributed Proof Construction

In this chapter, we present a distributed algorithm for assembling a proof that a request

satisfies an access-control policy expressed in a formal logic, in the tradition of Lampson et

al. [50]. In prior work, a single party constructed the entire proof and requested credentials

from other parties as needed. This lead to scenarios in which the party constructing the

proof must request credentials without knowledge of what credentials exist or what cre-

dentials a remote party may be willing to create. We refer to this approach as the eager

strategy. In contrast, here we propose a distributed or lazy strategy in which multiple par-

ties collaborate to construct a proof. We show analytically that the lazy strategy succeeds in

assembling a proof whenever a prover utilizing the eager strategy would do so. In addition,

we show empirically that our algorithm significantly reduces the communication required

to assemble a proof, which has direct implications in terms of both scalability and usability.

We show that when combined with additional optimizations including caching and auto-

matic tactic generation, which we introduce here, our algorithm retains its advantage, while

achieving markedly improved performance. The techniques presented in this chapter serve

as a foundation for the efficient, usable proving techniques that are used daily in the Grey

deployment and are presented in Chapter 3.

The remainder of this chapter is structured as follows. We cover background in access-

control logics and tactical theorem proving in Section 2.1. We detail our approach to

distributed proof generation in Section 2.2. We evaluate our approach empirically and

introduce optimizations including caching and automatic tactic generation in Section 3.6.

We expand upon our previous publication of these results [14] through additional discussion

of automatic tactic generation (Section 2.3.5) and practical considerations of our techniques

(Section 2.3.7). We discuss related work in Section 2.4. We conclude in Section 2.5.

27
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2.1 Background

To be able to precisely discuss the constructions of proofs of access, we first need to define

a logic that will allow us to describe our access-control scenarios. The access-control logic

we will use is straightforward and developed in the style of Lampson et al. [50]. However,

we emphasize that our techniques are not specific to this logic.

2.1.1 Access-Control Logic

Our access-control logic is inhabited by terms and formulas. The terms denote principals

and strings, which are the base types of our logic.

The key constructor elevates strings representing public keys to the status of principals.

For example, if pubkey is a particular public key, then key(pubkey) is the principal that

corresponds to that key.

Principals may want to refer to other principals or to create local name spaces—this

gives rise to the notion of compound principals. We will write Alice.secretary to denote

the principal whom Alice calls “secretary.”

More formally, the terms of our logic can be described as follows:

t ::= s | p

p ::= key(s) | p.s

where s ranges over strings and p principals.

The formulas of our logic describe principals’ beliefs. If Alice believes that the formula

F is true, we write Alice says F . To indicate that she believes a formula F is true, a

principal signs it with her private key—the resulting sequence of bits will be represented

with the formula pubkey signed F .

To describe a resource that a client wants to access, we introduce the action constructor.

The first parameter to this constructor is a string that describes the resource. To allow for

unique resource requests, the second parameter of the action constructor is a nonce. A

principal believes the formula action(resource ,nonce) if she thinks that it is OK to access

resource during the session identified by nonce . We will usually omit the nonce in informal

discussion and simply say action(resource).

Delegation is described with the speaksfor and delegate predicates. The formula

Alice speaksfor Bob indicates that Bob has delegated to Alice his authority to make access-

control decisions about any resource. delegate( Bob,Alice, resource) transfers to Alice only

the authority to access the particular resource called resource .
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The formulas of our logic are described by the following syntax:

φ ::= s signed φ′ | p says φ′

φ′ ::= action (s, s) | p speaksfor p |

delegate(p, p, s)

where s ranges over strings and p principals.

Note that the says and signed predicates are the only formulas that can occur at top

level. The inference rules for manipulating formulas are straightforward and are as follows:

pubkey signed F

key(pubkey) says F (says-i)

A says (A.S says F )

A.S says F (says-ln)

A says (B speaksfor A) B says F

A says F (speaksfor-e)

A says (B speaksfor A.S) B says F

A.S says F (speaksfor-e2)

A says (delegate(A, B,U )) B says (action(U, N))

A says (action(U,N)) (delegate-e)

While simple, this logic is sufficiently expressive to represent many practical policies.

Bauer et al. found that when controlling access to physical resources, users were able to

implement policies using this logic that more accurately represented their intentions than

they could using traditional keys [11].

2.1.2 Tactical Theorem Provers

To gain access to a resource controlled by Bob, Alice must produce a proof of the formula

Bob says action(resource). To generate such proofs automatically, we use a theorem prover.

One common strategy used by automated theorem provers, and the one we adopt

here, is to recursively decompose a goal (in this case, the formula Bob says action(

resource)) into subgoals until each of the subgoals can be proved. Goals can be decom-

posed by applying inference rules. For example, the speaksfor-e rule allows us to prove

Bob says action(resource) if we can derive proofs of the subgoals Bob says (Alice speaksfor

Bob) and Alice says action(resource).
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Attempting to prove a goal simply by applying inference rules to it often leads to ineffi-

ciency or even nontermination. Instead of blindly applying inference rules, tactical theorem

provers use a set of tactics to guide their search. Roughly speaking, each tactic corresponds

either to an inference rule or to a series of inference rules. Each tactic is a tuple (P, q),

where P is a list of subgoals and q the goal that can be derived from them. Each successful

application of a tactic yields a list of subgoals that remain to be proved and a substitution

that instantiates the free variables of the original goal. Suppose, for example, that the

speaksfor-e inference rule was a tactic which we applied to Bob says action(resource).

In this tactic the names of principals are free variables (i.e., A and B rather than Bob and

Alice), so the produced substitution list would include the substitution of Bob for the free

variable A (Bob/A). A certificate is represented as a tactic with no subgoals; we commonly

refer to such a tactic as a fact. In practice, facts would only be added to the set of tactics

after verifying the corresponding digital certificate.

2.2 Distributed Proof Generation

2.2.1 Proving Strategies

In traditional approaches to distributed authorization, credentials are distributed across

multiple users. A single user (either the requester of a resource or its owner, depending

on the model) is responsible for proving that access should be allowed, and in the course

of proving the user may fetch credentials from other users. All users except for the one

proving access are passive; their only responsibility is to make their credentials available for

download.

We propose a different model: each user is both a repository of credentials and an active

participant in the proof-generation process. In this model, a user who is generating a proof

is now able to ask other users not only for their certificates, but also to prove for him

subgoals that are part of his proof. Each user has a tactical theorem prover that he uses to

prove both his own and other users’ goals. In such a system there are multiple strategies

for creating proofs.

Eager The traditional approach, described above, we recast in our environment as the

eager strategy for generating proofs: a user eagerly keeps working on a proof until the only

parts that are missing are credentials that she can download. More specifically to our logic,

to prove that she is allowed access to a resource controlled by Bob, Alice must generate a

proof of the formula Bob says action(resource). The eager approach is for Alice to keep ap-

plying tactics until the only subgoals left are of the form A signed F and then query the user

A for the certificate A signed F . In Alice’s case, her prover might suggest that a simple way
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of generating the desired proof is by demonstrating Bob signed action(resource), in which

case Alice will ask Bob for the matching certificate. For nontrivial policies, Alice’s prover

might not know of a particular certificate that would satisfy the proof, but would instead

try to find any certificate that matches a particular form. For example, if Bob is unwilling

to provide Alice with the certificate she initially requested, Alice might ask him for any

certificates that match Bob signed (A speaksfor Bob), indicating that Bob delegated his

authority to someone else. If Bob provided a certificate Bob signed (Charlie speaksfor Bob),

Alice’s prover would attempt to determine how a certificate from Charlie would let her finish

the proof.

Lazy An inherent characteristic of the eager strategy is that Alice’s prover must guess

which certificates other users might be willing to contribute. The guesses can be confirmed

only by attempting to download each certificate. In any non-trivial security logic (that is,

almost any logic that allows delegation), there might be many different combinations of

certificates that Bob and others could contribute to Alice that would allow her to complete

the proof. Asking for each of the certificates individually is very inefficient. Asking for them

in aggregate is impractical—for example, not only might a principal such as a certification

authority have an overwhelming number of certificates, but it’s unlikely that a principal

would always be willing to release all of his certificates to anyone who asks for them.

With this in mind, we propose the lazy strategy for generating proofs. Recall that

credentials (A signed F ) imply beliefs (A says F ). The typical reason for Alice to ask Bob

for a credential Bob signed F is so that she could use that credential to demonstrate that

Bob has a belief that can lead to Alice being authorized to perform a particular action. Alice

is merely guessing, however, that this particular credential exists, and that it will contribute

to a successful proof.

The lazy strategy is, instead of asking for Bob signed F , to ask Bob to prove Bob says F .

From Alice’s standpoint this is a very efficient approach: unlike in the eager strategy, she

won’t have to keep guessing how (or even whether) Bob is willing to prove Bob says F ;

instead she will get the subproof (or a negative answer) with exactly one request. From

Bob’s standpoint the lazy approach also has clear advantages: Bob knows what certificates

he has signed, so there is no need to guess; he simply assembles the relevant certificates

into a proof. Additionally, Bob is able to select certificates in a manner that conveys to

Alice exactly the amount of authority that he wishes. This is particularly beneficial in an

interactive system, in which Bob the person (as opposed to Bob the network node) can be

asked to generate certificates on the fly.

In the lazy strategy, then, as soon as Alice’s theorem prover produces a subgoal of the

form A says F , Alice asks the node A (in the above example, Bob) to prove the goal for
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her. In other words, Alice is lazy, and asks for assistance as soon as she finds a subgoal that

might be more easily solved by someone else. In Section 3.6 we demonstrate empirically

the advantages of the lazy strategy.

Our prover assumes a cooperative environment in which a malicious node may easily

prevent a proof from being found or cause a false proof to be generated. Our system adopts

the approach of prior work (e.g., [6, 45]), in which the reference monitor verifies the proof

before allowing access, which means that these attacks will merely result in access being

denied.

2.2.2 A General Tactical Theorem Prover

We introduce a proving algorithm that, with minor modifications, can produce proofs in

either a centralized (all certificates available locally) or distributed manner (each node

knows all of the certificates it has signed). The distributed approach can implement either

the eager or the lazy strategy. We will use this algorithm to show that both distributed

proving strategies will successfully produce a proof in all cases in which a centralized prover

can produce a proof.

Our proving algorithm, which is derived from a standard backward chaining algorithm

(e.g., [67, p.288]), is shown in Figure 2.1. The proving algorithm, bc-ask, takes as input a

list of goals, and returns either failure, if all the goals could not be satisfied, or a substitution

for any free variables in the goals that allows all goals to be satisfied simultaneously. The

algorithm finds a solution for the first goal and recursively determines if that solution can

be used to produce a global solution. bc-ask proves a goal in one of two fashions: locally, by

applying tactics from its knowledge base (Figure 2.1, lines 15–20); or remotely, by iteratively

asking for help (lines 10–14).

The helper function subst takes as parameters a substitution and a formula, returning

the formula after replacing its free variables as described by the substitution. compose takes

as input two substitutions, θ1 and θ2, and returns a substitution θ′ such that subst(θ′,F )

= subst(θ2, subst(θ1, F )). rpcl takes as input a function name and parameters and re-

turns the result of invoking that function on the machine with address l. We assume

that the network does not modify or delete data, and that all messages arrive in a finite

amount of time. unify takes as input two formulas, F1 and F2, and determines if a sub-

stitution θ exists such that subst(θ, F1) = subst(θ, F2), i.e., it determines if F1 and F2 can

be made equivalent through free-variable substitution. If such a substitution exists, unify

returns it. A knowledge base, KB , consists of a list of tactics as described in Section 2.1.2.

determine-location decides whether a formula F should be proved locally or remotely and, if

remotely, by whom. Figure 2.2 shows an implementation of determine-location for the lazy

strategy; an implementation for the eager strategy can be obtained by removing line 1 and
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0 global set KB /* knowledge base */

1 substitution bc-ask( /* returns a substitution */
list goals , /* list of conjuncts forming a query */
substitution θ, /* current substitution, initially empty */
set failures) /* set of substitutions that are known

not to produce a complete solution */
2 local substitution answer /* a substitution that solves all goals */
3 local set failures ′ /* local copy of failures */
4 local formula q′ /* result of applying θ to first goal */

5 if (goals = [ ] ∧ θ ∈ failures) /* θ known not to produce global
then return ⊥ * solution */

6 if (goals = [ ]) /* base case, solution has been found */
then return θ

7 q′ ← subst(θ, first(goals))

8 l← determine-location(q′) /* prove first goal locally or remotely? */
9 failures ′ ← failures

10 if (l 6= localmachine)
11 while ((α← rpc

l
(bc-ask(first(goals), θ, failures ′))) 6= ⊥) /* make remote request */

12 failures ′ ← α ∪ failures ′ /* prevent α from being returned again */
13 answer ← bc-ask(rest(goals), α, failures) /* prove remainder of goals */
14 if (answer 6= ⊥) then return answer /* if answer found, return it */

15 else foreach (P, q) ∈ KB /* investigate each tactic */
16 if ((θ′ ← unify(q, q′)) 6= ⊥) /* determine if tactic matches first goal */

17 while ((β ← bc-ask(P, compose(θ′, θ), failures ′)) 6= ⊥) /* prove subgoals */

18 failures ′ ← β ∪ failures ′ /* prevent β from being returned again */
19 answer ← bc-ask(rest(goals), β, failures) /* prove remainder of goals */
20 if (answer 6= ⊥) then return answer /* if answer found, return it */

21 return ⊥ /* if no proof found, return failure */

Figure 2.1: bc-ask, our proving algorithm

removing the if-then clause from line 2. When bc-ask is operating as a centralized prover,

determine-location always returns localmachine .

When proving a formula F locally, bc-ask will iterate through each tactic in the knowl-

edge base. If a tactic matches the formula being proved (line 16), bc-ask will attempt to

prove all the subgoals of that tactic (line 17). If the attempt is successful, bc-ask will use the

resulting substitution to recursively prove the rest of the goals (line 19). If the rest of the

goals cannot be proved with the substitution, bc-ask will attempt to find another solution

for F and then repeat the process.



34 CHAPTER 2. DISTRIBUTED PROOF CONSTRUCTION

0 address determine-location(q) /* returns machine that should prove q */
1 θ ← unify(q, “A says F”) /* unify with constant formula

* “A says F” ... */
2 if (θ = ⊥) /* ... or with “A signed F” */

then θ ← unify(q, “A signed F”)
3 if (θ = ⊥ ∨ is-local(subst(θ, “A”)))

then return localmachine

4 else /* instantiate A to a principal, then return
return name-to-addr(subst(θ, “A”)) * the corresponding address */

Figure 2.2: Algorithm for determining the target of a request

The algorithm terminates when invoked with an empty goal list. If the current solution

has been marked as a failure, bc-ask returns failure (⊥) (line 5). Otherwise, bc-ask will

return the current solution (line 6).

Note that this algorithm does not explicitly generate a proof. However, it is straight-

forward to design the goal and tactics so that upon successful completion a free variable in

the goal has been unified with the proof [18].

We proceed to show that all of the strategies proposed thus far are equivalent in their

ability to generate a proof.

Theorem 1 For any goal G, a distributed prover using tactic set T will find a proof of G

if and only if a centralized prover using T will find a proof of G.

For the full proof, please see Appendix A.1. Informally: By close examination of the

algorithm, we show by induction that bc-ask explores the same proof search space whether

operating as a centralized prover or as a distributed prover. In particular, the centralized

and distributed prover behave identically except when the distributed prover asks other

nodes for help. In this case, we show that the distributed prover iteratively asks other

nodes for help (lines 10–14) in exactly the manner that a centralized prover would consult

its own tactics (lines 15–20).

Corollary 1 For any goal G, a lazy prover using tactic set T will find a proof of G if an

eager prover using tactic set T will find a proof of G.

Proof Sketch Lazy and eager are both strategies for distributed proving. By Theorem 1, if

a lazy prover finds a proof of goal G, then the centralized prover will also find a proof of G,

and if a centralized prover can find a proof of G then an eager prover will also. 2

2.2.3 Distributed Proving with Multiple Tactic Sets

So far we have only considered systems in which the tactic sets used by all principals are

identical. This is only realistic when all resources are in a single administrative domain. It
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is possible, and indeed likely, that different domains may use a different sets of tactics to

improve performance under different policies. It is also likely that different domains will

use different security logics, which would also necessitate different sets of tactics.

In this more heterogeneous scenario, it is more difficult to show that a distributed prover

will terminate. Since each prover is allowed to use an arbitrary set of tactics, asking a prover

for help could easily lead to unproductive cycles of expanding and reducing a goal without

ever generating a proof. Consider the following example: Alice has a tactic that will prove

Alice says (Bob says F ) if Alice has a proof of Bob says F . However, Bob has the opposite

tactic: Bob will say F if Bob has a proof of Alice says (Bob says F ). If Bob attempts to

prove Bob says F by asking Alice for help, a cycle will develop in which Bob asks Alice

to prove Alice says (Bob says F ), prompting Alice to ask Bob to prove the original goal,

Bob says F .

In order to force the system to always terminate, we must impose an additional con-

straint—a request-depth limiter that increments a counter before each remote request, and

decrements it after the request terminates. The counter value is passed along with the

request, so that the remote prover can use the value during subsequent requests. When the

counter exceeds a preset value, the prover will return false, thus breaking any possible cycles.

While it is possible that this modification will prevent the prover from discovering a proof,

in practice the depth of a proof is related to the depth of the policy, which is bounded. Even

in this environment, we would like to show that distributed proof generation is beneficial.

As a step towards this, we introduce the following lemma:

Lemma 1 A locally terminating distributed prover operating in an environment where

provers use different tactic sets, in conjunction with a request-depth limiter, will terminate

on any input.

Proof Sketch We construct a prover bc-ask′ that will operate in a scenario with multiple

tactic sets by removing the else statement from Line 15 of bc-ask, causing Lines 16–20 to

be executed regardless of the outcome of Line 10. If the request depth is greater than the

maximum, Line 11 will immediately return failure. If the request depth is less than the

maximum, we use induction over the recursion depth of bc-ask′ to show that Lines 11 and

17 terminate, which means that bc-ask′ terminates. 2

Although it is necessary that a distributed prover terminate when operating under

multiple tactic sets, our goal is to show that such a prover can prove a larger set of goals

than any node operating on its own. This is accomplished by forcing the distributed prover

to attempt to locally prove any goals for which a remote request failed.
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Theorem 2 A locally terminating distributed prover operating in an environment where

provers use different tactic sets, in conjunction with a request-depth limiter, will prove at

least as many goals as it could prove without making any requests.

Proof Sketch We define a localized prover LP to be a prover that does not interact with

other principals, and DP to be a distributed prover as described above. We want to show

that if LP can find a proof of a goal G, then DP can find a proof as well. Both LP and DP

use bc-ask′ which we construct from bc-ask by removing the else statement from Line 15,

causing Lines 16–20 to be executed regardless of the outcome of Line 10. Indirectly from

Lemma 1, the call on line 11 will always terminate, which means that lines 10–14 will

terminate. If lines 10–14 produce a solution, we are done. If lines 10–14 do not produce a

solution, DP will try to find a solution in the same manner as LP . We use induction to

show that the results of further recursive calls will be identical between the scenarios, which

means that DP will produce a solution if LP does. 2

2.3 Empirical Evaluation

To demonstrate the performance benefits of lazy proving, we have undertaken a sizeable

empirical study; we present the results here.

We implemented our proving algorithm in Prolog, taking advantage of Prolog’s built-in

backward chaining. We simulated a distributed prover using a single Prolog instance by

augmenting each fact in the prover’s cache with an extra field that indicates the node to

which the fact is known. Our implementation maintains the identity of the “local” node;

that is, the node that is currently attempting to construct a proof. Only a single node may

be local at any given time, and the prover may only use cached entries known to the local

node. When the prover makes a remote request, the identity of the local node is changed

to the recipient of the request. We note that our techniques are specific neither to Prolog

nor to our choice of tactics and could be implemented in other automated theorem proving

environments (e.g., [65]).

2.3.1 Constructing a Policy

One of the difficulties in evaluating distributed authorization systems is the lack of well-

defined policies with which they can be tested. In the absence of such policies, it is often

hard to conjecture how the performance of a system on simple example policies would relate

to the performance of the same system if used in practice.

To remedy this problem, we first undertook to map the physical access-control policy

for rooms in our department’s building (Figure 2.3). The policy reflects the hierarchical

structure of authority in our department, which, as hierarchy is a recurring theme in human
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Figure 2.3: The authorization scheme for
physical space in Hamerschlag Hall, home of
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Engineering Department
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Figure 2.4: The authorization scheme for
Hamerschlag Hall, modified for use in an
digital access-control system

organization, leads us to believe that our policy approximates the policies employed by many

other organizations. A close examination of this policy reveals that it contains elements that

would be superfluous in a digital access-control system. For example, delegation of authority

is conveyed either through physical tokens (the key issuer gives a user a key) or through

the organizational hierarchy (the head of the department delegates to the floor manager

the responsibility of managing access to all the rooms on a floor, but doesn’t provide him

with a physical token). In a digital access-control policy, delegation of authority is always

explicitly represented; furthermore, in the digital domain it is unnecessary to have a policy

include elements, such as the Key Issuer and Smart Card Issuer, whose sole purpose is the

distribution of physical tokens. At the same time, a practical digital policy requires the

mapping of keys to names. Universities typically have a registrar’s office that performs

similar bookkeeping; we add to the registrar the duties of a local certification authority.

Another characteristic of physical access-control policies used in practice is the difficulty

in maintaining the separation between users and the roles they inhabit (for example, the

role of department head and the person who has that position). In a digital system, where

delegation of authority is always explicit, this separation is easier to manage. Due to the

importance of the university’s key, we split it into a master key and a signing key. The

private portion of the master key is intended to be kept offline and used only to periodically

designate new signing keys. Figure 2.4 illustrates our derived policy.
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We chose to structure the authorization hierarchy from the university to individual users

as a complete tree. We describe a policy with a (j, k, l) tree to indicate that there are j

department heads, k floor managers under each department head, and l users under each

floor manager. We test our algorithms with several different (j, k, l) trees. We chose to use

complete trees for simplicity only; the results obtained from unbalanced trees did not differ

substantially. Specifically, we constructed 20 unbalanced trees with 253 principals each by

randomly removing 216 nodes from a complete (3,5,30) tree. The performance of the initial

access with both forms of caching enabled decreased by up to 4%, with an average decrease

of 2%.

Each of the policies protecting a room requires that the university approve access to

it (e.g., key(KCMU ) says action(room15)). The proof that a user may access the room

is based on a chain of certificates leading from KCMU to the user himself. The proof also

shows which inference rules (of the logic described in Section 2.1.1) need to be applied

to the certificates and in what order to demonstrate that the certificates imply that ac-

cess should be granted. Figure 2.5 shows an example proof that allows UserC to access

resource , a resource controlled by KCMU . In this example, the goal that must be proved

is key(KCMU ) says action(resource ,nonce). P1–P11 represent the necessary certificates,

and Lines 0–25 constitute the proof.

In our simulations, a certificate similar to P3–P5 is generated for each principal. Each

department head is given authority over each resource in the corresponding department

via certificates similar to P6, and the job of department head is assigned to a particular

user via a certificate similar to P7; each floor manager position is similarly created and

populated by certificates such as P8–P9; and each user authorized to use resource receives

a certificate similar to P10. Finally, every user attempting to access a resource creates a

certificate similar to P11.

2.3.2 Evaluation Criteria

The primary criteria we use to evaluate the performance of the two proving strategies

detailed in Section 2.2 is the number of requests made while attempting to construct a

proof. Since requests in our system may ultimately cause an actual user to be queried

to approve the creation of a certificate, the number of requests roughly approximates the

required level of user interaction. Additionally, since much of the communication may be

between devices with high-latency connections (such as cell phones connected via GPRS),

the number of requests involved in generating a proof will be one of the dominant factors

in determining the time necessary to generate a proof.

When running the simulations, the only principals who access resources are those located

in the lowest level in the hierarchy. The resources they try to access are rooms on their
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P1 = KCMU signed (key(KCMUS
) speaksfor key(KCMU ))

P2 = KCMU signed (key(KCMUCA
) speaksfor key(KCMU ).CA)

P3 = KCMUCA
signed (key(KUserA) speaksfor key(KCMU ).CA.UserA)

P4 = KCMUCA
signed (key(KUserB) speaksfor key(KCMU ).CA.UserB)

P5 = KCMUCA
signed (key(KUserC) speaksfor key(KCMU ).CA.UserC)

P6 = KCMUS
signed (delegate(key(KCMU ), key(KCMU ).DH 1, resource))

P7 = KCMUS
signed (key(KCMU ).CA.UserA speaksfor key(KCMU ).DH 1)

P8 = KUserA signed (delegate(key(KCMU ).DH 1, key(KCMU ).DH 1.FM 1, resource))
P9 = KUserA signed (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH1.FM 1)

P10 = KUserB signed (delegate(key(KCMU ).DH 1.FM 1, key(KCMU ).CA.UserC, resource))

P11 = KUserC signed (action(resource , nonce))

0 says-i(P1) key(KCMU ) says (key(KCMUS
) speaksfor key(KCMU ))

1 says-i(P2) key(KCMU ) says (key(KCMUCA
) speaksfor key(KCMU ).CA)

2 says-i(P3) key(KCMUCA
) says (key(KUserA) speaksfor key(KCMU ).CA.UserA)

3 says-i(P4) key(KCMUCA
) says (key(KUserB) speaksfor key(KCMU ).CA.UserB)

4 says-i(P5) key(KCMUCA
) says (key(KUserC) speaksfor key(KCMU ).CA.UserC)

5 speaksfor-e2(1, 2) key(KCMU ).CA says (key(KUserA) speaksfor key(KCMU ).CA.UserA)
6 speaksfor-e2(1, 3) key(KCMU ).CA says (key(KUserB) speaksfor key(KCMU ).CA.UserB)
7 speaksfor-e2(1, 4) key(KCMU ).CA says (key(KUserC) speaksfor key(KCMU ).CA.UserC)

8 says-i(P7) key(KCMUS
) says (key(KCMU ).CA.UserA speaksfor key(KCMU ).DH 1)

9 speaksfor-e(0, 8) key(KCMU ) says (key(KCMU ).CA.UserA speaksfor key(KCMU ).DH 1)

10 says-i(P9) key(KUserA) says (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH 1.FM 1)
11 speaksfor-e2(5, 10) key(KCMU ).CA.UserA says (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH 1.FM 1)
12 speaksfor-e2(9, 11) key(KCMU ).DH 1 says (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH 1.FM 1)

13 says-i(P6) key(KCMUS
) says delegate(key(KCMU ), key(KCMU ).DH 1, resource)

14 speaksfor-e(0, 13) key(KCMU ) says delegate(key(KCMU ), key(KCMU ).DH 1, resource)

15 says-i(P8) key(KUserA) says delegate(key(KCMU ).DH 1, key(KCMU ).DH 1.FM 1, resource)
16 speaksfor-e2(5, 15) key(KCMU ).CA.UserA says delegate(key(KCMU ).DH 1,

key(KCMU ).DH 1.FM 1, resource)
17 speaksfor-e2(9, 16) key(KCMU ).DH 1 says delegate(key(KCMU ).DH 1,key(KCMU ).DH 1.FM 1, resource)

18 says-i(P10) key(KUserB) says delegate(key(KCMU ).DH 1.FM 1,key(KCMU ).CA.UserC, resource)
19 speaksfor-e2(6, 18) key(KCMU ).CA.UserB says delegate(key(KCMU ).DH 1.FM 1,

key(KCMU ).CA.UserC, resource)
20 speaksfor-e2(12, 19) key(KCMU ).DH 1.FM 1 says delegate(key(KCMU ).DH 1.FM 1,

key(KCMU ).CA.UserC, resource)

21 says-i(P11) key(KUserC) says action(resource ,nonce)
22 speaksfor-e2(7, 21) key(KCMU ).CA.UserC says action(resource , nonce)
23 delegate-e(20, 22) key(KCMU ).DH 1.FM 1 says action(resource , nonce)
24 delegate-e(17, 23) key(KCMU ).DH 1 says action(resource , nonce)
25 delegate-e(14, 24) key(KCMU ) says action(resource , nonce)

Figure 2.5: Proof of key(KCMU ) says action(resource, nonce)
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Eager No Cache Positive &
Negative Cache
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(1,1,1) 6 37 0 20 0
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(2,2,10) 49 706 409.5 177.5 94.3
(2,4,10) 93 1398 810.5 334.5 184.5
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Tree Principals Requests stdev Requests stdev

(1,1,1) 6 28 0 16 0
(2,1,1) 9 61 33 27.5 11.5
(2,2,2) 17 141 80.1 44.5 20.4
(2,2,10) 49 397 227.4 92.5 48.0
(2,4,10) 93 781 450.1 164 88.2
(2,4,30) 253 2061 1189.1 404 226.7

Figure 2.6: Performance of initial access with different caching strategies

floor to which they are allowed access. Unless otherwise specified, the performance results

reflect the average over all allowed combinations of users and resources.

2.3.3 First Access

Figure 2.6 shows the average number of requests made by each proving strategy when first

attempting to prove access to a resource. On average, lazy outperforms eager by between

25% and 45%, with the performance difference growing wider on larger authorization trees.

However, the number of requests made is far too large for either strategy to be used in

a practical setting. Upon further investigation, we discovered that more than half of all

requests are redundant (that is, they are repetitions of previous requests), indicating that

caching would offer a significant performance benefit.

Our initial intuition was to cache proofs of all successful subgoals found by the prover.

However, as Figure 2.6 indicates, caching the results of successful proof requests offers

surprisingly little performance benefit. We discovered that most of the redundant requests

will, correctly, result in failure; that is, most of the redundant requests explore avenues that

cannot and should not lead to a successful access. We modified the caching mechanism to

cache failed results as well as positive results (also shown in Figure 2.6). This reduced the

number of queries by up to 75% for both strategies.

2.3.4 Effects of Caching on a Second Access

Since all of the results discovered by the eager strategy are cached only by the principal who

accessed the resource, the cache is of no benefit when another principal attempts to access a

resource. The lazy scheme distributes work among multiple nodes, each of which can cache

the subproofs it computes. In the lazy scheme, access of the same or a similar resource by a

second, different principal will likely involve nodes that have cached the results of previous
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(2,1,1) 9 34.5 14.5 34.5 14.5
(2,2,2) 17 65.5 29.8 65.5 32.0
(2,2,10) 43 177.5 94.3 177.5 96.5
(2,4,10) 93 334.5 184.5 334.5 186.6
(2,4,30) 253 894.5 507.8 894.5 509.9

Lazy First Access Second Access
Tree Principals Requests stdev Requests stdev

(2,1,1) 9 27.5 11.5 15.5 10.5
(2,2,2) 17 44.5 20.4 21.1 16.3
(2,2,10) 43 92.5 48.0 47.1 37.7
(2,4,10) 93 164 88.2 85.1 69.4
(2,4,30) 253 404 226.7 218.3 179.3

Figure 2.7: Performance of subsequent access to a different resource by a different principal

accesses. This enables the lazy strategy to take advantage of caching in a way that the

eager strategy cannot, resulting in significant performance gains. To compute the average

performance, we ran the simulation for every possible combination of principals making

the first and second access. Figure 2.7 shows that the average case eager performance in

the second access is identical to its performance in the first attempted, as expected. The

figure also shows that caching on interior nodes in the lazy strategy decreases the number

of requests made by the second access by approximately a factor of 2. The result is that

lazy completes the second access with approximately one-fourth the number of requests of

eager.

2.3.5 Automatic Tactic Generation

Caching subgoals and certificates is clearly helpful when subsequent requests are identical to

previous requests. Often, however, the second and subsequent accesses will have different

proof goals, in which case caching will be of limited use even if there is great similarity

between the two proofs. To take advantage of the similar shape of different proofs, we

introduce automatic tactic generation (ATG).

Automatic tactic generation remembers the shape of previously computed proofs while

abstracting away from the particular certificates from which the proofs are built. In order

to leverage the knowledge of the proof shape gained during the first access, the prover

must cache a proof that is not fully instantiated. The proof is stripped of references to

particular resources and nonces; these are replaced by unbound variables. The certificates

that were part of the proof, similarly abstracted, become the subgoals of a new tactic.

The stripped proof is the algorithm for assembling the now-abstracted certificates into a

similarly abstracted goal. This allows any future access attempt to directly search for

certificates pertaining to that resource without generating intermediate subgoals.
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Figure 2.8: Sequential access of four resources by same principal in a (2,4,10) tree

A common scenario in which automatic tactic generation is very useful is when attempt-

ing to access several rooms on the same floor. The policies protecting each of the rooms are

likely to be very similar, since they probably belong to the same organizational unit and

share the same administrator. Pure caching is not likely to help much because the rooms

are all named differently, and proof of access explicitly mentions the resource for which it

was generated. However, automatic tactic generation allows proofs to be computed very

efficiently, as shown in Figure 2.8. After an initial access, ATG allows both the eager and

the lazy strategy to complete subsequent proofs for different resources with a minimal num-

ber of requests. ATG is particularly effective in scenarios where proof search may result in

requests to many principals. In scenarios where there are significantly fewer principals to

ask, or users are cognizant of the shape of the policy, other heuristics or user intuition may

be equally effective.

Should ATG fail to construct a proof, the standard proving algorithm must be run. In

this case, each additional tactic constructed by ATG adds overhead to the proof search.

As such, in scenarios where few proofs share a common shape, ATG could also produce

a large number of tactics that are rarely useful, and the additional overhead incurred by

applying tactics may negate the benefit of knowing the correct generalization. ATG should

be disabled in scenarios where this problem occurs.

ATG can be viewed as a specific instance of explanation-based generalization (EBG) [64],

which seeks to form generalized concepts from a single training example and domain knowl-

edge. The contribution of ATG is to determine the scenarios in which it is useful to construct

generalizations. We have found that generalizing proofs of intermediate subgoals produces

such a large number of tactics that the overhead of considering each of these tactics as part

of the proof search negates their benefit. As such, ATG constructs only the generalizations

that we found to be useful, that is, generalizations of complete proofs of access.
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1-125 8.55 1.93
126-250 1.04 0.25
251-375 0.52 0.12
376-500 0.48 0.10
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876-1000 0.16 0.04
1001-1125 0.10 0.04
1126-1250 0.07 0.03
1251-1375 0.05 0.02
1376-1500 0.03 0.02

Figure 2.9: Average of 10 simulations with 1500 random accesses in a (4,4,25) tree

In addition to reducing the number of requests, ATG can also improve the computational

efficiency of proof search. As ATG abstracts the nonce from previous proofs, it can quickly

find proofs for repeated accesses to the same resource using cached credentials. Thus, if

the standard proof-construction strategy is inefficient, ATG can reduce the computation

required by bypassing the inefficient search process. Our deployment benefited from ATG

in this manner until it began relying on the techniques described in Chapter 3.

2.3.6 Simulating a User’s Experience in a Deployed System

The results thus far clearly demonstrate the benefits of the lazy strategy in controlled sce-

narios. A more practical scenario, which we explore here, may involve many users accessing

different resources in somewhat arbitrary order and frequency.

In this scenario, we have chosen to use a (4,4,25) tree to represent an initial deployment

at a medium-sized organization. In a (4,4,25) tree, there are four department heads, each

with four floor managers. Each floor has 25 residents, for a total of 400 users who will be

accessing resources. The system controls access to the main door to the building, security

doors on each of the sixteen floors, and 400 offices: one for each user. Each of these principals

has access to his office, the floor on which his office resides, and the building’s main door.

We show the performance for the first 1500 accesses that occur in this system. Each access

is made by a randomly chosen principal to one of the three resources which he can access

(again chosen at random). This scenario was too large to be simulated exhaustively, so

instead we show the average of ten runs.

Figure 2.9 shows the performance of the system with all optimizations enabled, measured

both as the average number of requests each principal has to answer per access attempt, and

the total number of requests per access attempt. In this more realistic scenario, the lazy

strategy continues to do well. During the first interval of 125 accesses, the lazy strategy is
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at least three times more efficient in the number of requests made. In subsequent intervals,

caching and ATG quickly reduce the number of requests to minimal levels for both strategies.

The greatest load on the system will occur in the initial stages of deployment, which is the

stage at which the lazy strategy offers the greatest benefit.

2.3.7 Discussion

Several aspects of our distributed proving algorithm bear further consideration; we discuss

them here.

Cache Size Larger caches require more memory and cause unification (our cache-lookup

mechanism) to become slower. Here we consider the cache size of the root of the policy

hierarchy (e.g., CMU in Figure 2.4), as it is likely to be among the largest of any cache in the

system. This is an artifact of the lazy strategy; the root node is likely to receive a request

for assistance corresponding to many first-time accesses. By providing assistance, the root

node’s cache will learn of the credentials needed to prove that each access is granted. The

widespread use of ATG would reduce the number of proof requests directed to the root

node; here we disable ATG so as to measure the worst-case scenario.

We measured the size of the root node’s cache in a (10,10,50) tree (containing over 5000

users) after every user accessed all permitted resources. In this scenario, the root node’s

cache will contain 29,832 credentials, 4,910 positive facts, and 11 negative facts. The digital

certificates that encapsulate the credentials would occupy approximately 37 MB of storage,

based on an average certificate size of 1,302 bytes observed on our deployment’s root node.

However, the only logical representation of credential needs to be loaded into memory in

order to construct proofs. Including both credentials and facts, the logical representation

of the root node’s cache (which must be resident in memory) occupies approximately 5MB.

An implicit assumption of this work is that requests for assistance are much slower than

cache lookups. As cache lookups become slower as the size of the cache increases, there

will ultimately be a point at which the cache becomes so large that this assumption will

no longer hold. However, as requests for assistance may involve user interaction, we feel

that this assumption will hold for systems of realistic size. We will perform a more in-

depth analysis of the effects of caching after introducing the proof-construction techniques

of Chapter 3.

Unnecessary requests As described, the positive cache contains only the proofs and

corresponding credentials received in response to requests for assistance. It is possible that

the credentials present in cache may be used to derive other formulas that are not cached.

Since the lazy strategy never reasons about another principal’s beliefs, a situation could arise
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in which Bob has the credentials necessary to prove CMU says F , but will nevertheless ask

CMU for assistance. Chapter 3 discusses techniques that address this problem.

Applicability of negative cache Negative caching is useful in any scenario that involves

redundant requests, but it is particularly effective in scenarios where the proof search is both

exhaustive and automated, i.e., the scenario simulated above. However, in scenarios where

requests for assistance are directed by humans (such as that of Chapter 3), there is likely

to be less inefficiency in the search process. Humans may leverage their memory to avoid

making identical requests, and their intuition to effectively direct queries for assistance and

to determine when further search is futile. In such scenarios, negative caching could be used

to discourage users from exploring avenues of proof search that have not been successful in

the past, but a user should be given the option to override negative cache if she believes

that a request that failed in the past is now likely to succeed (due to, e.g., the user receiving

a promotion).

Consistency As with any form of caching, maintaining the consistency of the cache is

a concern. Inconsistencies can arise in two ways: issued credentials are revoked, and new

credentials are created that allow the derivation of formulas that were previously added to

the negative cache. Mechanisms, such as the one presented by Minami and Kotz [63], can

propagate updates though a system where cached entries depend on one another. However,

this can only limit the duration of the cache inconsistency. This is a fundamental problem

in distributed systems: the CAP theorem states that consistency, availability, and tolerance

of network partitions cannot be achieved simultaneously [37]. We designed our system to

remain available in the presence of partitions (due to, e.g., a device losing connectivity,

a software crash, or an unavailable user), which implies that some degree of inconsistency

must be tolerated. If requirements dictate that changes to the validity of facts be propagated

instantly, the system can remain available only as long as all nodes are online.

If credentials are being rapidly issued and revoked, it is possible that a proof could

be derived from credentials that were all valid at some point during the interval in which

the proof was constructed, but were never valid simultaneously. Lee and Winslett refer

to this as incremental consistency [53]. They provide algorithms that achieve stronger

consistency guarantees through the use of commitments and additional validation steps. Lee

et al. extend this work to provide consistency guarantees in context-sensitive environments

where privacy concerns may result in portions of the proof tree remaining hidden [52]. Our

system could incorporate these techniques in scenarios where incremental consistency is

insufficient.
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Human interaction An exhaustive search involves querying many principals that can

potentially render assistance. Some principals, such as the root node or certification author-

ity, are likely to be hosted on servers and to respond to requests automatically. However,

many users may wish to respond to requests manually so that omissions in authored policy

can be resolved before they lead to access being denied. As described in this chapter, an

exhaustive search could involve interrupting many of these users with requests that they

are unwilling to grant, thus diminishing the overall usability of the system.

In practice, this problem could be addressed by a combination of techniques. First, a

user could indicate that the principal requesting assistance should not do so again, even

for different resources or on behalf of other users requesting access. The principal request-

ing assistance would then create negatively cached facts general enough to describe the

user’s preference. Additionally, it is likely that the user attempting to gain access to a

resource has some intuition as to which other user is most likely to render assistance. The

proof-construction technique can incorporate this intuition to direct queries to the most ap-

propriate principal without performing an exhaustive search. We have found this technique

to be very effective in our deployment, though the increased user interaction poses new

requirements as to how the prover should explore the search space on a single node prior

to requesting assistance. We explore these requirements and our techniques for addressing

them in the following chapter.

2.4 Related Work

In this section, we focus on the mechanisms by which related works make access-control

decisions in a distributed system. These mechanisms fall, roughly speaking, into two cate-

gories: remote credential retrieval and distributed reasoning.

Remote credential retrieval Several existing distributed access-control systems sup-

port distributed knowledge bases by using a centralized algorithm to identify potentially

useful credentials, then initiating queries to remote parties to retrieve those credentials if

they exist. We highlight a few systems that utilize this approach here. Binder [29], Poli-

cyMaker [24], and KeyNote [25, 23], provide general languages for defining access-control

policy in a distributed scenario. Signed credentials allow the policy to be transported

between nodes, but the mechanisms for accomplishing this are left unspecified. In fact, gen-

eralizing credentials in the style of PolicyMaker may as a side effect make it more difficult to

determine how to go about locating a missing credential. Although credentials contain code

to be executed and can be authored by different entities, the credentials are all collected by

and executed in the local environment of the entity that is evaluating a policy. Hence, at
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evaluation time a credential cannot take advantage of any specialized knowledge present in

the environment of the node on which the credential originated.

Placeless Documents defines a logic for enforcing access-control for distributed Java

applications [8], but does not specify how remote credentials are to be retrieved. Once

retrieved, however, credentials are cached by the recipient of the credential. SPKI is a

syntax for digital certificates dealing with authentication [34] that has been used to imple-

ment access control for web pages [61] and wireless networks [38] in a manner that allows

credentials to be collected from remote servers. RT is a language for defining trust where

the provided search algorithm for evaluating access-control decisions is capable of retrieving

remote credentials [59]. Winsborough and Li adapted this technique to retrieve credentials

in an automated trust negotiation protocol [71].

SD3 is a distributed trust-management framework that extends the evaluation tech-

niques of QCM [39, 46] and utilizes both a push and a pull model for migrating credentials

between parties [45]. In addition, SD3 allows certificates to be requested using wildcards

and caches remote certificates after they have been fetched. In this chapter, we investigate

more powerful methods for fetching the needed certificates while allowing the authors of

the certificates more control over which certificates are used.

Bauer et al. use the proof-carrying authorization framework [6] to guard access to web

content; the client’s theorem prover will retrieve remote credentials in the course of proof-

generation as needed [18]. Cassandra provides a general framework for specifying distributed

multi-domain policies and supports remote credential retrieval from locations specified in

the credential [19]. SecPAL [20] and DKAL [40] improve upon the expressibility of Cas-

sandra, while continuing to allow for the retrieval of remote credentials. The Strongman

architecture specifies policy as KeyNote programs; credentials are stored on designated

repositories, and clients download the needed certificates from the repository prior to re-

questing access [48]. Zhang et al. developed a usage-control authorization system for col-

laborative applications [78] in which access-control decisions are made continuously based

on credentials from distant sources. They investigate various mechanisms for efficiently

retrieving needed credentials, but the process that reasons about these credentials runs on

a single node.

Our work differs from the works described above in that, instead of collecting individual

credentials from remote parties, our approach involves these parties in the reasoning process

itself.

Distributed reasoning The second category of systems, which has received substan-

tially less attention in literature, supports distributed reasoning about access-control poli-

cies. This approach allows the remote retrieval of subproofs rather than credentials, which
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we showed substantially reduces the number of remote requests necessary to complete a

proof. Minami et al. use this approach for context-sensitive authorization queries [62], and

extend it to provide distributed cache consistency in the face of certificate revocation [63].

Alpaca supports the assembly of a proof from a collection of subproofs constructed by dis-

tant parties, but does not specify how these proofs are to be collected [54]. The notion of

distributed proof construction is supported by PeerAccess [72] and MultiTrust [77]. Peer-

Access relies on proof hints to direct queries, whereas MultiTrust relies on query routing

rules. It is not clear how either proof hints or query routing rules would be created in a

practical system. In contrast, our algorithm directs queries on the basis of the goal that

the algorithm is attempting to prove.

2.5 Conclusion

In this chapter we introduced a new distributed approach to assembling access-control

proofs. The strength of our approach is that it places the burden of proving a statement on

the party who is most likely to have (or be willing to create) credentials relevant to proving it.

In contrast, prior approaches asked the prover to guess credentials that might be available,

thereby inducing greater numbers of attempted retrievals and user interruptions. In addition

to these advantages, we showed empirically that this approach responds very well to caching

and to a new optimization, automatic tactic generation. We achieve these advances with no

loss in proving power: our distributed approach completes a proof whenever a centralized

approach that uses certificate retrieval would do so.

The techniques presented here are designed for and evaluated in an environment where

proof search is automated and an exhaustive search is desired. This does not, however,

immediately yield a system that is practical in all scenarios. In particular, human interaction

may be required to, e.g., request assistance, create a new credential, or terminate the search

early. Chapter 3 describes the usability requirements imposed by such a scenario, and shows

how they impact the manner in which the proof-construction algorithm should search for

proofs. The distributed approach to proof construction presented in this chapter should be

viewed as as a fundamental building block that enables us to develop the efficient, user-

centric proof-construction strategies described in Chapter 3.



Chapter 3

Efficient Proving for Practical

Distributed Access-Control

Systems

In this chapter, we present a new technique for generating a formal proof that an access

request satisfies access-control policy, for use in logic-based access-control frameworks. Our

approach is tailored to settings where credentials needed to complete a proof might need to

be obtained from, or reactively created by, distant components in a distributed system. Our

techniques build upon the distributed proof construction strategy described in Chapter 2 by

specifying in detail how those techniques are to be used in environment where human factors

weigh significantly upon proof construction. In such contexts, our approach substantially

improves upon previous proposals in both computation and communication costs, and better

guides users to create the most appropriate credentials in those cases where the needed

credentials do not yet exist. At the same time, our strategy offers strictly superior proving

ability, in the sense that it finds a proof in every case that previous approaches would (and

more). We detail our method and evaluate an implementation of it using both policies in

active use in an access-control testbed at our institution and larger policies indicative of a

widespread deployment.

The contributions of this chapter are to: (1) identify the requirements of a proving algo-

rithm in a distributed access-control system with dynamic credential creation (Section 3.1);

(2) propose mechanisms for precomputing delegation chains (Section 3.4) and systematically

generating tactics (Section 3.5.2); (3) describe a technique for utilizing these pre-computed

results to find proofs in dramatically less time than previous approaches (Section 3.5); and

(4) evaluate our technique on a collection of policies representative of those used in prac-

tice (Section 3.6.1) and those indicative of a larger deployment (Section 3.6.2). In addition
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to the results we previously published [15], this chapter evaluates our techniques in an

environment with tabling (Section 3.6.3) and explores the potential side effects of our tech-

niques (Section 3.6.4). In Section 3.7, we discuss the use of our techniques in the context

of additional logics, systems, and applications.

3.1 Goals and Contributions

In this chapter, we will describe new techniques for generating proofs in an authorization

logic that an access request is consistent with access-control policy. It will be far easier to

discuss our approach in the context of a concrete authorization logic, and for this purpose we

utilize the sample logic described in Section 2.1.1. However, our techniques are not specific

to this logic, or even necessarily to a logic-based system; rather, they can be adapted to

a wide range of authorization systems provided that they build upon a similar notion of

delegation, as discussed in Section 3.7.

3.1.1 Requirements

To motivate our requirements, we use as an example a simple policy in use on a daily basis

in our system. This policy is chosen for illustrative purposes; the performance advantage of

our technique actually widens as the policy becomes more complicated (see Section 3.6.2).

All the resources in our example are owned by our academic department, and so to ac-

cess a resource (resource) one must prove that the department has authorized the access

(Dept says open(resource)).

Alice is the manager in charge of a machine room with three entrances: door1, door2,

and door3. To place her in charge, the department has created credentials giving Alice

access to each door, e.g., KDept signed delegate( Dept,Alice, door1). Alice’s responsibilities

include deciding who else may access the machine room. Instead of individually delegating

access to each door, Alice has organized her security policy by (1) creating a group Alice.

machine-room; (2) giving all members of that group access to each door (e.g., KAlice signed

delegate(Alice,Alice.machine-room, door1)); and, finally, (3) making individuals like Bob

members of the group (KAlice signed ( Bob speaksfor Alice.machine-room)).

Suppose that Charlie, who currently does not have access to the machine room, wishes

to open one of the machine-room doors. When his smartphone contacts the door, it is

told to prove Dept says open(door1). The proof is likely to require credentials created by

the department, by Alice, and perhaps also by Bob, who may be willing to redelegate the

authority he received from Alice.

Previous approaches to distributed proof generation (notably [14] and [62]) did not

attempt to address three requirements that are crucial in practice. Each requirement may
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appear to be a trivial extension of some previously studied proof-generation algorithm.

However, straightforward implementation attempts suffer from problems that lead to greater

inefficiency than can be tolerated in practice, as will be detailed below.

Credential creation Charlie will not be able to access door1 unless Alice, Bob, or

the department creates a credential to make that possible. The proof-generation algo-

rithm should intelligently guide users to create the “right” credential, e.g., KAlice signed (

Charlie speaksfor Alice.machine-room), based on other credentials that already exist. This

increases the computation required, as the prover must additionally investigate branches of

reasoning that involve credentials that have not yet been created.

Exposing choice points When it is possible to make progress on a proof in a number

of ways (i.e., by creating different credentials or by asking different principals for help),

the choice points should be exposed to the user instead of being followed automatically.

Exposing the choice points to the user makes it possible both to generate proofs more

efficiently by taking advantage of the user’s knowledge (e.g., Charlie might know that Bob

is likely to help but Alice isn’t) and to avoid undesired proving paths (e.g., bothering Alice

at 3AM with a request to create credentials, when she has requested she not be). This

increase in overall efficiency comes at a cost of increased local computation, as the prover

must investigate all possible choice points prior to asking the user.

Local proving Previous work showed that proof generation in distributed environments

was feasible under the assumption that each principal attempted to prove only the for-

mulas pertaining to her own beliefs (e.g., Charlie would attempt to prove formulas like

Charlie says F , but would immediately ask Bob for help if he had to prove Bob says G) [14].

In our example, if Charlie asks Alice for help, Alice is able to create sufficient credentials to

prove Dept says open(door1), even though this proof involves reasoning about the depart-

ment head’s beliefs. Avoiding a request to the department head in this case improves the

overall efficiency of proof generation, but in general requires Alice to try to prove all goals for

which she would normally ask for help, again increasing the amount of local computation.

The increase in computation imposed by each requirement may seem reasonable, but

when implemented as a straightforward extension of previous work, Alice’s prover running

on a Nokia N70 smartphone will take over 5 minutes to determine the set of possible ways

in which she can help Charlie gain access. Using the technique described in this paper,

Alice is able to find the most common options (see Section 3.5.2) in 2 seconds, and is able

to find a provably complete set of options in well less than a minute.
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3.1.2 Insights

We address the requirements outlined in Section 3.1.1 with a new distributed proving strat-

egy that is both efficient in practice and that sacrifices no proving ability relative to prior

approaches. The insights embodied in our new strategy are threefold and we describe them

here with the help of the example from Section 3.1.1.

Minimizing expensive proof steps In an effort to prove Dept says open(door1),

suppose Charlie’s prover directs a request for help to Alice. Alice’s prover might decompose

the goal Dept says open(door1) in various ways, some that would require the consent of the

user Alice to create a new credential (e.g., Alice says Charlie speaksfor Alice.machine-room)

and others that would involve making a remote query (e.g., to Dept, since this is Dept’s

belief). We have found that naively pursuing such options inline, i.e., when the prover first

encounters them, is not reasonable in a practical implementation, as the former requires too

much user interaction and the latter induces too much network communication and remote

proving.

We employ a delayed proof procedure that vastly improves on these alternatives for

the policies we have experimented with in practice. Roughly speaking, this procedure

strategically bypasses formulas that are the most expensive to pursue, i.e., requiring either

a remote query or the local user consenting to signing the formula directly. Each such

formula is revisited only if subsequent steps in the proving process show that proving it

would, in fact, be useful to completing the overall proof. In this way, the most expensive

steps in the proof process are skipped until only those that would actually be useful are

determined. These useful steps may be collected and presented to the user to aid in the

decision-making process. This is done by our delayed distributed proving algorithm, which

is described in Section 3.5.1.

Precomputing delegation chains A second insight is to locally precompute and cache

delegation chains using two approaches: the well-studied forward chaining algorithm [67]

and path compression, which we introduce here. Unlike backward chaining, which recur-

sively decomposes goals into subgoals, these techniques work forward from a prover’s avail-

able credentials (its knowledge base) to derive both facts and metalogical implications of

the form “if we prove Charlie says F , then we can prove David says F”. By computing

these implications off the critical path, numerous lengthy branches can be avoided during

backward chaining. While these algorithms can theoretically produce a knowledge base

whose size is exponential in the number of credentials known, our evaluation indicates that

in practice most credentials do not combine, and that the size of the knowledge base in-

creases roughly linearly with the number of credentials (see Section 3.6.2). As we discuss



3.2. PROPOSED APPROACH 53

in Section 3.5.2, the chief challenge in using precomputed results is to effectively integrate

them in an exhaustive time-of-access proof search that involves hypothetical credentials.

If any credential should expire or be revoked, any knowledge derived from that cre-

dential will be removed from the knowledge base. Each element in the knowledge base is

accompanied by an explicit derivation (i.e., a proof) of the element from credentials. Our

implementation searches the knowledge base for any elements that are derived from ex-

pired or revoked credentials and removes them. Our technique is agnostic to the underlying

revocation mechanism.

Systematic tactic generation Another set of difficulties in constructing proofs is related

to constructing the tactics that guide a backward-chaining prover in how it decomposes a

goal into subgoals. One approach to constructing tactics is simply to use the inference rules

of the logic as tactics. With a depth-limiter to ensure termination, this approach ensures

that all possible proofs up to a certain size will be found, but is typically too inefficient for

use on the critical path of an access because it may enumerate all possible proof shapes. A

more efficient construction is to hand-craft a set of tactics by using multiple inference rules

per tactic to create a more specific set of tactics [35]. The tactics tend to be designed to

look for certain types of proofs at the expense of completeness. Additionally, the tactics

are tedious to construct, and do not lend themselves to formal analysis. While faster than

inference rules, the hand-crafted tactics can still be inefficient, and, more importantly, often

suffer loss of proving ability when the policy grows larger or deviates from the ones that

inspired the tactics.

A third insight of the approach we describe here is a new, systematic approach for

generating tactics from inference rules. This contribution is enabled by the forward chaining

and path compression algorithms mentioned above. In particular, since our prover can rely

on the fact that all delegation chains have been precomputed, its tactics need not attempt to

derive the delegation chains directly from credentials when generating a proof of access. This

reduces the difficulty of designing tactics. In our approach, an inference rule having to do

with delegation gives rise to two tactics: one whose chief purpose is to look up previously

computed delegation chains, and another that identifies the manner in which previously

computed delegation chains may be extended by the creation of further credentials. All

other inference rules are used directly as tactics.

3.2 Proposed Approach

The prover operates over a knowledge base that consists of tactics, locally known creden-

tials, and facts that can be derived from these credentials. The proving strategy we propose



54 CHAPTER 3. EFFICIENT PROVING FOR PRACTICAL SYSTEMS

consists of three parts. First, we use the existing technique of forward chaining to ex-

tend the local knowledge base with all facts that it can derive from existing knowledge

(Section 3.3). Second, a path-compression algorithm (which we introduce in Section 3.4)

computes delegation chains that can be derived from the local knowledge base but that

cannot be derived through forward chaining. Third, a backward-chaining prover uses our

systematically generated tactics to take advantage of the knowledge generated by the first

two steps to efficiently compute proofs of a particular goal (e.g., Dept says open(door1))

(Section 3.5).

The splitting of the proving process into distinct pieces is motivated by the observation

that if Charlie is trying to access door1, he is interested in minimizing the time between

the moment he indicates his intention to access door1 and the time he is able to enter.

Any part of the proving process that takes place before Charlie attempts to access door1 is

effectively invisible to him. By completely precomputing certain types of knowledge, the

backward-chaining prover can avoid some costly branches of investigation, thus reducing

the time the user spends waiting.

3.3 Forward Chaining

Forward chaining (FC) is a well-studied proof-search technique in which all known ground

facts (true formulas that do not contain free variables) are exhaustively combined using

inference rules until either a proof of the formula contained in the query is found, or the

algorithm reaches a fixed point from which no further inferences can be made. We use

a variant of the algorithm known as incremental forward chaining [67] in which state is

preserved across queries, allowing the incremental addition of a single fact to the knowledge

base. The property we desire from FC is completeness—that it finds a proof of every formula

for which a proof can be found from the credentials in the knowledge base (KB). More

formally:

Theorem 3 After each credential f ∈ KB has been incrementally added via FC, for any

p1 . . . pn ∈ KB, if (p1 ∧ . . . ∧ pn) ⊃ q then q ∈ KB.

Forward chaining has been shown to be complete for Datalog knowledge bases, which

consist of definite clauses without function symbols [67]. Many access-control logics are

a subset of, or can be translated into, Datalog (e.g., [45, 57]). Our sample security logic

is not a subset of Datalog because it contains function symbols, but we proceed to show

that in certain cases, such as ours, FC is complete for knowledge bases that contain function

symbols. The initial knowledge base may be divided into definite clauses that have premises,

and those that do not. We refer to these as rules and credentials, respectively. A fact is

any formula for which a proof exists. A term is either a constant, a variable, or a function
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applied to terms. A ground term is a term that does not contain a variable. A function

symbol, such as the successor function s() that iterates natural numbers, maps terms to

terms. Function symbols present a problem in that they may be used to create infinitely

many ground terms (e.g., as with the successor function), which in turn may cause FC to

construct an infinite number of ground facts. However, some knowledge bases may contain

function symbols yet lack the proper rules to construct an infinite number of terms.

Our sample security logic is one such knowledge base. The logic makes use of two

functions: key and dot (.). The single inference rule that applies key is only able to match

its premise against a credential. As a result, key may be applied only once per credential.

Dot is used to specify nested names, for which the depth of nesting is not constrained.

However, no inference rule has a conclusion with a nested name of depth greater than the

depth of any name mentioned in one of its premises. Therefore, the deepest nested name

possible for a given KB is the deepest name mentioned explicitly in a credential.

Completeness of forward chaining can be proven by first showing that there are a con-

stant number of ground terms, which implies that the algorithm will terminate. By ana-

lyzing the structure of the algorithm, it can be shown that when the algorithm terminates,

forward chaining has inferred all possible facts. In the class of knowledge bases described

above, there is a finite number of constants to which a finite number of functions can be

applied a finite number of times. This implies that the number of possible ground terms is

also finite. From this point, the proof of completeness is analogous to the one presented by

Russell and Norvig [67].

3.4 Path Compression

A path is a delegation chain between two principals A and B such that a proof of B says F

implies that a proof of A says F can be found. Some paths are represented directly in the

logic (e.g., B speaksfor A). Other paths, such as the path between A and C that results

from the credentials KA signed (B speaksfor A) and KB signed (C speaksfor B),

cannot be expressed directly—they are metalogical constructs, and cannot be computed by

FC. More formally, we define a path as follows:

Definition 1 A path (A says F,B says F ) is a set of credentials c1, . . . , cn and a proof P

of (c1, . . . , cn, A says F ) ⊃ B says F .

For example, the credential KAlice signed Bob speaksfor Alice will produce the path

(Bob says F, Alice says F ), where F is an unbound variable. Now, for any concrete

formula g, if Bob says g is true, we can conclude Alice says g. If Bob issues the cre-

dential KBob signed delegate(Bob,Charlie, resource), then we can construct the path

(Charlie says open(resource), Bob says open(resource)). Since the conclusion of the sec-
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0 global set paths /* All known delegation chains */
1 global set incompletePaths /* All known incomplete chains */

2 PC(credential f)
3 if (credToPath(f) = ⊥), return /* If not a delegation, do nothing. */
4 (x, y)← depends-on(f) /* If input is a third-person
5 if (((x, y) 6= ⊥) ∧ ¬((x, y) ∈ paths)) delegation, add it to incompletePaths .*/
6 incompletePaths ← incompletePaths ∪ (f, (x, y))
7 return

8 (p, q)← credToPath(f) /* Convert input credential into a path. */
9 add-path((p, q))

10 foreach (f ′, (x′, y′)) ∈ incompletePaths /* Check if new paths make any previously
11 foreach (p′′, q′′) ∈ paths encountered third-person credentials
12 if((θ ← unify((x′, y′), (p′′, q′′))) 6= ⊥) useful. */
13 (p′, q′)← credToPath(f ′)
14 add-path((subst(θ, p′), subst(θ, q′)))

15 add-path(path (p, q))
16 local set newPaths = {}
17 paths ← union((p, q), paths) /* Add the new path to set of paths. */
18 newPaths ← union((p, q),newPaths)

19 foreach (p′, q′) ∈ paths

20 if((θ ← unify(q, p′)) 6= ⊥) /* Try to prepend new path to
21 c← (subst(θ, p), subst(θ, q′)) all previous paths. */
22 paths ← union(c, paths)
23 newPaths ← union(c, paths)

24 foreach (p′, q′) ∈ paths

25 foreach (p′′, q′′) ∈ newPaths /* Try to append all new paths
26 if((θ ← unify(q′, p′′)) 6= ⊥) to all previous paths. */
27 c← (subst(θ, p′), subst(θ, q′′))
28 paths ← union(c, paths)

Figure 3.1: PC, an incremental path-compression algorithm

ond path unifies with the premise of the first, we can combine them to construct the

path (Charlie says open(resource),Alice says open(resource)). Unlike the two credentials

above, some delegation credentials represent a meaningful path only if another path al-

ready exists. For example, Alice could delegate authority to Bob on behalf of Charlie (e.g.,

KAlice signed delegate(Charlie, Bob, resource)). This credential by itself is meaningless be-

cause Alice lacks the authority to speak on Charlie’s behalf. We say that this credential

depends on the existence of a path from Alice to Charlie, because this path would give

Alice the authority to speak on Charlie’s behalf. Consequently, we call such credentials

dependent, and others independent.
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Algorithm Our path compression algorithm, shown in Figure 3.1, is divided into two

subroutines: PC and add-path. The objective of PC is to determine if a given credential

represents a meaningful path, and, if so, add it to the set of known paths by invoking

add-path. add-path is responsible for constructing all other possible paths using this new

path, and for adding all new paths to the knowledge base. The subroutine subst performs

a free-variable substitution and unify returns the most general substitution (if one exists)

that, when applied to both parameters, produces equivalent formulas.

PC ignores any credential that does not contain a delegation statement (Line 3 of Fig-

ure 3.1). If a new credential does not depend on another path, or depends on a path that

exists, it will be passed to add-path (Line 9). If the credential depends on a path that

does not exist, the credential is instead stored in incompletePaths for later use (Lines 5–7).

Whenever a new path is added, PC must check if any of the credentials in incompletePaths

are now meaningful (Lines 10–12), and, if so, covert them to paths and add the result to

the knowledge base (Lines 13–14).

After adding the new path to the global set of paths (Line 17), add-path finds the

already-computed paths that can be appended to the new path, appends them, and adds

the resulting paths to the global set (Lines 19–23). Next, add-path finds the existing paths

that can be prepended to the paths created in the first step, prepends them, and saves

the resulting paths (Lines 24–28). To prevent cyclic paths from being saved, the union

subroutine adds a path only if the path does not represent a cycle. That is, union((p, q), S)

returns S if unify(p, q) 6= ⊥, and S ∪ {(p, q)} otherwise.

3.4.1 Completeness of PC

The property we desire of PC is that it constructs all possible paths that are derivable from

the credentials it has been given as input. We state this formally below; the proof is in

Appendix A.2.

Theorem 4 If PC has completed on KB, then for any A,B such that A 6= B, if for some

F (B says F ⊃ A says F ) in the context of KB, then (B says F,A says F ) ∈ KB.

Informally: We first show that add-path will combine all paths that can be combined—

that is, for any paths (p, q) and (p′, q′) if q unifies with p′ then the path (p, q′) will be

added. We then show that for all credentials that represent a path, add-path is immediately

invoked for independent credentials (Line 9), and all credentials that depend on the existence

of another path are passed to add-path whenever that path becomes known (Lines 10–14).
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3.5 Backward Chaining

Backward-chaining provers are composed of tactics that describe how formulas might be

proved and a backward-chaining engine that uses tactics to prove a particular formula.

The backward-chaining part of our technique must perform two novel tasks. First, the

backward-chaining engine needs to expose choice points to the user. At each such point

the user can select, e.g., which of several local credentials to create, or which of several

principals to ask for help. Second, we want to craft the tactics to take advantage of facts

precomputed through forward chaining and path compression to achieve greater efficiency

and better coverage of the proof space than previous approaches.

3.5.1 Delayed Backward Chaining

While trying to generate a proof, the prover may investigate subgoals for which user inter-

action is necessary, e.g., to create a new credential or to determine the appropriate remote

party to ask for help. We call these subgoals choice subgoals, since they will not be investi-

gated unless the user explicitly chooses to do so. The distributed theorem-proving approach

of Chapter 2 attempted to pursue each choice subgoal as it was discovered, thus restricting

user interaction to a series of yes or no questions. Our insight here is to pursue a choice

subgoal only after all other choice subgoals have been identified, thus delaying the proving

of all choice subgoals until input can be solicited from the user. This affords the user the

opportunity to guide the prover by selecting the choice subgoal that is most appropriate to

pursue first.

Converting the algorithm from previous work to the delayed strategy is straightforward.

Briefly, the delayed algorithm operates by creating a placeholder proof whenever it en-

counters a choice subgoal. The algorithm then backtracks and attempts to find alternate

solutions, returning if it discovers a proof that does not involve any choice subgoals. If no

such proof is found, the algorithm will present the list of placeholder proofs to the user, who

can decide which one is most appropriate to pursue first. As an optimization, heuristics may

be employed to sort or prune this list. As another optimization, the prover could determine

whether a choice subgoal is worth pursing by attempting to complete the remainder of the

proof before interacting with the user. This algorithm will identify a choice subgoal for

every remote request made by previous approaches, and will additionally identify a choice

subgoal for every locally creatable credential such that the creation of the credential would

allow the completion of the proof from local knowledge.

We present our delayed distributed backward chaining algorithm (bc-askD, shown in

Figure 3.2) as a modification to the distributed backward chaining algorithm of Chapter 2.

For ease of presentation, bc-askD does not show additional parameters necessary to construct
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a proof term. In practice, the proof is constructed in parallel with the substitution that is

returned by bc-askD.

When we identify a choice subgoal, we construct a marker to store the parameters

necessary to make the remote request. A marker differs from a choice subgoal in that a

choice subgoal is a formula, while a marker has the same type as a proof.∗ This allows

a marker to be included as a subproof in a larger proof. For ease of formal comparison

with previous work, the algorithm we present here is only capable of creating markers for

remote subgoals; we describe a trivial modification to allow it to handle locally creatable

credentials.

bc-askD operates by recursively decomposing the original goal into subgoals. The base

case occurs when bc-askD is invoked with an empty goal, in which case bc-askD will deter-

mine if the current solution has been previously marked as a failure and return appropriately

(Lines 3–4) of Figure 3.2. For non-empty goals, bc-askD will determine if the formula rep-

resents the beliefs of a remote principal using the determine-location subroutine (Line 6),

which returns either the constant localmachine or the address of the remote principal. If

the formula is remote, rather than making a remote procedure call, we create a marker and

return (Lines 8–10).

If the formula is local or the choice subgoal represented by the remote marker was

previously investigated (indicated by the marker’s presence in failures), bc-askD will attempt

to prove the goal either directly from a credential, or via the application of a tactic to the

goal (Lines 11–12). bc-askD handles the case where the goal is directly provable from a

credential (Lines 14–18) separately from the case where it is not (Lines 19–23) only to

allow the credential to be appended to the return tuple (Line 18). When the goal is directly

provable from a credential, bc-askD first performs the same function as the base case without

recursing, then attempts to prove the remainder of the goals. If bc-askD applied a tactic, it

attempts to recursively prove the premises of that tactic (Line 19). If this results in a remote

marker, bc-askD suspends proving and returns (Line 21). Otherwise, bc-askD attempts to

recursively prove the remainder of the goals (Lines 22–23).

Locally creatable credentials We can extend bc-askD to support the creation of local

credentials by the addition of a section of code prior to Line 11 that, similarly to Lines 8–

10, creates a marker when the first goal is a locally creatable credential. Line 21 suspends

proving only for remote markers, so bc-askD will attempt to complete the proof to determine

if creating the credential will lead to a complete proof.

∗In Figure 3.2, a marker is typed as a substitution—this is because bc-askD, as shown, does not construct
proof terms. We will refer to a marker as having the same type as a proof to foster an intuition that is
consistent with the implementation.
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0 global set KB /* knowledge base */

1 〈substitution, credential[ ]〉 bc-askD(
list goals , /* list of conjuncts forming a query */
substitution θ, /* current substitution, initially empty */
set failures) /* set of substitutions that are known

not to produce a complete solution */
2 local set failures ′ /* local copy of failures */

3 if (goals = [ ] ∧ θ ∈ failures) then return ⊥ /* θ known not to produce global solution */
4 if (goals = [ ]) then return 〈θ, [ ]〉 /* base case, solution has been found */
5 q′ ← subst(θ, first(goals))

6 l ← determine-location(q′)
7 failures ′ ← failures

8 if (l 6= localmachine) /* if q′ is the belief of a remote principal */
9 m← constructMarker(first(goals), θ, failures ′)
10 if ¬(m ∈ failures ′), return 〈m, [ ]〉

11 foreach (P, q) ∈ KB /* investigate each fact, tactic */
12 if ((θ′ ← unify(q, q′)) 6= ⊥) /* determine if tactic matches first goal */
13 φ← compose(θ′, θ)
14 if (P = [ ]) /* if (P, q) represents a credential */
15 if ¬(φ ∈ failures ′)
16 failures ′ ← φ ∪ failures ′

17 〈answer , creds〉 ← bc-askD(rest(goals), φ, failures) /* prove remainder of goals */
18 if(answer 6= ⊥) return 〈answer , [creds |q]〉 /* append q to creds and return */
19 else while ((〈β, creds〉 ← bc-askD(P, φ, failures ′)) 6= ⊥) /* prove subgoals */
20 failures ′ ← β ∪ failures ′ /* prevent β from being

* returned again */
21 if (isRemoteMarker(β)), return 〈β, [ ]〉
22 〈answer , creds〉 ← bc-askD(rest(goals), β, failures) /* prove remainder of goals */
23 if (answer 6= ⊥) then return 〈answer , creds〉 /* if answer found, return it */

24 return 〈⊥, [ ]〉 /* if no proof found, return failure */

Figure 3.2: bc-askD, a delayed version of bc-ask

Suspending proving for remote markers For theoretical completeness, bc-askD must

suspend proving after the addition of a remote marker because the response to a remote

request may add credentials to the local knowledge base, which in turn may increase the

ability of bc-askD to prove of the remainder of the proof. Rather than enumerating all

possible ways in which the remainder of the proof might be proved, we simply suspend the

investigation of this branch of the proof once a remote marker has been created. If the user

decides to make a remote request then, upon receipt of the response to this request, we

will add any new credentials to the knowledge base and re-run the original query. In this

manner, multiple rounds of proving can be used to find proofs that involve more than one

choice subgoal.
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In practice, we expect that proofs requiring multiple rounds will be encountered infre-

quently—in fact, they have not arisen in our deployment. Based on the assumption that

multiple rounds are seldom necessary, we introduce an optimization in which the prover, af-

ter adding a marker, attempts to complete the remainder of the proof from local knowledge.

In this manner, we can bias the user’s decision towards choices that produce a complete

proof in a single round and away from choices that may never lead to a complete solution.

Completeness of delayed backward chaining

A delayed backward chaining prover offers strictly greater proving ability than an inline

backward chaining prover. This is stated more formally below; the proof is in Appendix A.3.

Theorem 5 For any goal G, a delayed distributed prover with local knowledge base KB will

find a proof of G if an inline distributed prover using KB will find a proof of G.

Informally: We first show that in the absence of any markers, the delayed prover will

find a proof if the inline prover finds a proof. We then extend this result to allow remote

markers, but under the assumption that any remote request made by the delayed prover will

produce the same answer as an identical remote request made by the inline prover. Finally,

we relax this assumption to show that the delayed prover has strictly greater proving ability

than the inline prover.

3.5.2 Tactics

In constructing a set of tactics to be used by our backward-chaining engine, we have two

goals: the tactics should make use of facts precomputed by FC and PC, and they should be

generated systematically from the inference rules of the logic.

If a formula F can be proved from local credentials, and all locally known credentials

have been incrementally added via FC, then, by Theorem 3, a proof of F already exists

in the knowledge base. In this case, the backward-chaining component of our prover need

only look in the knowledge base to find the proof. Tactics are thus used only when F is not

provable from local knowledge, and in that case their role is to identify choice subgoals to

present to the user.

Since the inference rules that describe delegation are the ones that indirectly give rise

to the paths precomputed by PC, we need to treat those specially when generating tactics;

all other inference rules are imported as tactics directly. We discuss here only delegation

rules with two premises; for further discussion see Section 3.7.

Inference rules about delegation typically have two premises: one that describes a dele-

gation, and another that allows the delegated permission to be exercised. Since tactics are

applied only when the goal is not provable from local knowledge, one of the premises must
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A says (B speaksfor A) B says F

A says F (speaksfor-e)

left tactic prove(A says F ) :- pathLookup(B says F , A says F ),
prove(B says F ).

right tactic prove(A says F ) :- proveWithChoiceSubgoal(A says (B speaksfor A)),
factLookup(B says F ).

Figure 3.3: Example construction of LR tactics from an inference rule

contain a choice subgoal. For each delegation rule, we construct two tactics: (1) a left tactic

for the case when the choice subgoal is in the delegation premise, and (2) a right tactic for

the case when the choice subgoal is in the other premise.† We call tactics generated in this

manner LR tactics.

The insight behind the left tactic is that instead of looking for complete proofs of the

delegation premise in the set of facts in the knowledge base, it looks for proofs among

the paths precomputed by PC, thus following an arbitrarily long delegation chain in one

step. The premise exercising the delegation is then proved normally, by recursively applying

tactics to find any remaining choice subgoals. Conversely, the right tactic assumes that the

delegation premise can be proved only with the use of a choice subgoal, and restricts the

search to only those proofs. The right tactic may then look in the knowledge base for a

proof of the right premise in an effort to determine if the choice subgoal is useful to pursue.

Figure 3.3 shows an inference rule and the two tactics we construct from that rule. All

tactics are constructed as prove predicates, and so a recursive call to prove may apply tactics

other than the two shown. The factLookup and pathLookup predicates inspect the knowledge

base for facts produced by FC and paths produced by PC. The proveWithChoiceSubgoal

acts like a standard prove predicate, but restricts the search to discard any proofs that do

not involve a choice subgoal. The particular right rule shown in Figure 3.3 can be applied

repeatedly without making progress (as the first premise unifies with the conclusion of the

rule). We employ rudimentary cycle detection to prevent repeated application of this rule

without decreasing the the theoretical proving ability of our technique. In practice, each

of these restrictions can be accomplished through additional parameters to bc-askD that

restrict what types of proof may be returned.

Optimizations to LR The dominant computational cost of running a query using LR

tactics is repeated applications of right tactics. Since a right tactic handles the case in

which the choice subgoal represents a delegation, identifying the choice subgoal involves

†For completeness, if there are choice subgoals in both premises, one will be resolved and then the prover
will be rerun. In practice, we have yet to encounter a circumstance where a single round of proving was not
sufficient.
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determining who is allowed to create delegations, and then determining on whose behalf

that person wishes to delegate. This involves exhaustively searching through all paths

twice. However, practical experience with our deployed system indicates that people rarely

delegate on behalf of anyone other than themselves. This allows us to remove the second

path application and trade completeness for speed in finding the most common proofs. If

completeness is desired, the optimized set of tactics could be run first, and the complete

version could be run afterwards. We refer to the optimized tactics as LR′. This type

of optimization is made dramatically easier because of the systematic approach used to

construct the LR tactics.

Alternative approaches to caching Naive constructions of tactics perform a large

amount of redundant computation both within a query and across queries. An apparent

solution to this problem is to cache intermediate results as they are discovered to avoid future

recomputation. As it turns out, this type of caching does not improve performance, and even

worsens it in some situations. If attempting to prove a formula with an unbound variable, an

exhaustive search requires that all bindings for that variable be investigated. Cached proofs

will be used first, but as the cache is not necessarily all-inclusive, tactics must be applied as

well. These tactics in turn will re-derive the proofs that are in cache. Another approach is to

make caching part of the proving engine (e.g., Prolog) itself. Tabling algorithms [27] provide

this and other useful properties, and have well-established implementations (e.g., http:

//xsb.sourceforge.net/). However, this approach precludes adding to cache proofs that

are discovered via different proving techniques (e.g., FC, PC, or a remote prover using a

different set of tactics). We evaluate our techniques using tabling in Section 3.6.3.

Completeness of LR

Despite greater efficiency, LR tactics have strictly greater proving ability than the depth-

limited inference rules. We state this formally below; the proof is in Appendix A.4.

Theorem 6 Given one prover whose tactics are depth-limited inference rules (IR), and a

second prover that uses LR tactics along with FC and PC, if the prover using IR tactics finds

a proof of goal F , the prover using LR tactics will also find a proof of F .

Informally: We first show show that provers using LR and IR are locally equivalent—that

is, if IR finds a complete proof from local knowledge then LR will do so as well and if IR

identifies a choice subgoal then LR will identify the same choice subgoal. We show this by

first noting that if IR finds a complete proof from local knowledge, then a prover using LR

will have precomputed that same proof using FC. We show that LR and IR find the same

choice subgoals by induction over the size of the proof explored by IR and noting that left
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tactics handle the case where the proof of the right premise of an inference rule contains a

choice subgoal and that right tactics handle the case where the the left premise contains a

choice subgoal. Having shown local equivalence, we can apply induction over the number of

remote requests made to conclude that a prover using LR will find a proof of F if a prover

using IR finds a proof of F .

3.6 Empirical Evaluation

The usability of the distributed access-control system as a whole depends on the timeliness

with which it can generate a proof of access. Proof-generation time is influenced both by the

number of requests for assistance and the amount of time it takes the local prover either to

construct a complete proof, or, if no complete proof can be found, to generate a list of choices

to give to the user. The distributed proving techniques described in Chapter 2 coupled with

the techniques described in this chapter for leveraging human intuition to direct queries are

able to minimize the number of distributed proof requests necessary to construct a proof.

Therefore, our evaluation focuses on the remaining metric: the time required by the local

prover to either construct a complete proof or a list of choices to give to the user. We also

consider the number of subgoals investigated by the prover and the size of the knowledge

base produced by FC and PC. The number of subgoals investigated represents a coarse

measure of efficiency that is independent of any particular Prolog implementation.

We compare the performance of five proving strategies: three that represent previ-

ous work and two (the combination of FC and PC with either LR or LR′) that represent

the strategies introduced here. The strategies that represent previous work are backward

chaining with depth-limited inference rules (IR), inference rules with basic cycle detection

(IR-NC), and hand-crafted tactics (HC). HC evolved from IR during our early deployment as

an effort to improve the efficiency of the proof-generation process. As such, HC represents

our best effort to optimize a prover that uses only backward chaining to the policies used

in our deployment, but at the cost of theoretical completeness.

We analyze two scenarios: the first represents the running example presented previously

(which is drawn from our deployment), and the second represents the policy described in

Chapter 2, which is indicative of a larger deployment. As explained in Section 3.6.2, these

large policies are the most challenging for our strategy.

Our system is built using Java Mobile Edition (J2ME), and the prover is written in

Prolog. We perform simulations on two devices: a Nokia N70 smartphone, which is the

device used in our deployment, and a dual 2.8 GHz Xeon workstation with 1 GB of memory.

Our Prolog interpreter for the N70 is JIProlog (http://www.ugosweb.com/jiprolog/) due to
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its compatibility with J2ME. Simulations run on the workstation use SWI-Prolog (http:

//www.swi-prolog.org/).

3.6.1 Running Example

Scenario As per our running example, Alice controls access to a machine room. We

simulate a scenario in which Charlie wishes to enter the machine room for the first time.

To do so, his prover will be asked to generate a proof of Dept says open(door1). His prover

will immediately realize that Dept should be asked for help, but will continue to reason

about this formula using local knowledge in the hope of finding a proof without making

a request. Lacking sufficient authority, this local reasoning will fail, and Charlie will be

presented with the option to ask Dept for help. Preferring not to bother the department

head, Charlie will decide to ask his manager, Alice, directly.

0 KDept signed (delegate(Dept,Alice,door1))

1 KDept signed (delegate(Dept,Alice,door2))

2 KDept signed (delegate(Dept,Alice,door3))

3 KAlice signed (delegate(Alice, Alice.machine-room, door1))

4 KAlice signed (delegate(Alice, Alice.machine-room, door2))

5 KAlice signed (delegate(Alice, Alice.machine-room, door3))

6 KAlice signed (Bob speaksfor Alice.machine-room)

7 KAlice signed (David speaksfor Alice.machine-room)

8 KAlice signed (Elizabeth speaksfor Alice.machine-room)

9 KDept signed (delegate(Dept,Alice,office))

10 KDept signed (delegate(Dept,Dept.residents,lab-door))

11 KDept signed (Alice speaksfor Dept.residents)

12 KCharlie signed open(door1)

Figure 3.4: Credentials on Alice’s phone

13 KDept signed (delegate(Dept,Dept.residents,lab-door))

14 KDept signed (Charlie speaksfor Dept.residents)

15 KCharlie signed open(door1)

Figure 3.5: Credentials on Charlie’s phone

Creating a complete proof in this

scenario requires three steps: (1) Char-

lie’s prover attempts to construct a

proof, realizes that help is necessary,

and asks Alice, (2) Alice’s phone con-

structs a proof containing a delegation

to Charlie, and (3) Charlie assembles

Alice’s response into a final proof. As

Alice’s phone holds the most compli-

cated policy, step 2 dominates the total

time required to find a proof.

Policy The policy for this scenario

is expressed in the credentials known

to Alice and Charlie, shown in Fig-

ures 3.4 and 3.5. The first six creden-

tials of Figure 3.4 represent the dele-

gation of access to the machine-room

doors from the department to Alice, and her redelegation of these resources to the group

Alice.machine-room. Credentials 6–8 indicate that the group Alice.machine-room already

includes Bob, David, and Elizabeth. Notably, Alice has not yet created a credential that

would give Charlie access to the machine room. We will analyze the policy as is, and with

the addition of a credential that adds Charlie to the machine-room group. Credentials 9–11

deal with other resources that Alice can access. The final credential is given to Alice when

Charlie asks her for help: it indicates Charlie’s desire to open door1.
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Charlie’s policy (Figure 3.5) is much simpler. He has access to a shared lab space through

his membership in the group Dept.residents, to which the department has delegated access.

He has no credentials pertaining to the machine room.

The only credential in Figures 3.4 and 3.5 that was created at the time of access is the

one indicating Charlie’s desire to access door1. This means that FC and PC have already

been run on all other credentials.

Performance Figure 3.6 describes the proving performance experienced by Alice when

she attempts to help Charlie. Alice wishes to delegate authority to Charlie by making him

a member of the Alice.machine-room group. We show performance for the case where this

credential does not yet exist, and the case where it does. In both cases, Alice’s phone is

unable to complete a proof with either IR or IR-NC as both crash due to lack of memory

after a significant amount of computation. To demonstrate the relative performance of IR

and IR-NC, Figure 3.6 includes (on a separate y-axis) results collected on a workstation. IR,

IR-NC, and HC were run with a depth-limit of 7, chosen high enough to find all solutions

on this policy.

In the scenario where Alice has not yet delegated authority to Charlie, HC is over six

times slower than LR, and more than two orders of magnitude slower than LR′. If Alice has

already added Charlie to the group, the difference in performance widens. Since FC finds

all complete proofs, it finds the proof while processing the credentials supplied by Charlie,

so the subsequent search by LR and LR′ is a cache lookup. The result is that a proof is

found by LR and LR′ almost 60 times faster than HC. When run on the workstation, IR and

IR-NC are substantially slower than even HC.

Figure 3.7 shows the total time required to generate a proof of access in the scenario

where Alice must reactively create the delegation credential (IR and IR-NC are omitted
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Figure 3.9: An access-control policy pre-
sented in Section 2.3.1

as they crash). This consists of Charlie’s initial attempt to generate a proof, Alice’s proof

generation that leads to the creation of a new credential, and Charlie assembling Alice’s reply

into a final proof. The graph also shows the division of computation between the incremental

algorithms FC and PC and the backward search using tactics. In overall computation, HC

is six times slower than LR and 60 times slower than LR′. This does not include the transit

time between phones, or the time spent waiting for users to choose between different options.

Since computation time is dependent on the Prolog implementation, as a more general

metric of efficiency we also measure the number of formulas investigated by each strategy.

Figure 3.8 shows the total number of formulas investigated (including redundant compu-

tation) and the number of unique formulas investigated (note that each is measured on

a separate y-axis). LR and LR′ not only investigate fewer unique formulas than previous

approaches, but drastically reduce the amount of redundant computation.

3.6.2 Large Policies

Although our policy is a real one used in practice, in a widespread deployment it is likely that

policies will become more complicated, with users having credentials for dozens of resources

spanning multiple organizations. Our primary metric of evaluation is proof-generation time.

Since backward chaining only considers branches, and hence credentials, that are relevant

to the proof at hand, it will be least efficient when all credentials must be considered, e.g.,

when they are generated by members of same organization. As a secondary metric, we

evaluate the size of the knowledge base, as this directly affects the memory requirements

of the application as well as the speed of unification. Since credentials from the same

organization are more likely to be combined to produce a new fact or path, the largest

knowledge base will occur when all credentials pertain to the same organization. In this
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section, we evaluate a policy where all credentials pertain to the same organization as it

represents the worst case for both metrics.

Policy We evaluate our work with respect to the policy presented in Section 2.3.1. This

policy represents a university-wide deployment. In addition to its larger size, this policy

has a more complex structure than the policy described in Section 3.6.1. For example, the

university maintains a certification authority (CA) that binds names to public keys, thus

allowing authority to be delegated to a principal’s name. Furthermore, many delegations

are made to roles (e.g., Dept.manager1), to which principals are assigned using additional

credentials.

We simulate the performance of our approach on this policy from the standpoint of a

principal who has access to a resource via a chain of three delegations (assembled from 10

credentials), and wants to extend this authority to a subordinate.

Performance Figure 3.10 shows the proof-generation time of the different strategies for

different numbers of subordinates on the workstation. For these policies, the depth limit

used by IR, IR-NC, and HC must be 10 or greater. However, IR crashed at any depth

limit higher than 7, and is therefore not included in these simulations. Simulations on this

policy used a depth-limit of 10. IR-NC displays the worst performance on the first three

policy sizes, and exhausts available memory and crashes for the two largest policies. HC

appears to outperform LR, but, as the legend indicates, was unable to find 11 out of the

14 possible solutions, including several likely completions, the most notable of which is the

desired completion Alice says (Charlie speaksfor Alice. machine-room). This completion is

included in the subset of common solutions that LR′ is looking for. This subset constitutes

43% of the total solution space, and LR′ finds all solutions in this subset several orders of

magnitude faster than any other strategy.

The size of the knowledge base for each policy is shown in Figure 3.11. The knowledge

base consists of certificates and, under LR and LR′, facts and paths precomputed by FC

and PC. We observe that many credentials from the same policy cannot be combined with

each other, yielding a knowledge base whose size is approximately linear with respect to

the number of credentials.

In summary, the two previous, theoretically complete approaches (IR and IR-NC) are

unable to scale to the larger policies. HC, tailored to run on a particular policy, is unable

to find a significant number of solutions when used on larger policies. LR is able to scale to

larger policies while offering theoretical completeness guarantees. LR′, which is restricted to

finding a common subset of solutions, finds all of those solutions dramatically faster than

any other approach.
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3.6.3 Tabling Evaluation

Tabling is an alternative technique for eliminating redundancy within the local proof search

[27]. When attempting to prove subgoal S, a tabled algorithm will attempt to find all

possible solutions for S, and add the results to a table. Any subsequent attempts to prove

S can then refer to the table rather than repeating the search process. Similarly, our LR

tactics utilize results precomputed by forward chaining to avoid investigating subgoals at

the time of access. However, our technique differs in that these results are computed prior

to the time of access and that we additionally precompute all delegation chains using path

compression. Due to the similarity of our techniques, it is worth investigating the benefit

that our methods will provide in a tabled proof-search environment.

For this evaluation, we use XSB (http://xsb.sourceforge.net/) as our Prolog inter-

preter due to its support of tabling. All evaluations are run using the workstation described

previously. With tabling enabled, we compare the two theoretically complete tactic sets, IR

and LR. We omit IR-NC as tabling eliminates the cycles that IR-NC prevents. As described

in Section 3.3, our logic is not a subset of Datalog; the says-ln rule permits arbitrary

expansion when explored in a backward fashion. This poses a problem for IR as it produces

an infinitely large search space, even with tabling enabled. Therefore, it is not possible to

use the inference rules as tactics in a tabled search environment without modification.

One way to prevent infinite expansion is with the depth-limiting mechanism described

previously. However, the straightforward implementation of a depth-limiter involves an

additional parameter to each proving predicate. This interacts poorly with tabling, as

tabled results are then specific to a particular depth. Instead, we restrict the number of

applications of says-ln by limiting the degree to which a name can be nested. For example,

if we restrict the degree of nesting to one, A.B is a permissible name, whereas A.B.C is not.
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IR-TBL1, IR-TBL2, and IR-TBL3 represent tactic sets that support nested names of degree

one, two, and three.

Performance We first evaluate these strategies using the example policy drawn from our

deployment, which is described in Section 3.6.1. Figure 3.12 describes the performance

observed by Alice while she attempts to help Charlie. Figure 3.6 depicts the same scenario

without tabling. Again, performance is shown for two situations: one in which Alice has

not yet created the credential delegating authority to Charlie, and one in which she has.

In both situations, we see that LR is dramatically faster than each IR variant. The gap is

especially wide when the needed credential already exists, as for LR the vast majority of

the work is done prior to the time of access, while IR, even with tabling enabled, must still

derive the proof at the time of access.

Next, we evaluate these strategies using the larger policies described in Section 3.6.2

in the scenario where the needed credential is missing. Figure 3.13 shows that LR-TBL is

more efficient than IR-TBL2 and IR-TBL3 despite the fact that the IR variants do not cover

the entire search space of LR-TBL. The benefit of using LR tactics in these scenarios is

significant, yet not as great as in the smaller example scenario. We hypothesize that this

is because IR has to pay a greater initial penalty to populate the tables than does LR (due

to the fact that LR can utilize precomputed results). The search space associated with the

larger policies contains more opportunity to utilize tabled entries, thus the initial penalty

is a much smaller percentage of the total computation.

However, the search space of IR-TBL1 is sufficiently constrained that it is quicker than

LR-TBL. In the above scenarios, only one application of says-ln is necessary and therefore

IR-TBL1 is able to find all of the desired solutions. However, this does not mean that there
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is no meaningful loss in proving ability associated with restricting the use of says-ln. For

example, suppose that the department delegates authority to access the machine room to

Dept.machine-room.staff, which is intended to describe all staff who should have access to

the machine room. Suppose that Alice, who is in charge of the machine room, can speak

on behalf of Dept.machine-room, but wishes to limit her authority on a day-to-day basis

to the level of authority granted to staff. To accomplish this, Alice may wish to issue the

credential Alice says (Dept.machine-room.staff says F ). However, because this involves a

name with two degrees of nesting, IR-TBL1 will not suggest this credential as a possibility

to Alice. LR-TBL is both efficient and does not impose any restrictions on the manner in

which the inference rules may be used.

When comparing the absolute times obtained using SWI Prolog without tabling (Fig-

ure 3.10) to those obtained on the same policies using XSB with tabling enabled (Fig-

ure 3.13), we see that they are very similar, whereas one would expect the tabled execution

to be faster. This does not indicate that tabling is ineffective, but instead that SWI Pro-

log appears to be more heavily optimized than XSB. Simulations performed in XSB with

tabling disabled are significantly slower than the equivalent simulations performed in SWI

Prolog.

3.6.4 Effects of Caching

The primary reason that our techniques can efficiently find proofs at the time of access

is that they utilize results precomputed by forward chaining and path compression. As a

result, our techniques require a certain amount of processor time to compute and space to

store these results. In this section, we measure the impact of these requirements for the

scenarios presented above and additionally for several worst-case scenarios. The significance

of this impact will vary depending on the platforms and policies used in a deployed system.

Forward chaining and path compression are not guided by any specific access attempt,

and thus many of the precomputed results will be irrelevant for any particular access. This

is generally an acceptable tradeoff, as the user’s device, be it a phone or a computer, is likely

idle most of the time, and so the computation required to find results that are not ultimately

useful is transparent to the user. If, however, our techniques are employed on a device where

a premium is placed on any computation (e.g., a server under heavy load or a device with

stringent requirements on power consumption), then the cost of precomputing results must

be considered. While we present aggregate precomputation times in Figures 3.14 and 3.16,

this computation does not all occur at once, but incrementally as new credentials are added

to the knowledge base. As the precomputed results can improve the efficiency of multiple

time-of-access proof searches, the time-of-access savings can ultimately offset the cost of

precomputation, resulting in less overall computation using our technique. As the break-
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Figure 3.15: Cache size for example policy

even point can vary widely depending on the scenario, we do not investigate this tradeoff

further.

To efficiently find proofs at the time of access, these precomputed results must all be

loaded into the memory of the machine attempting to generate a proof. Should the size of the

cache exceed the available memory, the resulting thrashing will diminish the efficiency of the

proof search. Below, we measure the amount of space required to represent the knowledge

base as uncompressed plain text. This representation includes only information necessary

for reasoning; it does not include the digital certificates that encode the credentials.

Running example Figure 3.14 depicts the total time required to precompute results

from the credentials known to Alice (see Figure 3.4) both in the scenario where Alice has

not yet delegated authority to Bob and in the scenario where she has. The results shown

were measured on the Nokia N70 using JIProlog. Comparing Figure 3.14 to Figure 3.6,

we see that the amount of precomputation (52.5 seconds) is comparable to the amount of

computation performed by LR on the critical path of access when the desired credential is

missing (48.8 seconds). Additionally, the difference in time-of-access computation between

LR and HC (271.7 seconds) is greater than the total amount of precomputation performed

using our techniques (52.5 seconds). That is, for scenarios drawn from our deployment, our

techniques would be more efficient than HC even if all computation was performed on the

critical path to an access being granted.

Figure 3.15 shows that size of the knowledge base is 48 kB when Alice has not yet

delegated authority to Bob, and 58 kB when she has. These cache sizes are well within the

capabilities of a modern smartphone. Policies with similar structure but a greater number

of credentials than our example policy have arisen in our deployment, but we have not

observed any policy that exceeded the phone’s memory or storage capacity.
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Figure 3.17: Cache size for larger policies

Large policies Figure 3.16 depicts the total precomputation time for the larger policies

described in Section 3.6.2. The results are depicted on a log scale, and were collected on

the workstation using SWI Prolog. The amount of precomputation is roughly an order

of magnitude greater than the amount of computation that occurs on the critical path to

access (Figure 3.10). In comparison to the policy of our running example, this policy is

not only larger, but more complex. Unlike the example policy, in this policy, a certification

authority assigns names to keys, roles are mapped to names, and delegations are made to

roles. This results in a knowledge base with a far greater number of intermediate facts and

paths than would be present in a policy that governs the same number of principals and

resources, but without the complexity of a CA or roles.

Figure 3.17 shows the size, in kilobytes, of the knowledge base produced by forward

chaining and path compression. Recalling Figure 3.11, which shows the number of entries

in the knowledge base, we see that average size of each entry is roughly constant as the size

of the policy increases. For the largest policy, the average size of a fact produced by forward

chaining is 890 bytes, while the average size of a path produced by path compression is 2091

bytes. The size of each path is larger than that of each fact because each path must contain

two formulas: a premise and a conclusion.

Worst case Over the life of the system, principals learn of new credentials through in-

teracting with others to construct proofs of access. As long as requests for assistance are

directed by human intuition, the size of a principal’s cache will be bounded by the number

of people she interacts with, in which case the cache size is unlikely to exceed those depicted

in Figure 3.17.

However, in scenarios where the user does not know how to best direct the query, the

default choice (according to the techniques of Chapter 2) is to ask the resource owner, who,



74 CHAPTER 3. EFFICIENT PROVING FOR PRACTICAL SYSTEMS

Policy Users Precomputation (minutes) Cache Size (MB)
FC PC Total FC PC Total

(4,4,25) 423 1.2 27.9 29.1 6.4 26.6 33.0
(5,10,50) 2558 46.9 1100.7 1147.6 39.3 165.0 204.3
(10,10,50) 5113 183.4 4347.9 4531.3 78.7 330.1 408.8

Table 3.1: Worst-case cache characteristics

in all policies described in this thesis, is the root node of the policy hierarchy. The root node,

having delegated authority to manage the resource to other principals, is unlikely to know

if credentials exist that would extend authority to the principal requesting access. If this is

the case, the root node will in turn request further assistance, and then add any credentials

included with the response to its knowledge base. Due to the volume of requests, the root

node is likely to be a server that does not directly interact with users. As the techniques

described in this chapter are designed around the need to interact with users, they are

not optimized for use in such an environment. Nevertheless, it is instructive to evaluate

our techniques in this environment to determine the extent to which they scale to larger

knowledge bases.

The largest possible knowledge base will occur on the root node in a scenario in which

human guidance is not used, and all requests are instead directed automatically. In this

scenario, the root node would receive a request for assistance every time a user attempts

to access a resource for which they do not have sufficient credentials to demonstrate the

proper authority. After a sufficient number of accesses, the root node’s cache would include

the entire access-control policy of the system.

To measure the worst-case cache characteristics, we analyze the policy described in

Figure 3.9 from the perspective of the root node (as opposed to the analysis in Sections 3.6.1–

3.6.3, which was from the perspective of a manager). We consider three different policy

sizes (using the notation described in Chapter 2): (4,4,25), (5,10,50), and (10,10,50), which

represent organizations of 423, 2558, and 5113 users. Using the workstation described

earlier, we simulate a scenario in which each principal accesses every resource permitted by

the policy, and we measure the total precomputation time required to construct the root

node’s cache and the size of the resulting cache once the simulation completes. Table 3.1

shows the results.

Notably, the size of the cache is roughly linear with respect to the size of the policy,

with the cache growing by approximately 0.08 MB for each additional user. However,

the computation required to generate the cache does not scale as well. As the size of the

knowledge base grows, the number of possibilities that FC and PC must investigate increases,

as does the length of time required to perform each unification operation. These factors

combine to cause the amount of precomputation to increase proportional to the square of
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the number of users. Thus, as policies grow, the cost of precomputing results using FC and

PC will ultimately become prohibitive. The exact point at which this occurs will vary with

system configuration, but we can extrapolate from our data to estimate that the root node

of a policy with 50,000 users would require 300 days of precomputation to construct its

knowledge base using FC and PC, which is clearly not practical.

In practice, however, it is likely that most queries will not be automatically directed to

the root node, and so the cache sizes will not be as extreme as those presented here. For

example, an organization with 50,000 users, if only 10% of requests are directed automati-

cally, the effects of the root node’s cache will be no worse than that of the (10,10,50) policy

in Table 3.1.

Minimizing the impact of large caches Having shown that the amount of precom-

putation required by our techniques may pose problems in scenarios where a node’s cache

describes policy for tens of thousands of principals, we now describe three potential alter-

natives to addressing the problem.

The first alternative is to limit the number of credentials that a node may cache. This

would limit the amount of precomputed state, which, in turn, would prevent the compu-

tation time required to process a new credential from escalating further. Once the cache

contains the maximum number of credentials, each new credential must evict an old one.

A variety of standard cache-replacement algorithms (e.g., least-recently used) may be used

to select the credential to evict. Once that credential is evicted, the facts and paths that

depend on that credential must be deleted as well. This can be accomplished efficiently by

maintaining a separate data structure that maps credentials to the entries that depend on

them. Restricting the number of credentials that a principal may cache will result in some

additional requests for assistance that could have been avoided with a cache of unlimited

size. We hypothesize that, with a properly chosen replacement strategy, this drawback will

be offset by the decreased computation required from a smaller cache.

The second alternative is for the root node to not participate in the proving process

directly, but to instead serve as a proxy for directing requests to a second tier of servers

on the basis of the resource described in the request. The objective would be to partition

the knowledge base that would have been maintained by the root node into subsets that

contain as little overlap as possible, thus keeping the size small enough to enable efficient

precomputation. To accomplish this, the root node would need a deterministic mapping

from each resource to the server tasked with handling requests pertaining to that resource.

For example, requests could be mapped based on the department to which the resource

belongs. In some situations, an effective mapping may be discernable from credentials

issued by the root node, while other situations may require some human configuration.
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A third alternative is to eliminate the use of path compression based on the observation

that PC requires substantially more precomputation than FC. It may therefore be possible

to construct a variant of LR that utilizes only results precomputed by FC. However, as

precomputed paths allow LR to apply an arbitrarily long delegation chain in a single step,

the omission of PC will diminish the efficiency of proof search at the time of access, as the

proposed LR variant could only apply delegation chains one step at a time on the basis of

facts precomputed by FC.

Although the physical size of the cache scales linearly with the number of credentials,

and therefore does not pose as great a problem as the required precomputation time, it is

worth considering techniques for storing the cache more efficiently. At present, no attempt

has been made to optimize the size of the physical representation of the cached knowledge

base. In particular, each fact in the knowledge base contains the proof of that fact. As

many of the facts are derived from other facts in the knowledge base, there is a great deal

of redundancy between the proof terms of various facts. As the proof terms are not used for

reasoning, they could be stored in a data structure that eliminates this redundancy. The

proof term is generally much larger than the fact it proves, so the savings associated with

this approach could be substantial.

3.6.5 Discussion

The efficiency of LR stems from the fact that, at the time of access, LR only needs to explore

a subset of the search space, whereas other techniques must explore the entire search space.

This implies that, in time-of-access efficiency, LR has a fundamental advantage over IR

(including tabled versions of IR). The only situations where this advantage could erode

are (1) if the cost of processing any credentials included with the request for assistance

is so costly that it negates the advantage of using LR tactics, and (2) if the amount of

precomputed state is so vast that searching for a result in the data structure of precomputed

results is slower than deriving the result from credentials.

We believe that the first situation is unlikely to occur often in practice. In the vast

majority of cases, the only credential that will need to be processed at the time of access

is the credential indicating a principal’s desire to access a resource (e.g., Credential 15 in

Figure 3.5). This credential does not describe a path, and is therefore ignored by PC. Our

evaluations show that the cost of processing this credential with FC is very small relative

to the total proof search time of other strategies.

With regard to the second situation, our evaluations show that the amount of precom-

puted state in realistic scenarios is roughly linear in the number of credentials. This is

insufficient to cause the search for a precomputed result using LR to be less efficient than

deriving that result using IR. In comparing the efficiency of LR to IR in an environment
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with tabled execution, it is worth noting that LR is at a relative disadvantage because it is

implemented in Prolog. Results produced by forward chaining and path compression are

stored in the Prolog knowledge base and accessed by other Prolog predicates, whereas re-

sults computed via tabling are stored in a more efficient data structure that is incorporated

into the execution environment. It is therefore likely that further efficiency gains in LR

could result from incorporating the precomputed results into the tabling mechanism itself.

In Chapter 2, we introduced two forms of caching, positive and negative, and a technique

called Automatic Tactic Generation (ATG). The results computed by FC and PC supercede

the positive caching techniques described in Chapter 2, but the techniques described in this

chapter do not directly employ negative caching or ATG. The objective of both negative

caching and ATG is to reduce the number of remote requests necessary to construct a

proof in a distributed setting, while the techniques described in this chapter are aimed at

efficiently constructing a proof from local knowledge, or if one cannot be found, determining

how to best proceed. Thus, if LR determines that remote assistance is necessary, it will

output a list of appropriate principals to ask. At this point, negative caching could be

employed to deemphasize requests that have previously failed before presenting the list

to the user. Similarly, ATG could prioritize requests that match tactics generated from

previous similar proofs. This application of ATG would differ from the previous chapter

in that the automatically generated tactics would be employed after the standard proving

process rather than before it. However, in an environment with human guidance, negative

caching and ATG are useful primarily to provide assistance to the user. Effective human

intuition can accomplish similar objectives, so while useful, negative caching and ATG are

not as crucial in a human-guided proving environment as they are in the fully automated

environment of Chapter 2.

3.7 Generality of Our Approach

Although we described and evaluated our technique with respect to a particular access-

control logic and system, it can be applied to others as well. There are three aspects of

generality to consider: supporting the logical constructs used by other logics, performing

efficiently in the context of different systems, and enabling other applications.

Other logics When applying our approach to other logics, we must consider individually

the applicability of each component of our approach: FC, PC, and the generation of LR

tactics. We consider our technique with respect to only monotonic authorization logics, i.e.,

logics where a formula remains provable when given more credentials. This constraint is

commonly used in practical systems (cf., [25]).
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As discussed previously, to ensure that the forward-chaining component of our prover

terminates, the logic on which it is operating should be a subset of Datalog, or, if function

symbols are allowed, their use must be constrained (as described in Section 3.3). This is

sufficient to express most access-control logics, e.g., the logics of SD3 [45], Cassandra [19],

and Binder [29], but is not sufficient to express higher-order logic, and, as such, we cannot

fully express the access-control logic presented by Appel and Felten [6]. The general notion

of delegation introduced in Definition 1 is conceptually very similar to that of the various

logics that encode SPKI [1, 57, 41], the RT family of logics [58], Binder [29], Placeless

Documents [8], and the domain-name service logic of SD3 [45], and so our technique should

apply to these logics as well.

Our path-compression algorithm and our method for generating LR tactics assume that

any delegation rule has exactly two premises. Several of the logics mentioned above (e.g.,

[45, 29, 8]) have rules involving three premises; however, initial investigation suggests that

any multi-premise rule may be rewritten as a collection of two-premise rules.

Path compression requires a decidable algorithm for computing the intersection of

two permissions. That is, when combining the paths (Alice says F, Bob says F ) and

(Bob says open(door1),Charlie says open(door1)), we need to determine the intersection

of F and open(door1) for the resulting path. For our logic, computing the permission is

trivial, since in the most complicated case we unify an uninstantiated formula F with a

fully instantiated formula, e.g., open(door1). In some cases, a different algorithm may be

appropriate: for SPKI, for example, the algorithm is a type of string intersection [34].

Other systems Our strategies should be of most benefit in systems where (a) creden-

tials can be created dynamically, (b) credentials are distributed among many parties, (c)

long delegation chains exist, and (d) credentials are frequently reused. Delayed backward

chaining pursues fewer expensive subgoals, thus improving performance in systems with

properties (a) and (b). Long delegation chains (c) can be effectively compressed using ei-

ther FC (if the result of the compression can be expressed directly in the logic) or PC (when

the result cannot be expressed in the logic). FC and PC extend the knowledge base with

the results of their computation, thus allowing efficient reuse of the results (d).

These four properties are not unique to our system, and so we expect our technique,

or the insights it embodies, will be useful elsewhere. For example, Greenpass [38] allows

users to dynamically create credentials. Properties (b) and (c) have been the focus of

considerable previous work, notably SPKI [1, 57, 41], the DNS logic of SD3 [45], RT [58],

and Cassandra [19]. Finally, we feel that (d) is common to the vast majority of access-control

systems, as a statement of delegation is typically intended to be reused.
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Other applications There are situations beyond our smartphone-oriented setting when

it is necessary to efficiently compute similar proofs and where the efficiency offered by our

approach is welcome or necessary. For example, user studies conducted at our institution

indicated that, independently of the technology used to implement an access-control system,

users strongly desired an auditing and credential-creation tool that would allow them to

better understand the indirect effects on policy of creating new credentials by giving them

real-time feedback as they experimented with hypothetical credentials. If Alice wants to

create a new credential KAlice signed delegate(Alice, Alice.machine-room, door4), running

this hypothetical credential through the path-compression algorithm could inform Alice

that an effect of the new credential is that Bob now has access to door4 (i.e., that a path

for door4 was created from Bob to Alice). Accomplishing an equivalent objective using

IR or IR-NC would involve assuming that everyone is willing to access every resource, and

attempting to prove access to every resource in the system—a very inefficient process.

3.8 Related Work

Section 2.4 characterized related works by whether they operate over a distributed knowl-

edge base using remote credential retrieval or distributed reasoning. Section 3.7 discussed

the applicability of the techniques presented in this chapter to other logics, systems, and

applications. The techniques presented in this chapter also make advances in terms of how

queries are directed, how proofs are constructed, and how user interaction is incorporated

into the system. In this section, we compare related work to each of these areas. How-

ever, we are aware of no previous algorithm that meets all of the requirements described

in Section 3.1.1, and no works that analyze the performance of the distributed proving

alternatives we consider in this chapter.

Directing queries PeerAccess provides a framework for describing policies that govern

interactions between principals [72]. PeerAccess uses proof hints encoded in the knowledge

base to guide whom a principal asks when local knowledge is insufficient to construct a

proof. MultiTrust is an authorization framework that supports distributed proving, routing

requests according to predefined query routing rules [77]. In many systems that support

remote credential retrieval (e.g., [19, 45, 38, 48]), the description of the credential explicitly

encodes its location. The distributed proof-construction technique that we described in

Chapter 2 routes queries on the basis of the formula to be proved. Minami and Kotz route

queries on the basis of a pre-defined integrity policy that specifies which principals are

trusted to respond to each type of query [62]. In contrast, the approach we described in

this chapter seeks to leverage the user’s intuition when directing remote queries.
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Proof-construction techniques Li et al. presented a distributed credential chain discov-

ery algorithm for the RT0 language [59]. This algorithm works both forwards and backwards

using a graph representation of credential chains, and is capable of retrieving credentials

from remote parties. However, unlike our techniques, all computation is done at the time

of access and on a single node. Jajodia et al. designed a general framework for describing

partially specified hierarchical access-control policies [44]. To allow quick access-control

decisions, a graph of permissions is computed a priori. However, their framework operates

on a centralized policy managed by a single entity, and does not allow new permissions to

be created in response to a query.

Bertino et al. designed Trust-X to negotiate trust between peers [21]. As negotiation

is expensive, they seek to bypass it using two optimizations: trust tickets and sequence

prediction. Trust tickets are new credentials that contain the result of previous negotia-

tions. Sequence prediction uses past negotiations to suggest credentials that will establish

trust without going through the negotiation process. Our precomputation techniques are

complementary as they are aimed at improving the efficiency of the expensive step in cases

where it is unavoidable.

When used as a stand-alone proof-search algorithm, forward chaining can derive many

facts that are not relevant to the query it is trying to solve. Magic Sets is an optimization

in which the rules for forward chaining are rewritten at compile time to include constraints

that prevent the derivation of many irrelevant facts [9]. This optimization does require

some knowledge as to the types of query that forward chaining will attempt to answer, and

as such, it is not immediately obvious how it would apply to our use of forward chaining,

as we derive facts without knowledge of what query will ultimately need to be answered.

User interaction Know is a system for providing user feedback when access is denied;

meta-policies are used to govern what information about policies is revealed to whom [47].

Know is complementary to our work, as its primary concern is providing the user with

information after an access-control decision has been made. Greenpass engages users to

gain consent for granting delegations [38], but a user may create only a more limited form of

delegation than we consider here. This eliminates the need to explore the many hypothetical

possibilities that our method explores. We engage the user to create new credentials as well

as to approve and direct requests for assistance.

3.9 Conclusion

In this chapter we presented a new approach to generating proofs that accesses comply with

access-control policy using the distributed proving framework described in Chapter 2. Our
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strategy is targeted for environments in which credentials must be collected from distributed

components, perhaps only after users of those components consent to their creation, and our

design is informed by such a testbed we have deployed and actively use at our institution.

Our technique embodies three contributions, namely: novel approaches for minimizing proof

steps that involve remote queries or user interaction; methods for inferring delegation chains

off the critical path of accesses that significantly optimize proving at the time of access; and

a systematic approach to generating tactics that yield efficient backward chaining. We

demonstrated analytically that the proving ability of this technique is strictly superior to

previous work, and demonstrated empirically that it is efficient on policies drawn from our

deployment, will scale effectively to larger policies, and will continue to offer benefit in

environments that support tabling. We determine that the precomputation required by our

technique is reasonable for many practical scenarios, characterize the scenarios in which it

is not, and discuss future directions for improving scalability. Our method will generalize

to other security logics that exhibit the common properties detailed in Section 3.7.

The techniques presented in this chapter provide a means of efficiently searching for

a proof at the time of access, and include provisions for allowing users to modify policy

to ensure that the access will be granted. In other words, if a policy is misconfigured

to deny a legitimate access, one benefit of these techniques is that they streamline the

process by which a user may resolve this misconfiguration at the time of access. However

computationally efficient this process may be, the required human intervention imposes

a delay that can severely diminish users’ perception of the system [12]. Identifying and

resolving such misconfigurations before they result in an access being delayed or denied is

the focus of Chapter 4.
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Chapter 4

Detecting and Resolving Policy

Misconfigurations

Access-control policy misconfigurations that cause requests to be erroneously denied can

result in wasted time, user frustration and, in the context of particular applications (e.g.,

health care), very severe consequences. In this chapter, we apply association rule mining

to the history of accesses to predict changes to access-control policies that are likely to

be consistent with users’ intentions, so that these changes can be instituted in advance of

misconfigurations interfering with legitimate accesses. Instituting these changes requires

consent of the appropriate administrator, of course, and so a primary contribution of our

work is to automatically determine from whom to seek consent and to minimize the costs

of doing so.

We evaluate the effectiveness of our techniques on data collected from Grey, an experi-

mental access-control system that has been deployed and actively used at our institution to

control access to offices for approximately two years [13]. This deployment is one in which

misconfigurations that prolong access to an office substantially diminish the perceived us-

ability of the system [12]. Data drawn from logs allows us to reconstruct a detailed scenario

of how policy was exercised over the course of 10,911 attempted accesses, spanning approx-

imately 14 months. This data includes accesses by 29 users to 25 physical doors and shows

that there is a high degree of resource sharing (22 of the 25 resources were accessed by more

than one user).

Additionally, Grey supports dynamic policy creation (using the techniques described

in Chapter 3), meaning that a user can delegate her authority to open a door using her

smartphone in response to a request to do so. This capability of Grey allows us to deter-

mine how users were able to resolve misconfigurations in real life. We augment this data

with information collected from a user survey that asked what policy users were willing to

83
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implement should the need arise. Results from the survey allow us to determine precisely

how users would resolve misconfigurations in scenarios that did not occur over the course

of our deployment.

Using this data, we show that our methods can reduce the number of accesses that

would have incurred costly time-of-access delays by 44%, and can correctly predict 58% of

the intended policy. These gains are achieved without increasing the total amount of time

users spend interacting with the system.

The contributions of this chapter are fourfold: (i) to develop techniques to identify

potential misconfigurations (Section 4.1), (ii) to develop techniques to resolve misconfigu-

rations once they have been identified (Section 4.2), (iii) to evaluate these techniques on a

data set collected from a deployed system (Sections 4.1.3 and 4.2.3), and (iv) to evaluate

the effectiveness of our techniques when only partial data is available (Section 4.3). These

results expand upon our previous publication [17] by the addition of (iv).

4.1 Techniques for Identifying Misconfigurations

To identify potential policy misconfigurations, we first use association rule mining to de-

tect statistical patterns, or rules, from a central database of previously observed accesses

(Section 4.1.1). We then analyze our data using these rules to predict potential miscon-

figurations, or instances of the data for which the rules do not hold (Section 4.1.2). Once

we determine whether or not the prediction was correct, we incorporate the result into a

feedback mechanism to promote the continued use of rules that accurately reflect policy

and prune rules that do not.

To illustrate the usefulness of this technique, consider the following scenario. Bob is a

new student who is advised by Alice, a professor. Bob and Alice both work in a building

where the same system controls access to Alice’s office, Bob’s office (which is shared with

some of Alice’s other students), a shared lab, and a machine room. When the department

assigns Bob an office, it configures access-control policy to allow Bob to gain access to his

office (e.g., by giving Bob the appropriate key). Though Alice is willing in principle to allow

Bob access to the lab and machine room, both she and the department neglect to enact this

policy.

The first time Bob attempts to access the shared lab space, he is denied access as a result

of the misconfiguration, at which point he must contact Alice or the department to correct

it. This process is intrusive and could potentially take minutes or even hours. However, the

past actions of Bob’s office-mates suggest that people who access Bob’s office are very likely

to also access the shared lab space and machine room. The techniques we describe here

allow us to infer from Bob’s access to his office that Bob is likely to need access to the lab
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space and machine room. Identifying this in advance allows for the misconfiguration to be

corrected before it results a denied access and wasted time. Detecting the misconfiguration

is accomplished using only the history of accesses in the system; the technique is independent

of the underlying access-control mechanism, policy, and policy-specification language.

4.1.1 Association rule mining

The objective of association rule mining is to take a series of records that are characterized

by a fixed number of attributes, e.g., boolean attributes A through D, and discover rules

that model relationships between those attributes. Suppose that for 75% of the records

where both A and B are true, D is also true. This property would give rise to the rule

A ∧ B → D. One measure of the quality of this rule is confidence, which is defined as the

percentage of time that the conclusion is true given that the premises of the rule are true

(75% for this example). Confidence represents the overall quality of a rule.

We employ the Apriori algorithm [3] to mine association rules, although other methods

also exist. Apriori first builds all possible itemsets, or groups of attributes, that have

occurred together in more than a certain fraction of the records. This fraction is known as

the support of an itemset. For each of these itemsets (e.g., A∧B ∧D), Apriori enumerates

all subsets of the itemset (D, B ∧D, etc.). Using each subset as the premise for a rule and

the remainder of the itemset as the conclusion, Apriori calculates the confidence of the rule,

and keeps only rules whose confidence exceeds a specified minimum.

In our context, each resource is represented by a boolean attribute. Each user in the

system is represented by a record in which the attributes corresponding to the resources

that the user has accessed are set to true. For example, if attributes A through D each

represent a resource, the record 〈false, true, true, false〉 would represent a user who has

accessed resources B and C.

In our scenario, a small number of high quality rules may identify statistically significant

patterns, but on too small of a subset of the overall policy to be of much use. Thus,

in tuning the output produced by Apriori, our objective is to balance the quality of the

rules produced with the quantity of those rules. We achieve this by varying the minimum

allowable confidence and support that a rule may have. Requiring a higher confidence biases

the output towards rules that are true with high likelihood, while requiring higher support

biases the output towards rules that describe patterns that occur with higher frequency.

Section 4.1.3 describes the extent to which these parameters affect our ability to detect

misconfigurations.
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4.1.2 Using mined rules to make predictions

The rules output by Apriori must, in turn, be used to identify potential policy misconfig-

urations. A potential misconfiguration is a record for which the premises of the rule hold,

but the conclusion does not. If a rule has a confidence of one, it implies that for all records

which the premises of the rule hold, the conclusion of the rule holds as well. This means

that every user who has accessed the resources represented by the premises of the rule has

already accessed the resource mentioned in the conclusion. These rules do not allow us to

identify any possible misconfigurations, so we ignore them. For each remaining rule, we

identify the records for which the premise holds, but the conclusion does not. Each such

record represents a potential misconfiguration; we predict that the user represented by that

record should have access to the resource identified by the conclusion of the rule.

Feedback One limitation of using mined rules to predict policy is that a dataset may

contain several patterns that are statistically significant (i.e., they produce rules whose con-

fidence exceeds the minimum) that are nonetheless poor indicators of policy. For example,

the rule (perimeter door A → office D) may have medium confidence because door A is

physically close to office D, and is therefore used primarily by the professor who owns office

D and by his students. However, should this rule be used for prediction, the professor will

be asked to delegate authority to enter his office to everyone who accesses door A.

To prevent the system from making repeated predictions on the basis of poor rules, we

introduce a feedback mechanism that scores rules on the correctness of the predictions they

produce. A correct prediction is one that identifies a misconfiguration that a human is

willing to repair. The idea is to penalize a rule when it results in an incorrect prediction,

and to reward it when it results in a correct prediction. Rules whose score drops below a

threshold are no longer considered when making predictions.

To illustrate how scores are computed, consider the following example. Suppose that

four resources A through D are commonly accessed together. This implies that Apriori will

construct the itemset A∧B ∧C ∧D. Suppose that Apriori constructs the rules A∧B → D

and A∧C → D from that itemset. Our feedback mechanism keeps a pairwise score for each

premise attribute and conclusion, that is, (A,D), (B,D), and (C,D). If the rule A∧B → D

is used to make a correct prediction, the scores for (A,D) and (B,D) will be incremented.

If the prediction was incorrect, those scores will be decremented. If A ∧ B → D produces

four incorrect predictions and A∧C → D produces three correct predictions, the scores for

(A,D), (B,D), and (C,D) will be −1, −4, and 3.

The score for a rule is the sum of the scores of the premise attribute, conclusion pairs.

In the scenario described above, A ∧ B → D would have a score of −5, while A ∧ C → D
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Figure 4.1: Prediction accuracy (exercised
policy)
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Figure 4.2: Prediction accuracy (intended
policy)

would have a score of 2. If the threshold for pruning rules is 0, A∧B → D would be pruned

from the set of rules used to make predictions.

The reason for employing this technique instead of a more straightforward system where

each rule is scored independently is that an itemset will often result in many more rules than

the example presented above (in fact, Apriori may produce a rule with every combination

of A, B, and C as the premise). Our technique allows us to more quickly prune groups of

similar rules that are poor indicators of policy.

This feedback strategy performs well in our evaluation. However, in a hypothetical

scenario, a rule could acquire a high positive score, which would require that many failures

occur before the rule is pruned. In situations where this is unacceptable, the system could

employ alternative feedback strategies that only consider recent accesses or compute the

feedback score as a percentage of successful predictions. In the unlikely event that a rule’s

feedback score is high but its continued use is problematic, an administrator can manually

prune the rule.

4.1.3 Evaluation

In evaluating our prediction techniques we distinguish between several different types of

policy. Implemented policy is the policy explicitly enacted via credentials that grant au-

thority to users. Data from logs is sufficient to learn the entire implemented policy for our

deployment environment. Intended policy includes implemented policy and policy that is

consistent with users intentions but has not yet been enacted through credentials. Exercised

policy is the subset of implemented policy that allowed the accesses that were observed in

the logs. This is the only kind of policy that is used for making predictions; the other policy

sets are used purely to evaluate the effectiveness of our methods. Finally, unexercised policy

is the intended policy without the component that has been exercised.
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Figure 4.3: Coverage of exercised policy
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Figure 4.4: Coverage of intended policy

Since intended policy can only be partially gathered from system logs, we distributed

a questionnaire to each user who acts as first-line administrator for a resource. The ques-

tionnaire listed all of the resources that the administrator had authority to delegate. For

each such resource, the administrator was asked to select (from a list) the users to whom

she would be willing to delegate authority. This allowed us to determine, for situations that

did not occur in actual use of the system, whether the administrators would be willing to

grant authority. These responses are used solely to analyze the accuracy of our predictions.

Our evaluations take place in a simulated environment defined by the usage data that

we collected from our deployment. The logs describe 10,911 access attempts of 29 users to

25 doors. For each access attempt we logged who attempted to access which resource, when

the attempt was made, and whether it succeeded; we refer to each such record as an access

event. Several subsets of the implemented policy were completely or partially preconfigured,

e.g., seven perimeter doors were preconfigured to be accessible to all users through a policy

that used groups, and gaining access to these doors required no policy reconfiguration.

We replay the sequence of access events logged by our system and, after every event,

attempt to predict which new policies are consistent with the accesses observed so far. The

performance numbers we report are aggregated over the entire run of the simulation. A

prediction is considered accurate with respect to exercised policy if the predicted policy

is exercised in the data set for the first time after the the prediction was made. We also

evaluate accuracy with respect to intended policy; here we count a prediction as accurate if

it is consistent with intended policy that has not yet been exercised (regardless of whether

it is ever exercised). Although accuracy of prediction is an important metric, in practice

it is important to achieve both good accuracy and good coverage. Coverage describes the

percentage of the target space predicted, i.e., the percentage of actual accesses present in

the data set (or the percentage of intended policy) that we are able to predict.
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Prediction accuracy We evaluate the accuracy of our predictions with respect to both

exercised and intended policy. Accuracy is affected by tuning three parameters: the min-

imum confidence, minconf, and support, minsup, that a rule may have, and the feedback

threshold, fthresh, that governs the minimum feedback score that a rule must have to be

used in the prediction process (see Section 4.1.2). We evaluate three values for minsup:

0.01, 0.03, and 0.07, which represent supports of one, two, and three records. We evalu-

ate confidence values ranging between 0.01 and 0.8. Values above 0.8 resulted in so few

predictions that the accuracy was not meaningful.

In practice, the feedback score represents the result of previous attempts to resolve mis-

configurations. However, the success rate of the resolution process depends on other factors,

like our ability to efficiently detect whom to prompt to correct detected misconfigurations

(see Section 4.2). To evaluate the accuracy of our predictions in isolation from the resolu-

tion process, we use ideal feedback, in which the scoring is based on what we know to be the

intended policy in the system. We revert to the standard form of feedback when evaluating

the resolution process in subsequent sections.

We evaluated fthresh values of−1, 0, and 1, using the technique described in Section 4.1.2

to score each rule. A rule is used to generate predictions only if it had no feedback score or

if its feedback score was greater than or equal to the threshold value fthresh. For clarity, we

present only the results obtained with fthresh set to 1, since that setting offered the greatest

benefit.

Figures 4.1 and 4.2 show the prediction accuracy with respect to exercised and intended

policy. As expected, including feedback in the prediction method improved accuracy for

combinations of other parameters. Using rules with higher confidence and support parame-

ters uniformly improves the accuracy of predictions with respect to intended policy, but the

benefit with respect to exercised policy peaks at a confidence of around 0.5. Intuitively, this

shows that while past behavior gives us more insight into intended policy, future accesses

are not drawn uniformly from this space. We conjecture that a larger data set, in which

the exercised policy covered a greater part of the intended policy, would show improved

performance with respect to exercised policy.

The increased accuracy achieved by using higher-quality rules lowers the total number

of predictions, as we will discuss in Section 4.1.3.

Prediction coverage We show prediction coverage for exercised and intended policy

while varying the same parameters as when evaluating prediction accuracy. Our findings

are shown in Figures 4.3 and 4.4. As expected, again, coverage decreases as we improve the

accuracy of the rules. That is, the more accurate rules apply in a lower number of cases,

and so predictions that would be made by a less accurate rule are missed. Interestingly,
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a sharp drop-off in coverage doesn’t occur until confidence values are raised above 0.5,

suggesting that values in the range between 0.3 and 0.5 may produce rules that are both

accurate and have good coverage. With reasonable parameters (minsup=0.01, minconf=0.4,

and fthresh=1) our predictions cover 48% of the exercised policy and 58% of the intended

policy.

Accuracy over time In addition to measuring the aggregate accuracy of predictions

across an entire run of the simulator, it is interesting to know how prediction accuracy

varies as a function of time. To measure this, we compute the accuracy of predictions over

intervals that contain 50 predictions each. Figure 4.5 shows these results for different values

of minconf with minsup fixed at 0.01. Rules with a higher minimum confidence make fewer

predictions and so result in fewer data points. Different values of minsup exhibit similar

trends.

Somewhat surprisingly, we found that the predictions made early in the simulation are,

roughly speaking, as accurate as those made later when more history is available to the

rule-mining algorithm. We conjecture that this is because the initial data points, though

relatively few in quantity, are of high quality. In other words, the early accesses are made

by a small number of people and to a small number of shared resources, and so are repre-

sentative of a very small but often exercised subset of the intended policy.

4.1.4 Discussion
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We evaluated our ability to predict accesses

that are consistent with policy with respect

to both accuracy and coverage. Reasonably

good performance was achieved using each

metric, but, more importantly, we identi-

fied a combination of parameters for which

the predictions were both reasonably accu-

rate (i.e., not erroneous) and covered a large

portion of the unexercised policy. Specifi-

cally, minimum confidence values between

0.3 and 0.5 achieved the best tradeoff. For

these parameters, the increased accuracy re-

sulting from our use of feedback to prune rules far outweighed the associated decrease in

coverage.

Varying the minimum support that a rule must have did not have as great an impact

on results as the other parameters. The higher coverage that resulted from a minimum
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support value of 0.01 outweighed the increase in accuracy achieved by using higher values,

and so for the evaluation in Section 4.2.3 we will fix the minimum support to 0.01.

Finally, we found that the predictions made with relatively few data points were roughly

as accurate as predictions made with many more. Consequently, it appears that our methods

would work well even in the early phases of adoption or deployment of a system that uses

them.

One important question is the extent to which the success of our technique on our

dataset will carry over to systems with different access patterns and policies. Our technique

exploits the observation that principals with similar access patterns are often granted access

to those resources via similar policies. Thus, in any system where users’ access patterns

imply characteristics of access-control policy, our technique is likely to provide benefit. Our

technique will not be effective in a system where few shared resources exist or there is little

overlap between the access patterns of individual users.

Our technique is effective as long as there is a discrepancy between implemented policy

and intended policy. If a system is able to exactly implement the intended policy and the

intended policy is fully known at the outset, then there are no misconfigurations to detect.

However, regardless of the expressiveness of the policy language used by the system, neither

of these conditions is likely to be met: the intended policy is often dynamic, i.e., developed

in response to new situations; and even when the intended policy is not dynamic, it is

rarely fully specified at the outset. Therefore, it seems likely that most systems will have

misconfigurations.

4.2 Techniques for Repairing Misconfigurations

Once a potential misconfiguration has been identified, it is best if the policy is corrected

as soon as possible to maximize the likelihood that the misconfiguration will not affect

users. Since an identified misconfiguration might be erroneous, a user with the authority to

modify policy must be queried to determine if the identified misconfiguration is consistent

with the intended policy. If it is, then the user can repair the misconfiguration by altering or

extending the policy. How the user elects to modify the policy is orthogonal to our work; it

could entail changing an access-control list on a server or issuing digitally signed credentials

that create a new group and delegate authority to that group. However, if there is only

a single administrator in charge of policy, the question of which user to contact becomes

trivial. Hence, we look at the more difficult problem of repairing misconfigurations in

distributed access-control systems in which multiple users may have the ability to modify

policy.
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Following the example in Section 4.1, when Bob discovers that he cannot access the

shared lab space, he must determine whom to ask for assistance in resolving the conflict.

Since the lab space is shared, Alice may not be the only person with the authority to

modify access-control policy. Professors Charlie and David may also be able to edit the

policy governing the lab, but they may not be willing to grant authority to Bob. In this

case, then, we would like the system to contact Alice and suggest to her that she amend

policy to allow Bob access.

In this scenario, our previous work relied on Bob’s intuition to direct queries to the

most appropriate principals [15]. However, we would like to resolve such misconfigurations

proactively, i.e., at a time when Bob is not actively interacting with the system. Contacting

the user to obtain his intuition at a time when he is not already interacting with the

system would necessarily involve an additional user interruption. Instead, we attempt to

determine which users are most likely to be able and willing to resolve the misconfiguration

by analyzing past user behavior.

4.2.1 Users to contact

The strategy that is most likely to succeed in repairing the misconfiguration is one that

exhaustively queries all users who have the relevant authority, but this process is likely to

embitter the users who are wantonly interrupted. Therefore, when deciding which users to

contact, we must balance the desire to repair the misconfiguration with the desire to avoid

unnecessary user interaction.

To determine which users have the authority to resolve a misconfiguration, we could

analyze the implemented access-control policy. However, the language for expressing policy

varies widely between systems, and we wish to design a technique that is not specific to any

particular language. Instead, we determine who has authority to repair a misconfiguration

by analyzing the observed behavior of users when they resolved past misconfigurations. This

is possible because, in addition to logging past access attempts, our system maintains data

about who users contacted when attempting to manually resolve misconfigurations. The

intuition is that, because of similarities in the structure of access-control policy, principals

who have rendered assistance in similar scenarios in the past are likely to provide assistance

in the future, as well. For cases where that is insufficient, we also consider the users who

have previously accessed the resource, as they may be allowed to redelegate authority.

4.2.2 Directing resolution requests

We propose four different strategies for constructing a candidate list of these principals

based on past user behavior. Once this candidate list has been assembled, it is sorted in
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descending order by the number of times the principal has rendered assistance in previous

scenarios.

Strategy 1: OU The candidate list consists of the principals who previously rendered

assistance to Other Users (OU) when they attempted to gain access to the resource

mentioned in the prediction.

Strategy 2: OR The candidate list consists of the principals who previously rendered as-

sistance to the user mentioned in the prediction when that user accessed Other Resources

(OR).

Strategy 3: U The candidate list consists of the Union (U) of the lists produced by the

OU and OR strategies.

Strategy 4: UPPA The candidate list contains the list U plus the Principals who Previ-

ously Accessed (UPPA) the resource mentioned in the prediction. Since these principals

have not previously rendered aid to anyone, they will be sorted to the end of the candidate

list.

The last strategy aims to cover the case where the structure of the policy that would

authorize the predicted access is slightly different than the policy that authorized previous

accesses. For example, should the system predict that Bob will access Alice’s office, past

observations may show that Alice’s first access required the department to reconfigure policy.

However, the department is unlikely to authorize Bob, whereas Alice (who has previously

accessed the office) may be willing to provide the needed delegation.

4.2.3 Evaluation

Our objective is to evaluate the ability of our resolution techniques to resolve misconfigura-

tions using the simulated environment described in Section 4.1.3, and to determine to what

extent our techniques affect the usability of the system.

Our ability to resolve misconfigurations is measured by our success rate, which is the

percentage of misconfigurations that we can resolve. Proactively resolving misconfigurations

decreases the number of high-latency accesses, or accesses where a misconfiguration must

be corrected at the time of access. However, resolving misconfigurations does involve user

input; this effect is measured by counting the number of user interruptions. Finally, the total

user interaction time estimates the extent to which users must interact with the system,

both with and without our techniques.

Success rate We define success rate to be the percentage of misconfigurations resolved,

where a misconfiguration is a a discrepancy between implemented and intended policy. The

process for resolving a misconfiguration consists of constructing a candidate list of principals
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to query, determining how many of those candidates to query, and performing the queries.

We evaluate the success rate using the four different strategies for constructing a candidate

list presented in Section 4.2.2 with three different limits on the number of candidates to

query.

Figure 4.6 shows the success rates obtained with these strategies when minconf and

minsup are set to 0.4 and 0.01. The U and UPPA strategies are more likely to succeed

than OU (which consults those who helped other users access the same resource) or OR

(which consults those who helped the same user access other resources). This is not sur-

prising, because U combines the results from OU and OR, and UPPA further extends U

(by consulting users who previously accessed the same resource). In all cases, there was a

noticeable benefit if the top two candidates were consulted instead of just the top candidate,

but asking candidates beyond the top two offered little additional benefit. When only the

most likely candidate was consulted, UPPA and U were equivalent, since UPPA’s extension

of the candidate list involved only appending to it. There is of course an increased overhead

cost when consulting more than just the top candidate; we analyze this cost below.

High-latency accesses If an access request is consistent with the intended access-control

policy, but not with the implemented policy, then the user must attempt to resolve the mis-

configuration prior to accessing the resource. The main cause of latency and inconvenience

in this scenario is that human intervention is required to augment existing policy, and this

intervention is on the critical path to an access being allowed. At best, this is inconvenient

both to the person requesting access and the person who must repair the misconfigura-

tion. At worst, the person who can resolve the misconfiguration may not be available (e.g.,

flying), and the delay for repairing the misconfiguration may be very lengthy. The data

we collected from our deployment encompasses 212 time-of-access policy corrections; in 39

cases a user’s access was delayed by more than 10 minutes, and in 21 by over an hour.
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Here we evaluate the extent to which our prediction and resolution techniques reduce

the number of these high-latency accesses. The amount of reduction depends on the extent

to which the predictions cover exercised policy (Figure 4.3) and the ability of the resolution

process to succeed in the cases where exercised policy is correctly predicted (Figure 4.6).

Figure 4.7 shows the extent to which our prediction and resolution techniques reduce

the number of high-latency accesses. Due to its higher success rate, consulting two users

with UPPA reduces high-latency accesses more than consulting only one. Lower minimum

confidence thresholds yield greater reductions, because they produce greater coverage. More

importantly, significant reductions can be achieved with confidence values that are likely to

result in an acceptable amount of overhead: for example, for a minimum confidence value

of 0.4, and a limit of two user consultations reduces the number of high-latency accesses by

44%.

User interruptions Proactively resolving a misconfiguration may involve proactively

querying users to determine the intended policy. We consider an interruption to be any

query directed to a user as part of the resolution process. This overstates the extent to

which a user must be involved, because some queries directed to a user can be answered

automatically by the user’s phone in Grey, e.g., if the misconfiguration can be resolved by

policy that is implemented, but has not yet been exercised. Our survey did not ask users

how they would implement their intended policies, so our simulations consider only policy

that was exercised over the course of our deployment.

Often, several misconfigurations are detected at the same time, and their corresponding

resolution processes query the same user, resulting in multiple interruptions. We introduce

an optimization, batching, that groups these queries into a batch, allowing the user to

answer them all as part of a single interactive session. This optimization is motivated by

the observation that the incremental cost of additional user interaction is less than that of

the initial interruption.

Figure 4.8 shows the number of user interruptions for our data when consulting either one

or two principals chosen by the UPPA strategy and varying the minimum confidence values

for rules. Some principals, such as a department credential server, automatically respond to

requests using implemented policy without requiring user interaction, and therefore these

requests are not reflected in Figure 4.8. As expected, consulting two principals instead of

one increases the number of interruptions (and the success rate, as previously discussed).

In some scenarios, the first principal consulted is one that responds automatically, but the

second consultation requires user interaction. This explains how consulting two principals

can produce more than twice as many interruptions as consulting only a single principal.

Batching is more effective when consulting two principals and for low minimum confidence
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values; these settings result in more attempts to consult users, and thus more redundancy

among those requests that can be reduced through batching.

Interestingly, minimum confidence values of 0.4 and 0.5 cause a marked decrease in the

number of interruptions without significantly increasing the number of high-latency accesses

(Figure 4.7).

User interaction time The results described thus far demonstrate that increased proac-

tive user interaction will reduce the number of high-latency accesses, but it is difficult to

determine when the associated costs of interaction outweigh the benefit of avoiding high-

latency accesses.

Any attempt to quantify this tradeoff is necessarily an approximation; there are many

factors that influence a user’s perception of the system that cannot be measured precisely.

High-latency accesses, for example, typically annoy users far more than interruptions of

similar length that occur off the critical path to an access [12]. In this evaluation we

measure only: (1) the delay observed by the user who is attempting to gain access while

the policy is being reconfigured (how long Bob waits for access to Alice’s office when Alice

must reconfigure the policy); (2) the duration of the reconfiguration (how long Alice takes

to reconfigure her policy to allow Bob access); and (3) the length of time required to

obtain credentials that describe implemented policy when no reconfiguration is necessary.

In our system, latency (1) ranged between 25 seconds and 18.6 hours, with a median of 98

seconds (the average, heavily influenced by a few outliers, was 53 minutes). The median

time observed for latency (2) was 23 seconds, only 5.8 seconds of which was spent selecting

the appropriate correction (the rest was Alice finding her phone, etc.). Finally, the average

duration of latency (3) was 6.9 seconds. These particular latencies are specific to our system;

we anticipate that they would be much higher (on the order of hours) in systems that do

not offer integrated support for resolving misconfigurations. However, our results will hold

as long as there remains a similar relationship between the latencies (e.g., delay incurred by
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a user waiting for access is much greater than delay incurred by a user modifying policy),

which we feel is likely for the vast majority of access-control systems.

With these caveats in mind, we use our simulation results and the timings above to

approximate the total time that all users would spend interacting with the system (accessing

resources or creating and correcting policy). If a misconfiguration must be resolved on the

critical path of access, the total user interaction time is the sum of latencies (1) and (2). If a

misconfiguration is resolved prior to access, the total interaction time is simply latency (2),

as the resulting credentials can be proactively distributed to the recipient of the delegation.

Guided by data from our deployment, we weight the various latencies incurred by users as

follows. Requests for credentials that occur on the critical path to an access being granted

are are assumed to take 6.9 seconds if the request can be completed without user interaction,

and 98 seconds otherwise. Whenever a query requires user interaction, we assume that the

user takes 23 seconds to respond to the query. We assume that each additional question

posed to the user as part of a batch takes 5.8 seconds.

We calculate the total time users would spend interacting with the system using the

UPPA strategy and varying the minimum confidence level required of the rules. The results

are shown in Figure 4.9. Restricting UPPA to consult a single user results in a slight time

savings for all minimum confidence values tested. Allowing a second user to be consulted

results in a small increase in total time for higher minimum confidence values and larger

increase in total time for lower values. Notably, with a minimum confidence value of 0.4

and batching enabled, UPPA results in a slight overall time savings even if it is allowed to

contact two principals.

4.2.4 Discussion

Each strategy for directing queries in our resolution mechanism is capable of resolving a

majority of policy misconfigurations. In particular, the UPPA strategy, when allowed to

consult two users, is able to resolve almost 95% of such misconfigurations. The proactive

resolution of these misconfigurations results in a drastic reduction (between 40% and 50%)

in the number of high-latency accesses. Consulting two users in the UPPA strategy is more

effective at resolving misconfigurations than consulting a single user, but this increase in

effectiveness comes at a cost of significantly more user interruptions. Batching can reduce

the number of user interruptions by approximately 15% when consulting more than one user.

When comparing a user consultation limit of two to a limit of one on the basis of total user

interaction time, the time associated with the additional user interaction is compensated

by the savings resulting from fewer high-latency accesses.
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To summarize: Our results show that a significant reduction (44%) in the number of

high-latency accesses can be achieved without increasing the total amount of time users

spend interacting with the system.

Our technique for resolving misconfigurations is general in that it operates on the basis

of observed behavior rather than inspection of access-control policy. It is therefore in-

dependent of both the underlying policy-specification language and the manner in which

misconfigurations are repaired. It does, however, require that the system know who resolved

previous misconfigurations. Since changes to policy are generally logged, we feel that this

is a reasonable requirement.

The results describing the estimated user interaction time are necessarily specific to our

system. However, our system provides integrated support for resolving misconfigurations

at the time of access. Many systems do not support this functionality, and as a result,

the duration of each high-latency access is likely to be dramatically higher. Our techniques

significantly reduce the number of high-latency accesses, so the case for proactively resolving

misconfigurations in such a scenario is likely to be even stronger than the one we present

here.

4.3 Rule Mining with Partial Data

To this point, we assumed that all access logs are available to the rule-mining algorithm.

However, some scenarios may restrict the available data to a subset of the overall data, e.g.,

to protect privacy or improve scalability. Specific users may prefer that their access logs

be excluded from rule mining to prevent others from observing their behavior. Similarly,

users may prefer that access to particular resources, such as a bathroom, not be logged.

As the complexity of rule mining in our scenario grows with the number of resources, large

organizations may find it necessary to mine rules using subsets of resources to improve

scalability.

If data pertaining to a particular resource is withheld, the mined rules will not reference

that resource, and therefore cannot predict accesses of that resource. Similarly, if a user’s

data is withheld, our technique will not predict any accesses for that user. However, re-

moving large fragments of the input data can also have a detrimental effect on rule mining

on the remaining data. In particular, consider two resources, A and B, that are governed

by extremely similar policy (e.g., the rule A→ B has high confidence), but are statistically

unrelated to any other resources (e.g., ∀C, C → B has low confidence). If data pertaining

to A is withheld, then it is unlikely that there will be many correct predictions regarding

B, as the remaining rules will either not meet the minimum confidence requirement, or will

be pruned by our feedback mechanism after making several incorrect predictions.
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Removing user data can also severely degrade the performance of rule mining on the

remaining data. Following the above example, if a significant fraction of the users who have

accessed A are withheld from rule mining, the support of the itemset (A,B) could drop

below minsup. Alternatively, the confidence of the rule A → B could fall below minconf.

Either situation would prevent predictions of B based on accesses of A.

These above examples are worst-case scenarios. In our evaluation, we find that there is

enough overlap between rules to compensate for the loss of subsets of the input data. In

the context of our example, this implies that there is often a rule C → B that will predict

many of the misconfigurations pertaining to B if the rule A → B is eliminated. In this

section, we investigate the extent to which the removal of portions of the data impacts

the performance of the remainder of the system. However, our dataset is drawn from a

relatively small deployment, and it is therefore difficult to determine the extent to which

these results imply properties about other policies.

4.3.1 Partitioning Strategy

With 25 users and 29 resources, our data can be divided into 254 distinct subsets; it is

therefore intractable to simulate all possibilities. Instead, we elect to partition the set

of resources, and evaluate the performance when removing the data associated with one

partition at a time. Our objective is to partition the data such that we can remove the

data most and least likely to impact rule mining in order to estimate the maximum and

minimum impact of withholding data. As patterns are formed when multiple users access the

same resources, we would expect that removing data pertaining to the resources that were

accessed by the most users to have a much greater impact than removing data pertaining

to the resources that were accessed by the fewest users. Similarly, removing the data of

the users who accessed the most resources should have a greater impact than removing the

data of the users who accessed the fewest resources.

As the input data to the rule mining algorithm does not include the total number of

accesses, we elect to partition our data on the basis of unique accesses as follows. We first

sort the resources by the number of unique users that have accessed the resource. If two

resources have been accessed by the same number of unique users, the total number of

accesses is used to break the tie. We partition the sorted list into quintiles, and assign each

quintile a letter designation A through E, with A representing the 20% of resources that

have been accessed by the fewest unique users and so on.

For users, we perform a similar process, instead sorting by the number of unique re-

sources that each user has accessed. Ties are broken using the total number of accesses

made by a user. The users are also partitioned into quintiles, labeled F through J, with F

representing the 20% of users who have accessed the fewest unique resources.
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4.3.2 Evaluation

We present two metrics for each partitioning: the number of high-latency accesses and the

total user interaction time.

In Section 4.2.3, we showed that our techniques could significantly reduce the number

of high-latency accesses incurred by users of the system. This is a positive result, as high-

latency accesses are inconvenient and frustrating to users. Here, we analyze the number

of high-latency accesses to determine the extent to which removing a partition of data

will diminish the benefit of our techniques. In Section 4.2.3, we also estimated that our

techniques would not impose any net increase in the total time that users spend interacting

with the system. Here, we investigate the extent to which this result holds when portions of

the dataset are withheld from the rule-mining algorithm. We compute the user interaction

time using the method described in Section 4.2.3.

For these simulations, we fixed all other parameters to values that yielded good results

in the preceding sections. Namely, we fix minconf to 0.4, minsup to 0.01, fthresh to 1, the

resolution strategy to UPPA with a limit of one request, and we disable batching as its

benefit is minimal when limiting the resolution procedure to one request. Results obtained

with a limit of two requests show similar results.

Resource Partitions To measure the impact of removing a partition, we count the

number of high-latency accesses of resources in each resource partition. For example, if

Partition A contains door1 and Alice’s access of door1 incurs a costly time-of-access delay

to resolve a misconfiguration, this will be reflected only in the the number of high-latency

accesses for Partition A. Figure 4.10 depicts the net change in high-latency accesses incurred

when a single partition is removed. The tics on the X axis indicate which partition of data

was removed. Each X-axis tic has five bars, each representing the number of additional

high-latency accesses that occur when that partition of data is withheld. For example, tic

D in Figure 4.10 shows that the removal of data for Partition D results in no additional

high-latency accesses of resources in Partitions A and C, one for Partition B, 14 for Partition

D, and two for Partition E. The “all” tic on the X axis represents the scenario in which rule

mining is not used at all. From this tic, we can see that rule mining with the given system

parameters can prevent 62 high-latency accesses across all partitions.

Interestingly, the number of high-latency accesses of resources in Partitions A-C increases

only slightly when rule mining is not used at all. This indicates that our techniques are

primarily resolving misconfigurations pertaining to the resources in Partitions D and E;

that is, the resources that are shared amongst the most users. Additionally, the removal of

Partition D does not substantially increase the number of high-latency accesses to resources
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in Partition E, and conversely, that removing Partition E produces only minor effects on

Partition D.

Figure 4.11 shows the estimated user interaction time when no partitions are withheld

(the “none” tic), when each resource partition is withheld, and when rule mining is not

used at all (the “all” tic). For each resource partition, withholding that partition’s data still

results in an overall decrease in user interaction time relative to the baseline scenario without

rule mining. Additionally, withholding Partitions A and C reduces the user interaction time

by approximately 1% relative to the scenario where no partitions are removed. The data

from these partitions results in the construction of several relatively inaccurate rules, so

removing them will decrease the number of incorrect predictions that must be resolved.

This gain in user interaction time comes at a cost of no additional high-latency accesses for

Partition A, and two additional high-latency accesses for Partition C. Thus, the performance

of the rule mining is strictly superior without Partition A in that it reduces user interaction

time without incurring any additional high-latency accesses.

User Partitions We repeat the previous evaluation, but partition the dataset by users

rather than resources. Again, we measure the number of high-latency accesses and total

user interaction time. Figure 4.12 depicts the number of high-latency accesses incurred by

removing one user partition at a time. If Alice is a member of Partition J, her high-latency

access of door1 will only be attributed to Partition J. In contrast to resource partitions, we

see (by inspecting the “all” tic) that the benefit of using rule mining is spread more evenly

across all partitions of users, though the users who access the most distinct resources still

gain the greatest benefit. Again, the negative effects of removing a partition of users are

largely constrained to the users included in that partition.
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Interestingly, removing Partition I actually decreases the number of high-latency accesses

that occur in Partitions G by two and Partition H by one. Similarly, removing Partition

J decreases the high-latency accesses in Partition H by one. Removing a partition of data

often changes the percentage of cases in which a rule holds (i.e., its confidence). In this

manner, removing Partitions I and J increases the confidence of a few rules enough to exceed

minconf and be used in the prediction process. These new rules identify several additional

misconfigurations that result in a further decrease in the number of high-latency accesses.

The estimated user interaction time with each user partition withheld is shown in Fig-

ure 4.11. As was the case for resource partitions, the user interaction time with each user

partition withheld remains lower than the baseline in which rule mining is not used. Re-

moving Partitions F and I results in less user interaction than the scenario where all data is

used for rule mining. Since the removal of Partitions F and I do not result in any additional

high-latency accesses outside of their partitions, we can conclude that, in our dataset, these

partitions are poor indicators of the policy for users in other partitions.

Partitioning based on total accesses We also evaluate a partitioning strategy that

sorted based on total accesses rather than unique accesses. While the resulting partitions are

similar, they are not identical. For example, one of the users who accessed the fewest unique

resources (and was therefore located in Partition F) accessed these resources extremely often.

When sorting on total accesses, this user would fall into Partition J. While specific results

differ when partitioning by total accesses, we find that our overall conclusions held with

this partitioning strategy as well.
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4.3.3 Discussion

Given the partitioning strategies described above, rule mining continues to produce useful

results even when a fifth of the input data is removed. In particular we found that removing

Partitions A, F, and I results in the same or fewer high-latency accesses in other partitions

as well as a slight decrease in the total user interaction time. The removal of the remaining

partitions does result in additional high latency accesses outside of the removed partition;

however, the effects are generally small. Removing Partition J results in the largest increase,

with four additional high-latency accesses. Removing any one of Partitions B, D, E, G, H,

or J slightly increases the user interaction time (by a maximum of 6% for Partition D), but

in each case the interaction time remains below that of the scenario where rule mining is

not used. These results indicate that, for our dataset, subsets of users or resources can be

removed for privacy or scalability reasons without significantly impacting the experience of

the remaining users.

4.4 Further Discussion

Large policies As our dataset represents a somewhat small deployment, an interesting

question is to what extent our approach scales to larger systems. There are two aspects of

scalability to consider: the extent to which rule mining can identify useful patterns in the

logs of large systems and the computational complexity required to mine these patterns.

As the number of resources a user may access will not increase proportionally with the

size of the organization, the matrix of past accesses is likely be more sparsely populated

in large systems than in ours. Thus, any resource that is shared by a large number of

users will produce rules that are clearly distinctive in terms of confidence and support.

However, data from large systems will, in absolute terms, contain a greater number of

spurious patterns. Further research is necessary to determine whether tuning the rule

mining parameters to ignore spurious patterns would negatively affect our ability to mine

rules concerning resources shared by a small group of users.

As the complexity of mining rules grows with the number of attributes (i.e., resources in

our system), scaling to environments with ever larger numbers of resources will eventually

pose a problem to a centralized rule miner. However, recent algorithms can efficiently

mine rules on datasets containing 10,000 attributes and 50,000 records [76]. In even larger

organizations, the useful patterns are likely to be with respect to localized resources (e.g.,

resources for an individual lab or building). The data for rule mining process could therefore

be partitioned along these boundaries and mined on different machines. In addition to

improving scalability, decentralizing the data may mitigate users’ privacy concerns and

remove the requirement that a single entity have a global view of the entire system.
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Data representation for rule mining In our approach, the input to the rule mining

algorithm is simply a collection of boolean values, each indicating whether a particular

user has accessed a particular resource. This representation, while effective in our scenario,

excludes other potentially useful information. In particular, this representation does not

include how often a user accessed a resource, the time of the most recent access, or any

explicit structure between resources. This information is relevant to the prediction of future

accesses, and if included, could improve our ability to proactively resolve misconfigurations.

For example, consider a scenario in which both Alice and Bob have each accessed re-

sources A and B many times. Should Alice access resource C once, our technique would

predict that Bob is now likely to access C. This prediction may be incorrect if Alice was

granted temporary access to C due to exceptional circumstances. In this case, the dis-

crepancy between the number of times Alice accessed A and B and the number of times

she accessed C might indicate that the rule A ∧ B → C should be ignored until Alice has

accessed C a few more times. The drawback to this approach is that delaying predictions

until more data becomes available could impede our ability to resolve misconfigurations

before the time of access.

Additionally, the time elapsed since a user last accessed a resource can indicate the

relevance of a rule mined from that data. Continuing the above example, the rule A∧B → C

is more likely to reflect current access-control policy if Alice accessed C yesterday than if she

accessed C over a year ago. As described, our techniques do not distinguish between the two

scenarios. Thus, while Alice’s ability to access C may be temporary, our technique assumes

that access is granted permanently. To counter this, access data could be discarded after it

reaches a certain age. This would allow the system to adapt to situations in which access

is revoked after a period of time. The length of this interval would need to be carefully

selected to balance the desire to mine rules from as much data as possible with the desire

to quickly adapt when access is revoked.

The third type of information that our data representation does not capture is any

explicit structure between resources. For example, given that Alice is authorized to write

to dir/fileA, the properties of the file system may imply that she is also authorized to list

the contents of dir, but do not imply anything about her ability to write to dir/fileB. Our

techniques treat dir, dir/fileA, and dir/fileB as independent resources. This approach has two

drawbacks: (1) it requires logs of multiple accesses to construct rules that are obvious from

the structure of the resources (e.g., dir/fileA → dir) and (2) by considering each resource

independently, it may be unable to mine more general trends, e.g., dir→ doorA. This could

occur if Alice writes to dir/fileA, Bob writes to dir/fileB, and both Alice and Bob access

doorA. When each resource is considered in isolation, there is insufficient data to discover the

relationship between dir and doorA. One way of addressing this is to consider the structure
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of the resources when constructing the data that is given to the rule mining algorithm, e.g.,

each write to dir/fileA could also count as a listing of dir. Further investigation is necessary

to determine if this approach is sufficiently general to cover all possible resource structures.

Directing resolution requests Although our techniques for directing resolution requests

are relatively simple, we showed that they were able to successfully resolve up to 95% of the

correctly identified misconfigurations. However, some scenarios may necessitate more ad-

vanced heuristics for directing requests. For example, consider a scenario in which multiple

administrators govern a single resource, but each administrator delegates only to a non-

overlapping subset of users. The resource could be a lab space shared between the research

groups of two professors. Each professor is willing to delegate authority to access the lab to

his or her students, but not to the students of the other professor. If we predict that a new

student will access the lab, our technique would simply direct the resolution request to the

administrator who has resolved the most misconfigurations in the past, which would be the

professor with the larger research group. A more advanced heuristic might also consider the

new student’s access history and the rule used to make the prediction to determine which

group the student belongs to.

Another drawback of directing resolution requests to the administrator who has re-

solved the most related requests in the past is that it effectively penalizes an administrator

for providing assistance. This problem is particularly acute in a scenario where several

administrators share equal responsibility for a resource. One possible way to address this

concern would be to create a group containing the most helpful administrators in the can-

didate list, then randomly select an administrator from that group. If the group selection

parameters are chosen correctly, this approach could ensure that requests are spread equally

among the administrators responsible for the resource.

4.5 Related Work

Related work falls, broadly speaking, into three categories: works that use similar data

mining or machine learning techniques to analyze access-control policy, works that focus

on assisting users in policy administration, and distributed access-control systems to which

our techniques are applicable.

Policy analysis The objectives of our work are related to those of role mining (e.g., [49,

69]), in which machine-learning techniques are used to extract roles from implemented

policy. These roles may then serve as a guide when migrating a legacy system to one that

supports role-based access control. Vaidya et al. formally define the role mining problem
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and bound its complexity [70]. In contrast, our techniques do not seek to characterize the

implemented access-control policy. Instead, we aim to discover the portions of intended

access-control policy that have not been implemented. Additionally, our techniques operate

on the basis of observed behavior and are agnostic to the policy-specification language.

Many tools for empirical access-control policy analysis have been developed for firewalls

(e.g., [10, 60, 42, 74, 5, 75]). These tools generally provide ways to test or validate firewall

policy against administrator intentions or other rules. Our work differs from these in mul-

tiple ways. First, since in the firewall setting there is typically one authority for the proper

access-control policy (the human administrator or a high-level specification of that policy),

there is no analog in that domain to a central concern here, namely determining with whom

to inquire about a potential policy change and minimizing the costs for doing so. Second,

because it has the benefit of a policy authority that can be consulted freely, firewall analysis

has focused on detecting traffic permitted in violation of policy, i.e., to improve security, at

least as much as what additional traffic should be allowed. The central technique we employ

here, namely learning from allowed accesses to predict others that are likely to be intended,

focuses exclusively on improving the usability of discretionary access controls granted in a

least-privilege manner.

The use of data-mining algorithms for detecting misconfigurations has recently been

treated in several domains. Perhaps most closely related to our work is Minerals [51], a

system which uses association rule mining to detect router misconfigurations. By applying

association rule mining to router configuration files in a network, Minerals detected mis-

configurations such as router interfaces using private IP addresses that should have been

deleted, user accounts missing passwords, and BGP errors that could result in unintention-

ally providing transit service or that could open routers to attack. The work of El-Arini

and Killourhy [32] similarly seeks to detect router misconfigurations as statistical anomalies

within a Bayesian framework. As in the aforementioned works in firewall analysis, though,

whom to consult about apparent configuration errors and minimizing the costs of doing so

were not issues considered in these works; these issues are central to ours, however.

Policy administration Jaeger et al. seek to characterize the ways in which implemented

policy may conflict with constraints that specify what accesses are prohibited [43]. Their

tool, Gokyo, allows the administrator to view the conflicts, and determine the least com-

plex way of correcting them, possibly by marking them as explicit exceptions to specified

policy. This tool could assist users of our techniques to resolve misconfigurations without

introducing conflicts.

Many accesses in the context of health-care systems are granted by exception rather

than because they are consistent with implemented access-control policy [22]. Using access-
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control logs that are annotated with whether or not an access was granted by exception,

PRIMA uses heuristics to extract the exceptions that occur often enough to warrant further

attention [22]. An administrator must then determine if the exception represents a miscon-

figuration. Applied frequently, PRIMA will help administrators to refine the implemented

policy so that it expands to include exceptions that are consistent with the intended policy.

As with our work, success is measured in terms of the coverage of intended policy. Our

techniques differ from theirs in that we use data mining to identify exceptions and that we

attempt to correct the implemented policy prior to the time of access.

Distributed access-control systems Our techniques operate using only data that de-

scribes past access attempts and who was contacted to resolve any misconfigurations. As

such, our techniques should apply to systems employing a wide variety of access-control

frameworks, such as RBAC [68], SPKI/SDSI [66], RT [56], or PCA [6]. We utilize observed

behavior to determine to whom a resolution request should be directed. Some systems, such

as PeerAccess [72], explicitly encode hints as to how queries should be directed. Such hints

could be considered in conjunction with observed behavior.

Though we have conducted our study in the context of Grey, there are numerous sys-

tems that we believe are well equipped to utilize the techniques we develop here. In partic-

ular, similar to Grey’s support for dynamic delegation, many other systems enable retriev-

ing credentials remotely from other parties as a means for satisfying access-control policy

(e.g., [24, 45, 48, 38, 19, 56]). These mechanisms could be used to drive the correction of

access-control misconfigurations once they are detected, though they do not detect those

misconfigurations or predict how they might be corrected, as we have studied here. Trust-

X [21] proposes a mechanism in which subsets of policy cached from previous access-control

decisions can be used to more quickly grant access in the future. This is effective when the

implemented policies that govern different access requests share many common components.

Our technique is complementary in that we focus on addressing the discrepancy between

implemented policy and intended policy.

4.6 Conclusion

In various application contexts (e.g., health-care systems), the consequences of unnecessary

delays for access to information can be severe. In such settings, it essential to eliminate

access-control policy misconfigurations in advance of attempted accesses; even in less critical

environments, doing so can greatly improve the usability of the access-control system. In

this chapter we have shown how to eliminate a large percentage of such misconfigurations in

advance of attempted accesses using a data-mining technique called association rule mining.
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We demonstrated that by doing so, we can greatly reduce the critical-path delays to accesses,

while inducing little additional overall work on users of the system. Specifically, we showed,

using data from a deployed access-control system, that our methods can reduce the number

of accesses that would have incurred a costly time-of-access delay by 44%, and can correctly

predict 58% of the intended policy. These gains are achieved without increasing the total

amount of time users spend interacting with the system. To accomplish these results, we

contributed both new uses of rule mining and novel approaches for determining the users to

which to make suggestions for changing policy. These results should be applicable to a wide

range of discretionary access-control systems and settings, but particularly for systems that

provide automated support for resolving misconfigurations via dynamic delegation.
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Conclusion

In this thesis, we present a collection of techniques for efficiently demonstrating that a

request to access a resource should be granted in a distributed access-control system that

is based on formal logic. It is imperative that this process complete in a timely fashion, as

unnecessary delays can severely diminish the usability of the system [12]. However, in the

context of a practical distributed access-control system, there are several factors that make

it difficult to construct a proof. First, the credentials that encode access-control policy

are distributed among the nodes of the system. Second, the proof-construction algorithm

must consider human factors, such as the social cost of making a request for assistance and

the need to guide users to create new credentials reactively in response to a query. Third,

the system should attempt to detect misconfigurations in access-control policy and try to

resolve them before they result in a legitimate access being delayed or denied.

Our techniques consist of (i) a procedure for distributing the process of constructing a

proof, (ii) a method for efficiently constructing proofs in a way that exposes choice points,

allows reactive credential creation, and fully utilizes locally known credentials, and (iii) a

technique for proactively identifying and resolving misconfigurations in access-control policy.

Distributed proof construction We present a technique by which the proof construc-

tion process itself is distributed between parties. This approach, which we term lazy is

advantageous in that the proof search is performed by the party most likely to either al-

ready have or be willing to create the credentials needed to demonstrate that a formula is

true. We show analytically that the proving ability of the lazy approach is strictly greater

than a centralized (or eager) approach that retrieves remote credentials as needed. We show

empirically that the lazy approach requires significantly fewer requests for assistance to con-

struct a proof than does the eager strategy, and that on subsequent queries, the advantage

109
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of the lazy strategy widens as it is better able to make use of cached results than the eager

strategy.

Importantly, the lazy strategy enables a remote party a great deal of freedom as to how

to proceed with the proof search. This flexibility can, for example, allow the remote node to

use an alternative tactic set or to incorporate guidance provided by the user of the remote

node.

Efficient, usable proof construction Preliminary experience from our deployment led

us to define three requirements that a proof-construction strategy must meet in order to

provide a positive user experience. First, a proof-construction strategy must notify users

when they could create a credential that would allow a proof to be constructed. Second,

choice points should be exposed to users to allow them to guide the proof search in the

manner that they deem to be the most appropriate. Third, the proof-construction strategy

should always find a proof if one can be derived from local knowledge.

Using our distributed proving technique as a foundation, we present a novel strategy

for constructing proofs that meets each of the above requirements. This strategy makes

use of three key insights: we utilize a delayed proof search in conjunction with user input

to minimize the number of expensive proof steps (such as asking for remote assistance),

we precompute all possible facts using the well-studied forward-chaining algorithm and all

possible paths using a path compression algorithm which we introduce in this thesis, and

we present a technique for systematically generating tactics from the inference rules of the

logic so that tactics no longer need to be hand crafted.

As with our distributed approach to proof construction, we show analytically that these

techniques offer strictly superior proving ability to a centralized approach. We show empir-

ically that our techniques yield dramatic gains in efficiency when compared to our previous

hand-tuned approach using both policies drawn from our deployment and policies indicative

of a much larger deployment. Our analysis shows that our techniques offer benefit in an

environment with tabling, and the side-effects of precomputation are reasonable for many

practical scenarios.

Identifying and resolving policy misconfigurations We present techniques for iden-

tifying and resolving misconfigurations in access-control policy before those misconfigura-

tions result in legitimate access being delayed or denied. Based on the observation that

access-control policy exhibits patterns, and that these patterns are observable from logs of

past accesses, we apply association rule mining to mine rules from these logs. Situations in

which the mined rules do not hold represent potential misconfigurations. Once a potential

misconfiguration has been identified, we utilize past user behavior to determine the most
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appropriate principal to contact to determine if policy should be modified, and if so, to

perform the appropriate modification.

We evaluate our techniques using 14 months of data drawn from the Grey deploy-

ment. We find that, for reasonable parameter values, we can correctly identify 58% of the

misconfigurations in the intended access-control policy. Proactively resolving these miscon-

figurations allows us to eliminate 44% of the accesses that would incur a lengthy delay to

correct a misconfiguration. In addition, we find that our techniques are resilient to removing

portions of the collected data. In particular, the impact of removing data pertaining to a

subset of users or resources is largely born by the members of that subset.

The difficulty of constructing a proof demonstrating that access should be granted is

a significant impediment the deployment of distributed access-control systems based on

formal logic. This thesis presents a collection of techniques for constructing such proofs in

a manner that meets the various requirements of practical system. To our knowledge, ours

is the first such work to do so. We demonstrate analytically that the proving ability of our

techniques is strictly greater than centralized solutions, and we show empirically that our

techniques offer significant improvement in many practical scenarios. We demonstrate the

practicality of our work through integration into the Grey system, where the techniques

proposed in Chapters 2 and 3 have been in active use for over two years.
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Appendix A

Proof of Theorems

A.1 Proof of Termination for a Distributed Prover

Notation Let CP refer to a centralized prover with tactics T and facts F . Let DP refer to a

distributed prover consisting of i cooperating nodes, each using tactics T and facts fi such that
⋃

i fi = F .

When comparing CP to DP , we will refer to line N as [Nc] or [Nd] if being run by CP or DP

respectively. To refer to variable A on this line, we state [Nc].A or [Nd].A. When B is a function

parameter, we shorten the notation to [c].B or [d].B. We introduce a special constant localmachine

that represents the principal associated with the machine on which the prover is being run. Let

[c].result represent the substitution returned by bc-ask in the centralized scenario, and [d].result

represent the substitution returned in the distributed scenario. We make the assumption that all

invocations of rpc are transparent to bc-ask.

A.1.1 Lemma 2

Lemma 2 Consider two invocations of bc-ask made by CP and DP made under the following as-

sumptions:

1. bc-ask is invoked with identical parameters in both scenarios

2. goals 6= [ ]

3. first(goals) is such that [8d].l 6= localmachine

4. Any recursive call to bc-ask will produce the same answer if invoked with the same parameters

in both scenarios.

Let α1, . . . , αk, αk+1 denote the sequence of return results from the (k + 1) bc-ask invocations on

line 11 by DP, and let β1, . . . , βk′ denote the sequence of return results of the k′ bc-ask invocations

on line 17 by CP that do not return ⊥. Then, k = k′ and for each 1 ≤ i ≤ k, αi = βi.

Proof We prove Lemma 2 by induction over i. Our induction hypothesis is that [11d].failures ′i =

[17c].failures ′i. Note that αk+1 = ⊥.
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Base Case We must show that [11d].α1 = [17c].β1 and that [11d].failures ′2 = [17c].failures ′2. Since

[11d].failures ′1 = [d].failures and [17c].failures ′1 = [c].failures, we can use Assumption 1 to conclude

that [11d].failures ′1 = [17c].failures ′1. Assumption 1 tells us that [d].θ = [c].θ, from which we can

conclude that [7d].q′ = [7c].q′.

DP will call bc-ask (line 11) on machine l. Let [Nr] represent the execution of line N within this

remote call.

5r–6r [r].goals=[d].first(goals), which cannot be empty, by Assumption 2, so the body of these if

statements will never be executed.

7r first([r].goals) = first(first([d].goals)) = first([d].goals). Additionally, [r].θ = [d].θ. Since we know

that [7d].q′ = [7c].q′, we can conclude that [7r].q′ = [7c].q′.

8r Since DP made the RPC to [8d].l, [8r].l is localmachine .

9r [9r].failures ′1 = [r].failures = [11d].failures ′1.

10r Since [8r].l = localmachine , the body of this if statement ([11r]–[14r]) will never be executed.

15r Since [8r].l = localmachine , the body of this else statement will always be executed.

16r We let [c].R ⊆ [c].KB represent the set of tactics with which [16c].q′ can unify and [r].R ⊆

[r].KB represent the set of tactics with which [16r].q′ can unify. Knowing that [16r].q′ = [16c].q′,

we now show that [r].R = [c].R. If [c].Rt represents the subset of [c].R that is tactics with subgoals

and if [c].Rf represents the subset of [c].R that is facts of the form A signed F , [c].Rt∪ [c].Rf =

[c].R. By definition of our scenario, all machines in DP know all tactics with subgoals, so [r].Rt =

[c].Rt. Furthermore, our scenario states that machine A knows all facts of the form A signed F .

Since [8r].l = localmachine , [r].Rf = [c].Rf with respect to the formula q′. Having shown [r].Rt

= [c].Rt and [r].Rf = [c].Rf , we can conclude that [r].R = [c].R.

Since [r].R = [c].R, if unify succeeds in one scenario, it will succeed in both. As a result, [16r].(P, q)

= [16c].(P, q), which means that [16r].θ′ = [16c].θ′.

17r [17r].failures ′ = [11d].failures ′1, which we have shown to be equal to [17c].failures ′1. Assump-

tion 4 tells us that any recursive call to bc-ask made by DP will produce the same answer as a call

made by CP with the same parameters. Having shown the equality of all parameters to bc-ask,

we can conclude that [17r].β = [17c].β. If β = ⊥, both [c] and [r] will go to line 15 and repeat

lines 16–17 using the next tactic. If no such tactic exists, they will both fall through to line 21

and return ⊥. If β 6= ⊥, then we have found [17c].β1, and that [17r].β = [17c].β1.

19–20r Since [r].goals = first([d].goals), rest([r].goals) must be the empty set. Therefore, [19r].answer=

[17r].β, which is equal to [17c].β1.

Since [11d].α1 = [r].result and [r].result = [17c].β1, we can conclude [11d].α1 = [17c].β1 as desired.

Since [11d].failures ′1 = [17c].failures ′1 and [11d].α1 = [17c].β1, the execution of [12d] and [18c] will

produce [12d].failures ′2 = [18c].failures ′2 as desired.

Induction When the recursive call on [11d] is made for the ith time, [11d].failures ′i = [d].failures∪

[11d].α1 ∪ . . .∪ [11d].αi−1 and [17c].failures ′i = [c].failures∪ [17c].β1 ∪ . . .∪ [17c].βi−1.

5r–8r These lines will behave identically to the base case.
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9r [9r].failures ′ = [11d].failures ′i. Using our induction hypothesis, we can conclude that [9r].failures ′

= [17c].failures ′i.

10r, 15r–16r These lines will behave identically to the base case.

17r Having shown the equality of all parameters to bc-ask, we can use Assumption 4 to conclude

that [17r].β = [17c].β. As in the base case, if β = ⊥, both [c] and [r] will go to line 15 and repeat

lines 16–17 using the next tactic. If no such tactic exists, they will both fall through to line 21

and return ⊥. If β 6= ⊥, then we have found [17c].βi, and that [17r].β = [17c].βi.

19r–20r As in the base case, [r].result = [17r].β.

[11d].αi = [r].result , which is equal to [17c].βi as desired. Since [11d].failures ′i = [17c].failures ′i
and [11d].αi = [17c].βi, the execution of [12d] and [18c] will produce [12d].failures ′i+1 = [18c].failures ′i+1

as desired. Finally, we have shown that there is a one-to-one correspondence between αi and βi,

and so k = k′. 2

A.1.2 Lemma 3

Using Lemma 2, we now prove a stronger result. For the purposes of the following lemma, we define

the recursion depth to be the number of times bc-ask directly invokes itself (i.e., invocations wrapped

in RPC calls do not increase the recursion depth, but all others do).

Lemma 3 If both CP and DP invoke bc-ask with parameters goals, θ, and failures, then [c].result

= [d].result .

Proof We prove Lemma 3 via induction on the recursion depth of bc-ask. Our induction hypothesis

is that at a particular recursion depth, subsequent calls to bc-ask with identical parameters will

return the same answer in DP as in CP .

Base Case The deepest point of recursion is when goals is the empty list. Since [d].failures =

[c].failures and [d].θ = [c].θ, lines 5–6 will execute identically in DP and CP returning either θ or

⊥.

Induction In this case, goals 6= [ ].

5d–6d Since [c].goals = [d].goals 6= [ ], both DP and CP proceed to line 7.

7d Because [c].goals = [d].goals and [c].θ = [d].θ, [7d].q′ = [7c].q′.

8d–9d By definition of determine-location, [8c].l = localmachine . Depending on [7d].q′, [8d].l may

or may not be localmachine . We proceed to show that in either situation, [c].result = [d].result .

In both cases, [c].failures = [d].failures , and so [9c].failures ′ = [9d].failures ′.

Case A of 8d–9d: [8d].l 6= localmachine We show that each assumption of Lemma 2 holds.

1 is an assumption of the current lemma as well.

2 is fulfilled by the definition of the inductive case we are trying to prove.

3 is true by the definition of Case A.

4 is true by our induction hypothesis.
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Therefore, by Lemma 2, the sequence α1, . . . , αk, αk+1 of return results from the (k + 1) bc-ask

invocations on line 11 by DP , and the sequence β1, . . . , βk′ of return results of the k′ bc-ask

invocations on line 17 by CP that do not return ⊥ satisfy k = k′ and for each 1 ≤ i ≤ k,

αi = βi. As a result, applying the induction hypothesis at [13d] and [19c] yields [13d].answer =

[19c].answer in each iteration, and [c].result = [d].result .

Case B of 8d–9d: [8c].l = [8d].l=localmachine

Analogously to the argument in the base case of Lemma 2 (line [16r]), [d].R = [c].R, where [c].R

is set of tactics with which [16c].q′ can unify, and [d].R is the set of tactics with which [16d].q′

can unify. As a result, applying the induction hypothesis at [19d] and [19c] yields [19d].answer =

[19c].answer in each iteration, and [c].result = [d].result .

2

A.1.3 Theorem 1

Theorem 1 For any goal G, a distributed prover using tactic set T will find a proof of G if and

only if a centralized prover using T will find a proof of G.

Proof Both CP and DP will attempt to prove G by invoking bc-ask with goals = G, θ equal to the

empty substitution, and failures = [ ]. Lemma 3 states that in this situation, the result returned by

CP and DP is identical. From this, we can conclude that DP will find a solution to G if and only

if CP finds a solution. 2

A.2 Completeness of PC

At a high level, we first show that add-path will combine all paths that can be combined—that is,

for any paths (p, q) and (p′, q′) if q unifies with p′ then the path (p, q′) will have been added. As

mentioned in Section 3.4, union is defined to prevent cyclic paths (i.e., (p, p)) from ever being added.

We then proceed to show that for all credentials that represent a path, all independent credentials

are added, and all credentials that depend on the existence of another path are added whenever that

path becomes known.

For the purpose of clarity, within the scope of this Appendix, if unify(a, b) 6= ⊥ then we will

write a = b and use a and b interchangeably. We let [kp] represent line k in PC, and [ka] represent

line k in add-path.

Lemma 4 If paths and incompletePaths are initially empty, and add-path is invoked repeatedly with

a series of inputs, then after any invocation of add-path completes, the following holds: ∀(x, y) ∈

paths , ∀(x′, y′) ∈ paths , (unify(y′, x) 6= ⊥) ⊃ (x′, y) ∈ paths.

Proof We prove Lemma 4 by induction over the number of calls i that have been made to add-path,

where a call corresponds to the addition of a single credential. Our induction hypothesis states that

condition C holds after i − 1 calls, where C is (∀(x, y) ∈ paths , ∀(x′, y′) ∈ paths , (unify(y′, x) 6=

⊥) ⊃ (x′, y) ∈ paths).

Base case: The base case occurs when i = 1. Prior to this call, paths is empty. Since [17a] will

add (p, q) to paths and unify(p, q) = ⊥ (or else credToPath would have returned ⊥ on [3p]) the if
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statements on [20a] and [26a] will fail and the function will exit with paths containing the single

element (p, q). Since paths will contain a single element, the induction hypothesis holds.

Inductive case: For the inductive case, we must show that C holds after the ith call to add-path.

We prove the inductive case by first making the following observations:

Observation 1: By the time [24a] is reached, if (p, q) is the parameter to add-path ([15a]), then paths

and newPaths will contain every path (p, q′) such that unify(q, p′) 6= ⊥ and (p′, q′) ∈ paths .

Observation 2: When add-path terminates, paths will contain every (p′, q′′) such that (p′, q′) ∈ paths ,

(p′′, q′′) ∈ newPaths , and unify(q′, p′′) 6= ⊥.

Observation 3: If an invocation of add-path, when given input parameter (p, q), adds the path (x, y),

then, ignoring the mechanics of add-path, (x, y) must be characterized by one of the following:

1. (x, y) = (p, q)

2. x = p and (q, y) ∈ paths prior to invocation i

3. (x, p) ∈ paths prior to invocation i and y = q

4. (x, p) ∈ paths prior to invocation i and (q, y) ∈ paths prior to invocation i

In situation 2, (x, y) represents the addition of an existing path to one end of (p, q). Situation 3 is

simply the opposite of 2. In situation 4, (x, y) represents the addition of existing path to both ends

of (p, q).

We must show that C holds in the following cases, which describe all possible combinations of

(x, y) and (x′, y′) prior to invocation i:

1. (x, y) ∈ paths , (x′, y′) ∈ paths ;

2. (x′, y′) ∈ paths but (x, y) 6∈ paths (or, conversely, that (x, y) ∈ paths but (x′, y′) 6∈ paths);

3. (x, y) 6∈ paths and (x′, y′) 6∈ paths .

Case 1: Lemma 4 assumes that y′ = x. From this and the definition of Case 1, our induction

hypothesis tells us that (x′, y) ∈ paths prior to invocation i. Since add-path does not remove

elements from paths , (x′, y) ∈ paths after invocation i, and so C holds.

Case 2 From the definition of Case 2, we know that (x, y) is added during the ith invocation of

add-path. This implies that (x, y) must have been added at one of the following locations (with

the situation that led to the addition in parenthesis):

a. [17a] ((1) of Observation 3)

b. [22a] ((2) of Observation 3)

c. [28a] ((3) or (4) of Observation 3)

We note that the most complex scenario is the second possibility for subcase c (4). We prove

only the second possibility for subcase c, and note that subcases a, b, and the first possibility of

subcase c can be proven analogously.

Step 2.1: We first observe that prior to invocation i, (x′, y′) ∈ paths (by the assumptions of Case

2) and (x, p) ∈ paths (by the assumptions of the second possibility of Case 2c). If (x′, y′) ∈ paths

and (x, p) ∈ paths prior to invocation i, and y′ = x (by assumption of Lemma 4), then our

induction hypothesis tells us that (x′, p) ∈ paths .

Step 2.2: Since (q, y) ∈ paths (by the assumptions of the second possibility of Case 2c) we can

apply Observation 1 to conclude that, by the time [24a] is reached, (p, y) ∈ newPaths .
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From Step 2.1, we know that prior to invocation i, (x′, p) ∈ paths and from Step 2.2 we know

that by the time [24a] is reached, (p, y) ∈ newPaths . From this, we can apply Observation 2 to

conclude that (x′, y) will be added to paths . Thus C holds.

Case 3 We note that both (x, y) and (x′, y′) can be added to paths in any of the three locations

mentioned in case 2. Again, we prove the most complex case (the second possibility of subcase

c), where both (x, y) and (x′, y′) are added on [28a].

Since Case 3 assumes that both (x, y) and (x′, y′) are added during the ith invocation of add-path,

we can apply Observation 3 to both (x, y) and (x′, y′) to conclude that (x, p), (x′, p), (q, y), and

(q, y′) are all elements of paths prior to invocation i. Since (q, y) ∈ paths , Observation 1 tells us

that by the time [24a] is reached, (p, y) ∈ newPaths . Since (x′, p) ∈ paths and (p, y) ∈ newPaths ,

Observation 2 tells us that when add-path terminates, (x′, y) ∈ paths fulfilling C.

Since each of the three subcases of the inductive case allows us to conclude C, the induction

hypothesis is true after invocation i.

Having shown that ∀(x, y) ∈ paths , ∀(x′, y′) ∈ paths , (unify(y′, x) 6= ⊥) ⊃ (x′, y) ∈ paths holds

for the base case and the inductive case, we can conclude that Lemma 4 holds. 2

Lemma 5 From an initially empty knowledge base, If c1, . . . , cn are the credentials given to PC as

input for invocations 1, . . . , n, then after the nth invocation of PC, the following must hold for each

cj , j ≤ n:

1. If ((p, q) ← credToPath(cj)) 6= ⊥ and depends-on(cj) = ⊥, add-path((p, q)) has been invoked

and (p, q) ∈ paths.

2. If ((p, q) ← credToPath(cj)) 6= ⊥, π ← depends-on(cj) and π ∈ paths, add-path((p, q)) has

been invoked and (p, q) ∈ paths.

Proof We note that incompletePaths is a list of tuples that contain a credential and the path it

depends on. The path is derivable directly from the credential, and is included only for ease of

indexing. For ease of presentation, we will refer to the elements of incompletePaths as credentials.

We prove Lemma 5 by induction over the number of invocations i of PC. Our induction hypothesis

is that conditions 1-2 of Lemma 5 (which we label C) hold after invocation i− 1.

Base case: The base case occurs when i = 1. It is straightforward to see that for any credential

c1 such that credToPath(c1) 6= ⊥ and depends-on(c1) = ⊥, c1 will be converted to a path and given

to add-path on [9p]. Since paths is initially empty, it is not possible for a path to depend on a

π ∈ paths as is required by the second condition of Lemma 5. In this case, if credToPath(c1) 6= ⊥

and π ← depends-on(c1), c1 must be added to incompletePaths on [6p].

Inductive case: For the inductive case, if credToPath(ci) = ⊥, PC immediately exits ([3p]). If

credToPath( c1) 6= ⊥, π ← depends-on(c1), and π 6∈ paths , ci is added to incompletePaths , and PC

will exit without adding any new paths. In both cases, C is trivially true by the induction hypothesis.

In all other cases, ci will be converted to a path (p, q) and given to add-path ([9p]), which adds

(p, q) to paths ([17a]). However, if ci was given to add-path ([9p]), it is possible that the invocation

of add-path added to paths a path π that a previous credential cj (where 0 < j < i) depends on.

If such a path was added, then cj ∈ incompletePaths (by [6p] of the jth invocation of PC). To

compensate for this, after invoking add-path for ci, PC iterates through incompletePaths ([10p]) and

invokes add-path for any credential that depends on a path π ∈ paths .
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We have shown that after the ith invocation of PC completes, add-path has been invoked for ci.

We have also shown that for any credential cj ∈ incompletePaths that depends on a path created

during the ith invocation of PC, add-path has been invoked for cj as well. From this and our induction

hypothesis, we can conclude that when PC exits, add-path has been invoked with each credential

that depends on a path π ∈ paths i, which satisfies the conditions of C. 2

Theorem 4 If PC has completed on KB, then for any A, B such that A 6= B, if for some F

(B says F ⊃ A says F ) in the context of KB, then (B says F, A says F ) ∈ KB.

Proof If (B says F ⊃ A says F ) is true, then there must exist a set of delegation credentials from

which we can conclude (B says F ⊃ A says F ). Since all credentials are given as input to PC,

from Lemma 5 we can conclude that add-path has been invoked for all independent credentials and

for all dependent credentials that depend on a path that exists. We then apply Lemma 4 to show

that, from the set of credentials given to add-path, all possible paths have been constructed, thus

proving Theorem 4. 2

A.3 Completeness of Delayed Backward Chaining

Our objective is to demonstrate that the proving ability of a prover that uses delayed backward

chaining is strictly greater than the proving ability of a prover that uses the inline backward chaining

algorithm we presented in Figure 2.1. For the purpose of formal comparison, we assume that all

caching optimizations described in Chapter 2 are disabled. We also assume that all participants

contributing to the construction of a distributed proof use the same set of tactics.

We refer to the inline backward chaining prover as bc-askI . bc-askI outputs either a complete

proof or ⊥, while bc-askD (shown in Figure 3.2) may additionally output a marker indicating a

choice subgoal that needs to be proved. As such, a wrapper mechanism must be used to repeatedly

invoke bc-askD, aggregate markers, and chose which marker to purse, e.g., by asking the user. To

accomplish this, we introduce the abstraction of a distributed prover, of which bc-askI is an example.

To construct a distributed prover using bc-askD, we define a wrapper, bcD (shown in Figure A.1)

that accomplishes the above objectives. bcD is designed explicitly for formal comparison; as such, it

lacks mechanisms (e.g., for local credential creation, user interaction) that are necessary in practice,

but not present in bc-askI . The addition of these mechanisms allows the delayed distributed prover

to find proofs in situations where an inline distributed prover is unable to do so.

Our task is now to show that a delayed distributed prover will find a proof of a goal if an inline

distributed prover finds a proof. We let [kd] represent line k in bc-askD, [kbcd] represent line k in

bcD, and [ki] represent line k in bc-askI . We will make use of the term recursion height, defined

below. Note that because all the functions we consider here are deterministic, the recursion height

is well-defined.

Definition 2 We define the environment of a function invocation to be the values of all globals

when the function is called and the parameter values passed to the function. The recursion height

of a function in a given environment is the depth of recursive calls reached by an invocation of that

function with that environment.
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0 〈substitution, credential[ ]〉 bcD( /* returns a substitution */
list goals , /* list of conjuncts forming a query */
substitution θ, /* current substitution, initially empty */
set failures) /* set of substitutions that are known

not to produce a complete solution */
1 local set markers , failures ′

2 failures ′ ← failures

3 while ((〈β, creds〉 ← bc-askD(goals, θ, failures ′)) 6= ⊥) /* find all solutions */
4 if notMarker(β), return 〈β, creds〉 /* if complete proof found, return*/
5 markers ← markers ∪ {β}
6 failures ← failures ∪ {β}

7 for each m ∈ markers

8 〈f, θ, failures ′〉 ← m

9 while((〈α, creds〉 ← rpc
l
(bcD(f, θ, failures ′))) 6= ⊥)

10 failures ′ ← α ∪ failures ′

11 addToKB(creds)
12 〈β, creds〉 ← bcD(goals, θ, failures)
13 if (β 6= ⊥), return 〈β, creds〉
14 return 〈⊥,null〉

Figure A.1: bcD, a wrapper to process partial proofs returned by bc-askD

Terminating tactics We note that when the inline prover finds a proof by making a remote

request, it may not fully explore the search space on the local node. Since a delayed prover investi-

gates all branches locally before making a request, should a later branch not terminate, no solution

will be found. We assume here that all sets of tactics terminate on any input, which is a requirement

in practice to handle the case in which no proof exists. In the case where a depth limiter is necessary

to guarantee termination, the same limit will be used for both delayed and inline provers.

Lemma 6 Consider two knowledge bases KB and KB ′ such that KB ⊂ KB ′. Assume that when

trying to prove goal G using KB, bc-askD finds ρ, which is either a complete proof or a proof

containing a marker. If bc-askD is invoked repeatedly with goal G and knowledge base KB ′ and each

previous proof is added to failures, then an invocation of bc-askD will find ρ.

Proof sketch As discussed in Section 3.7, we assume that the logic is monotonic—that is, if a proof of

G exists from KB , it also exists from KB ′. Line [11d] iterates through all elements of the knowledge

base. The only places that exit this loop prematurely are [18d], [21d], and [23d]. Through induction

over the recursion height of bc-askD, we can show that if the proof returned by one of these lines

is added to failures on a subsequent call to bc-askD([17d], [19d], or [22d]), then that proof will be

disregarded and the next element of the knowledge base will be considered ([11d]). If this is repeated

sufficiently many times, bc-askD using KB ′ will find the same proof ρ produced by bc-askD using

KB . 2

Lemma 7 For any goal G and knowledge base KB, bc-askD using tactic set T will find a proof of

G without making any remote requests if bc-askI using T will find a proof of G without making any

remote requests.
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Proof sketch If bc-askI finds a proof without making a request, then the proof must be completable

from the local knowledge base and the search for the proof must not involve investigating any

formulas of the form A says F such that determine-location(A) 6= localmachine . Our induction

hypothesis states that if both bc-askI and bc-askD make a recursive call with identical environments

that will have recursion height h, then the recursive bc-askD call will return the same result as the

recursive bc-askI call.

Base case: The base case is when the recursion height = 0, which occurs when goals = [ ]. Since an

assumption of this case is that all input parameters to bc-askD are the same as bc-askI , by inspection

of the algorithms ([3d]-[4d], [5i]-[6i]), bc-askD and bc-askI will both return ⊥ if θ ∈ failures , or θ

otherwise.

Inductive case: For the inductive case, we assume that, at recursion height h + 1, bc-askD was

invoked with the same parameters as bc-askI . Since, by the assumptions of this lemma, bc-askI does

not make any remote requests, l must resolve to the local machine on [6d] and [8i], thus bypassing

[9d]-[10d] and [11i]-[14i]. This means that both strategies will behave identically until after q′ is

unified against an element in the KB ([12d], [16i]). At this point, there are two cases to consider:

(1) (P, q) is a tactic or (2) (P, q) represents a credential or a fact. In either case, bc-askI will continue

to [17i].

Case 1: If (P, q) is a tactic, then P will be non-empty, causing bc-askD to continue to [19d] . At

this point, the parameters to the recursive call on [19d] are identical to those of [17i], and we can

apply our induction hypothesis to conclude that [19d].β = [17i].β. β is then added to failures ′,

ensuring that the parameters to [19d] will remain identical to [17i] on subsequent iterations.

Since, by assumption, no remote requests are necessary, [21d] will never be executed. Since all

parameters to the recursive call on [22d] are identical to those of [19i], we can apply our induction

hypothesis to conclude that [22d].answer = [19i].answer . If answer 6= ⊥, it will be returned in

both scenarios, otherwise bc-askD and bc-askI will continue to the next iteration of [19d] and [17i].

With [22d].answer = [19i].answer for each iteration, if bc-askI returns a solution, bc-askD will

also. Otherwise, bc-askD and bc-askI will return ⊥.

Case 2: The second case occurs when (P, q) represents a credential or a fact. This implies that

P is an empty list. Then, [17i] will return with β = ⊥ if compose(θ′, θ) ∈ failures ′ ([5i]), and

β = compose(θ′, θ) ([6i]) otherwise. Note that β is added to failures ′ on [18i], so the recursive call

inside the while loop on [17i] will succeed only once.

Because P = [ ], the condition of the if statement on [14d] will be true. If φ ∈ failures ′ (where

φ = compose(θ′, θ) from [13d]) then [16d]-[18d] will not be executed. bc-askD will then proceed to

try the next element in the knowledge base ([11d]), which is the same as the behavior of bc-askI

when [17i].β = ⊥. If [15d].φ is not in failures ′, then [16d]-[18d] will be executed. Since φ is not

modified between [13d] and [17d], [17d].φ = compose(θ′, θ) = [19i].β. At this point, we know that

all parameters to the recursive call on [17d] equal those of [17i]. At this point, we can apply our

induction hypothesis to show that [17d].answer = [19i].answer . From this, we can conclude that

if bc-askI finds a proof, bc-askD will find a proof as well. 2
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Lemma 8 For any distributed proving node attempting to prove goal G with knowledge base KB,

bcD will find a proof of G if bc-askI would find a proof of G, under the assumption that all remote

requests, if given identical parameters, will return the same answer in both strategies.

Proof We prove Lemma 8 via induction over the number of remote requests r that a local prover

using bc-askI makes to complete the proof. Our induction hypothesis states that for all queries such

that bc-askI finds a proof with r − 1 requests, bcD will find a proof as well.

Base Case: The base case occurs when r = 0 and can be shown by direct application of Lemma 7.

Inductive Case: We prove the inductive case by (1) showing that bcD will eventually make a

remote request that is identical to the initial remote request made by bc-askI , (2) showing that when

bcD re-runs the entire query after the remote request finishes ([12bcd]), this query will be able to

find a proof of the formula proved remotely in (1) using only local knowledge, and (3) showing that,

after deriving the proof described in (2), bc-askD will recurse with the same parameters that bc-askI

recurses with after bc-askI finishes its initial remote request.

Step 1: By an argument analogous to that of Lemma 7, we assert that bc-askD will behave iden-

tically to bc-askI until the point at which bc-askI encounters a goal for which it needs to make a

remote request ([11i]). At this point, bc-askD will construct a marker ([9d]) containing the same

parameters as bc-askI would use to make the remote request.

Since bcD exhaustively investigates all markers ([7bcd]), it will investigate the marker described

above. Thus, bcD will make a remote request with identical parameters to the request made by

bc-askI , which, by the assumption of this lemma, will return the same result under both strategies.

Step 2: By inspection of bc-askD (in particular, [18d] and [23d]), we can see that all credentials

used in a proof of a goal are returned when the query terminates. Thus, when a remote request

for a goal f ([9bcd]) returns with a complete proof, the response will include all of the credentials

necessary to re-derive that proof. These credentials are added to the knowledge base on [11bcd],

so from Lemma 6 we can conclude that the local prover can now generate a complete proof of f .

We refer to the invocation of bc-askD that constructed the marker in Step 1 as M . When bcD

re-runs the entire query ([12bcd]), bc-askD will retrace its steps to M . Since new credentials have

been added to the knowledge base, bc-askD may first explore additional branches, but because

it is exhaustive and deterministic, it will eventually explore the same branch as the first query.

Upon reaching M , bc-askD will first construct a remote marker identical to the one produced in

the first round ([9d]), but, since bcD repeatedly invokes bc-askD until a either complete proof has

been found or no more markers exist, bc-askD will be invoked again with that marker in failures

([12bcd]). This time, bc-askD will attempt to prove the first(goals) ([11d]), and having sufficient

credentials, will generate the same proof ([14d] or [19d]) as was returned by the remote request.

Note that it is possible to generate alternative proofs first, but the combination of bcD repeatedly

invoking bc-askD ([12bcd]) with previous solutions included in failures and the loops on [11d] and

[19d] ensures that the solution identical to the result of the remote request is eventually found.

Step 3: From Step 2, we know that bc-askD finds the same proof of first(goals) as bc-askI does. In

the case where first(goals) is provable directly from a credential, this means that [17d].φ = [13i].α

In the case where first(goals) is not provable directly from a credential, [22d].β = [13i].α. In either

case, rest(goals) and failures are identical to those of invocation M , which, in turn, is effectively



A.4. COMPLETENESS OF LR TACTICS 131

identical to the invocation of bc-askI that made the remote request for which M constructed a

marker. At this point, we have shown that all parameters to the recursive bc-askD call (either

[17d] or [22d]) are identical to those of [13i].

The knowledge base KB ′ used by bc-askD was initially identical to the knowledge base KB used

by bc-askI . However, bcD added the credentials returned by the remote request to KB ′ ([11bcd]),

resulting in a KB ′ such that KB ⊂ KB ′. By Lemma 6, we can conclude that bc-askD will

eventually find the same proof using KB ′ as it finds using KB . Thus, if we can prove Lemma 8

when bc-askD uses KB , the result will hold when bc-askD uses KB ′. From the previous paragraph,

we know that all parameters to the recursive bc-askD call (either [17d] or [22d]) are identical to

those of [13i], and from this paragraph, we can conclude that the knowledge base in use by bc-askD

is identical to that of bc-askI .

The proof created in the inline strategy on [13i] must be completable with r−1 remote requests, as

one remote request has already been made. At this point, we can apply our induction hypothesis

to show that either [17d].answer = [13i].answer or [22d].answer = [13i].answer . From this and

inspection of [18d], [23d], and [14i], it is clear that bc-askD will find a proof if bc-askI is able to

find a proof. 2

Theorem 5 For any goal G, a delayed distributed prover with global knowledge base KB will find

a proof of G if an inline distributed prover using KB will find a proof of G.

Proof We first define the remote request height h of a proof to be the recursion height of the algorithm

with respect to remote requests. For example, if A asks B and C for help, and C asks D for help,

the remote request height of A’s query is 2.

We are trying to show that bcD (which invokes bc-askD) will produce a complete proof if bc-askI

produces a complete proof. We prove Theorem 5 by induction over the remote request height of

the proof. Our induction hypothesis states that if bc-askI and bcD are invoked with parameters P

(which include goal G), and bc-askI finds a proof of G with remote request height at most h, bcD

will find a proof of G as well.

Base Case: The base case occurs when h = 0. Since this corresponds to the case where bc-askI

does not make any remote requests, we can apply Lemma 7 to conclude that bcD will produce a

proof if bc-askI produces a proof.

Inductive Case: For the inductive case, we note that any remote requests made by bc-askI

operating at request height h + 1 must have height at most h. Lemma 8 proves that bcD will find a

proof of G if bc-askI finds a proof of G under the assumption that any remote request made by bcD

with parameters P will return the same result as a remote request made by bc-askI with parameters

P . Since any remote requests must have height at most h, we can apply our induction hypothesis

to discharge the assumption of Lemma 8 which allows us to conclude that bcD will find a proof if

bc-askI finds a proof with request height h + 1. 2

A.4 Completeness of LR Tactics

IR and LR are both tactic sets that are used in a common distributed proving framework, which

we will refer to as DP . This framework, formed by the combination of bc-askD (Figure 3.2) and
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bcD (Figure A.1), is responsible for identifying choice subgoals, determining if the formula under

consideration can be proved either directly from cache or by recursively applying tactics. We assume

that all tactics and inference rules are encoded such that their premises are proved from left to right.

In any situation where IR must use a depth limit to ensure termination (rather than for efficiency),

we assume that LR uses the same depth limit.∗

For simplicity, when referencing the version of the distributed proving framework that uses

IR tactics, we will simply write IR. We write LR to refer to a version of the distributed proving

framework that uses LR tactics in conjunction with FC and PC.

Lemma 9 Consider the case in which IR is given the query A says F and each of the first series of

recursive bc-askD calls made by IR is an application of a delegation rule for which the left premise is

provable, and the next recursive bc-askD call by IR is to prove B says F . If LR is also given query

A says F , LR will eventually attempt to prove B says F .

Proof sketch If the first r recursive bc-askD calls made by IR are applications of a delegation rule

for which the first premise is provable, and the (r + 1)’th recursive bc-askD call ([17d], [22d]) by IR

is to prove B says F , then it must be true that B says F ⊃ A says F . From Theorem 4, we

know that the path (B says F, A says F ) is in the knowledge base. Since LR has a left tactic whose

conclusion is either equal to, or more general than, the conclusion of the delegation rule that was

applied by IR in the rth recursive call, LR will use this tactic to exhaustively try all paths whose

conclusion unifies with A says F and attempt to prove the premise of each such path. Eventually,

LR will try the path (B says F, A says F ), and attempt to prove B says F . 2

Lemma 10 If IR finds a proof of F with marker m using knowledge base KB, a version of IR with

cycle prevention will also find a proof of F with marker m using KB.

Proof sketch As defined in Section 3.6, we refer to the version of IR with cycle prevention as IR-NC.

We define a cycle to exist if a prover attempts to prove formula F as part of the recursive proof of

F . In this case, when IR attempts to prove F , it will apply a sequence of inference rules that lead it

to attempt to prove F again. As repeated applications of bc-askD may only decrease the generality

of a substitution θ ([13d]), the subsequent attempt to prove F will be with a θ that is more specific

than the initial attempt. Additionally, the substitutions present in failures accumulate as bc-askD

recurses ([16d], [20d]). From this, we know that the subsequent attempt to prove F will do so in an

environment that is strictly more restrictive (more specific θ, more substitutions in failures). Thus,

if IR finds a proof of F on the subsequent attempt, we can conclude that a proof of F can be found

on the initial attempt. Since the only difference between IR-NC and IR is that IR-NC eliminates

cycles, IR-NC will be restricted to finding a proof of F on the initial attempt. Since we have shown

that IR is capable of finding a proof of F on the initial attempt if it is able to find a proof on the

subsequent attempt, we can conclude that IR-NC will find a proof of F on the initial attempt as

well. 2

Lemma 11 If both IR and LR invoke bc-askD with identical parameters and IR finds a complete

proof from local knowledge, then LR will find a complete proof from local knowledge as well.

∗In practice, we have not encountered a situation in which a depth limit was necessary for LR.
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Proof Since DP will not automatically make any remote requests, if IR finds a complete proof of

goal A says F , then there is a series of inference rules that, when applied to a subset of the locally

known credentials, produces a proof of A says F . Theorem 3 shows that FC produces a proof of

each formula for which a proof is derivable from locally known credentials, so a proof of A says F

will be found by DP and returned immediately before any LR tactics are applied. 2

Lemma 12 If both IR and LR invoke bc-askD with identical parameters, and if IR finds a proof with

marker m then LR will find a proof with marker m.

Proof We define the depth of a proof to be the depth of the tree that represents the series of inference

rules that, when applied to the original goal, constitute a proof of the goal. To prove Lemma 12, we

use induction over the depth d of the proof found by IR. Our induction hypothesis is that if both

IR and LR invoke bc-askD with identical parameters, Lemma 12 will hold for proofs with depth at

most d.

Base case: The base case occurs when d = 0. Since Lemma 12 assumes that bc-askD does not

return a complete proof, we know that the base case represents the creation of a marker. This is

handled by DP in a way that is independent of the tactic set.

Inductive case: For the inductive case, let the formula that IR and LR are attempting to prove

be A says F . The proof of A says F that IR is able to find has depth d + 1 and contains marker m.

Let ((P = p1∧ . . .∧pj), q) represent the first inference rule applied to A says F by IR. This rule

is either a delegation rule or a standard (i.e., non-delegation) rule. Since the only manner in which

IR and LR differ is in the rules dealing with delegation, if (P, q) is a standard rule, LR will apply

this rule during the course of an exhaustive search. At this point, both IR and LR will attempt to

prove all formulas in P . The proofs of these formulas can have depth at most d, so we can apply

our induction hypothesis to show that LR will find a proof with marker m for this case.

If (P, q) represents a delegation rule, then P will consist of two formulas, pl and pr. If IR finds

a proof of q = A says F with marker m, then either (a) the proof of pl contains m, or (b) pl is

provable from local knowledge and the proof of pr contains m.

(a) Here we note that if IR finds a proof of pl with marker m, then we can apply Lemma 10 to

conclude that IR-NC finds a proof with marker m as well. The right tactic of LR differs from the

corresponding inference rule in IR-NC only in that LR requires that pl not be provable from local

knowledge (as described in Section 3.5.2). Thus, if IR-NC investigates pl, LR will apply a right

tactic and investigate pl as well. Since the proof of pl found by IR can have depth at most d, we

can apply our induction hypothesis to show that LR will find a proof of pl containing marker m

in this case.

(b) If pl (the premise pertaining to delegation) is provable, then when LR applies a left tactic,

we can apply Lemma 9 to show that both IR and LR will ultimately investigate the same right

subgoal (e.g., B says F ). The proof of this subgoal must have depth at most d, so we can apply

our induction hypothesis to to show that LR will find a proof with marker m in this case. 2

Theorem 6 If IR finds a proof of goal F , then LR will find a proof of F as well.

Proof sketch We prove Theorem 6 by induction over the recursion height (see Definition 2) of

bcD. Our induction hypothesis states that at recursion height h, any recursive call to bcD with



134 APPENDIX A. PROOF OF THEOREMS

environment ε made by LR will return a proof if a recursive call to bcD with environment ε made

by IR returns a proof.

Base case: The base case occurs when the recursion height = 0. Since recursion of bcD occurs

only when a proof involving a marker is found, we can conclude that, if IR tactics are able to find a

complete proof, bc-askD will return a proof that does not include a marker ([3bcd]). We can apply

Lemma 11 to conclude that, when using LR tactics, bc-askD will also return a proof.

Inductive case: For the inductive case, we let h+1 be the recursion height of the current invocation

of bcD. bcD recurses on [12bcd] only if the proof returned by bc-askD ([3bcd]) contained a marker

indicating that a remote request is necessary. From Lemma 12, we know that the marker returned by

LR will be the same as the marker returned by IR. From this, we know that the remote request made

by bcD on [9bcd] will have the same parameters in both the LR and IR scenarios. If we momentarily

assume that the remote request returns the same response in both scenarios, then we can show that

each of the parameters of the recursive call on [12bcd] in the LR scenario are the same as those of

the IR scenario. Since the recursive call on [12bcd] must have height at most h, then we can apply

our induction hypothesis to conclude that bcD will return find a proof using LR tactics if it is able

to find one using IR tactics.

We now return to the assumption that remote requests made with the same environment in both

scenarios will return the same result. This assumption can be relaxed via a proof that inducts over

the remote request height of the distributed prover. This proof is analogous to that of Theorem 5.

2


