
Quorum Placement on Wide-Area Networks

Florian Oprea

May 2008

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:

Prof. Anupam Gupta (Carnegie Mellon University)
Prof. Bruce M. Maggs (Carnegie Mellon University)
Prof. Michael K. Reiter (University of North Carolina at Chapel Hill) , Chair
Dr. Lidong Zhou (Microsoft Research Silicon Valley)

c© 2008 Florian Oprea





Abstract

Content distribution networks are the dominant technology for distributing shared media
on todays Internet. There are several types of content for which these systems have been
proven highly successful: static databases, streaming media, online gaming. At the same
time this architecture is not appropriate for other types of applications such as transactional
databases that require both strong consistency and wide area replication. One scalable
technique that can cope with these requirements is to deploy quorum systems on wide area
networks. The most important drawback of this approach comes from the performance
penalties that one has to pay when accessing data over the wide area.

This thesis makes several steps towards addressing this performance problem. First, it
presents approximation algorithms for deploying quorum systems to approximately mini-
mize network delay or network congestion. Second, it presents several heuristics for bal-
ancing the impact server load and network delay have on client response times and overall
throughput. Third, it shows that the techniques presented here can be effectively used
to improve performance through both simulation and emulation of real quorum systems
protocols on several wide area network topologies.

iii



iv



Acknowledgments

I would like to thank my advisor Mike Reiter for his constant support over the years.
The completion of this thesis owes a great deal to his efforts. His contribution extends
far beyond the current work though. He invested a considerable amount of time in try-
ing to make me a better researcher: by giving me technical advice, by working on my
presentation skills, by pulling me out of dead ends I was stuck in and suggesting differ-
ent approaches or new research directions altogether. Besides nurturing my interests for
problems in distributed systems he has also spent much time teaching me core concepts in
network security and applied cryptography, two other fields that I am very fond of. Thanks
Mike for all of this and much more!

I would akso like to thank the three other people that had the most influence on me
during my doctorate studies. Anupam and Bruce for the many hours spent discussing
on quorum systems problems and explaining many complex concepts in approximation
and randomized algorithms. Lidong who has intoduced me to the Paxos protocol and to
other very interesting distributed systems problems, during my summer internship at MSR
Sillicon Valley.

Many other people provided either moral or material support to the realization of this
thesis. Of these I would like to bring special thanks to Michael Abd-El Malek who helped
me run experiments with the Q/U protocol on srs and provided extensive support during
the many times when things would not work as expected. I would also like to thank Mike
Merideth for dilligently reviewing a draft of this thesis. My life in Pittsburgh would have
been much duller without friends like Asad, Charles and Scott who were always there
when I needed them.

Finally I would like to thank my family for all their support and encouragements over
these 6+ years, particularly my wife Alina for her patience during the last few months and
my mother-in-law Maria and my mom for taking care of Andrei during the time I spent
working on this thesis. Last but not least I would like to thank both of my parents, Dumitru
and Mariana, who over the years invested so much personal time into my education.

v



vi



Contents

1 Introduction 1

1.1 Minimizing network delays . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Minimizing network congestion . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Minimizing response time for static workloads . . . . . . . . . . . . . . . 5

1.4 Minimizing response time for dynamic workloads . . . . . . . . . . . . . 6

2 Quorum Placement in Networks: Minimizing Network Delays 7

2.1 Background and model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Roadmap and Techniques . . . . . . . . . . . . . . . . . . . . . 9

2.2 Maximum delay access cost . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Reduction to the Single Client Case . . . . . . . . . . . . . . . . 11

2.2.2 NP-hardness of Problem 2.2.2 . . . . . . . . . . . . . . . . . . . 13

2.2.3 A Linear Program Rounding Solution . . . . . . . . . . . . . . . 15

2.3 Optimal Layouts for Specific Constructions . . . . . . . . . . . . . . . . 20

2.3.1 The Grid Construction . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 The Majority Construction . . . . . . . . . . . . . . . . . . . . . 24

2.4 Total delay access cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Quorum Placement in Networks: Minimizing Network Congestion 29

vii



3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Congestion Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Single Source Unsplittable Flow . . . . . . . . . . . . . . . . . . 34

3.3 The Arbitrary Routing Model: The Single Client Case . . . . . . . . . . . 35

3.3.1 A Hardness Result . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 The Algorithm for the Single Client Case . . . . . . . . . . . . . 36

3.4 The General Case of QPPC in the Arbitrary Routing Model . . . . . . . . 38

3.4.1 Translating the QPPC Instance to a Congestion Tree . . . . . . . 39

3.4.2 Single Node Solutions are Good on Trees . . . . . . . . . . . . . 40

3.4.3 The Algorithm for General QPPC . . . . . . . . . . . . . . . . . 41

3.5 The Fixed Routing Paths Model . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Uniform Element Loads . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 The Migration Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.1 A solution for arbitrary graphs. . . . . . . . . . . . . . . . . . . . 50

3.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Minimizing Response Time for Quorum-System Protocols over Wide-Area
Networks 53

4.1 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 New techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Simulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Low client demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



4.5 High client demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Moderate client demand . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Dynamic Quorum Selection on Wide-Area Networks 71
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Terminology and assumptions . . . . . . . . . . . . . . . . . . . 72

5.1.2 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 A weight shifting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 A faster converging algorithm . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Conclusions 91

Bibliography 93

ix



x



List of Figures

2.2.1 Graph with k2 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Partition of matrix M by row l + 1 and column l + 1 into regions A, B, C,D 23

4.1.1 Average response time, network delay for Q/U on Planetlab topology . . . 55

4.1.2 Avg network delay (black bars) & response time (total bars) for Q/U (ms) 56

4.4.3 Response times on Planetlab-50; α = 0; ClosestDly access strategy . . . . 61

4.5.4 Response time for Grid for different client demands on daxlist-161 . . . . 62

4.5.5 Grid with client demand = 16000 on daxlist-161 . . . . . . . . . . . . . 63

4.6.6 Grid when increasing node capacities on Planetlab-50 . . . . . . . . . . . 65

4.6.7 Grid on Planetlab-50 with uniform and non-uniform node capacities . . . 66

4.6.8 7× 7 Grid on Planetlab-50 with uniform and non-uniform node capacities 66

4.6.9 Network delay for iterative approach for 5 x 5 Grid on Planetlab-50 . . . 67

5.2.1 Response time for ClosestRT (PlanetLab50a) . . . . . . . . . . . . . . . 76

5.2.2 ShiftWt algorithm at client c . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.3 Response time for ShiftWt (5× 5 Grid, PlanetLab50a) . . . . . . . . . . 77

5.2.4 Throughput for ShiftWt (5× 5 Grid, PlanetLab50a) . . . . . . . . . . . 78

5.2.5 Convergence time to ClosestDly (5× 5 Grid, PlanetLab50a) . . . . . . . 79

5.2.6 Convergence time to Balanced (5× 5 Grid, PlanetLab50a) . . . . . . . . 79

5.3.7 DelayBins algorithm at client c . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.8 Response time ((4b + 1,5b + 1) Majority, PlanetLab50a) . . . . . . . . . 82

5.3.9 Throughput ((4b + 1,5b + 1) Majority, PlanetLab50a) . . . . . . . . . . 82

xi



5.3.10Response time for DelayBins ((4b + 1,5b + 1) Majority, PlanetLab50b) . 82

5.3.11Throughput for DelayBins ((4b + 1,5b + 1) Majority, PlanetLab50b) . . 82

5.3.12Response time (5× 5 Grid, PlanetLab50a) . . . . . . . . . . . . . . . . 83

5.3.13Throughput (5× 5 Grid, PlanetLab50a) . . . . . . . . . . . . . . . . . . 83

5.3.14Response time (5× 5 Grid, PlanetLab50b) . . . . . . . . . . . . . . . . 83

5.3.15Throughput (5× 5 Grid, PlanetLab50b) . . . . . . . . . . . . . . . . . . 83

5.3.16Convergence time dependency on history count (PlanetLab50a) . . . . . 84

5.3.17Convergence time to ClosestDly (5× 5 Grid, PlanetLab50a) . . . . . . . 85

5.3.18Convergence time to Balanced (5× 5 Grid, PlanetLab50a) . . . . . . . . 85

5.3.19Convergence time to ClosestDly (5× 5 Grid, PlanetLab50b) . . . . . . . 85

5.3.20Convergence time to Balanced (5× 5 Grid, PlanetLab50b) . . . . . . . . 85

xii



List of Tables

5.1 Convergence times for ShiftWtOpt (PlanetLab50a) . . . . . . . . . . . . 79

5.2 Client overhead per request for ShiftWtOpt (PlanetLab50a) . . . . . . . 80

5.3 Convergence times ((4b + 1,5b + 1) Majority, PlanetLab50a) . . . . . . . 86

5.4 Convergence times (k × k Grid, PlanetLab50a) . . . . . . . . . . . . . . 86

5.5 Client overhead per request (PlanetLab50a) . . . . . . . . . . . . . . . . 86

xiii



xiv



Chapter 1

Introduction

Content distribution networks like Akamai are a dominant technology for distributing
highly popular content on the Internet today. The success of these systems relies on several
mechanisms: replication, web caching, request redirection and load balancing, to name the
most important. These techniques increase service availability and bring content closer to
end-users, thereby minimizing response time and bandwidth consumption in the core of
the network. While in general these techniques are sufficient for distributing static content
or content that does not change too frequently, they are not sufficient for applications where
the service state changes at a fast rate. Furthermore, some of these applications, such as
electronic stock exchange services or online gaming, also require strong consistency se-
mantics (e.g., linearizability - Herlihy and Wing [1990]) and need the same performance
guarantees as the applications based on static content. Most proposals put forth to address
these concerns (e.g., Sivasubramanian et al. [2005]) submit updates to a single node, but
this creates a bottleneck and a single point of failure in the system. An alternative that we
explore in this thesis is the use of quorum systems.

Quorum systems were originally proposed in the database community (Gifford [1979],
Thomas [1979]) more than 25 years ago. A quorum system is a collection of subsets (quo-
rums) of a universe U of servers, such that any two quorums have non-empty intersection.
Quorum systems are a standard tool for improving the efficiency and fault-tolerance of a
distributed system. In a typical quorum-based application, a read or update operation is
performed by contacting all the servers of some quorum (possibly in more than one round).
The intersection property enables a read or update to observe the effects of prior updates,
while the fact that not all servers need to be contacted for each operation enables increases
in efficiency by dispersing load across servers.

When using quorums in wide-area applications, a number of factors affect the response

1



times realized by clients. First, the location of servers, or more to the point, the proxim-
ity of servers to clients, is an important factor in minimizing response times, since if all
quorums contain far-away servers, then the network costs for each request will be substan-
tial. Second, when a client selects a quorum to use in an operation—which it does via its
access strategy—a tension can arise between the goals of dispersing load across servers
and minimizing network costs for accessing quorums. On the one hand, network costs
can typically be reduced by clients accessing quorums closest to them. On the other hand,
processing delays may be best dispersed among the servers by clients utilizing quorums
that are less heavily loaded but that might be further away.

This thesis provides solutions to address these issues for various notions of network
and processing costs. The first two chapters develop algorithms to place the servers U
on the nodes of a physical network so as to respect nodes’ processing constraints but
otherwise minimize the network delay of (Chapter 2), or the network congestion induced
by (Chapter 3), client accesses. Chapter 4 provides an empirical evaluation of the results in
Chapter 2, and further extends them with algorithms to refine placements and optimizing
clients’ access strategies to minimize client response times based on the client demand
anticipated for the service. Finally, Chapter 5 presents algorithms by which clients can
dynamically adapt their access strategies when workloads change in order to keep their
response times low.

1.1 Minimizing network delays

The problem of minimizing network delays for accessing quorums has been considered
before (e.g., Fu [1997], Tsuchiya et al. [1999], Kobayashi et al. [2001], Lin [2001]), but
these works do not consider the processing load on the servers. Here we use a different
approach: we develop a method for mapping an arbitrary quorum system onto a network
in a way that approximately minimizes network delay and does not incur too much load
on any network node at the same time. The idea here is that one can then choose a specific
quorum construction that is optimal with respect to some measure and map it on a network
in a way that provides “good” network delay at the same time.

More precisely, the objective function we seek to minimize is the average network
delay observed by clients when accessing the quorum system, in one of two senses. The
first applies to the case when clients access the servers of a quorum in parallel. In this case
the latency incurred is given by the maximum distance from the client to any of the quorum
members. We call this cost function max-delay. The second function applies to the case
when quorum members are accessed sequentially. We call this function total-delay.

2



For each of these two cost functions we study what we call the quorum placement
problem: the problem of placing a quorum system (or rather its universe of servers) on a
network in a way that minimizes network delay and does not exceed node capacities at
the same time. In Chapter 2 we show that the Quorum Placement Problem for the max-
delay cost function for arbitrary quorum systems and arbitrary networks is NP-hard. We
can, however, get to within a factor of 5 ∗ α/(α − 1) from the optimal solution if we
are allowed to exceed the node capacities by a factor of α. Also for two specific quorum
constructions, notably Majority (Gifford [1979], Thomas [1979]) and Grid (Cheung et al.
[1992], Kumar et al. [1993]), we can decrease the approximation factor to 5. For those
cases we also present simpler placement algorithms.

To obtain the first approximation result for the max-delay cost function, we use the
following technique. We first reduce the original problem to the case with a single client
(a problem we call Single-Source Quorum Placement Problem ) losing a factor of 5 in the
process. We then show that Single-Source Quorum Placement Problem is NP-hard but can
be approximated to within a factor of α/(α−1) from the optimal solution if we are allowed
to exceed the node capacities by a factor of α. To obtain this result we write Single-Source
Quorum Placement Problem as an integer program and solve its linear relaxation to obtain
a fractional solution x. We then apply a filtering step to x to ensure that no universe
element is fractionally assigned to nodes too far away from the single client. Finally we
round this fractional solution to an integral one using results for the generalized assignment
problem (GAP) due to Shmoys and Tardos [1993].

For the total-delay cost function we show exact placement algorithms, provided we are
allowed to exceed node capacities by a factor of two. To obtain these results we use similar
techniques: we first express the problem as an integer program, solve its linear relaxation
to obtain a fractional solution and then round the fractional solution using GAP to obtain
an integral solution with the same cost as the optimal (but doubling node capacities in the
process).

1.2 Minimizing network congestion

The next problem we study is that of minimizing network congestion induced by client
accesses to a quorum system. We use a similar setup: we study the problem for arbitrary
quorum systems and for arbitrary networks. This is also a quorum placement problem:
we want to map a quorum system (or, rather, its universe U ) onto a network in a way that
approximately minimizes network congestion and does not exceed the network nodes’
capacities.

3



We consider two routing models for this problem. In the first, packets can travel be-
tween two hosts over any path between the two, the choice of which path to use for a
particular packet being made probabilistically. This model is particularly suited for over-
lay networks where the path used by a particular packet can be chosen at the application
level. We call this model the arbitrary routing model. The probabilities used to select
paths for each packet are chosen such that the maximum expected congestion on any edge
is “close” to optimal. More precisely, in this model we show that the Quorum Placement
Problem for Congestion is NP-hard, but can be approximated to within a polylog factor
of the size of the network provided we are allowed to double the capacity of each node.
This result holds for arbitrary graphs. For trees we decrease the approximation factor for
congestion to 5.

In the second model we consider that paths between hosts are fixed in advance. This
is the model commonly used at the IP level in today’s Internet infrastructure. We call this
the fixed paths model. We show that in the fixed paths model Quorum Placement Problem
for Congestion is also NP-hard, but can be approximated if we double the capacity of
each network node. The exact approximation ratio is O( η·log n

log log n
), where n is the size of

the network (number of nodes), η ≤ |U | and η = 1 if the access strategies employed by
clients balance load across servers equally.

The results for the general case of Quorum Placement Problem for Congestion in the
arbitrary paths model are obtained by reducing the problem to the case in which the graph
is a tree and there is only one client in the system. This reduction uses some of the prop-
erties of quorum systems, combined with a general graph decomposition result of Racke
[2002]; however, it costs us a factor of O(log2 n log log n) in the congestion. For the
single-client tree case, we give an approximation algorithm by first writing an integer pro-
gramming formulation, and then rounding its linear-programming relaxation: the rounding
uses an algorithm for unsplittable flows from Dinitz et al. [1999].

The results for the fixed paths model use a different set of tools: we first develop an
algorithm for instances where all the elements of U have identical (“uniform”) loads. For
this we use a different linear programming relaxation, and then round it using a different
rounding technique that does not allow node capacities to be violated (Srinivasan [2001]).
We then use this algorithm as a subroutine to solve the non-uniform case by carefully
placing sets of elements in decreasing order of their loads.

We conclude Chapter 3 with a set of results showing that migration of universe ele-
ments between physical nodes of the network can help further reduce congestion.

4



1.3 Minimizing response time for static workloads

In Chapter 4 we empirically evaluate the quorum placement algorithms of Chapter 2 in a
realistic setting. The topologies emulated in our evaluation are obtained from two sources:
from ping round-trip time measurements between different PlanetLab sites (Bavier et al.
[2004]) and from one-way latency measurements between DNS nameservers performed
with a DNS-based tool (Gummadi et al. [2002]). In addition, we extend these algorithms to
refine client access strategies to minimize response times based on the anticipated service
load.

Specifically we assume that the response time observed by a client when contacting
a server is the sum of the network latency to reach that server and the amount of time
the client’s request waits to be serviced at the server. We use a simple estimator for this
waiting time, namely that it is proportional to the fraction of requests that target that server.
We show that in the case of low client demand, response time is well approximated by
network delay and so the best access strategy for clients in this case is to always contact the
closest quorum. We call this access strategy ClosestDly. Our evaluation of the placement
algorithms from Chapter 2 for the Majority and Grid quorum systems shows that, for some
topologies, network delay increases slowly with the universe size up to a certain point and
then increases very fast until it reaches a saturation point. Another important observation
is that up to fairly large universe sizes, network delay is not much worse than that of a
single server, which implies that in this case increased fault-tolerance can be achieved at a
relatively low cost.

In the case of extremely high client demand, load at servers offsets the impact of the
network delay in client response time. In this case an access strategy that balances load
across servers is the best one. We call this access strategy Balanced.

We also show that there is a range of client demand values where none of ClosestDly
and Balanced yields the best client response times. To find the best access strategy in this
case we propose two heuristics that work as follows. We start with an LP-formulation of
the problem having as variables the clients’ access strategies and as objective function the
average network delay observed by clients. For a fixed set of node capacities, we solve
the LP to get the optimal solution, that is the set of access strategies minimizing network
delay, and then compute the response time for that set of access strategies. By varying the
network nodes’ capacities we can thus do a search for the optimum set of access strategies
(i.e., minimizing response time) in this space. The two heuristics differ only in the way
they set node capacities. Our evaluation shows that these heuristics give better results than
the ClosestDly and Balanced access strategies for this range of client demand.

5



1.4 Minimizing response time for dynamic workloads

In Chapter 5 we consider the problem of adapting the clients access strategies in response
to changes in workload. To this end we propose two quorum selection algorithms for dy-
namic workloads. The algorithms enable each client to independently choose the quorum
it accesses for each operation it invokes. The client does so with no communication with
other clients and with only the information it gleans from previous operation invocations
to the service. As such, these algorithms impose negligible overheads on servers. We
show that our algorithms quickly adapt clients’ choices of quorums in the face of work-
load dynamics, and that the clients’ quorum choices that result minimize client response
times and maximize client throughput nearly optimally across a broad range of workloads.
We draw these conclusions based upon evaluations of our algorithms on two wide-area,
emulated topologies derived from PlanetLab measurements and using two quorum-based
operation-invocation protocols: a generic Grid quorum (Cheung et al. [1992], Kumar et al.
[1993]) protocol and the Q/U (Abd-El-Malek et al. [2005]) protocol using a Majority quo-
rum system.

The first algorithm is based on the following simple weight shifting strategy: a client
monitors the response time it gets from servers across service invocations and sorts the
quorums according to their response time (the response time of a quorum being the maxi-
mum response time of any of its members). After each request the client moves half of the
weight from a quorum with higher response time to a quorum with a lower response time.
Our evaluation shows that this algorithm is able to adapt to changing workloads but the
time it takes to do so is fairly large (on the order of tens of seconds). We suggest several
optimizations that shift more weight in each time step and consequently adapt much faster
to changing workloads.

One problem with the weight-shifting algorithm is that it does not scale for quorum
systems with a very large number of quorums. To address this problem we propose a
second algorithm whose running time depends only on the number of servers. Here we
partition the quorum system according to the network delay from the client to each quo-
rum. This creates a number of groups no larger than the number of servers. For each
request the client then chooses the quorum to access by sampling uniformly at random
from a certain group. To choose the group used for sampling the client monitors the re-
sponse time of the past requests and starts including more distant groups as response time
increases above a certain threshold or starts dropping the most distant group as response
times decrease below a certain threshold.

Our evaluation shows that the two algorithms quickly adapt the clients’ access strate-
gies in response to wokload dynamics, while imposing only small overheads to clients.

6



Chapter 2

Quorum Placement in Networks:
Minimizing Network Delays

In this chapter we address the problem of placing quorum systems on wide-area networks
so as to minimize two network delay objective functions: the average max-delay and the
average total-delay. We start with some background information on quorum systems and
continue with a description of the model. We then formalize each problem considered and
briefly describe our main results along with the techniques used in each case. We present in
more detail our results for the max-delay-based objective function in Sections 2.2 and 2.3
and the results for the total-delay-based objective function in Section 2.4.

2.1 Background and model

Given a universe U of elements, a quorum system Q = {Q1, . . . , Qm} on U is a family of
subsets of U such that any two quorums Qi and Qj have non-empty intersection. When
using quorum systems a client needs to issue a request to only a quorum Qi of servers.
The quorum used in an access is usually selected according to a probability distribution
p : Q → [0, 1] overQ; this is called an access strategy for the quorum system. Each access
strategy p induces a load on each element u ∈ U defined as loadp(u) =

∑
Qi3u p(Qi). The

load of a quorum system corresponding to the access strategy p is defined as loadp(Q) =
maxu∈U loadp(u), i.e., the maximum load of any element u ∈ U . Although one could
use any access strategy for sampling a quorum, in practice people use the access strategy
minimizing the load of the quorum system. In the past much research has been devoted to
developping quorum systems Q and associated access strategies p that minimize load, see

7



e.g., Naor and Wool [1998].

We model the underlying network as an undirected graph G = (V, E), of size |V | = n,
with each node having an associated capacity node cap(v) ∈ R+ to handle requests. There
is a positive “length” length(e) for each edge e ∈ E, which induces a distance function
d : V × V → R+ obtained by setting d(v, v′) to be the sum of lengths of the edges
comprising the path from v to v′ that minimizes this sum (i.e., the shortest path). We
assume that the set of clients wanting to make quorum accesses is V .

Our goal is to determine a map f : U → V (which we call a placement of the quorum
Q on the nodes of G) that preserves the load of the quorum system (in a sense to be
defined) and produces good network delay at the same time. We define the load of any
network node v ∈ V as loadf (v) =

∑
u∈U :f(u)=v load(u). Ideally the load of any node

should not exceed its capacity node cap(v).

The first notion of network delay we deal with is called average max-delay and is
motivated by the following usage scenario. Given a placement f , if a client v ∈ V accesses
a quorum Q by contacting servers in parallel, then the time required to reach all elements
of quorum Q is proportional to the maximum distance from v to any member of Q. Hence
we model the delay as the distance of v to the farthest-away element of Q:

δf (v, Q) = maxu∈Q d(v, f(u)). (2.1.1)

(We call this the max-delay access cost.) Then, the expected delay (under p) for v to access
Q is

∆f (v) =
∑

Q∈Q p(Q) δf (v, Q). (2.1.2)

Note that if each client v ∈ V makes quorum accesses at the same rate, then the average
delay of the entire system will be Avgv∈V [∆f (v)] = 1

n

∑
v ∆f (v). (For ease of exposition,

we focus on this uniform-rate case; we can extend our results to more general cases when
different clients make quorum accesses at different rates.)

We are finally in a position to formally define the first problem studied in this chapter:

Problem 2.1.1. (Quorum Placement Problem (QPP)) Given a quorum system Q over
the universe U , along with an access strategy p, and also an undirected network G =
(V, E) with capacities node cap : V → R+ and inter-vertex distances d(·, ·), find a
placement f : U → V that (a) minimizes Avgv∈V [∆f (v)] (i.e., “low delay”) subject
to (b) loadf (v) ≤ node cap(v) for all v ∈ V (i.e., “low load”).

Our main result for this problem is the following:

8



Theorem 2.1.2. Let f ∗ be an optimal solution to the Quorum Placement Problem. Then,
for any α > 1, we can find in polynomial time a placement f with loadf (v) ≤ (α +
1) node cap(v) for all v ∈ V , and for which

Avgv∈V [∆f (v)] ≤ 5α
α−1

Avgv∈V [∆f∗(v)] (2.1.3)

Hence, e.g., we can find a map f that exceeds the capacities on the nodes by a factor
of 4, but ensures that the delay is within a factor of 7.5 of the optimal delay of f ∗.

We then go on to consider some well-known quorum systems, and show the following:

Theorem 2.1.3. Consider the Grid (Cheung et al. [1992], Kumar et al. [1993]) or Major-
ity (Gifford [1979], Thomas [1979]) quorum systems on U with the access strategy p being
the uniform distribution over all quorums. Given any graph G, we can find placements f
such that loadf (v) ≤ node cap(v) for each v ∈ V , and where the average max-delay is at
most 5 times the optimum among all such solutions.

We continue with the study of quorum placement for another natural notion of access
cost from a client to a quorum, the total delay, which captures the delay incurred if quorum
elements are contacted sequentially. Specifically, if the vertex v accesses the quorum Q,
then let γf (v, Q) =

∑
u∈Q d(v, f(u)) be the total delay for this access. Given access

strategy p, the expected total delay for v is Γf (v) =
∑

Q∈Q p(Q) γf (v, Q). As before, we
will be looking for a placement f to minimize Avgv∈V [Γf (v)]. Our main result for this
measure is:

Theorem 2.1.4. We can find, in polynomial time, a placement f : U → V where loadf (v) ≤
2 node cap(v) at each node v ∈ V and that has average delay Avgv∈V [Γf (v)] at most the
optimal delay among all placements satisfying loadf (v) ≤ node cap(v).

2.1.1 Roadmap and Techniques

Let us give a brief review of the ideas and techniques used to obtain our first result. In
Section 2.2, we prove a crucial structural result that guides the section on the max-delay
cost function. Specifically, we show that, for any placement f that is a solution to the
Quorum Placement Problem for max-delay, there exists a special node v0, such that even
if all the requests are routed through v0, the average max-delay is at most 5 times that of f .
(Hence the additional delay incurred by taking such a detour is not too large, a somewhat
surprising fact.) Of course this is only a structural result: no practical algorithm would
want to route all the requests through a single node, for fear of creating a bottleneck and a
single point of failure.

9



However, we can now use this result to derive the following important consequence.
The average delay of this “relay-via-v0” routing strategy can be decomposed into two
parts: (i) the average delay from the clients v ∈ V to v0 (which is a constant), and (ii)
the delay from v0 to a random quorum of Q chosen from p, which is just ∆f (v0). Hence,
minimizing the overall average delay in this relaying strategy is equivalent to minimizing
the average delay for the special case of the Quorum Placement Problem when v0 is the
only client in the system. This allows us to focus, for the rest of Sections 2.2 and 2.3
on this “single-source” version of QPP; we show that any solution to the Single-Source
Quorum Placement Problem can be translated back to a solution for Quorum Placement
Problem with only a factor 5 loss in the average delay.

In Section 2.2, we formalize the Single-Source Quorum Placement Problem, and show
it is NP-hard. We then present an approximation algorithm for it that achieves an average
delay of at most ( α

α−1
) times the optimal, if we allow the load on each node to violate the

given capacities by a factor of (α + 1). Combining this with our structural lemma (and
hence incurring a loss of a factor of 5), we get the algorithm claimed in Theorem 2.1.2.

In Section 2.3, we present optimal solutions for the Single-Source Quorum Placement
Problem for two well-known quorum systems, the Grid (Cheung et al. [1992], Kumar
et al. [1993]) and the Majority (Gifford [1979], Thomas [1979]). Combining this with the
above reduction, we immediately get Theorem 2.1.3.

In Section 2.4, we address the total delay measure and prove Theorem 2.1.4. Finally,
in Section 2.6, we summarize and discuss extensions of our results.

2.2 Maximum delay access cost

In this section we address the Quorum Placement Problem, and give our results for the
max-delay access cost. Our first result is the following simple yet crucial structural result.
Imagine that we are given a quorum placement f : U → V for the quorum system Q.
Then we find a special node v0, such that routing all the requests to elements in f(U) via
the node v0 causes the average access delay to be ≤ 5 times the delay when we route the
requests to f(U) along shortest paths. In other words, even though each message in the
system takes a detour via v0, the average delay does not increase by much, which we feel
is a somewhat surprising fact.

Although this result seems to have no practical relevance (because we clearly don’t
want to route all the traffic through a single node), it gives us a way of accounting for,
and approximately minimizing the average delay in the Quorum Placement Problem: we

10



can split the delay ∆f (v) for any vertex v when using this “relay-via-v0” strategy into two
components—the first corresponding to the delay in getting from v to v0, and the other
corresponding to the delay from v0 to the quorums of Q. But the former contribution,
when averaging over all the clients, is a constant. Hence to minimize delay, it suffices
to search for placements of Q that minimize the average delay incurred when the single
node v0 issues all the requests, which is ∆f (v0). To this end, we define the Single-Source
Quorum Placement Problem at the end of Section 2.2.1.

We show that minimizing the delay in this new single-client problem is NP-hard for
general quorum systems; the proof of this theorem appears in Section 2.2.2. We then
give an algorithm in Section 2.2.3 which gives a placement that approximates the delay
within a factor of α

α−1
, but violates the load on each node by a factor of α + 1. Combining

this with the factor-5 loss in the reduction to the single-client case gives us Theorem 2.1.2.
Finally, Section 2.3 gives efficient algorithms for placing some well-known quorum system
constructions when the access strategies yielding optimal load on them are used.

2.2.1 Reduction to the Single Client Case

The following structural lemma shows that there is a single node v0 in the graph G such
that even if all the messages to the quorum elements were sent via the node v0, the access
delay would not increase by more than a factor of 5.

Lemma 2.2.1. Consider any placement f : U → V of a quorum system Q on the nodes
of G, and an access strategy p. Then there exists a vertex v0 ∈ V such that

Avgv∈V [
∑
Q∈Q

p(Q)
(
d(v, v0) + δf (v0, Q)

)
] ≤ 5Avgv∈V [∆f (v)]. (2.2.4)

Proof. Before we begin the proof, note that the expression on the left in (2.2.4) is the
average max-delay incurred if each message from v to the elements of Q first goes to v0

(giving the d(v, v0) term) and then onto Q (giving the δf (v0, Q) term).

For the proof, consider two vertices v and v′ in V , and let us choose quorums Q and Q′

independently at random from the distribution p. Recall that δf (v, Q) = maxu∈Q d(v, f(u))
is the maximum distance from v to any nodes in f(Q). By the quorum intersection prop-
erty, Q ∩Q′ 6= ∅, and the triangle inequality, we get that d(v, v′) ≤ δf (v, Q) + δf (v

′, Q′).
Since the quorums Q and Q′ were chosen from the distribution p independently, taking
expectations over the distribution we get

d(v, v′) ≤ ∆f (v) + ∆f (v
′).

11



Let v0 be the node that minimizes ∆f (v
′); that is, v0 = argminv′∈V ∆f (v

′). We then have:

d(v, v0) ≤ ∆f (v) + ∆f (v0) ≤ 2 ·∆f (v) (2.2.5)

(Note that, given an f , the node v0 can be determined in time polynomial in |V | just by
trying all possible nodes v′.) We can now use the triangle inequality to bound the max-
delay of messages sent via v0 from the node v to the quorum Q (i.e., the “relay-via-v0”
strategy) by

d(v, v0) + δf (v0, Q) ≤ d(v, v0) + d(v0, v) + δf (v, Q)

≤ 4 ·∆f (v) + δf (v, Q), (2.2.6)

where we have used (2.2.5) in the second line. Now taking expectations over p, and taking
an average over v ∈ V , we get

Avgv∈V [
∑
Q∈Q

p(Q)
(
d(v, v0) + δf (v0, Q)

)
]

≤ 4 Avgv∈V [∆f (v)] + Avgv∈V [
∑
Q∈Q

p(Q)δf (v, Q)],

which simplifies to the claimed expression (2.2.4) using the definition (2.1.2) of ∆f (v).

Hence, even if the messages sent from each node v to quorum elements are relayed via
node v0, the resulting average delay is still less than 5 times the optimal. Moreover, the
expression on the left hand side of (2.2.4), which is the average delay of this “relay-via-v0”
strategy simplifies to

Avgv∈V [d(v, v0)] + ∆f (v0). (2.2.7)

Hence, it makes sense to try and find a placement that minimizes ∆f (v0), and solve the
following problem:

Problem 2.2.2. (Single-Source Quorum Placement Problem (SSQPP)) Given a quorum
system Q over a universe U , a graph G = (V, E) with a special node v0, an access
strategy p0 with which v0 accesses quorums inQ and for each node v ∈ V an upper bound
node cap(v) on the load it can support, find a placement f : U → V that (a) minimizes
the average delay ∆f (v0) subject to (b) loadf (v) ≤ node cap(v) at each node.

The following theorem summarizes the above discussion, and formalizes the reduction
from the QPP to the Single-Source Quorum Placement Problem:

12



Theorem 2.2.3. There exists a node v0 such that a placement f : U → V that is a β-
approximation for the Single-Source Quorum Placement Problem (with source v0) is also
a 5 β-approximation to the general Quorum Placement Problem.

Proof. Consider the best placement f ∗ for the original Quorum Placement Problem in-
stance, and find the node v0 promised by Lemma 2.2.1 when given the placement f ∗. Note
that the placement f ∗ is also a solution for the Single-Source Quorum Placement Problem
with special node v0, and hence any β-approximate solution f to the Single-Source Quo-
rum Placement Problem instance would have ∆f (v0) ≤ β ∆f∗(v0). Thus the delay of a
“route-via-v0” strategy with this map f would have average delay

Avgv∈V [d(v, v0)] + β ∆f∗(v0) ≤ 5βAvgv∈V [∆f∗(v)],

which follows from (2.2.4) and proves the result.

Since we do not know the identity of the node v0, we can run the Single-Source Quo-
rum Placement Problem algorithm with each node in V , and pick the best placement
among these.

2.2.2 NP-hardness of Problem 2.2.2

In this section, we show that the Single-Source Quorum Placement Problem is NP-hard,
via a reduction from a classical NP-hard scheduling problem 1|prec|

∑
wjCj (Lenstra and

Kan [1978]).

Definition 2.2.4. The input to the problem 1|prec|
∑

wjCj consists of n jobs {J1, J2, . . . , Jn}
with job Jj having processing time Tj and weight wj . Furthermore, there are precedence
constraints given by a partial order ≺ on the jobs, such that if Ji ≺ Jj , then any feasible
schedule must put job Ji before Jj . The objective is to find a feasible schedule of the jobs
on a single machine so that, if the completion time of job Jj is Cj , the weighted completion
time

∑
wjCj is minimized.

In fact, a theorem from Woeginger [2001] implies that it suffices to consider only a
special case of this scheduling problem:

Theorem 2.2.5. Woeginger [2001] The following statements are equivalent:

(a) There exists a ρ-approximation for the general problem 1|prec|
∑

wjCj .

13



(b) There exists a ρ-approximation for the special case of 1|prec|
∑

wjCj where every
job has either Tj = 0 and wj = 1, or Tj = 1 and wj = 0, and where the existence
of a precedence constraint Ji ≺ Jj implies that Ti = 1 and wi = 0, and that Tj = 0
and wj = 1.

The following theorem shows a polynomial time reduction of the scheduling prob-
lem 1|prec|

∑
wjCj given in Theorem 2.2.5(b) to the Single-Source Quorum Placement

Problem.

Theorem 2.2.6. The Single-Source Quorum Placement Problem 2.2.2 is NP-hard.

Proof. Consider an instance of the scheduling problem with jobs {J1, J2, . . . , Jn}; let us
reorder the jobs so that all the ones with zero weight appear before those with non-zero
weight. Let there be m jobs with unit weight, and hence {J1, J2, . . . , Jn−m} have zero
weight.

For each Jj with Tj = 1 (and hence wj = 0), let us construct an element ej in the
universe U ; we add an extra element e0 to U—hence |U | = n−m + 1. Let 0 < ε < 1 be
a constant to be fixed later. The quorums and access strategy p are defined thus:

• For each of the m unit-weight jobs Jj (with Tj = 0 and wj = 1), define a quorum
Qj = {e0} ∪ {ej′ ∈ U | Jj′ ≺ Jj}. Each of these quorums Qj is accessed with
probability p(Qj) = ε

m
. (Call these the type-1 quorums.)

• For each element u ∈ U such that u 6= e0, define a quorum Qu = {u, e0}. Each
of these quorums Qu is accessed with probability p(Qu) = 1−ε

n−m
. (Call these type-2

quorums.)

Note that all the quorums intersect in e0; furthermore, since there are m quorums Qj

and (n − m) quorums Qu, the access strategy p is indeed a probability distribution over
the quorum system Q. Note that the load on element e0 is load(e0) = 1; for any other
element u ∈ U , if u belongs to nu ≤ m type-1 quorums Qj , then its load is load(u) =

ε · nu

m
+ (1 − ε) · 1

n−m
. Choosing ε such that ε < (1−ε)

n−m
, the load for any u ∈ U \ {e0} is

load(u) ∈ [ 1−ε
n−m

, 2(1−ε)
n−m

).

Finally, the graph G = (V, E) is just a path with a node vj ∈ V for each element ej ∈ U
(hence ensuring that |V | = |U | = n − m + 1), and edges (vi, vi+1) for 0 ≤ i < n − m

of unit length. The capacity of each node vj with j 6= 0 is node cap(vj) = 2(1−ε)
n−m

− ε, and
the capacity of v0 is node cap(v0) = 1 = load(e0). This completes the construction of an
instance of the Single-Source Quorum Placement Problem.

14



Let us note some useful properties of the construction: since the capacity of any node
vj 6= v0 is strictly less than 1 = load(e0), the element e0 can only be placed on v0.
Moreover, since the load of any element u 6= e0 lies in [ 1−ε

n−m
, 2(1−ε)

n−m
), and the capacity of

any vj 6= v0 is strictly less than 2 × 1−ε
n−m

, any feasible placement must place exactly one
element in U on a node of G. Furthermore, any permutation of the elements in U − {e0}
can be placed on the vertices V − {v0}. Thus, any placement f can be converted into a
schedule in the natural way: if f(ej) = vt for ej 6= e0 we schedule the zero-weight job Jj

at time t. We also schedule unit-weight jobs Jj′ at the earliest time possible subject to the
precedence constraints.

It suffices now to show that the optimal solution to the SSQPP instance gives us an
optimal solution to the scheduling problem. Denote by πf the schedule constructed from a
placement f as described above. Let tj be the time when zero-weight job Jj is scheduled
and let tj′ be the time when unit-weight job Jj′ is scheduled. The completion time of
schedule πf is then: cost(πf ) =

∑
wjCj =

∑
j′:wj′=1 tj′ . The average delay of the

placement f is:

∆f (v0) =
∑

type-1 Qj

p0(Qj)tj +
∑

type-2 Qj′

p0(Qj′)tj′

=
∑

type-1 Qj

ε

m
tj +

∑
type-2 Qj′

1− ε

n−m
tj′

=
ε

m
· cost(πf ) +

1− ε

n−m
·

n−m∑
i=1

i

Now it becomes easy to see that the completion time of the schedule πf is minimized if
and only if the average delay of the placement f is also minimized.

2.2.3 A Linear Program Rounding Solution

In light of the intractability result in Theorem 2.2.6, our goal is now to find an approx-
imation algorithm for the Single-Source Quorum Placement Problem. To this end, we
formulate Problem 2.2.2 as an integer linear program, consider its linear programming
(LP) relaxation, and round this LP to get an integral solution. Unfortunately, this linear
program has a large integrality gap of O(

√
n). However, we show that one can still get

a 2-approximation algorithm from it by a resource augmentation argument (Kalyanasun-
daram and Pruhs [2000]), i.e., if we allow ourselves to violate the capacity at any node v
by a small factor.

15



Some useful notation: since we are interested only in distances from the node v0, let us
rename nodes as {v0, v1, v2 , . . . , vn−1} so that d(v0, v1) ≤ d(v0, v2) ≤ · · · ≤ d(v0, vn−1).
Let us also denote d(v0, vt) by dt, and hence 0 = d0 ≤ d1 ≤ . . . ≤ dn−1. Let f ∗ : U → V
be an optimal solution to Problem 2.2.2; i.e., a placement that minimizes ∆f∗(v0) subject
to the constraints

∑
u:f∗(u)=v load(u) ≤ node cap(v).

To write an integer linear programming formulation for the problem, let us denote
by xtu the indicator for whether the element u ∈ U is placed on the physical node vt.
Similarly, given vt ∈ V and Q ∈ Q, the variable xtQ = 1 indicates that all elements u ∈ Q
are placed on some subset of the nodes {v0, . . . , vt}. The LP is given by:

minimize Z∗ =
∑

Q p0(Q)
∑n

t=1 dt xtQ (2.2.8)∑
t xtu = 1 ∀ u ∈ U (2.2.9)∑
t xtQ = 1 ∀ Q ∈ Q (2.2.10)∑

u load(u)xtu ≤ node cap(vt) ∀ vt ∈ V (2.2.11)
xtu = 0 ∀ u ∈ U, ∀ vt ∈ V

s.t. load(u) > node cap(vt) (2.2.12)∑
s≤t xsQ ≤

∑
s≤t xsu ∀ u ∈ Q, ∀ vt ∈ V, ∀ Q ∈ Q (2.2.13)

The constraint (2.2.9) implies that each element u is assigned to one node, and (2.2.11)
implies that no node vt has too much load assigned to it. Constraints (2.2.13) and (2.2.10)
ensure that if xtQ = 1 then all the elements in Q are indeed placed on some subset of
{v0, . . . , vt}, and that there is indeed one such value of t. Finally, (2.2.12) ensures that no
node vt is assigned an element u with load(u) more than vt’s capacity node cap(vt).

Note that if the variables are all either 0 or 1, we could get the placement f : U → V
by setting f(u) = vt ⇐⇒ xtu = 1; indeed, it is easy to see that this would be an exact
formulation of the Single-Source Quorum Placement Problem. However, finding such an
integral solution is NP-hard, and thus we consider the LP relaxation where the variables
can take fractional values between 0 and 1: such a solution can be obtained in polynomial
time. Since we have taken a relaxation of the problem, it follows that Z∗ ≤ ∆f∗(v0).

We now show that the integrality gap of the LP relaxation (2.2.8–2.2.13) is very large—
even for distances that arise from a simple unweighted graph. This shows that that we
cannot use this LP relaxation to bound the delay if we do not relax the node capacities
node cap(v).

Let us first recall the definition of Integrality Gap (see, e.g., Vazirani [2001]). Given a
linear programming relaxation for a minimization problem Π, let LP (I) be the objective
function value of an optimal fractional solution for the LP-relaxation. Let OPT (I) denote

16



k nodes

|V | = k
2

v0

Figure 2.2.1: Graph with k2 nodes

the cost of an optimal (integral) solution for instance I . We define the integrality gap (or
integrality ratio) of the LP-relaxation to be supI

OPT (I)
LP (I)

.

Claim 2.2.7. The LP (2.2.8)- (2.2.13) has an integrality gap of at least n for general metric
spaces, and at least

√
n even for metric spaces induced by unweighted graphs.

Proof. For the former result, consider the following instance: the quorum system Q has
only one quorum Q containing all the n elements. The values dt are 1 for all 0 ≤ t < n−1,
and dn−1 = M � 1. In this case the only integral solution has ∆f (v0) = M . However, we
can set xtQ = xtu = 1/n for all u ∈ U and 0 ≤ t < n; the LP objective function (2.2.8) is
now just 1

n

∑
t dt = n−1+M

n
≈ M

n
for M � n, and hence the integrality gap is about n.

Note that some of the edges of G have non-unit length in the above example; let us
now present our result for the case when the underlying graph has all edges of unit length.
Again assume that we have a single quorum Q containing all the elements, and consider
the graph from Figure 2.2.1 with n = k2 nodes. Setting the values di to be the distances
from v0 to all the other nodes of the graph G, we have di = 1 for 2 ≤ i ≤ n − k + 1,
dn−k+2 = 2, dn−k+3 = 3, . . . , dn = k. In this case, the only integral solution has average
delay k. However, if we set xtQ = xtj = 1/n for all 1 ≤ t, j ≤ n, the LP objective
function has a value of

(n− k + 1)
1

n
+ 2

1

n
+ · · ·+ k

1

n
=

1

n

(
n− k +

k(k + 1)

2

)
≈ 3

2
.

Thus, the integrality gap is at least O(k) = O(
√

n).

Even though this LP has a large integrality gap one can still get a 2-approximation
algorithm from it by a resource augmentation argument. Specifically we show how to

17



round the fractional solution x of LP (2.2.8–2.2.13) to obtain a map f which has an av-
erage delay at most 2Z∗ ≤ 2∆f∗(v0), but where the load at any node vt is load(vt) =∑

u:f(u)=vt
load(u) ≤ 3 node cap(vt). One can then generalize this result and trade off the

losses in the delay and load seamlessly to get the following:

Theorem 2.2.8. For any α > 1, we can find a solution f : U → V to the Single-Source
Quorum Placement Problem, with delay ∆f (v0) ≤ α

α−1
and load on any node v ∈ V

satisfying
∑

u:f(u)=v load(u) ≤ (α + 1) node cap(v).

Note that the proof below is just the case α = 2 of this theorem; the extension is not
difficult, and we postpone the details until after Theorem 2.2.13.

Rounding the Fractional LP Solution

The process of rounding the fractional solution to obtain the integral solution (and hence
the map f ) consists of two conceptual steps. Let us give the high-level sketch before we
give the details.

Filtering. In this step, we alter the LP solution to obtain a “good” (fractional) solution in
which no element u is fractionally assigned to nodes that are “too far away” from v0.
Formally, after this step, if Su is the set of nodes vt such that xtu > 0, then any map f
satisfying f(u) ∈ Su will still allow us to guarantee that ∆f (v0) ≤ 2Z∗ ≤ 2∆f∗(v0).

Rounding. We now view the good fractional solution obtained from the above step as a
solution to the generalized assignment problem (GAP) and use a rounding procedure
for this problem to convert the fractional solution into an integral solution such that
the total load assigned to any node vt is at most 3 node cap(vt).

Filtering For each element u, let x̂tu be the largest possible value subject to the con-
straints that x̂tu ≤ 2xtu and

∑
t≤s x̂tu ≤ 1. More precisely we set x̂tu = 2xtu for all t’s

such that
∑

s≤t xsu < 1
2

and x̂tu = 1−
∑

s<t x̂su for the first t such that
∑

s≤t xsu > 1
2
. We

change the values x̂tQ similarly. (Intuitively, we are “moving mass” to the lower values
of t.) Note that these new values x̂ satisfy (2.2.9); and they violate (2.2.11) by a factor of
at most 2. Moreover, for any values of t and u ∈ Q,

∑
s≤t xsQ ≤

∑
s≤t xsu: hence when

going from x to x̂, either both the left and right sides of the inequality double, or the right
side becomes equal to 1—in both cases, (2.2.13) holds. Note that the modified value of
the objective function satisfies

∑
Q p0(Q)

∑n
t=1 dt x̂tQ ≤ Z∗.

18



We now formalize the statement that no element u is assigned to vt which is “too far”.
Consider the objective function (2.2.8) of the LP: define DQ =

∑
t dtxtQ for any quorum

Q, and thus the LP value is Z∗ =
∑

Q p0(Q)DQ.

Claim 2.2.9. All elements of quorum Q are fractionally assigned to nodes vt with dt =
d(v0, vt) at most 2 DQ. In other words, if x̂tQ > 0 for some t, then dt ≤ 2 DQ.

Proof. This is just Markov’s inequality, but here is the longer explanation. Look at the
largest value t for which x̂tQ > 0; this must be a value such that

∑
s<t xsQ < 1

2
and∑

s≤t xsQ ≥ 1
2
. If dt > 2DQ, then Q is assigned to values larger than dt > 2DQ for at

least a fraction of (1 −
∑

s<t xsQ) > 1
2
, which violates the fact that DQ is the average∑

s xsQds.

Lemma 2.2.10. For any element u ∈ U , let Su = {vt ∈ V | x̂tu > 0}. Then for any
map f that places elements u ∈ U on nodes in the corresponding set Su, we have that
∆f (v0) ≤ 2Z∗.

Proof. If f(u) ∈ Su then x̂tu > 0 and so Claim 2.2.9 says that δf (v0, Q) = maxu∈Q d(v0, f(u)) ≤
2 DQ. Therefore ∆f (v0) =

∑
Q p0(Q)δf (v0, Q) ≤

∑
Q p0(Q)× 2 DQ ≤ 2Z∗.

Rounding We will now view the modified solution x̂ for the LP as a fractional solution
to a suitable instance of the so-called Generalized Assignment Problem (GAP), and use
techniques for that problem to round the fractional x̂’s to an integral solution that satisfies
the assumptions of Lemma 2.2.10.

Definition 2.2.11 (GAP). The GAP problem takes as input a set U of “jobs” and a set
V of “machines”, and for each (j, i) ∈ U × V two positive values: cij being the cost of
assigning job j to machine i, and pij being the load imposed by such an assignment to
machine i. The output is an assignment f of the jobs to the machines, of minimum cost∑

j∈U cf(j)j , subject to constraints on the load
∑

j∈f−1(i) pij ≤ Ti,∀i ∈ V , given constants
Ti ∈ R+ for each i ∈ V .

Consider the following natural LP relaxation of GAP:

minimize Y ∗ =
∑

j∈U

∑
i∈V cijyij (2.2.14)∑

j∈U pijyij ≤ Ti ∀ i ∈ V (2.2.15)∑
i∈V yij = 1 ∀ j ∈ U (2.2.16)

yij ≥ 0 ∀ j ∈ U, i ∈ V (2.2.17)

19



This relaxation was studied by Lenstra et al. [1990] and Shmoys and Tardos [1993], who
proved the following result. (Here pmax

i is the largest load of any job assigned to ma-
chine i.)

Theorem 2.2.12. Shmoys and Tardos [1993] Any fractional solution for the LP relaxation
of GAP can be rounded into an integral solution with cost no more than Y ∗, with the load
on machine i being at most Ti + pmax

i ≤ 2 Ti.

We can use this powerful result to round our LP with the new variables x̂ by the fol-
lowing translation: the elements u ∈ U correspond to the jobs j = u; the nodes vt ∈ V
correspond to the machines i = t; the load ptu for machine t and job u is load(u) if x̂tu > 0
and ptu = ∞ otherwise; the cost ctu is the delay dt; finally, the upper bound Tt for machine
t is 2node cap(vt).

Since we ensure that no element u can be fractionally assigned to node vt if load(u) >
node cap(vt), this implies that the solution produced by applying Theorem 2.2.12 to the
x̂’s places load at most Tt+pmax

t ≤ 2node cap(vt)+node cap(vt) = 3node cap(vt). Hence
the capacity is violated by at most a factor of 2, which implies the following theorem:

Theorem 2.2.13. We can find a solution f : U → V to the Single-Source Quorum Place-
ment Problem, where the delay ∆f (v0) is at most twice the LP optimum Z∗ ≤ ∆f∗(v0).
Furthermore, the load on any node vt ∈ V is violated by at most a factor of three; i.e.,∑

u:f(u)=vt
load(u) ≤ 3 node cap(vt).

To obtain Theorem 2.2.8, we only need to change the factor of 2 from the filtering
step above to an arbitrary α > 1. Variables x̂tu become the largest possible, subject to the
constraints x̂tu ≤ αxtu and

∑
t≤s x̂tu ≤ 1. This will increase the load on each node vt

for which x̂tu > 0 by no more than a factor of α. With the additional loss from GAP we
obtain the bound of (α+1)node cap(v) on the load of each node v ∈ V . The delay of any
node vt on which some element of quorum Q is placed (i.e., for which x̂tQ > 0) becomes
dt ≤ α

α−1
DQ. The factor of α

α−1
propagates further through Lemma 2.2.10 leading to the

bound on delay claimed in Theorem 2.2.8.

2.3 Optimal Layouts for Specific Constructions

In this section we address the Single-Source Quorum Placement Problem for some spe-
cific quorum systems, and give explicit placements that respect the capacities node cap(v)
at the nodes while minimizing the average delay ∆f (v0). The specific quorum systems

20



considered here are the well-known Grid (Cheung et al. [1992], Kumar et al. [1993]) and
the Majority (Gifford [1979], Thomas [1979]) quorum systems.

Note that the results here give us Theorem 2.1.3, since we can use the reduction of
the Quorum Placement Problem to the Single-Source Quorum Placement Problem from
Section 2.2.1 (with the attendant loss of a factor of 5 in the delay).

2.3.1 The Grid Construction

Consider the Grid quorum system (Cheung et al. [1992], Kumar et al. [1993]) on a universe
U of k2 elements. The k2 elements are laid out on a k by k square grid M , and each quorum
Q ∈ Q is formed by taking all the elements from some row and some column of M .
Hence each quorum has 2k − 1 elements, and there are k2 quorums in Q. We assume that
p0 is the uniform access strategy, since this yields the optimal load for the Grid (Naor and
Wool [1998]). Due to this uniformity, we can rephrase the objective function ∆f (v0) as∑k2

i=1 max
u∈Qi

{d(v0, f(u))}.

For simplicity, let us consider the case where the capacity node cap(v) of each node
v ∈ V is equal to the load(u) of any element u ∈ U (which is the same for all elements
u ∈ U when the uniform access strategy is being used). We can easily extend our results to
the general case by suppressing nodes with capacity less than load(u) and making multiple
copies of nodes with a capacity large enough to fit multiple amounts of load(u) (this is
equivalent to greedily packing amounts of load(u) into nodes with capacity node cap(v) ≥
load(u)). The problem then becomes one of matching U to the k2 nearest nodes to v0; let
τ1 ≥ . . . ≥ τk2 be the distances from v0 to these k2 nodes to v0 in decreasing order (i.e.,
the distances d1, . . . , dk2 in reverse order).

A convenient way of visualizing a placement f is to look at a k × k matrix M where
each entry is one of the τ1, . . . , τk2 distances; the correspondence between such matrices
and placements f is given by setting f((i, j)) = v ⇐⇒ Mij = d(v0, v), breaking ties
arbitrarily. The problem is now to place the values τ1, . . . , τk2 in a k × k matrix M that
minimizes the sum over all quorums of the maximum distance τi in each quorum. Recall
that each of the k2 quorums is the union of one row and one column of M .

The general strategy is to place the largest l2 distances on the top-left l × l square
of M . The next l distances, (i.e., τl2+1, τl2+2, . . ., τl2+l) are placed on positions M1,l+1,
M2,l+1, . . ., Ml,l+1, and the l + 1 after them (i.e., τl2+l+1, . . ., τl2+2l+1) on cells Ml+1,1,
. . ., Ml+1,l+1. This gets us from a l × l square to a (l + 1) × (l + 1) square, and having
started with τ1 in M1,1, we can complete the placement inductively. We now prove that the

21



placement f obtained in this manner is optimal.

Theorem 2.3.1. The placement f obtained by the previous algorithm is an optimal solu-
tion for the Single-Source Quorum Placement Problem on the k×k Grid when the uniform
access strategy is used.

Proof. We start with any optimal placement g and perform a number of transformations
to it that do not increase its cost, at the end of which g will look as if obtained by using
our strategy. This will prove that our placement strategy is optimal.

Recall that the cost of a placement for the Single-Source Quorum Placement Problem is
the average delay from the client v0 to all the quorums in the quorum system. For the case
of the Grid quorum system, the delay from v0 to a quorum Qij formed by taking the union
of the elements in row i and column j, is the maximum distance τmaxij

placed by the map
g on one of the cells of row i or column j of M . Since Mi,j uniquely determines quorum
Qij , we also assign to cell Mi,j a cost equal to the delay of quorum Qij: cellcost(Mi,j) =
δg(v0, Qij) = τmaxij

. Thus the average delay of the placement g can also be written as
∆g(v0) = 1

k2

∑k
i,j=1 cellcost(Mi,j).

Let us begin with several simple observations. First, any swapping of rows or columns
of M does not change the cost of the placement g. Second, a swap of two elements τi ≤ τj

placed at the intersection of two rows i and j with the same column, does not increase the
cost of the placement g if τj is less than the maximum distance placed on row i. A similar
statement can be made for elements placed at the intersection of two columns with one
row.

Consider now the placement g. By swapping rows or columns we can bring element τ1

on position (1, 1) of M without changing the cost of the placement. Now assume that we
have changed the position of elements τ1, . . . , τl2 starting from the initial placement g to
arrive at a placement consistent with our strategy and such that the cost has not increased.
This implies that τ1, . . . , τl2 are placed in the top left l × l square. We now show how to
reposition τl2+1, . . . , τ(l+1)2 according to our strategy without increasing the cost.

To make the exposition easier to follow we use the following notation: row l + 1
and column l + 1 partition matrix M into four regions A, B, C,D, where A and B are
the intersections of the first l rows with the first l columns and the last k − l columns
respectively, while D and C are intersections of the last k− l rows with the first l columns
and the last k− l columns respectively, as in Figure 2.3.2. At the end of the previous step,
each of the elements τl2+1, . . . , τ(l+1)2 can only be in one of the B, C, D regions. Note that
all of them are less than the maximums of rows 1 through l and columns 1 through l, since
we placed elements τ1, . . . , τl2 in region A.

22



A B

CD

l + 1

l + 1

r

Figure 2.3.2: Partition of matrix M by row l + 1 and column l + 1 into regions A, B, C,D

Now look at element τl2+1. If it is in one of the B or D regions, we can easily bring it
on a cell adjacent to A by swapping rows or columns. If it is in region C, we can swap it
with any of the elements from B that are on the same column without increasing the cost,
since any of the first l rows has a maximum greater than τl2+1 and τl2+1 is greater than any
of the elements from its column. After this move we can swap columns as before to bring
τl2+1 to a cell adjacent to A. Let us assume, without loss of generality, that the position of
this cell is M1,l+1.

Consider now element τl2+2. Assume position M2,l+1 is occupied by τi ≤ τl2+2. Then
swapping the two elements will not increase the cost, since placing τl2+2 on M2,l+1 does
not change the cost, while placing τi ≤ τl2+2 on the old position of τl2+2 might only de-
crease the cost. By a similar argument one can bring τl2+3, . . . , τl2+l to the right positions.

Finally, look at element τl2+l+1. If it is in regions C or D we can bring it on a cell
adjacent to A as before: either by a swap of elements that are on the same row followed by
a swapping of rows (if τl2+l+1 is in region C), or just by a swapping of rows (if τl2+l+1 is in
region D). If τl2+l+1 is in region B, denote by r its column, and let τmax be the maximum
of the elements in regions C and D. By a swap of τmax with an element at the intersection
of one of the first l columns with the row of τmax, we can bring τmax in region D without
increasing the cost. By swapping rows we can then bring τmax on a cell adjacent to A
without changing the cost.

Now we show that by an arbitrary swapping of the elements placed at the intersection
of column r with the first l rows with the elements placed at the intersection of row l + 1
with the first l columns, the cost of the placement g does not increase (see Figure 2.3.2).
Note that, by this swap, τl2+l+1 arrives on a cell of row l + 1 adjacent to region A, as
required by our placement strategy.

23



To compare the costs of the two placements (before and after the swap), we only need
to look at the cells for which the associated cost might change after this operation. These
are the cells from column r below row l + 1 as well as the cells from row l + 1, situated to
the right of column l + 1, with the exception of cell Ml+1,r. The sum of their costs before
the swap is:

(k − l − 1) · τl2+l+1 + (k − l − 2) · τmax

while the sum of their costs after the swap is:

(k − l − 1) · τmax + (k − l − 2) · τl2+l+1

which is smaller than the first one, since τmax ≤ τl2+l+1.

Thus we can bring τl2+l+1 on a cell of row l + 1 adjacent to A without increasing
the cost. By direct swaps we can bring the rest of the elements up to τ(l+1)2 on positions
Ml+1,2, . . . ,Ml+1,l+1 without increasing the cost. This completes the proof that g can be
converted to a placement according to our strategy up to the first (l + 1)2 elements. By
induction this shows that g can be completely converted to a placement according to our
strategy without increasing the cost. Therefore our placement strategy is optimal.

2.3.2 The Majority Construction

We now consider the following simple generalization of the well-known Majority con-
struction. Given a universe U of size n and a parameter t ≥ dn

2
e, the quorum system

consists of all the subsets of U of size t. We claim that any placement of this quorum
system on the nodes of the graph has the same average delay under the uniform access
strategy, which is

1(
n
t

) × n−t+1∑
i=1

τi ×
(

n− i

t− 1

)
. (2.3.18)

This is easy to see, since there are
(

n−1
t−1

)
quorums containing τ1,

(
n−2
t−1

)
quorums containing

τ2 but not τ1,
(

n−3
t−1

)
quorums containing τ3 but not the preceding two, and so on until there

is a single quorum containing τn−t+1 but not τ1, . . . , τn−t.

2.4 Total delay access cost

In this section, we present a polynomial time algorithm for the problem of minimizing the
total-delay objective function Avgv∈V [Γf (v)] introduced in Section 2.1, where the access

24



cost from a client v to a quorum Q is the sum of distances from v to all the elements of
the quorum Q. This turns out to be a somewhat more tractable problem, and we can di-
rectly use techniques based on the Generalized Assignment Problem (cf. Definition 2.2.11
and Theorem 2.2.12) to give us a placement f with total-delay within a factor of two of
optimum.

Theorem 2.4.1. Consider a quorum system Q over a universe U with an access strat-
egy p, and an undirected graph G = (V, E) with its associated metric d and capacities
node cap(v) for each v ∈ V . If f ∗ : U → V is a placement that minimizes Avgv∈V [Γf (v)]
subject to loadf∗(v) ≤ node cap(v), then we can find in polynomial time, a placement f
with loadf (v) ≤ 2 node cap(v) on v ∈ V , and where

Avgv∈V [Γf (v)] ≤ Avgv∈V [Γf∗(v)] (2.4.19)

I.e., the placement minimizes the average access cost, but violates the capacity of each
node by at most a factor of two.

Proof. Recall the LP relaxation 2.2.14-2.2.17 of GAP and Theorem 2.2.12. We will reduce
our problem to the GAP problem, which will allow us to use the rounding technique of
Theorem 2.2.12 to achieve our results.

In our problem, each element corresponds to a job in GAP (and hence we replace all
j’s by u’s), and each graph node corresponds to a machine (thus replacing i’s by v’s).
Also, if an element u ∈ U is assigned to a graph node v ∈ V , its contribution to the
load on v is load(u), and thus we set pvu = load(u). Furthermore, the contribution to the
average total-delay is 1

n

∑
v′∈V

∑
Q:Q3u p(Q)d(v′, v), and this we set to be the “cost” cvu.

Of course, we set the upper bound Tv for each v ∈ V to be the capacity node cap(v).

We can now solve the GAP LP, and use the rounding result to ensure that the cost of
the resulting solution is no more than Avgv∈V [Γf∗(v)], and the load placed on any node is
at most 2Tv = 2node cap(v), thus proving the theorem.

2.5 Related Work

Despite being over twenty years old, research on quorum systems remains an active and
rich area; see, e.g., Amir and Wool [1998], Bazzi [2000, 2001], Malkhi et al. [2000, 2001],
Yu [2004] and the references therein. Previous work on quorum placement problems in
graphs to minimize delays is scarcer; in particular, most previous work does not take
into consideration network-oblivious measures such as load, and the natural trade-offs

25



arising between delay and load. Specifically, Fu [1997] introduced the following prob-
lem: given a graph G = (V, E), find a quorum system Q over universe V to minimize
Avgv∈V [minQ∈Q δ(v, Q)], i.e., the average cost for each client to reach its “closest” quo-
rum. That work presented optimal algorithms when G has certain characteristics, e.g., G
is a tree, cycle or cluster network.

Problems of quorum design and placement on general graphs were then considered
by Tsuchiya et al. [1999], who gave an efficient algorithm to find Q so as to minimize
maxv∈V minQ∈Q δ(v, Q), i.e., the maximum cost any client pays to reach its closest quo-
rum. Kobayashi et al. [2001] looked at the problem of designing quorums Q to minimize
Avgv∈V [minQ∈Q δ(v, Q)]. They gave a branch-and-bound algorithm for it, which could
be evaluated only on topologies with up to 20 nodes due to its exponential running time,
and they also conjectured that the problem is NP-hard. Following up on this work, Lin
[2001] showed that the problem is indeed NP-hard; this work, which directly motivated
our research, also gives a 2-approximation for the problem.

At this point, let us mention that none of these works considered the load of the quo-
rum system; indeed, the 2-approximation from Lin [2001] yields a quorum system with
very high load—the output consists of only a single quorum containing a single element
which is placed at a single node v0 ∈ V which minimizes

∑
v′∈V d(v, v′). Such a solu-

tion is not very desirable, since it eliminates the advantages (such as load dispersion and
fault tolerance) of any distributed quorum-based algorithm. As discussed in the introduc-
tion, maintaining a low load and preserving this load dispersion capability is an essential
requirement in the problems we study.

Independently of our work, Gilbert and Malewicz [2004] consider a problem they call
the “partial quorum deployment problem”. As in all the problems we study, their prob-
lem also takes as inputs a graph G = (V, E) and a quorum system Q over a universe
U . However, they restrict the inputs so that |Q| = |V | = |U |, and so that each client
v ∈ V selects only a single, distinct quorum to access. In this setting, they provide a
polynomial-time algorithm to compute bijections f : U → V and q : V → Q that
minimize Avgv∈V γ(v, f(q(v))), where f(Q) = {f(u)}u∈Q. They also offer a number
of negative results for other variations of the Quorum Placement problem, all of which
are related to Avgv∈V [Γf (v)]. Our results for the same objective function (given in Sec-
tion 2.4) generalize the scenario they consider: we weaken the restrictions on the inputs,
and consider more general restrictions on the load of the system.

In more distantly related work, Carmi et al. [2005] study the following problem, which
we call the geographic partition problem: given a set X of n points in a closed re-
gion R of the plane, find a partition Q of X into clusters of size k so as to minimize
maxv∈R minQ∈Q δ(v, Q). (Here, distances are in the plane.) They also address the issue

26



of load balancing when the geographic partition Q is given: assuming that the clients
are uniformly distributed across the region R, the problem is to find a partition of R into
subregions of equal area such that each Q ∈ Q is contained in exactly one such sub-
region. Carmi et al. present efficient approximation algorithms for these problems, and
using techniques in Dolev et al. [2003] these can be utilized to implement intersecting
quorums. However, this conversion does not preserve the delay properties of the underly-
ing partition, and so does not solve the problem that we consider here (even in the plane).

2.6 Summary and Discussion

In this chapter we have introduced problems requiring the placement of quorums in a net-
work so as to (approximately) minimize the average delay that clients incur to contact
quorums, while (approximately) limiting the load each network node suffers to a pre-
defined capacity. As quorums underlie numerous distributed algorithms, we believe our
results are a step toward the use of such algorithms in wide-area networks, where different
placements can result in varied delays for quorum access.

Numerous extensions of our results are possible. For example, a more general formu-
lation of our Quorum Placement Problem allows clients to use different access strategies
when contacting a quorum. We remark here that the proof of Lemma 2.2.1 still holds in
this more general case. Furthermore, suppose that each client v ∈ V has its own access
strategy pv. Assigning to each node an access strategy equal to the average of all the pv’s
achieves the same average delay as the left-hand side of (2.2.4). Hence Theorem 2.1.2
holds for this more general version of the problem as well.

Another important observation regards the access rates made by different clients when
accessing the quorum system. For the sake of simplicity we assumed these to be uniform.
We emphasize here however, that our results hold even when clients use different access
rates when contacting a quorum system.

27



28



Chapter 3

Quorum Placement in Networks:
Minimizing Network Congestion

In this chaper we address the problem of placing an arbitrary quorum system on a network
in a way that minimizes network congestion. We consider two routing models, one in
which packets travel on arbitrary paths between two points (as they might, for instance,
in overlay networks — we call this the arbitrary paths model) and one in which packets
travel along a single path between two points (similar to the current Internet routing infras-
tructure — we call this the fixed paths model). In each case we show that placing quorum
systems to minimize congestion is NP-hard, but that there exist approximation algorithms
if one is allowed to exceed node capacities by a small factor.

We start with a description of the model and then present our main results. Sections 3.3
and 3.4 contain our treatment of the problem in the arbitrary paths model while Section 3.5
looks at the case of the fixed paths model. In Section 3.6 we study techniques of mini-
mizing congestion in a migration model, where universe elements can be remapped to
different network nodes over time.

3.1 Model

We model the network as an undirected graph G = (V, E) of size n = |V |. Each physical
node v ∈ V is given a node capacity node cap(v) ∈ R≥0, which is an upper bound on
the amount of quorum load it wishes to handle. Furthermore, each edge e ∈ E also has
an edge capacity edge cap(e) ∈ R≥0, which represents its bandwidth, i.e., the amount of
traffic it can carry. For a given quorum system Q = {Q1, . . . , Qm} on a universe U , an

29



access strategy p, and a network G = (V, E), a map f : U → V placing the elements on
the physical nodes is called a quorum placement; we will use f(Q) ⊆ V to denote the set
of nodes ∪u∈Q{f(u)}.

We assume that the set of clients accessing the quorums in Q is just the node set V . To
make the explanations simpler, we will assume that each of the clients v ∈ V generates
requests at some rate rv with

∑
v∈V rv = 1. It will be convenient to think of the rate rv as

the probability that client v makes a request.

We are concerned with two measures in this chapter: the network congestion caused
by routing the requests from the clients to the nodes hosting the quorum elements, and the
load generated on these nodes due to processing these requests. We use the same notion
of load as the one defined in Chapter 2, which we recall here for completeness. Given a
quorum system Q over U , an access strategy p, and a placement f : U → V , the load of
a network node v is defined as loadf (v) =

∑
u∈U :f(u)=v load(u). Ideally, we would like

placements f that satisfy loadf (v) ≤ node cap(v) for every node v ∈ V .

To define the congestion of a placement f note that a client v making an access to
quorum Q needs to contact each member f(u) ∈ f(Q) individually, and this naturally
increases the traffic on the edges of some path from v to f(u), for each u ∈ U . The exact
congestion induced by an access depends on the routing model used:

1. In the arbitrary routing model, the path used for routing in the network may be
chosen arbitrarily, and hence it is convenient to model traffic between any two nodes
v, v′ ∈ V as a flow gv,v′ : E → R≥0. (Note that each access will use a single path,
but we may vary the paths used between a pair of nodes so that the average traffic
on any edge is the same as in the flow.)

2. In the fixed routing paths model, the paths {Pv,v′} are specified as part of the in-
put, and while we can define the flow gv,v′ as before, all the flow must travel along
the path Pv,v′ . This is motivated by networks like the Internet where senders and
receivers cannot control or select the paths along which their traffic travels.

Thus in either model we may define the expected traffic on any edge e ∈ E due to requests
from a fixed node v to be ∑

Q∈Q

p(Q)
∑
u∈Q

gv,f(u)(e)

Finally, since the node v is responsible for an rv fraction of the requests, we can define the
average traffic on the edge e to be

trafficf (e) =
∑
v∈V

rv

∑
Q∈Q

p(Q)
∑
u∈Q

gv,f(u)(e).

30



(This can be read thus: we choose the client v with probability rv, choose a quorum Q
with probability p(Q), and incur a traffic of gv,f(u)(e) for every u ∈ Q.)

Since we are always considering averages, we will usually just refer to this as the
traffic on the edge e. Finally, given an edge capacity edge cap(e), the congestion due to
the placement f is

congf (e) = trafficf (e)/edge cap(e) (3.1.1)

Ideally, this quantity should be as low as possible. Indeed, the objective function we seek
to minimize is the congestion of the placement f , which is defined to be the congestion of
the most congested edge, namely congf = maxe∈E congf (e).

Before we proceed, note that we used a flow gv,v′ in the above discussion to model the
flow of messages between v and v′. Given a placement f in the arbitrary routing model,
finding a set of flows {gv,v′} that minimize the congestion (3.1.1) subject to the placement
f is just a flow problem, and can be optimized in polynomial time. (Of course, the flow
in the fixed-paths model is just Pv,v′ .) Hence, the rest of the chapter will focus on finding
the placements f : whenever we refer to a “placement f with congestion c” in the arbitrary
routing model, it should be taken to read “placement f for which there exist flows {gv,v′}
that give congestion c”.

We are finally in a position to formally define the problem addressed in this chapter:

Problem 3.1.1. (Quorum Placement Problem for Congestion (QPPC)) Given a quorum
systemQ over the universe U , an access strategy p, and an undirected network G = (V, E)
with capacities edge cap : E → R≥0 and node cap : V → R≥0 on edges and nodes,
respectively, and client access rates {rv}, find a placement f : U → V that (a) minimizes
the congestion congf subject to (b) loadf (v) ≤ node cap(v) for all nodes v ∈ V .

Since we can scale the capacities on the edges, we will assume (for simplicity of ex-
position) that the edge congestion congf∗ of the optimum placement f ∗ is precisely 1.

Before we present our results, let us note that all our analyses apply in the unicast
model, where an individual request is sent to each element of the quorum being accessed.
An alternate model (which we do not consider here) would permit multicast messages
from the source to the quorum members. Using these multicasts clearly decreases the
congestion incurred: for instance, if two quorum elements are mapped to the same physical
node v, these co-located elements could be reached using a single message. (Moreover, the
node v could intelligently process the information reaching these co-located elements just
once, thereby incurring less load.) We leave the study of these models and optimizations
for future work.

31



3.1.1 Results

As stated, the QPPC problem turns out to be highly intractable:

Theorem 3.1.2. Even determining whether a feasible solution for the QPPC exists (in
either model) is NP hard if we do not allow any node capacities to be violated.

We go on to show a number of approximation results for the QPPC problem if we are
allowed to violate the node capacities by at most a factor of two. We use the following
notation: if f ∗ is the optimal solution to a QPPC instance (that satisfies the load con-
straints), then an (α, β)-approximation is a placement f such that congf ≤ α · congf∗ and
loadf (v) ≤ β · node cap(v) for all nodes v.

Theorem 3.1.3 (Approximations for Arbitrary Routing). For any instance of QPPC in
the arbitrary routing model, we can find an (O(log2 n log log n), 2) - approximation in
polynomial time. If the graph G is a tree, we obtain a (5, 2)-approximation.

Theorem 3.1.4 (Approximations for Fixed Paths). Given an instance of QPPC in the fixed
routing paths model, we can find an (O( η·log n

log log n
), 2)-approximation in polynomial time,

where η is the size of {blog(load(u))c |u ∈ U}. For example, if there exists an N such
that load(u) ∈ [1/N, 1] for all u ∈ U , then the algorithm above yields an (O( log N log n

log log n
), 2)-

approximation.

3.1.2 Techniques

The basis of the algorithm for the arbitrary routing model QPPC lies in a reduction of the
problem to the case in which the graph is a tree and there is only one client in the system
(i.e., there is a node v with rv = 1). This reduction uses some of the properties of quorum
systems, combined with the general graph decomposition result of Racke [2002]; however,
it costs us a factor of O(log2 n log log n) in the congestion. For the single-client tree case,
we give an approximation algorithm by first writing an integer programming formulation,
and then rounding its linear-programming relaxation: the rounding uses an algorithm for
unsplittable flows from Dinitz et al. [1999], and is possibly of independent interest.

Our results for the fixed paths model use a different set of tools: we first develop an
algorithm for instances where all the elements of U have identical (“uniform”) loads. For
this we use a different linear programming relaxation, and then round it using a different
rounding technique that does not allow node capacities to be violated (Srinivasan [2001]).
We then use this algorithm as a subroutine to solve the non-uniform case by carefully
placing down sets of elements in decreasing order of their loads.

32



We also show hardness results for QPPC in the fixed paths model, even when the loads
are all uniform. Theorem 3.5.1 states that it is NP-hard to approximate the congestion to
any constant factor (even if we completely ignore the load constraints); in fact, we can ob-
tain stronger inapproximability results under stronger complexity-theoretic assumptions.

Finally, we provide preliminary results regarding the utility of migration of universe el-
ements between physical nodes of the network as a technique to further reduce congestion.
The details of this analysis are included in Section 3.6.

3.2 Background

In this section, we introduce some concepts and results that will be used in developing
algorithms for the QPPC problem in the arbitrary routing model. The “congestion pre-
serving” trees of Racke [2002] are directly related to the problem at hand, so we discuss
them in more detail in the next section. The results on unsplittable flows in Section 3.2.2
will be used in rounding a linear-programming relaxation of one of the problems we con-
sider here.

3.2.1 Congestion Trees

Given an instance of a congestion-minimization problem on a general graph G, one may
try to reduce the problem to one on a simpler graph—for instance, a tree T—where it is
algorithmically easier to find a good solution. Of course, we would like that the tree T
“approximates” the graph G well; the following definition formally states the notion of
approximation we will use. Recall that a multicommodity flow on a graph G = (V, E) is a
set g = {gi : E → R≥0}i of flows where gi carries di units from si to ti (si, ti ∈ V ); the
vector {di}i is the value of the flow.

Definition 3.2.1. A tree T = (VT , ET ) with edge capacities given by edge capT : ET →
R≥0 is a β-approximate congestion tree for a graph G = (V, E) with edge capacities
edge capG : E → R≥0 if:

1. The vertices of G are the leaves of T .

2. For any multicommodity flow g on pairs {(si, ti)}i that is feasible on G (i.e.,
∑

i gi(e) ≤
edge capG(e) for each e ∈ E) there is a feasible multicommodity flow of the same
value on leaves {(si, ti)}i in T .

33



3. For any feasible multicommodity flow gT on pairs of leaves {(si, ti)}i in T , there
exists a multicommodity flow g on {(si, ti)}i in G such that g has the same value as
gT and

∑
i gi(e) ≤ β × edge capG(e) for each e ∈ E.

In a surprising result, Racke [2002] showed that one can find congestion trees for gen-
eral networks with β = poly log n. His initial result was existential, but subsequent results
of Bienkowski et al. [2003], Harrelson et al. [2003] made the construction algorithmic,
and also improved the value of β to give us the following theorem.

Theorem 3.2.2. Given any undirected graph G = (V, E), there exists an O(log2 n log log n) -
approximate congestion tree TG; furthermore, this congestion tree can be found in time
polynomial in n and the maximum capacity of any edge (assuming edge capacities are
bounded to within a fixed polynomial factor of each other).

Working in the arbitrary routing model, we will use this result to reduce an instance of
the Quorum Placement Problem for Congestion on general graphs to an instance on trees,
and then we will give algorithms to solve the Quorum Placement Problem for Congestion
on trees.

3.2.2 Single Source Unsplittable Flow

In general, a flow from s to t could be fractional, i.e., the commodity travels on multiple
paths from s to t. In contrast, an unsplittable flow is one that is constrained to travel
only on a single path. The Single-Source Unsplittable Flow Problem (SSUFP), then,
is specifically the following: given a directed graph G = (V, E) with edge capacities
edge cap : E → R≥0, a source node s ∈ V and k terminals ti ∈ V , with each ti in
1 ≤ i ≤ k having a demand di, find a multicommodity flow from the source to the
terminals such that the flow gi : E → R from s to ti (of di units) is unsplittable (i.e.,
travels on a single path), and the total flow on any edge e is

∑
i gi(e) ≤ edge cap(e). Note

that a solution to this problem is given by a set of paths {Pi}k
i=1, where Pi is a path from s

to ti.

This problem was studied by Dinitz et al. [1999], who proved the following: given any
feasible instance of the single-source unsplittable flow problem, there is a polynomial time
algorithm to obtain a set of paths Pi (one for each terminal ti), such that the total traffic∑

i:e∈Pi
di on any edge e is at most edge cap(e) + maxi{di}. In fact, they prove a slightly

stronger result, which we now state in a form most convenient to us:

Theorem 3.2.3. Given a fractional multicommodity flow that satisfies terminal demands
and the edge capacities (where the flow of di units from s to ti is denoted by gi), the

34



algorithm of Dinitz et al. [1999] converts it into an unsplittable flow Pi where the total
traffic over an edge e is∑

i:e∈Pi

di ≤ edge cap(e) + max{ di | gi(e) > 0}.

Note that the maximum on the right hand side is only over the commodities using the
edge e in the input fractional flow.

In Section 3.3.2, we will use this theorem to round a fractional solution of a linear
programming relaxation for the QPPC problem in the arbitrary routing model.

3.3 The Arbitrary Routing Model: The Single Client Case

In this section, we present our first results for the Quorum Placement Problem for Con-
gestion (QPPC) in the arbitrary routing model: we consider the special case when there
is only one client in the system generating the requests. For this case, we show that it is
NP-hard to approximate the congestion within any factor if we enforce the node capaci-
ties node cap(v). We then show that if we are allowed to violate the node capacities by a
“small” amount, we can achieve a “small” congestion as well.

3.3.1 A Hardness Result

Let us begin by proving the following simple theorem that shows that this problem is NP-
hard to approximate within any factor. This hardness result motivates a line of inquiry we
will pursue, where we allow the node capacities to be violated by a small amount, and then
try to minimize the edge congestion incurred.

Theorem 3.3.1. Finding any feasible solution to the Single Client case of QPPC (in either
model) is NP-hard if no node capacities node cap(v) are violated.

Proof. The reduction is from the PARTITION problem, an instance of which contains a set
of numbers {a1, a2, . . . , al} with

∑
i ai = 2M , and the goal is to find a subset of the ai’s

that sum to exactly M .

We now construct a quorum system Q on l+1 nodes U = {u0, u1, . . . , ul} with l quo-
rums Qi = {u0, ui}, and the access strategy p(Qi) = ai/2M . Note that load(u0) = 1
and load(ui) = ai/2M otherwise. Finally, let the graph G = (V, E) consist of the

35



complete graph with 3 nodes {v0, v1, v2}, with node capacities node cap(v0) = 1, and
node cap(v1) = node cap(v2) = 0.5. (The edge capacities are not relevant in this reduc-
tion.) Finally, let all the requests originate from a single client located at v0.

Note that any feasible placement f that respects the node capacities must place the
element u0 at the root v0, and hence the set of elements placed at node v1 must have∑

ai
= M . Thus it is NP-hard to find any feasible placement for this instance, let alone a

placement that approximates the edge congestion.

3.3.2 The Algorithm for the Single Client Case

Our result for the special case of a single client works for the more general case of directed
graphs. In fact, we also permit the presence of the following additional constraints:

• for each edge e, we can give a set of forbidden elements denoted by Fe ⊆ U such
that traffic to any element u ∈ Fe is not allowed to traverse edge e; and

• for each node v, a set of forbidden elements Fv ⊆ U that cannot be placed at the
node v. (I.e., forbidden placements f are those with f(u) = v for some u ∈ Fv.)

Let us denote by loadmaxv the maximum load of any element that can be placed on v, i.e.,
loadmaxv = maxu 6∈Fv load(u). Similarly, let loadmaxe = maxu 6∈Fe load(u). We will use
these quantities to parameterize the performance of the following theorem.

Theorem 3.3.2. Given a directed instance of the Quorum Placement Problem for Conges-
tion in the arbitrary routing model, with a single client v0 generating requests, let f ∗ be
the optimal placement that respects node capacities node cap and achieves a congestion
of cong∗ on the edges. We can find, in polynomial time, a placement f for which:

• the load loadf (v) on any node v is at most node cap(v) + loadmaxv, and
• the traffic on any edge e is at most (cong∗ × edge cap(e)) + loadmaxe.

Proof. To prove this theorem, we formulate the Quorum Placement Problem for Conges-
tion as an integer linear program (ILP), consider its linear programming (LP) relaxation,
and round a (possibly fractional) solution to this LP relaxation to an integer solution to
(ILP) while losing at most O(loadmax(e)) during this rounding.

36



Consider the following integer linear programming formulation (ILP):

λ∗ = minimize λ (3.3.2)∑
i

xiu = 1, ∀ u ∈ U (3.3.3)∑
u

load(u) xiu ≤ node cap(vi), ∀ vi ∈ V (3.3.4)∑
P∈Pi

gu(P ) = load(u)xiu, ∀ u ∈ U,∀ vi ∈ V (3.3.5)∑
P∈Pi,e∈P

gu(P ) = 0, ∀ u ∈ Fe,∀ e ∈ E (3.3.6)∑
u∈U

∑
vi∈V

∑
P∈Pi,e∈P

gu(P ) ≤ λ× edge cap(e), ∀ e ∈ E (3.3.7)

xiu = 0, ∀ u ∈ Fvi
(3.3.8)

xiu ∈ { 0, 1}, ∀ vi ∈ V, ∀ u ∈ U (3.3.9)

Here xiu is the indicator variable for the element u being placed on node vi, Pi is the
set of paths from the client v0 to the node vi,1 gu(P ) is the amount of traffic destined for
element u that uses some path P , and λ is the overall congestion of the resulting solution.
Since each of xiu is either 0 or 1, the gu(P )’s tell us how to send the traffic from the client
v0 to the node vi with xiu = 1. (Since we do not require that the gu(P )’s be integral,
technically the above program is a mixed-integer program.)

Note that given a solution f to the single-client QPPC problem with congestion congf ,
we may set xiu = 1 ⇐⇒ f(u) = vi and use the flows prescribed by the given solution to
obtain λ = congf , and hence this is indeed a formulation of the original problem.

Since we cannot solve this ILP optimally in polynomial time, we relax the integrality
constraints: instead of (3.3.9), we throw in the constraint 0 ≤ xiu ≤ 1 and solve the
resulting linear program; now we have to round the resulting fractional solution (λ, x, g)
to one where xiu ∈ {0, 1} for all i and u. For simplicity of exposition, we scale the edge
capacities by a factor of λ, so that with the new edge capacities λ∗ = 1.

Preprocessing. We will use the rounding scheme used for the Single-Source Un-
splittable Flow Problem to round our fractional solution, and hence we first construct an
instance of SSUFP. Consider the graph G = (V, E), and let us add a new “sink” vertex t
to it, with directed arcs (vi, t) from each vi ∈ V to this new vertex t, with each arc (vi, t)
having a capacity of edge cap((vi, t)) = node cap(vi). Now we create |U | new “termi-

1Note that |Pi| could be exponential in n; one can write an equivalent formulation of this ILP with a
number of variables and constraints polynomial in n. However, the formulation we present here will be
easier to argue about.

37



nals” {tu | u ∈ U}, all of which are located at the “sink” node t. Define the client v0 to be
the “source”.

Finally, note that total amount of flow ending at vi is equal to
∑

u∈U

∑
P∈Pi

gu(Pi) =∑
u load(u) × xiu using equality (3.3.5), which by (3.3.4) is at most node cap(vi). Thus

we can take all the flow that previously ended at the node vi, and send it on the arc (vi, t)
to the sink t without violating capacities. Doing this for all vertices vi, we get a flow that
for each u ∈ U , sends load(u) units of flow from the source v0 to the terminal tu.

Using SSUFP to Round the LP Solution. Finally, we apply Theorem 3.2.3 to the
flow created in the above construction: the answer it returns is a set of paths {Pu}u∈U , one
for each u ∈ U , such that the flow on e is∑

u:e∈Pu

load(u) ≤ edge cap(e) + max
u:gu(e)>0

{load(u)}. (3.3.10)

Finally, if the path Pu uses the edge (vi, t) to reach tu = t, define f(u) to be vi.

Proving the Claimed Guarantees. Let us first consider the load loadf (vi), which
is equal to the traffic on the arc (vi, t). Recall that edge cap((vi, t)) = node cap(vi).
Also, if gu((vi, t)) =

∑
P∈Pi

gu(P ) is non-zero, then u 6∈ Fvi
by the constraint (3.3.6),

and thus loadmaxvi
≥ loadu. Plugging these facts into (3.3.10) implies that loadf (vi) ≤

node cap(vi) + loadmaxvi
, as claimed.

Now for the traffic on an edge e ∈ E: this was originally at most edge cap(e), and
now can increase by at most loadmaxe (due to the constraint (3.3.8)), thus proving the
theorem.

3.4 The General Case of QPPC in the Arbitrary Routing
Model

To obtain the result for an arbitrary number of clients claimed in Section 2.1, we use the
following strategy:

(A) Reduce the problem to trees. We first translate the QPPC problem on a gen-
eral graph G to the β-approximate congestion tree TG with β = O(log2 n log log n), as
guaranteed by Theorem 3.2.2.

It follows from the definition of a congestion tree, and the fact that the leaves of TG

correspond to nodes of the network G, that any placement f : U → leaves(TG) which is
an α-approximation for the optimal congestion in TG corresponds to a placement f : U →

38



V (G) which approximates the optimal congestion in G to within α × β. (The details of
this translation are given in Section 3.4.1.)

(B) Reduce the problem to the single-source case. In Section 3.4.2, we show that
there is a placement f0 that maps all elements in U to a single node v0 in the tree TG and
minimizes the congestion of the tree edges. However, this placement has very high load,
and since our goal is to achieve low loads in addition to a low network congestion, this
solution is clearly not acceptable. However, this will be a convenient structural result for
the rest of the argument.

(C) Solve the single-source problem. Finally, in Section 3.4.3, we imagine the above
single-node solution v0 as a single client generating all the requests, and use the algorithm
of Section 3.3 to find a good placement f : U → leaves(TG) for this single-client case. We
show that f is also a “good” placement for the original set of clients in TG, and achieves a
congestion of α ≤ 5 times the optimum.

3.4.1 Translating the QPPC Instance to a Congestion Tree

Consider a graph G = (V, E) and a β-approximate congestion tree TG = (VT , ET ). Recall
that V is equal to the set of leaves of TG, i.e. V = leaves(TG). Let f ∗G : U → V be
the placement in the graph G with the least edge congestion cong∗G. Let f ∗TG

: U →
leaves(TG) be the placement that has the least congestion over the edges of the tree TG,
and let cong∗TG

be the value of this congestion. By the definition of congestion trees, it
follows that cong∗TG

≤ cong∗G. Since we assumed that the optimal congestion on G is
exactly 1, we get the following fact.

Lemma 3.4.1. The optimal congestion on TG is at most 1.

Moreover, if f : U → leaves(TG) is a placement with congestion at most α × cong∗TG

over the edges of TG, then f has congestion of at most (α×β)×cong∗TG
≤ (α×β)×cong∗G

over the edges of G. This implies the following result:

Theorem 3.4.2. Any placement f : U → leaves(TG) with edge congestion α × cong∗TG

over the edges of TG has a congestion of αβ× cong∗G over the edges of G. In other words,
a placement on the leaves of TG that is an α-approximation for congestion on TG is an
αβ-approximation for congestion on G.

Note that the above theorem only works for placements that map elements to the leaves
of TG, and as such cannot be used directly with the results of the next section.

39



3.4.2 Single Node Solutions are Good on Trees

For any node v ∈ VT , let fv : U → VT be the trivial placement with fv(u) = v for all
u ∈ U ; i.e., all the elements of U are placed on the single node v. We will show that on a
tree, an optimal placement of (Q, p), provided we ignore node capacity constraints, is on
a single node of the tree.

Lemma 3.4.3. Given a tree T = (VT , ET ) and a placement f : U → VT , one can find
(in polynomial time) a node v0 ∈ V such that the placement fv0 has congestion no greater
than that of f .

Proof. Let f−1(v) denote {u | f(u) = v}. For a node v ∈ T , recall that rv was the fraction
of all the requests in the system that are generated by the client v, and also that

loadf (v) =
∑

u∈U :f(u)=v

load(u)

=
∑

u∈U :f(u)=v

∑
Q∈Q:u∈Q

p(Q)

=
∑
Q∈Q

p(Q)× |f−1(v) ∩Q|

is the expected number of messages that reach the node v (where the expectation is taken
over the choice of Q under the access strategy p). It is a simple exercise to prove that there
exists a node v0 in T such that each subtree T ′ of T − {v0} has at most half the demands;
i.e.,

∑
v∈T ′ rv ≤ 1

2
≤

∑
v 6∈T ′ rv.

Consider an edge e, and let TL and TR be the subtrees formed by deleting e. Let
r(TL) =

∑
v∈TL

rv be the total fraction of demands generated by clients in TL. The ex-
pected number of messages seen by nodes in TL is loadf (TL) =

∑
v∈TL

loadf (v). Let
r(TR) and loadf (TR) be defined similarly for the subtree TR. Then the total congestion of
the edge e under the placement f is

r(TL)× loadf (TR) + r(TR)× loadf (TL)

edge cap(e)
(3.4.11)

Without loss of generality, let r(TL) ≤ r(TR), and hence the node v0 must lie in TR. Thus
all the messages traversing the edge e under the placement fv0 go from TL to TR, with e
having a congestion of r(TL)× [loadf (TR)+ loadf (TL)]/edge cap(e); the r(TL)loadf (TR)
term corresponds to messages generated by nodes in TL which are sent across e under both
placements, while the r(TL)loadf (TL) term corresponds to messages generated by nodes

40



in TL that are sent to nodes in TL under placement f but are sent across e under placement
fv0 . Since r(TL) ≤ r(TR), this quantity is at most (3.4.11), the congestion under the
placement f . Finally, we note that the node v0 can be found in linear time simply by trying
all the nodes of T , which completes the proof of the lemma.

While this lemma tells us how to find the best quorum placement on trees, it is unsatis-
fying for at least two reasons. First, the node v0 in the above theorem suffers all the load in
the system under the placement fv0 . Second, this node v0 may be an internal node of TG,
and hence we cannot directly obtain a solution for the graph G by applying Lemma 3.4.3
on the congestion tree TG, and then using Theorem 3.4.2 to translate the solution back to
G. In the next section we provide a solution to these problems.

3.4.3 The Algorithm for General QPPC

Consider a congestion tree TG, let f ∗ be the best placement of U on the leaves of TG that
respects the node capacities (i.e., loadf∗(v) ≤ node cap(v) for all v); let congf∗ be the
congestion in TG under f ∗. Let the best (single-node) placement given by Lemma 3.4.3
for the tree TG be fv0 , which places the entire quorum on v0. Let the congestion incurred
under this placement be congfv0

; Lemma 3.4.3 shows that congfv0
≤ congf∗ .

Let us show that if v0 were generating all the requests (instead of the node v generating
requests with probability rv), the placement f ∗ would still be a fairly good placement.

Lemma 3.4.4. The congestion incurred by the placement f ∗ if all the requests in the system
originate at v0 (instead of at the individual clients) is congf∗,v0

≤ 2congf∗ .

Proof. Indeed, the congestion is no worse than if we use the following routing strategy for
messages: let v0 choose Q according to the access strategy p, and a leaf v with probability
rv, and send the messages to the various nodes in f(Q) by first sending them to v, which
forwards them on to f(u). The first part of this indirect route incurs the same congestion as
the case when v were generating all the |Q| messages and using the placement fv0 , which
is just congfv0

≤ congf∗ (by Lemma 3.4.3). The second part of the route incurs a further
congestion of congf∗ , which proves the result.

Recall that congf∗ ≤ 1 due to Lemma 3.4.1. We now prove the main result for the
QPPC problem on trees:

Theorem 3.4.5. There is a placement f on the leaves of the tree TG that incurs a conges-
tion of at most 3congf∗ +2 ≤ 5, and which places a load of at most 2node cap(v) on each
leaf v.

41



Proof. Let us imagine the node v0 of Lemma 3.4.4 to be the sole client, and use the al-
gorithm of Section 3.3 to find a placement f on the leaves of TG with “low” load and
congestion. Each leaf node v of TG corresponds to a node of G and hence has a node
capacity already defined; for each internal node v ∈ TG, define the node cap(v) = 0, thus
ensuring that no elements are mapped to internal nodes.

Recall that one could specify forbidden sets for nodes and edges in the algorithm of
Section 3.3.2: let the forbidden set Fv for node v be the set of elements u with load(u) >
node cap(v). Also, the forbidden set Fe for a tree edge e is defined to be the set of
all elements u such that load(u) > 2edge cap(e). Note that these settings ensure that
loadmaxe ≤ 2edge cap(e) and loadmaxv ≤ node cap(v).

Note that the placement f ∗ on the leaves of T is a possible solution to this instance
of the single-client QPPC, having a congestion of at most 2 (due to Lemma 3.4.4 and
Lemma 3.4.1) and load of at most node cap(v), for each v ∈ V . Hence, Theorem 3.3.2
guarantees us that (a) each node has a load of at most node cap(v)+loadmaxv = 2node cap(v),
and that (b) each edge sees a traffic of at most (congf∗,v0

× edge cap(e)) + 2edge cap(e),
and hence the congestion is at most congf∗,v0

+ 2 ≤ 2congf∗ + 2.

Now, since the requests are generated by the various nodes of the network and not
by the single node v0, one has to add in the extra congestion incurred by sending all the
requests to v0. By Lemma 3.4.3, this extra congestion is at most congfv0

≤ congf∗ .

Finally, putting the pieces together, the idea of conceptually “delegating” all the re-
quests to v0 and using the placement f that (approximately) optimizes the congestion for
the “source” v0 gives us the claimed congestion of 3congf∗ + 2 ≤ 5 (since congf∗ ≤ 1 by
Lemma 3.4.1).

Now combined with the results of Section 3.4.1, we get the result for general graphs.

Theorem 3.4.6. Given an instance of QPPC on general graphs, we can find a placement
f that incurs on any node v a load of at most 2node cap(v), and an edge congestion of
at most 5β times the optimum (where β is the performance of the best known congestion
tree).

Since β = O(log2 n log log n), this proves Theorem 3.1.3.

3.5 The Fixed Routing Paths Model

In this section we consider a variant of QPPC in which we are given routing paths Pv,v′

between each pair of vertices. A node v generating an access to element u thus incurs a

42



unit of flow on the edges of Pf(u),v, where u has been placed at node f(u). In general,
we do not require Pv,v′ and Pv′,v to be equal. As before, our goal is to find a placement f
of quorum elements onto the nodes to minimize the congestion, while respecting the node
capacities. First note that Theorem 3.1.2 applies to this variant; if we are not allowed to
violate the node capacities then even finding a feasible solution is NP hard. As before,
we retreat to the task of finding solutions that approximate the congestion well, but may
violate the node capacities by a small multiplicative factor. However, even if we allow
ourselves to ignore the node capacity constraints entirely (i.e., violate them by arbitrary
factors), minimizing the congestion is still fairly inapproximable, as the following result
states.

Theorem 3.5.1. In the fixed routing paths model, it is NP hard to c-approximate the mini-
mum congestion of a QPPC problem, for all c ∈ N, even on instances where node cap(v) =
∞ for all v, and load(u) = load(u′) for all u, u′ ∈ U . Furthermore, unless NP ⊆
ZPTIME

(
nO((log log(n))2)

)
, it is NP hard to o(

√
log log(n)) - approximate the minimum

congestion QPPC solution, even on instances where node cap(v) = ∞ for all v, and
load(u) = load(u′) for all u, u′ ∈ U .

Proof. Recall that for a vector x, ‖x‖p := (
∑

i x
p
i )

1/p, and ‖x‖∞ = maxi{xi}. The proof
proceeds along similar lines as the proof of hardness of the Vector Scheduling problem
given by Chekuri and Khanna [1999]. We reduce Independent Set to QPPC instances with
node cap(v) = ∞ for all v, and load(u) = load(u′) for all u, u′ ∈ U . For a graph G, let
α(G) be the size of the largest independent set in G, and let ω(G) be the size of the largest
clique in G. Lemma 3.5.2 states that α(G) ≥ 1

2e
n1/ω(G), where G has n vertices. Now

consider the following multi-dimensional packing problem (MDP): given A ∈ {0, 1}d×n

and k ≤ n, minimize ‖Ax‖∞ such that x ∈ {0, 1}n and ‖x‖1 = k. We can reduce MDP to
QPPC instances with load(u) = load(u′) for all u, u′ ∈ U in an approximation preserving
fashion as follows. We construct a quorum system on k elements with uniform load. We
add d vertex disjoint edges of unit capacity, one for each row of the matrix A, as well as two
sources of quorum accesses, s1 and s2. Partition of columns of A into sets S1, S2, . . . , Sr

using the natural equivalence relation on the column vectors, and add a vertex vi for each
Si with node cap(vi) = |Si|. Note that if |Si| = k, we can set node cap(vi) = ∞. We
also add a bottleneck edge of capacity 1/n2. We route the paths to ensure that placing an
element at vi is like selecting a column in Si (add some infinite capacity edges to the graph
as needed). Finally, we ensure that no elements are placed at nodes other than {v1, . . . , vr}
by routing paths to these other nodes through the bottleneck edge.

Note that since we want to restrict ourselves to MDP instances that reduce to QPPC
instances with uniform load and node cap(v) = ∞ for all v, we require the matrix A to

43



satisfy the following property: if ~a is column vector of A, then A must have at least k − 1
other column vectors that equal ~a.

We now proceed by reducing Independent Set to such MDP instances. Let G be an
Independent Set instance on n nodes. Fix parameters k and B. We construct a matrix A′

with n columns, corresponding to each node of G. For each clique C in G of size B + 1
or smaller, add a row C to A′ such that a′C,v = 1 if v ∈ C, and zero otherwise. Now
construct a matrix A with kn columns, consisting of k copies of each column of A′. Call
x ∈ {0, 1}kn valid if ‖x‖1 = k. Note that if ‖Ax‖∞ > 1 for all valid x, then α(G) < k.
Furthermore, if there exists a valid x such that ‖Ax‖∞ ≤ B, then α(G) ≥ 1

2e
k1/B. To

prove this, consider a graph G′ that is constructed from G by replacing each node v of G
with a clique Cv of size k, and adding all edges in Cv × Cv′ to G′ whenever (v, v′) is an
edge of G′. Clearly, α(G) = α(G′). Note that since ‖Ax‖∞ ≤ B, the subgraph G′

x of G′

induced on {v |xv = 1} has ω(G′
x) ≤ B, so

α(G′
x) ≥

1

2e
|V [G′

x]|1/ω(G′
x) ≥ 1

2e
|V [G′

x]|1/B =
1

2e
k1/B (3.5.12)

and clearly, α(G) = α(G′) ≥ α(G′
x).

Given a ρ-approximation for MDP on these instances (obtained from a ρ approximation
for QPPC on uniform load, infinite node capacity instances), we approximate Independent
Set on G as follows. Set k := nρ/(ρ+1), B := ρ, and construct matrix A accordingly. Let x
be the output of the MDP algorithm. If ‖Ax‖∞ > B, output one, otherwise output 1

2e
k1/B.

The output is always at most α(G) by equation 3.5.12. Furthermore, in the first case
‖Ax‖∞ > 1 for all valid x, since we used a ρ-approximation for MDP, and thus α(G) < k.
In the latter case, α(G) ≤ n trivially, so we have a max{k, en/k1/B} = 2e · (n1− 1

B )-
approximation. (Note that the reduction takes poly(nρ) time.) Combining this reduction
with known hardness results for Independent Set (see e.g., Engebretsen and Holmerin
[2003] and the references therein), completes the proof.

Lemma 3.5.2. In any undirected graph G on n nodes, 2e · α(G) ≥ n1/ω(G) where α(G)
is the size of the largest independent set in G, and ω(G) is the size of the largest clique in
G.2

Proof. Suppose for a contradiction that n > (2e ·α(G))ω(G). Using the well known Erdös-
Szekeres bound on the Ramsey number R(s, t), namely R(s, t) ≤

(
s+t−2
s−1

)
, we conclude

that

n > (2e · α(G))ω(G) ≥
(

α(G) + ω(G)

ω(G)

)
≥ R(α(G) + 1, ω(G) + 1)

2We note that stronger versions of this lemma exist, and a similar lemma is stated without proof
in Chekuri and Khanna [1999], however this version is sufficient for our purposes.

44



Thus, by the definition of R(·, ·), G has an independent set of size α(G) + 1 or a clique of
size ω(G) + 1, which yields the desired contradiction.

We now develop an approximation algorithm for QPPC in the fixed paths model, start-
ing with instances with uniform element loads.

3.5.1 Uniform Element Loads

Theorem 3.5.3. There is a polynomial time randomized algorithm that, given an instance
of the QPPC problem in the fixed routing paths model in which load(u) = load(u′) for all
u, u′ ∈ U , yields a (O(log n/ log log n), 1)-approximation.

We reformulate the QPPC problem in the fixed paths model with uniform elements
loads as follows. Assume WLOG that for each u ∈ U , load(u) = l. Consider placing a
logical element u at a node v. Since the loads are uniform, placing any logical element
at v results in the same increase in congestion to the edges of the network. We represent
this as a vector cv ∈ R|E|, where the coordinates are indexed by edges. Thus coordinate e
of cv is the expected congestion incurred by placing an element at v. For each v, suppose
we can place at most h(v) :=

⌊
node cap(v)

l

⌋
logical elements at v while respecting the node

capacities. Consider a matrix A that has exactly b :=
∑

v h(v) columns, consisting of h(v)
copies of cv for each v. We say these h(v) columns are associated with v. Our variant of
the QPPC problem thus becomes

minimize ‖Ax‖∞ s.t. x ∈ {0, 1}b and ‖x‖1 = |U |

We say that x selects columns i for which xi = 1, and for each column associated with v
that x selects, we place a logical element at v. We call the resulting assignment fx. It is
easy to encode this formulation as an ILP and take the LP relaxation.

λ∗ = minimize λ
λ ≥

∑
j aijxj ∀i∑

j xj = |U |
xj ∈ [0, 1] ∀j

To solve this LP we can start by guessing the optimal congestion 3 cong∗, and remove

3 If guessing cong∗ requires too much nondeterminism, it is sufficient to guess t =
⌈
log(1+ε)(cong∗)

⌉
,

for any ε > 0, and use (1 + ε)t as an estimate for cong∗. This increases the bound on congestion by a factor
of 1 + ε.

45



all columns containing any entry aij > cong∗ from the matrix A. We then solve the
resulting LP, and apply the rounding scheme of Srinivasan [2001] to the resulting optimal
fractional solution x to get an integral vector y.

Using this rounding procedure, Srinivasan guarantees that ‖y‖1 = |U |, and for all
vectors a such that aj ∈ [0, 1] for all j, and for all δ ≥ 0 and µ ≥ E

[∑
j ajyj

]

Pr
[∑

j ajyj ≥ µ(1 + δ)
]
≤

(
eδ

(1+δ)1+δ

)µ

(3.5.13)

As before, we can scale the values aij by 1/cong∗, so that the optimal congestion be-
comes one, and each aij ≤ 1. We can apply then equation 3.5.13 to bound the congestion

on a fixed edge i. Note that E
[∑

j aijyj

]
=

∑
j aijxj ≤ 1, since the optimal conges-

tion is one, so we set µ = 1. For any constant c, we can apply equation 3.5.13 with
some δ = Θ(log n/ log log n) to prove that the congestion on edge i exceeds the optimal
congestion by more than an additive factor of δ with probability at most 1/nc. Taking a
union bound over the edges, we infer that the congestion is O(log n/ log log n) with high
probability. Thus the placement fy is a (O(log n/ log log n), 1)-approximation.

The algorithm is summarized as follows:

Algorithm for uniform load instances:
Generate matrix A and guess cong∗.
Remove columns j of A with maxi{aij} > cong∗.
Optimally solve the resulting LP to get solution x.
Round x to y using the rounding in Srinivasan [2001].
Output fy.

3.5.2 The General Case

Here, letA be any algorithm for uniform load instances. IfA is the algorithm given above,
we suppose it is given its guess for cong∗ as part of its input.

46



Algorithm for general instances:
Guess κ = cong∗.
For each u ∈ U , round load(u) down to the nearest power
of two. Call the result load′(u).
Let L := {load′(u) |u ∈ U}.
For each l ∈ L, in decreasing order of size

Run A on Ul := {u ∈ U | load′(u) = l},
using κ as the input guess if needed.
Place Ul as A suggests, and decrease node cap(·)
accordingly. That is, if t elements of Ul are placed
on v, decrease node cap(v) by tl.

Lemma 3.5.4. If A is a (α, β)-approximation for QPPC instances with uniform load in
the fixed routing paths model, then the above algorithm is a (α|L|, 2β)-approximation for
general QPPC instances in the fixed routing paths model.

Proof. Suppose f is the placement output by the algorithm. We first prove loadf (v) ≤
2βnode cap(v) for each v. Note that it suffices to show that load′f (v) ≤ βnode cap(v),
since load(u) ≤ 2load′(u) for all v. From now on all references to load refer to load′.

Fix any v. Suppose A is run on elements u with load′(u) = l and places t of them
on v. There are two cases: either at this stage, node cap(v) ≥ tl, in which case we can
charge the load these elements cause to the corresponding decrease in node cap(v), or else
node cap(v) < tl. In the latter case, we know that node cap(v) ≥ tl/β sinceA is an (α, β)
- approximation, so we can charge tl/β to node cap(v). Furthermore, since node cap(v)
is reduced to zero, v is not assigned any additional elements later on. Thus we can charge
1/β of the load to node cap(v), and conclude that load′f (v) ≤ βnode cap(v).

We now bound the congestion caused by each execution ofA by α·cong∗. To do this, it
suffices to prove that the optimal congestion is at most cong∗ in each instance on which A
is run. Fix an instance, say on elements with load′(u) = l, denoted Ul. All elements with
larger loads have already been placed, thus reducing the node capacities at some nodes.
For a placement f , node v, and W ⊆ U , let

cap(f, v, W ) = node cap(v) −
∑

u∈W :f(u)=v

load′(u)

denote the remaining load at v after placing down W using f . Here, node cap(v) are the
original input node capacities. Let U ′ := {u | load′(u) ≥ 2l}, and let f be the partial
placement of U ′ created by the algorithm so far. Fix any optimal solution f ∗. We can

47



place down elements of Ul at nodes v such that cap(f, v, U ′) − cap(f ∗, v, U ′ ∪ Ul) > 0.
Specifically, we place down b(cap(f, v, U ′) − cap(f ∗, v, U ′ ∪ Ul))/lc such elements at v.
It remains to show that we can place all of Ul down this way. To see this, first note that, by
a simple volumetric argument,∑

v

(cap(f, v, U ′)− cap(f ∗, v, U ′ ∪ Ul)) = l · |Ul|

Next, observe that cap(f, v, U ′) − cap(f ∗, v, U ′ ∪ Ul) is always a multiple of l, since all
elements of U ′ and Ul have loads that are multiples of l. (Note how we have used the fact
that the loads load′(u) are multiples of two.) Combining these two facts, we see that we
can pack Ul in node capacity occupied by elements of U ′ ∪ Ul under placement f ∗, while
respecting node capacity constraints (with respect to load′), no matter how f placed down
U ′. Having done this, it is clear that the resulting congestion due to placing Ul is no more
than cong∗.

Since the congestion due to A on each instance is at most α · cong∗, we conclude that
all executions of A together contribute congestion at most |L| · α · cong∗.

Note that |L| = |{blog2(load(u))c |u ∈ U}| = η, so using the algorithm given above
for A, with α = O(log n/ log log n) and β = 1, we complete the proof of Theorem 3.1.4.

3.6 The Migration Model

In this section we study the congestion of a quorum system placement in a variant of the
arbitrary routing model. We assume that the logical elements of U can migrate from one
physical node to another. For simplicity we ascribe zero cost to the migration of logical
elements, leaving as future work the study of the problem in a model with non-zero costs
for migration.

Our objective function is the congestion of the most congested edge e ∈ E amortized
over ∆ time units, where each element u ∈ U is stationary during each time unit (and
can migrate in between). A solution to this problem is a placement with migration, i.e., a
function h : U × {1, . . . , ∆} → V , where h(u, t) specifies the node v that hosts u during
time unit t. No bounds are placed on the capacity of any physical node, in other words,
load is not an issue here. As with migration cost, we leave the problem of addressing load
in a migration model as future work.

We now give an example which shows that, in arbitrary graphs, migration can indeed
help reduce congestion. Consider the complete graph Kn on n vertices, with each edge

48



having unit capacity, and assume that the universe of logical elements consists of a single
node, U = {u}. A static strategy would specify a placement f : U → V of u on v = f(u),
one of the nodes of Kn. Assuming that each client sends a request each time unit, the
amortized congestion of the placement is 1.

Consider now what happens when we allow migration. Suppose that after each client
request we move the logical element from one physical node to the next in a circular
manner such that all nodes are used. In this case all edges have congestion 1/n

2
which

is less than the one obtained for a fixed placement. In fact, a simple averaging argument
shows that O(n) is the largest gap that can be obtained between the congestions of the two
models (with and without migration).

This example indicates that studying the model in which migration is allowed can have
possible benefits in terms of congestion. Unfortunately, this is not true for all graphs, in
particular, it is not true for trees, as we will now prove.

Lemma 3.6.1. For a tree T there exists a node v0 such that no placement with migration h
of a quorum system over the universe with a single element U = {h} can have a congestion
better than that of hv0 , where hv0(u, t) = v0 for each t ∈ {1, . . . , ∆}.

Proof. The proof is similar to that of Lemma 3.4.3. Let h : U × {1, . . . , ∆} → V be
an arbitrary placement with migration, and let ht = h(·, t) : U → V be the placement
specified by h at time t. For an edge e ∈ E, let r(TL) and r(TR) be the request rates of
clients coming from the two subtrees TL and TR (obtained by removing e from T ). Let also
loadht(TL) =

∑
v∈TL

loadht(v) and loadht(TR) defined similarly, be the expected number
of messages seen by nodes in TL and TR respectively, at time t. Then the congestion of
the edge e over the time period ∆ is

∆∑
t=1

r(TL)× loadht(TR) + r(TR)× loadht(TL)

edge cap(e)
(3.6.14)

Let v0 be the node found in Lemma 3.4.3 and assume that r(TL) ≤ r(TR). Node v0

has to lie in TR and thus the congestion of e for the placement hv0 with migration is
∆×r(TL)×(loadhv0

(TR)+loadhv0
(TL))

edge cap(e)
. Since r(TL) ≤ r(TR) and the total load of the system

does not change, this is at most the quantity given by 3.6.14, which completes our proof.

49



3.6.1 A solution for arbitrary graphs.

To obtain a solution for arbitrary graphs we will use Räcke’s results on congestion trees.
Consider an arbitrary graph G and construct its associated congestion tree TG. Then find
the node v0 from Lemma 3.4.3 that minimizes congestion, assuming the request rates of
clients are known. If the node v0 is a leaf we are done, we can simply use the placement
fv0 in the original graph G with only a polylog n loss in congestion. If v0 is an internal
node in TG we need to specify a way in which v0 gets mapped to one of the nodes of G in
the cluster corresponding to v0 in G. In Räcke’s work this was done by choosing the leaf
onto which v0 is mapped, independently at random from a special distribution depending
on the cluster corresponding to v0. More precisely, each leaf was chosen with a probability
proportional to its weight in that cluster (which was equal to the sum of the capacities of
the edges incident to that node that were leaving the cluster). This is done independently
at random for each message that is routed through the node v0.

To obtain the same approximation ratio for congestion, we can do something similar
here (this is based on ideas from Westermann [2001]). After a fixed amount of time, the
node in the cluster of v0 onto which v0 is mapped, makes a decision as to whether it should
keep all the logical elements of U mapped onto itself or it should migrate them to another
node of the cluster corresponding to v0. The next node in the migration chain is picked
independently at random from the special distribution mentioned before from the nodes of
the cluster. This ensures that over a longer period of time, we will match the conditions that
enable Räcke’s construction to provide the polylog approximation factor for congestion.
By an argument similar to the one from Section 3.4.1, we can see that our solution will
also suffer only a polylog loss in congestion compared to the optimal one in the migration
model, regardless of whether that solution uses migration or not.

Here is an example illustrating how our algorithm works for a particular graph. Con-
sider the congestion tree TKn for the complete graph Kn and assume that all edges of Kn

have unit capacity. Assume further, that clients issue requests uniformly from all the nodes
of Kn. The tree TKn will consist of a root and n leaves, each leaf being connected to the
root by an edge of capacity n− 1. The algorithm will find the root as the node minimizing
congestion and will place all the elements of U on it. The root is mapped to one of the
leaves with probability 1

n
and then migrated after some fixed amount of time to a new leaf

chosen independently at random (and uniformly in this case) from all the leaves of TKn .
This, in fact, corresponds to the optimal solution for the complete graph Kn.

50



3.7 Related work

To the best of our knowledge, previous work on quorum placement in networks has only
considered minimizing various notions of delay (as discussed in 2.5). Minimizing con-
gestion for quorum placements is a less studied problem. On the other hand minimizing
congestion for both specific and general networks is a problem that has received consider-
able attention in the past; given the impossibility of summarizing this work, we mention
just some of the most important results here. Early work in this area included the seminal
results of Valiant [1982] and Valiant and Brebner [1981] who gave randomized routing
algorithms in hypercubes and meshes to get small congestion. Leighton et al. [1989] then
gave deterministic algorithms for meshes. Linear programming relaxations and random-
ized rounding was first used by Raghavan and Thompson [1985] to find unsplittable paths
with low congestion. Single-source versions of unsplittable flow were studied by Dinitz
et al. [1999], who gave constant-factor approximation algorithms for various versions of
the problem.

In a model similar to ours, Maggs et al. [1997] consider a data management problem
for special networks (trees, meshes, and clustered networks). In their work, clients issue
read and write requests for objects, where a read request is serviced by any node holding a
copy of the object, but a write request must update all copies of the object. Similar to our
case their goal is to place the objects optimally on the nodes of a network to minimize con-
gestion. However, while their paper considered the questions behind replicating objects
and the static and dynamic issues therein (i.e., how many copies of an object to maintain
at any time? where to place them?), here we take a fixed quorum system and client request
rates as input and try to find congestion-optimal placements that respect node capacities.

The results of Maggs et al. [1997] are extended by Westermann [2001] to a model in
which objects are allowed to migrate between nodes of the network: while migrating an
object increases congestion, moving the object closer to a source may eventually decrease
traffic in the network. He gives a 3-competitive algorithm for congestion for trees, and
extends these results to other classes of networks.

Racke [2002] further generalizes these results by giving a general method to solve
a congestion problem in arbitrary graphs. His method is based on the construction of a
congestion-tree TG that “simulates” the original graph with a polylog |V | factor loss in
congestion; more details on this general method are given in Section 3.2.1.

51



3.8 Conclusions

In this chapter we studied the problem of placing the elements of a universe U underlying
a quorum systemQ on a network G in a way that minimizes congestion due to quorum ac-
cesses, while respecting the computing capacity of each network node. We considered this
problem in two models, differing on the basis of whether communication routes are fixed
or can be chosen. We showed that in either case, this problem cannot be approximated to
within any factor (unless P=NP). However, by allowing doubling of the capacity of each
node, we present efficient approximation algorithms for this problem in both models. We
have also shed some light on the extent to which element migration can reduce congestion
in this context.

52



Chapter 4

Minimizing Response Time for
Quorum-System Protocols over
Wide-Area Networks

In this chapter we consider the use of quorum-based protocols in a wide-area network.
Our interest in the wide-area setting arises from two previous lines of research: First, quo-
rums have been employed as an ingredient of edge computing systems (e.g., Gao et al.
[2005]) that support the deployment of dynamic services across a potentially global col-
lection of proxies. That is, these techniques strive to adapt the efficiencies of content
distribution networks (CDNs) like Akamai to more dynamic services, and in doing so they
employ accesses to quorums of proxies in order to coordinate activities. Second, there
has recently been significant theoretical progress on algorithms for deploying quorums in
physical topologies, so that certain network measures are optimized or approximately opti-
mized (e.g., Fu [1997], Golovin et al. [2006], Gupta et al. [2005], Kobayashi et al. [2001],
Lin [2001], Tsuchiya et al. [1999]). These results have paved the way for empirical studies
using them, which is what we seek to initiate here.

Our main goal in this chapter is to perform an evaluation of techniques for placing quo-
rums in wide-area networks, and for adapting client1 strategies in choosing which quorums
to access. In doing so, we shed light on a number of issues relevant to deploying a service
“on the edge” of the Internet in order to minimize service response times as measured by
clients, such as (i) the number and location of proxies that should be involved in the ser-
vice implementation, and (ii) the manner in which quorums should be accessed. A central

1While we refer to entities that access quorums as “clients”, they need not be user end systems. Rather,
in an edge computing system, the clients could be other proxies, for example.

53



tension that we explore is that between accessing “close” quorums to minimize network
delays and dispersing service demand across (possibly more distant) quorums to minimize
service processing delays. Similarly, as we will show, quorums over a small universe of
servers is better to minimize network delays, but worse for dispersing service demand.
Finding the right balances on these spectra is key to minimizing overall response times of
a edge-deployed service.

We conduct our analyses through both experiments with a real protocol implementa-
tion (Abd-El-Malek et al. [2005]) in an emulated wide-area network environment (Vah-
dat et al. [2002]) and simulation of a generic quorum system protocol over models of
several actual wide-area network topologies. The topologies are created from PlanetLab
(Bavier et al. [2004]) measurements and from measurements between web servers (http:
//ww.icir.org/tbit/daxlist.txt). Their sizes range from 50 to 161 wide-area
locations, making this, to our knowledge, the widest range of topologies considered to date
for quorum placement. That said, as the initial study at this scale, ours is limited in con-
sidering only “normal” conditions, i.e., that there are no failures of network nodes or links,
and that delays between pairs of nodes are stable over long enough periods of time and
known beforehand. We hope to relax these assumptions in future studies.

The rest of the chapter is organized as follows: in Section 4.1 we perform experiments
with a quorum protocol implementation on an emulated network topology with the goal
of determining how network delay and server load affect client response time in a wide-
area environment. In Section 4.2 we describe several algorithms designed to minimize
response time by balancing load and network delay. These algorithms are based on the
assumption that client demand is known in advance. In the next chapter we also consider
the case of dynamic workloads. In Sections 4.4 and 4.5 we evaluate these algorithms
through simulations over several wide-area topologies. In Section 4.7 we discuss related
work. We present conclusions about our findings in Section 4.8.

4.1 A motivating example

To motivate our study (and perhaps as one of its contributions), in this section we describe
an evaluation of the Q/U protocol (Abd-El-Malek et al. [2005]). Q/U is a Byzantine fault-
tolerant service protocol in which clients perform operations by accessing a quorum of
servers. The goal of our evaluation is to shed light on the factors that influence Q/U client
response time when executed over the wide area, leading to our efforts in subsequent
sections to minimize the impacts of those factors.

We perform our evaluation on Modelnet (Vahdat et al. [2002]), an emulated wide area

54

http://ww.icir.org/tbit/daxlist.txt
http://ww.icir.org/tbit/daxlist.txt


environment, using a network topology developed from PlanetLab measurements. We
chose to run Q/U on Modelnet as opposed to Planetlab, since Modelnet is a better environ-
ment for producing repeatable results. We deployed Modelnet on a rack of 76 Intel Pen-
tium 4 2.80 GHz computers, each with 1 GB of memory and an Intel PRO/1000 NIC. We
derived our topology from network delays measured between 50 PlanetLab sites around
the world in the period July–November 2006 (see http://ping.ececs.uc.edu/
ping/).

We varied two parameters in our experiments: the first was the number n of Q/U
servers, where n ≥ 5t + 1 is required to tolerate t Byzantine failures. We ran Q/U with
t ∈ {1, . . . , 5}, n = 5t + 1 and a quorum size of 4t + 1. The second parameter we varied
was the number of clients issuing requests to the Q/U servers. We chose the location of
clients and servers in the topology as follows: we placed each server at a distinct node,
using the placement algorithm from Section 2.3.2. We then computed a set of 10 client
locations for which the average network delay to the server placement approximates the
average network delay from all the nodes of the graph to the server placement well. On
each of these client locations we ran c clients, with c ∈ {1, . . . , 10}.

 10  20  30  40  50  60  70  80  90  100

 5

 10

 15

 20

 25

 30

 80

 90

 100

 110

 120

 130

 140

 150

M
ili

se
co

nd
s 

(m
s)

Network delay
Q/U response time

Number of clients

Universe size

Figure 4.1.1: Average response time, network delay for Q/U on Planetlab topology

Clients issued only requests that completed in a single round trip to a quorum. While
not all Q/U operations are guaranteed to complete in a single round trip, they should in
the common case for most services (Abd-El-Malek et al. [2005]). For each request, clients

55

http://ping.ececs.uc.edu/ping/
http://ping.ececs.uc.edu/ping/


chose the quorum to access uniformly at random, thereby balancing client demand across
servers. The application processing delay per client request at each server was 1 ms.

We compared two measures in our experiments: the average response time over all the
clients and the average network delay over all the clients (both in milliseconds). Average
response time was computed by running each experiment 5 times and then taking the
mean. The variation observed was under 1 ms for up to 50 clients, and then increased with
the client demand above that threshold.

Figure 4.1.1 shows how the two measures changed when we varied the universe size
n and the number of clients issuing requests. As expected, increasing the client demand
led to higher processing delay and hence higher average response time. Increasing the
universe size had a similar effect on response time, but for a different reason: the average
network delay increased since quorums tended to be spread apart more. This can be more
easily seen in Figure 4.1.2a, where we keep the client demand constant and increase t and
hence the universe size. However, increasing the universe size better distributed processing
costs across more servers, and so decreased processing delay slightly.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5  6

Number of faults t

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70  80  90  100 110

Number of clients

(a) 100 clients (b) t = 4, n = 21

Figure 4.1.2: Avg network delay (black bars) & response time (total bars) for Q/U (ms)

In Figure 4.1.2b we can see how putting more demand on the system increased the
average response time. For up to at most 50 clients, the major component of the aver-
age client response time was network delay. Increasing client demand beyond that point
made processing delay play a more important role in average client response time (al-
though network delay still represented a significant fraction of the overall response time).
If request processing involved significant server resources, this effect would be even more
pronounced.

56



To summarize, the Q/U experiments show that on a wide-area network, average re-
sponse time depends on the average network delay and on the processing delays on servers.
Increasing universe size tends to increase network delay but decrease per-server process-
ing delay when demand is high. Thus to improve the overall performance of a protocol
that uses quorum systems, we need algorithms that optimize either just the network delay
(for systems where client demand is expected to be low) or a combination of network delay
and processing delay (if client demand is expected to be high). The rest of this chapter is
devoted to balancing these tradeoffs by modifying how servers are placed in the network,
and how clients access them.

4.2 Algorithms

To experiment with quorum placement in wide area topologies, we have implemented
some of the algorithms presented in Chapter 2 and developed others of potentially inde-
pendent interest. For completeness we describe here all the algorithms and insist only on
details relevant to our evaluation. We start with a description of the model (which is an
extension of the model in Chapter 2).

4.2.1 Model

We model the network as an undirected graph G = (V, E), with each node having an
associated capacity node cap(v) ∈ R+ and each edge having a positive “length” length(e).
The length function induces a distance function d : V × V → R+ obtained by setting
d(v, v′) to be the length of the shortest path between v and v′. We assume that the set of
clients that access the quorum system is V .

Given a quorum system Q = {Q1, . . . , Qm} over a universe U and a placement f :
U → V , we define f(Q) = {f(u) : u ∈ Q}, for an arbitrary Q ∈ Q. We call f(U) the
support set of the placement f (i.e., the nodes of the graph that actually host a universe
element).

We assume that clients can choose quorums based on different access strategies. We
denote by pv the access strategy of client v ∈ V and by loadv(u) =

∑
Q∈Q:u∈Q pv(Q),

the load induced by this access strategy on element u ∈ U . When a placement f is
specified, we can define the load induced by a client v ∈ V on a network node w ∈ V
as loadv,f (w) =

∑
u∈U :f(u)=w loadv(u) (i.e., equal to the sum of load of universe ele-

ments assigned to w by f ). Finally, we define the total load induced by f on node w as

57



loadf (w) = avgv∈V loadv,f (w).

The objective function we seek to minimize in this chapter is the average client re-
sponse time. To define it we start with a definition of the response time for a single client
request:

ρf (v, Q) = maxw∈f(Q)(d(v, w) + α ∗ loadf (w)) (4.2.1)

This can be read as follows: the service time of a client request is the time the request
spends on the network (which we assume here is just the network delay) plus the amount
of time spent at the server (proportional to the load of the server) scaled by a factor α.
Manipulating α allows us to adjust for absolute demand from clients and processing cost
per request.

We model the expected response time (under pv) for client v to access quorum Q as:

∆f (v) =
∑

Q∈Q pv(Q) ρf (v, Q). (4.2.2)

The objective function we seek to minimize here is the average response time over all
clients: avgv∈V [∆f (v)]. If we set α = 0, the response time for a client request becomes
δf (v, Q) = maxw∈f(Q) d(v, w). This transforms the objective function into average net-
work delay, a measure studied previously (Fu [1997], Gupta et al. [2005], Kobayashi et al.
[2001], Lin [2001]).

In our evaluation of quorum placements we make a distinction between one-to-one
and many-to-one placements. Each of these two categories of placements potentially has
advantages over the other: for instance, many-to-one placements can decrease network
delay by putting more logical elements on a single physical node. One-to-one quorum
placements, on the other hand, are important when we want to preserve the fault-tolerance
of the original quorum system. We use the techniques described in Sections 2.3.1and 2.3.2
as our one-to-one placement for Grid and Majority and the algorithm from Section 2.2.3
as our many-to-one placement.

A special many-to-one quorum placement against which we evaluate our algorithms is
the singleton quorum placement: this puts all the elements of U on a single network node
(regardless of that node’s capacity). The node on which we place all the universe elements
is the node that minimizes the sum of the distances from all the clients to itself. When
all nodes of the graph are clients, this node is also known as the median of the graph.
Lin [2001] showed that the singleton is a 2-approximation for the problem of designing a
quorum system over a network to minimize average network delay.

58



4.2.2 New techniques
Optimizing access strategies Our first new technique is an algorithm that, given a place-
ment, finds client access strategies that minimize network delay under a set of node ca-
pacity constraints. The algorithm allows one to improve network delay while preserving
per-server load, something that will be useful when we want to minimize response time.

The algorithm is based on a LP with variables pvi ≥ 0, where pvi specifies the proba-
bility of access of quorum Qi by client v. We assume a quorum placement f : U → V and
a capacity node cap(v) for each v ∈ V are given. A LP formulation of the problem is:

minimize avgv∈V

m∑
i=1

pviδf (v, Qi) (4.2.3)

avgv∈V loadv,f (vj) ≤ node cap(vj) ∀vj ∈ V (4.2.4)∑m
i=1 pvi = 1 ∀v ∈ V (4.2.5)

pvi ∈ [0, 1] ∀v ∈ V, ∀Qi ∈ Q (4.2.6)

Constraints (4.2.4) set capacity constraints for graph nodes. Constraints (4.2.5)–(4.2.6)
ensure that the values {pvi}i∈{1,...,m} constitute an access strategy, i.e., a distribution on
quorums. Since pvi ≥ 0 are positive reals, we can always find a solution in time polyno-
mial in max(m, n), if one exists. A solution might not exist if, e.g., the node capacities
are set too low.

An iterative algorithm The many-to-one placement algorithm from Section 2.2.3 can
be combined with the access-strategy-optimizing algorithm above in an iterative way. Let
avg({pv}v∈V ) denote the access strategy p defined by p(Q) = avgv∈V pv(Q). In addition,
let p0

v be the uniform distribution for all v ∈ V , and let node cap0(v) be the capacity of v
input to the algorithm. Iteration j ≥ 1 of the algorithm proceeds in two phases:

1. In the first phase of iteration j, the many-to-one placement algorithm from Sec-
tion 2.2.3 is executed with node cap(v) = node cap0(v) for each v ∈ V and with
access strategy p = avg({pj−1

v }v∈V ), to produce a placement f j . Recall that it is
possible that for some nodes v, loadfj(v) > node cap0(v), though the load can
exceed the capacity only by a small factor.

2. In the second phase of iteration j, the access-strategy-optimizing algorithm above
is executed with node cap(v) = loadfj(v) for each v ∈ V to produce new access
strategies {pj

v}v∈V .

59



After each iteration j, the expected response time (4.2.2) is computed based on the place-
ment f j and access strategies {pj

v}v∈V . If the expected response time did not decrease
from that of iteration j − 1, then the algorithm halts and returns f j−1 and {pj−1

v }v∈V .

Note that this algorithm can only improve upon the many-to-one placement algorithm
of Section 2.2.3, since the second phase can only decrease average network delay while
leaving loads unchanged, and because the algorithm terminates if an iteration does not
improve the expected response time.

4.3 Simulation methodology

We implemented the algorithms in Section 4.2 in C and GNU MathProg (a publicly avail-
able LP modeling language). To solve the LPs we use the freely available glpsol solver.
The version of glpsol we use (4.8) can solve LPs with up to 100,000 constraints, which
limits the systems for which we can evaluate our algorithms.

Network topologies The network topologies that we consider come from two sources:
The first is a set of ping round trip times (RTTs) measured between 50 different Planetlab
sites over a 5 month period in the second half of 2006 (http://ping.ececs.uc.
edu/ping/). We call this topology “Planetlab-50”. The second dataset is built from
pairwise delays measured between 161 web servers using the king latency estimation tool
(Gummadi et al. [2002]). The set of web servers was obtained from a publicly available
list used in previous research (http://ww.icir.org/tbit/daxlist.txt). We
call this topology “daxlist-161”.

Quorum systems We evaluate our algorithms for four quorum systems: three types of
Majorities commonly used in protocol implementations (the (t+1, 2t+1), (2t+1, 3t+1)
and (4t+1, 5t+1) Majorities) and the k×k Grid. In each experiment we vary the universe
size by varying the t and k parameters from 1 to the highest value for which the universe
size is less than the size of the graph.

Measures Our results in the following sections were obtained by computing one of
two measures: average response time, avgv∈V [∆f (v)], where ∆f (v) is defined accord-
ing to (4.2.2), or average network delay, which is computed identically but with α = 0
in (4.2.1).

60

http://ping.ececs.uc.edu/ping/
http://ping.ececs.uc.edu/ping/
http://ww.icir.org/tbit/daxlist.txt


4.4 Low client demand

In this section we consider the case when client demand in the system is low. This can be
modeled by setting α = 0 in definition (4.2.1), as the response time in this case is well
approximated by the network delay.

Lin [2001] showed that the singleton placement yields network delay within a factor
of two of any quorum system placed in the network. Thus, for a system with low client
demand, i.e., in which network delay is the dominant component of response time, using
a quorum system cannot yield much better response time than a single server. However,
a quorum system might still yield advantages in fault-tolerance, and so our goal will be
to determine the performance costs one pays while retaining the fault-tolerance of a given
quorum system, i.e., by placing it using a one-to-one placement.

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0  5  10  15  20  25  30  35  40  45  50

R
es

po
ns

e 
tim

e 
(m

s)

Universe size

(t+1, 2t+1) Maj
(2t+1, 3t+1) Maj
(4t+1,5t+1) Maj

Grid
Singleton

Figure 4.4.3: Response times on Planetlab-50; α = 0; ClosestDly access strategy

Since we are trying to minimize network delay, clients should use for each access the
closest quorum (or quorums if more than one have the same smallest distance to v), i.e.,
pv(Qi) = 1/nr clo for all the nr clo v’s closest quorums Qi, and pv(Q

′) = 0 for all
others; we call this the ClosestDly quorum access strategy.

The results of this analysis on the Planetlab-50 topology are shown in Figure 4.4.3.
These results suggest that the average response time increases for each quorum placement
as the universe size grows. In some cases the increase exhibits a critical point phenomenon:
response time degrades gracefully up to a point and then degrades quickly. This can be
best seen for the (2t + 1, 3t + 1) and (4t + 1, 5t + 1) Majorities.

A second observation is that for a fixed universe size, the response time is better for

61



quorum systems with smaller quorums. In almost all the graphs the line corresponding to
Grid is the best after the singleton, the (t + 1, 2t + 1) Majority is the second, etc. More
surprisingly, the response times for the quorum systems with small quorum sizes are not
much worse than that of one server up to a fairly large universe size. The exact values
depend on the topology; more generally, from other experiments we performed it seems
that the values depend on the distribution of average distances from nodes of the graph to
all clients.

In conclusion, under low client demand, using quorum systems with smaller quorum
sizes gives better performance. For all quorum systems, the degradation in performance
as compared to one server is fairly small up to a certain universe size that depends on the
topology and the particular quorum system considered.

4.5 High client demand

In this section we evaluate algorithms for minimizing response time when there is high
client demand in the system. We start by looking at one-to-one placements when clients
use either the ClosestDly access strategy from Section 4.4 or a Balanced strategy in which
pv is the uniform distribution for each client v.

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120  140  160

M
ili

se
co

nd
s 

(m
s)

Universe size

Closest, client_demand = 1000
Balanced, client_demand = 1000

Closest, client_demand = 4000
Balanced, client_demand = 4000

Figure 4.5.4: Response time for Grid for different client demands on daxlist-161

To compute response time we set the α parameter as follows: α = op srv time ∗
client demand. We use a value of .007 ms per request for the op srv time parameter
(this is the time needed by a server to execute a Q/U write operation on a Intel 2.8GHz

62



 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120  140  160

M
ili

se
co

nd
s 

(m
s)

Universe size

Network delay - closest
Response time - closest

Network delay - balanced
Response time - balanced

Figure 4.5.5: Grid with client demand = 16000 on daxlist-161

P4). We set client demand to either 1000, 4000 or 16000 requests.

In Figure 4.5.4 we plot response times for the ClosestDly and Balanced strategies for
the Grid quorum system when placed on the daxlist-161 topology and client demand ∈
{1000, 4000}. The results show that for low client demand, ClosestDly seems to be the
best access strategy in most cases (particularly for larger universe sizes where network
delays are larger, as well), while Balanced is the best access strategy for sufficiently high
client demand.

Another interesting aspect illustrated by Figure 4.5.4 is the effect on response time ob-
tained by varying the universe size (the line corresponding to Balanced for a client demand
of 4000). For small universe sizes, the processing is spread on just a few nodes, which, in
the case of high client demand, has a negative impact on the response time. At the same
time, for large universe sizes, each node sees a much smaller load, but now network delay
is sufficiently large to become the dominating factor in client response time.

To better illustrate the effect that load balancing has on response time, we also plot
results for a higher value of client demand, client demand = 16000 in Figure 4.5.5.
We plot both response time and network delay on the same graph. The network delay
component increases with the universe size, while the load component decreases for an
access strategy that balances load on servers. Since the load induced by client demand in
this case is significantly larger than the network delay component, the response time for
the Balanced access strategy actually decreases with increased universe size. At the same
time, the response time of the ClosestDly access strategy does not exhibit this behavior,
since this provides no load balancing guarantees on the nodes.

63



In conclusion, while ClosestDly is the best access strategy for sufficiently low client
demand (Section 4.4), Balanced is the best for very large client demand. There is also
a region of client demand values for which none of the two access strategies performs
better than the other; this is clearly visible in Figure 4.5.4 where the lines of the two
access strategies for client demand = 1000 cross each other in multiple points. Below
we present a technique for finding access strategies to minimize the response time for an
arbitrary client demand.

4.6 Moderate client demand

To find the best access strategy for a given topology, quorum system, quorum placement
and client demand in the region where none of ClosestDly and Balanced is best, we will
use LP (4.2.3)–(4.2.6) with different values for the capacity of nodes. While in prac-
tice the capacity of a machine is determined by its physical characteristics, here we use
node cap(v) as a parameter to manipulate the clients’ access strategies so as to minimize
response time. To use this technique in the real world, we can simply determine an upper
bound for node cap(v) of a machine v based on its physical characteristics and then run
this tool with node cap(v) no higher than the obtained upper bound.

We evaluate this technique in the following way: we choose a set of 10 values ci in
the interval [Lopt , 1] and set the node capacity of all nodes, node cap(v) = ci, for each
i ∈ {1, . . . , 10}. Lopt here is the optimal load of the quorum system considered, for a
fixed universe size. We solve LP (4.2.3)–(4.2.6) for each value ci to obtain a set of access
strategies (one for each client) and then compute the response time corresponding to each
such set of access strategies. Finally, we pick the value ci that minimizes the response
time. In our evaluation we choose the values ci to be:

ci = Lopt + i · λ (4.6.7)

for i ∈ {1, . . . 10}, where λ = (1− Lopt)/10.

Figure 4.6.6 shows how the response time changes when we vary the node capaci-
ties for different universe sizes, assuming a client demand of client demand = 16000.
In general, setting a higher node capacity allows clients to access closer quorums, thus
decreasing network delay but increasing the load component at some of the nodes at the
same time. For high client demand, this can yield worse response times, since nodes with
a high capacity will become the bottleneck; i.e., the costs of high load will outweigh the
gains in network delay. In this case it makes sense to disperse load across as many nodes
as possible, which can be enforced by setting low node capacities.

64



 0 5 10 15 20 25 30 35 40 45 50

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 60
 80

 100
 120
 140
 160
 180
 200

M
ili

se
co

nd
s 

(m
s)

Network delay
Response time

Universe size

Node capacity

Figure 4.6.6: Grid when increasing node capacities on Planetlab-50

Non-uniform node capacities A variation of the previous technique can help improve
the response time further. This approach is based on the following observation: for a given
ci, LP (4.2.3)–(4.2.6) will find access strategies that minimize network delay by selecting
quorums that are close to clients, as much as the capacity of graph nodes permits. As a
result some nodes will have their capacity saturated, and thus will handle the same volume
of requests, irrespective of their average distance to the clients. For this set of nodes, the
response time will thus depend on their average distance to the clients: for server nodes
further away clients will have to wait more than for closer nodes.

This observation leads us to following natural heuristic: we can set nodes capacities
inversely proportional to their average network delay to the clients. This will hopefully
spread load across servers in a way that minimizes response time.

We now present in more detail the algorithm for setting node capacities. Let {v1, . . . , vn}
be the support set of a given placement (we assume only one-to-one placements here), and
let si be the average distance from all clients to vi. Our goal is to set capacity node cap(vi)
to be inversely proportional to si and in a given range [β, γ] ⊆ [0, 1]. Let le = mini∈1..n

1
si

and re = maxi∈1..n
1
si

. We then assign

node cap(vi) =
1/si − le

re − le
(γ − β) + β

So, for example, if vi = arg mini∈1..n
1
si

, then node cap(vi) = β, and if vi = arg maxi∈1..n
1
si

,
then node cap(vi) = γ.

We evaluate this method for the Grid quorum system with universe size ranging from

65



 0 5 10 15 20 25 30 35 40 45 50

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 60
 80

 100
 120
 140
 160
 180
 200

M
ili

se
co

nd
s 

(m
s)

Network delay
Response time, uniform capacity

Response time, non-uniform capacity

Universe size

Node capacity

Figure 4.6.7: Grid on Planetlab-50 with uniform and non-uniform node capacities

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ili

se
co

nd
s 

(m
s)

Node capacity

Network delay
Response time, uniform capacity

Response time, non-uniform capacity

Figure 4.6.8: 7× 7 Grid on Planetlab-50 with uniform and non-uniform node capacities

4 to 49 on the Planetlab-50 topology. To compare with the results for uniform node ca-
pacities above, we use intervals [β, γ] = [Lopt , ci] for i = 1..10 (see (4.6.7)). We set
client demand = 16000 for this set of experiments.

Figure 4.6.7 shows response times for both uniform and non-uniform node capaci-
ties. For small capacities the two approaches give almost identical results. As capacities
increase, the heuristic for non-uniform capacities gives better response time than the al-
gorithm for uniform node capacities. The reason: for small values of ci, the length of the
[β, γ] interval is close to 0, and as such, the nodes from the support set have almost the

66



same capacity. As the [β, γ] interval grows, the capacities are better spread out and better
(inverse proportionally) match the distances si. This spreads load over nodes with larger
average distances to the clients, which decreases response time.

To see the improvement given by this heuristic we also plot results for a fixed universe
size (n = 49). Figure 4.6.8 shows that increasing node capacity increases the response
time as well (due to the high load in the system) but at a slower pace for our heuristic than
for the algorithm with fixed node capacities. As the size of client demand increases, we
expect this effect to become more pronounced.

Evaluation of the iterative approach So far we have evaluated only algorithms yielding
one-to-one placements. The last technique for improving response time that we evaluate in
this paper is the iterative approach described in Section 4.2.2. Since this approach creates
many-to-one placements, network delay will necessarily decrease: some of the quorums
become much smaller, thereby allowing clients to reduce the distance they need to travel
to contact a quorum.

 75

 80

 85

 90

 95

 100

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ili

se
co

nd
s 

(m
s)

Node capacity

Network delay - 1st iteration
Network delay - 2nd iteration

Network delay - one to one placement

Figure 4.6.9: Network delay for iterative approach for 5 x 5 Grid on Planetlab-50

In Figure 4.6.9 we show the performance gains in terms of network delay compared
to a one-to-one placement for a 5 × 5 Grid. We run the iterative algorithm for different
values of the node capacity to see whether the improvement in network delay depends on
node capacity. For all node capacities the best improvement comes after the first phase, at
the end of which many universe elements are placed on the same node. The second phase
brings only small improvements. Most of the runs terminate after the first iteration.

We have also evaluated the response time for each intermediary point in this iterative

67



process. The results show that using many-to-one placements can increase or decrease
response time depending on the placement found in the first phase of the first iteration and
on the client demand. For instance, if the placement found puts multiple quorum elements
on many nodes of the graph, the response time increases with the client demand. For low
client demand, response time is usually better than for the one-to-one placements. Finally,
the response time is always improved between the first and the second phases of the first
iteration, but only by small values (usually between 2 and 5 ms). Consequently, using
many-to-one placements improves response time over other approaches mostly in the case
of low client demand. However, the techniques discussed in Section 4.4 also excel in this
case, while retaining the fault-tolerance of the original quorum system.

4.7 Related work

The earliest empirical study of which we are aware of quorum behavior in wide-area net-
works is due to Amir and Wool [1996]. Their analysis studied the availability of quorums
deployed across three wide-area locations, with a focus on how the behavior of the wide-
area network violated typical assumptions underlying theoretical availability analyses of
quorum systems. Their focus on availability is complementary to ours on response time,
and was conducted on much smaller topologies than what we consider.

Bakr and Keidar [2002] conducted a wide-area study of a communication round among
nodes, in which each node sends information to each other participating node. Their study
also focused on delay, though otherwise their study and ours are complementary. Our
study considers only direct client-to-quorum communication; their treatment of four dif-
ferent round protocols is more exhaustive. However, their study is confined to one node
at each of ten wide-area sites—they do not consider altering the number or locations of
nodes—and does not admit load dispersion (since all nodes participate in all exchanges).
In contrast, our study shows the impact of scaling the number of servers in a wide-area
quorum system; of the judicious placement of servers among the candidate sites; and of
tuning client access strategies to disperse load.

Amir et al. [2006] construct and evaluate a Byzantine fault-tolerant service with the
goal of improving the performance of such a service over a wide-area network. In this con-
text, they evaluate BFT (Castro and Liskov [2002]) and their alternative protocol, which
executes Paxos (Lamport [1998]) over the wide area. These protocols can be viewed as
employing Majority (Gifford [1979], Thomas [1979]) quorum systems in which a quorum
constitutes greater than two-thirds or one-half of the wide-area sites, respectively; their
evaluation overlaps ours in that we also evaluate these quorum systems (and others). As in

68



the Bakr and Keidar evaluation, however, Amir et al. constrain their evaluation to a fixed
number of wide-area sites (in their case, five), and do not consider altering the number or
locations of nodes. Consequently, our evaluation is complementary to that of Amir et al.
in the same ways.

Oppenheimer et al. [2005] examined the problem of mapping large-scale services to
available node resources in a wide-area network. Through measurements of several ser-
vices running on Planetlab (Bavier et al. [2004]), they extracted application resource de-
mand patterns and CPU and network resource availability for Planetlab nodes over a 6-
month period. From these measurements, they concluded that several applications would
benefit from a service providing resource-informed placement of applications to nodes.
Among other interesting results, their study reveals that inter-node latency is fairly stable
and is a good predictor of available bandwidth, a conclusion that supports our focus on
periods in which latencies between nodes are stable.

4.8 Conclusions

In this chapter we have evaluated techniques for placing quorum systems on a wide-area
network to minimize average client response time. The results of this evaluation reveal sev-
eral interesting facts. First, for low client demand, using quorum systems up to a limited
universe size in certain topologies does not substantially degrade performance compared
to a single node solution. Thus, quorum systems are a viable alternative to the singleton
solution in such cases, and offer better fault-tolerance. Second, as the client demand in-
creases, it is important to balance load across servers to obtain good response time. When
the network delay and client demand both play important roles in the response time, find-
ing the right strategies by which clients access quorums is crucial to minimizing response
time. Our methods for optimizing clients’ access strategies, used with both uniform and
non-uniform node capacities, are especially useful here.

Finally, in our current framework, using many-to-one (instead of one-to-one) place-
ments improves the response time only for low values of client demand. A variation of our
model, in which a server hosting multiple universe elements would execute a request only
once for all elements it hosts, can clearly improve the performance. We plan to analyze
the benefits of such an approach in future work.

69



70



Chapter 5

Dynamic Quorum Selection on
Wide-Area Networks

In this chapter we continue our efforts to improve the performance of quorum-based pro-
tocols in wide-area networks (WANs) by looking at the problem of adapting the clients
access strategies in response to workload changes. This complements the work from the
previous chapter where we developed quorum selection algorithms for static workloads.

Workloads can change substantially over different times of the day due, e.g., to diurnal
patterns of activity or flash-crowd events (Jung et al. [2002], Padmanabhan and Sripanid-
kulchai [2002], Ranjan et al. [2002]). Here we show that the response times achievable
by clients can be improved substantially if the quorums they access are chosen so as to
account for the overall client activity in the system at that time and the focal points of that
activity — i.e., the clients that are inducing load or, more to the point, the servers that are
being subjected to it. Intuitively, a client should select a nearby quorum for its operation
if those servers are lightly loaded (so as to minimize network delays), but should choose
a less lightly loaded quorum, albeit potentially further away, if nearby quorums are too
busy. To our knowledge, the problem of designing load-dispersing algorithms for quorum
systems on WANs for balancing this tension dynamically has not been considered before
(see Section 5.4 for a discussion of related work).

To address this problem we propose two quorum selection algorithms for dynamic
workloads. The algorithms enable each client to independently choose the quorum it ac-
cesses for each operation it invokes. The client does so with no communication with other
clients and with only the information it gleans from previous operation invocations to the
service. As such, these algorithms impose negligible overheads on servers. We show, how-
ever, that our algorithms quickly adapt clients’ choices of quorums in the face of workload

71



dynamics, and that the clients’ quorum choices that result minimize client response times
and maximize client throughput nearly optimally across a broad range of workloads. We
draw these conclusions based upon evaluations of our algorithms on a wide-area topology
derived from PlanetLab (Bavier et al. [2004]) measurements, emulated using Modelnet
(Vahdat et al. [2002]), and using two quorum-based operation-invocation protocols: a
generic Grid quorum (Cheung et al. [1992], Kumar et al. [1993]) protocol and the Q/U
(Abd-El-Malek et al. [2005]) protocol using a Majority quorum system.

The rest of this chapter is structured as follows. We describe the terminology and
evaluation methodology for the algorithms we propose in Section 5.1. We describe these
algorithms and evaluate them in Section 5.2 and Section 5.3. We discuss related work in
Section 5.4 and conclude in Section 5.5.

5.1 Preliminaries

5.1.1 Terminology and assumptions

We start with a brief recollection of the previously defined notations for a quorum system
Q = {Q1, . . . , Qm} over a universe U and for the access strategy pc employed by a client
c (for all clients c,

∑
Qi∈Q pc(Qi) = 1).

The algorithms we propose rely on each client estimating the network latency to reach
each server at coarse time intervals. This can be easily achieved by means of round-trip-
time measurements or using other existing mechanisms (e.g., Gummadi et al. [2002], Ng
and Zhang [2002]). Clients also need a mechanism for estimating the load at servers.
Rather than modeling this explicitly we choose to derive this information from the re-
sponse time observed by clients when accessing servers.

We denote the network delay from a client c to a server s by d(c, s), and we denote by
d(c, Q) = maxs∈Q d(c, s) the delay for c to access quorum Q ∈ Q (this is the max-delay
cost function defined in Chapter 2).

Two access strategies are known to perform well for certain workloads on wide area
networks. One, denoted ClosestDly, is to always access the closest quorum in terms of
network latency, i.e., for each client c, ClosestDlyc assigns equal probability to each quo-
rum that is closest to c, and ClosestDlyc(Q) = 0 for all other quorums Q. ClosestDly
works well when the workload is sufficiently light that the processing load imposed on
servers contributes a negligible amount to the response times observed by clients. That
is, the response times are overwhelmingly dominated by network delays, and so it makes

72



sense for each client to choose from among their closest quorums. The second, denoted
Balanced, causes each client to access quorums uniformly at random, thereby balancing
load on servers, assuming that each server is in the same number of quorums. (This is
the case for all quorum systems we consider here.) That is, for each client c, Balancedc

assigns the same probability to each Q ∈ Q. This access strategy makes sense when
the workload is sufficiently heavy that response times are overwhelmingly dominated by
processing delays, which are best spread uniformly across servers. That is, networking
costs are so inconsequential that it is not necessary to take them into account in quorum
selection.

To our algorithms, a failed server is one that exhibits very high response time; whether
this is due to failure or simply very high load is irrelevant to our algorithms. As such, we
do not treat failures separately in our evaluations.

5.1.2 Evaluation setup

For evaluation purposes we consider two specific quorum constructions: the Majority (Gif-
ford [1979], Thomas [1979]) and the Grid (Cheung et al. [1992], Kumar et al. [1993]). In
particular we performed experiments with Q/U (Abd-El-Malek et al. [2005]), a Byzantine
fault-tolerant quorum system protocol that uses the (4b+1, 5b+1) Majority, i.e., in which
a quorum is any 4b + 1 out of a total of 5b + 1 servers, and with a generic quorum system
protocol we implemented that uses a k × k Grid.

We use two Planetlab topologies in our evaluation: the first is the ”Planetlab-50” topol-
ogy previously described in Section 4.3. For this topology the average round-trip time
between pairs of nodes is about 107 ms with a standard deviation of 73 ms, while the max-
imum distance between any two nodes is 386 ms. 93% of all pairs of nodes have a latency
of at least 20 milliseconds (ms) between them. We call this topology PlanetLab50a. The
second topology is also of size 50 but with an average round-trip time of 117 ms between
any pair of nodes and a standard deviation of 76 ms. A fraction of 91% of all pairs are at
distance of at least 20 ms apart. We call the second topology PlanetLab50b. We deploy
the two topologies on a Modelnet (Vahdat et al. [2002]) testbed.

In any given experiment, we place the servers on the nodes of a topology in a one-
to-one fashion (i.e., any node hosted at most one server) using the one-to-one placement
algorithms introduced in Chapter 2 and evaluated in Chapter 4. These placement algo-
rithms minimize the average, over all nodes, of each node c’s expected network delay
when accessing quorums using Balancedc. To generate load we choose 10 nodes uni-
formly at random, and start clientsPerNode clients on each node, with clientsPerNode

73



ranging from 1 to a maximum number sufficient to saturate the system (i.e., to achieve
maximum throughput). Each client issues requests sequentially, i.e., a new request is sent
as soon as the previous one completed. Clients only issue requests that complete in a single
round trip. While for arbitrary quorum protocols not all operations are guaranteed to com-
plete in a single round trip, the Q/U protocol (Abd-El-Malek et al. [2005]) is designed so
that most do in common cases. We set the application processing delay per client request
at each server to 1 ms.

We evaluate our algorithms with respect to several measures. Response time is com-
puted by averaging the response times observed by all clients, where the response time of
a single client is the average of all requests made in a run. Throughput is obtained by sum-
ming the throughput of all clients. Convergence time measures how fast our algorithms
converge to the optimal access strategy for a certain workload after a change in the work-
load. To measure convergence time, we initialize clients with access strategies of Balanced
in a regime of low load and measured the time it took for clients to transform their access
strategies into ClosestDly. We say that the algorithm has converged to ClosestDly when the
L2 norm between ClosestDly and the average avg{pc}c of the per-client access strategies
determined by the algorithm is less than 0.01. We perform the converse experiment as
well: we initialize our algorithm to ClosestDly in a regime of high load and measure the
time it takes clients to change their access strategies to Balanced. Finally, we also mea-
sure the overhead associated with each algorithm, where by overhead we understand the
average time per request spent in the quorum-selection function.

5.2 A weight shifting algorithm

A dynamic quorum selection algorithm should change the access strategies used by clients
in response to changes in server loads. Thus we need a mechanism for detecting when such
changes take place. Ideally this mechanism should be able to detect other events that may
impact performance as well, such as network congestion, for instance.

There are two ways of designing a load-monitoring module: servers can explicitly
maintain usage information and provide it to clients using a push or a pull-based model, or
clients can infer the level of load experienced by servers from the response times of their
requests. (Clearly the response time of a request increases with the load on servers.) A
push-based model is not very scalable, since servers need to know about all clients that
might need load information. A pull-based model seems better in that respect, but one still
has to deal with the overhead created by the clients’ requests for load information. This
motivates our choice of having clients monitor load from the variations in response times

74



of their requests.

Although this is the most inexpensive mechanism, it hides the following trade-off:
since the answer to a client request comes from a single quorum of servers, the client
will not always have the most up-to-date load information about all servers. Yet to make
an informed decision when choosing the quorum for its next access, a client needs this
information for all servers. We solve this problem by maintaining estimates of response
times of all servers based on the recent history of requests by this client. The way in which
our algorithms maintain these estimates differs in the two algorithms we present below.

In our first algorithm, each client keeps response times it observed for each server
s in the last history duration seconds, along with timestamps when these observations
were made. Assuming these (response time, timestamp) pairs are (rt i

c(s), ts
i
c(s)), for

i = 1 . . . t, the client computes the current estimate rt c(s) at the current time ts , as
rt c(s) =

∑t
i=1 w(ts i

c(s), ts)rt
i
c(s), i.e., as a non-uniform average of the response times

seen in the past from this server. The values w(ts i
c(s), ts) are non-negative reals and sat-

isfy
∑t

i=1 w(ts i
c(s), ts) = 1. They are chosen such that response times of more recent

requests have more influence on rt c(s) (i.e., we favor more recent requests when comput-
ing the estimate). If c has not accessed s in the last history duration seconds, it sets rt c(s)
to be its (round-trip) network latency to s as an (optimistic) estimate of its response time.

Obviously the accuracy of this estimation method depends on the history duration
parameter. For example, setting it too close to zero shrinks the number of servers for
which client c has some indication of load to only the quorum used in the last access. To
avoid this problem we need to use a sufficiently large value for it (history duration = 1s
performed well in our experiments).

Using the response time estimates for all servers, the most naive algorithm for selecting
a quorum for a request is to choose the quorum with the lowest response time. We call
this algorithm ClosestRT. We evaluated ClosestRT against ClosestDly and Balanced on the
5×5 Grid ranging the number of clients on each host from 1 to 15. Figure 5.2.1 shows that
ClosestRT performs only 10 ms to 15 ms worse than ClosestDly in case of low load, but up
to 40 ms worse than Balanced in case of high load. The most likely cause for this decay in
performance as load increases is the so-called “herd effect”: clients with similar response
time estimates synchronize and switch to the same quorum, i.e., the quorum having the
smallest response time. In doing so they loose the load balancing benefits of Balanced.

ClosestRT can be seen as a Nash strategy: clients always greedily select the best quo-
rum given the perceived system conditions. In doing so they shift all their load to a single
quorum for a certain amount of time. One can fix the herd effect problem by shifting only
a fraction of the load (say, half) to a different quorum when changing a client’s access

75



 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0  20  40  60  80  100  120  140  160

M
ili

se
co

nd
s

Number of clients

ClosestDly
ClosestRT
Balanced

Figure 5.2.1: Response time for ClosestRT (PlanetLab50a)

strategy. This leads us to the following simple algorithm for updating a client’s access
strategy: each client c starts with an arbitrary access strategy pc and periodically shifts half
of the weight from the quorum Qj with the highest response time (i.e., half of pc(Qj)) to
the quorum with the lowest response time. Note that a client c cannot shift any weight
from a quorum Qj with pc(Qj) = 0. Thus when choosing the quorum from which load is
shifted, the client must choose a quorum with positive weight. Also note that there can be
more than one quorum with the highest response time; in fact, all quorums containing the
server or servers with the highest response time also have the highest response time. To
balance load faster, we would like to select a quorum with nonzero weight that contains
as many servers with the high response times as possible. This can be done by selecting
the quorum for which the response times of its servers, ordered in decreasing order, is
lexicographically the largest among all positive-weight quorums.

We call the resulting algorithm ShiftWt. In Figure 5.2.2 we use Balanced as the initial
access strategy, since it is optimal for high load. One can start from other access strategies
and obtain good performance, but as we will see, the convergence time to an optimal
access strategy for a certain load depends on the access strategy used initially.

In Figures 5.2.3 and 5.2.4 we compare ShiftWt to ClosestDly, ClosestRT and Balanced
for the 5 × 5 Grid quorum system on the PlanetLab50a topology. The results show that
ShiftWt always performs better than ClosestRT and as well as ClosestDly and Balanced
in load regimes when these are best (low load and high load respectively). In fact, when
ClosestDly and Balanced perform comparably well (between 60 and 90 clients in total)
ShiftWt is better than both of them.

76



INITIALIZATION:
for i = 1 to m

pc(Qi) = 1/m;
BEFORE EACH REQUEST:

for each s ∈ U , estimate rtc(s);
for each Q ∈ Q, define rtc(Q) = 〈rtc(s)〉s∈Q, sorted in decreasing order
let Qj be such that:

i) pc(Qj) > 0 and
ii) for each Q ∈ Q, if pc(Q) > 0 then rtc(Qj) ≥ rtc(Q) in lexicographic order

let Qi be such that for each Q ∈ Q, rtc(Q) ≥ rtc(Qi) in lexicographic order;
pnew

c (Qj) = pc(Qj)/2;
pnew

c (Qi) = pc(Qi) + pc(Qj)/2;
pnew

c (Qk) = pc(Qk), for k 6= i, j;
pc = pnew

c ;

Figure 5.2.2: ShiftWt algorithm at client c

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0  20  40  60  80  100  120  140  160

M
ili

se
co

nd
s

Number of clients

ClosestDly
ClosestRT
Balanced

ShiftWt

Figure 5.2.3: Response time for ShiftWt (5× 5 Grid, PlanetLab50a)

Unfortunately, the convergence time of ShiftWt was less attractive in our experiments.
ShiftWt converges in 48 seconds to ClosestDly in a setting with 10 clients (clientsPerNode
= 1). In a setting with 150 clients (clientsPerNode = 15) it never converges to Balanced
but rather converges (in 5 seconds) to an access strategy at distance 0.15 from Balanced.
While this second convergence time is much better, the first convergence time is clearly
too high, motivating us to seek ways to improve it.

One way to make ShiftWt converge faster is to shift more load every time the access

77



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0  20  40  60  80  100  120  140  160

R
eq

ue
st

s 
pe

r 
se

co
nd

Number of clients

ClosestDly
ClosestRT
Balanced

ShiftWt

Figure 5.2.4: Throughput for ShiftWt (5× 5 Grid, PlanetLab50a)

strategy for a client is changed. Instead of shifting more weight from a single quorum,
we choose to shift load from more quorums at once. Clearly the quorums with negative
impact on performance are the quorums with the highest response time. Thus we choose
to shift load from all the quorums Qi with positive weight (i.e., pc(Qi) > 0) containing the
server with the highest response time. If no such quorums exist, we look at the quorums
containing the server with the second-highest response time.

The question now is where to place all the load collected from the quorums with high
response time. Putting it on a single quorum might unbalance the system and lead again
to suboptimal performance, so we need to do something else. Ideally what we would
like is to add weight to the quorums with the smallest response times so that after ab-
sorbing this extra load, their response times are roughly the same. We use the following
simple algorithm to achieve this. Let Q1, . . . , Qm denote the quorums in increasing or-
der of their response times (i.e., in increasing order of maxs∈Qi

{rt c(s)}), and suppose we
have to place total weight w on the l lowest-response-time quorums (i.e., on Q1, . . . , Ql).
We split the weight w into l weights wi, for i = 1, . . . , l, where wi is proportional to
maxs∈Ql+1

{rt c(s)} − maxs∈Qi
{rt c(s)}. Obviously this approach puts more weight on

quorums with smaller response times, which is what we wanted. We choose l, the number
of quorums to which we shift weight, equal to the number of quorums from which we took
weight in the first place. We call the resulting algorithm ShiftWtOpt.

We compare the convergence time of ShiftWtOpt to that of ShiftWt on PlanetLab50a.
Figure 5.2.5 shows convergence to ClosestDly in a low load regime while Figure 5.2.6
shows convergence to Balanced in a high load regime. (Access strategies were not altered

78



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60

L2
 N

or
m

 to
 C

lo
se

st

Time (seconds)

ShiftWt
ShiftWtOpt

Figure 5.2.5: Convergence time to
ClosestDly (5× 5 Grid, PlanetLab50a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  10  20  30  40  50  60  70

L2
 N

or
m

 to
 B

al
an

ce
d

Time (seconds)

ShiftWt
ShiftWtOpt

Figure 5.2.6: Convergence time to
Balanced (5× 5 Grid, PlanetLab50a)

b (4b + 1, 5b + 1) Majority k k × k Grid
ClosestDly Balanced ClosestDly Balanced

1 1 s 3 s 2 5 s 3 s
2 3 s 3 s 3 6 s 1 s
3 6 s 4 s 4 7 s 2 s
4 4 s 5 s 5 8 s 2 s

Table 5.1: Convergence times for ShiftWtOpt (PlanetLab50a)

in the initial 10 seconds (s) of each run, to allow for all clients to join the experiment.)
Results show a convergence time to ClosestDly of about 8 seconds (s) for ShiftWtOpt,
a six-fold improvement compared to the unoptimized version, and a convergence time
to Balanced of about 2 seconds for ShiftWtOpt, a two-fold improvement compared to
the unoptimized version. Also, the optimized version of ShiftWt seems to get closer to
Balanced that the unoptimized version.

To better understand the behavior of ShiftWtOpt, we study the convergence time and
the overhead associated with it for different universe sizes for both the (4b + 1, 5b + 1)
Majority and the k × k Grid. Table 5.1 shows the convergence times to ClosestDly and
Balanced for the (4b + 1, 5b + 1) Majority for b = 1 . . . 4 and for the k × k Grid with k =
2 . . . 5 on PlanetLab50a. Results indicate that ShiftWtOpt converges faster to Balanced
on the Grid but slower to ClosestDly than on the Majority, which seems rather unintuitive.
What happened in fact is that, while for the Grid the L2 norm to ClosestDly approached 0 at
convergence time, for Majority it varied between 0.1 and 0.2 (after decreasing from 0.4 or

79



b (4b + 1, 5b + 1) Majority k k × k Grid
1 11.39 µs 2 8.31 µs
2 44.82 µs 3 14.52 µs
3 659.24 µs 4 23.92 µs
4 41026.65 µs 5 38.03 µs

Table 5.2: Client overhead per request for ShiftWtOpt (PlanetLab50a)

0.5), especially as b became larger. By examining the data more carefully we observed that
for those quorum sizes, ClosestDly assigned equal weight to a large number of “closest”
quorums. This number of quorums, however, was almost never equal to the number of
quorums with low response time on which we shifted weight in ShiftWtOpt and so the
access strategy to which ShiftWtOpt converged was different from ClosestDly .

Table 5.2 shows the client-side overhead in microseconds (µs) of ShiftWtOpt for dif-
ferent universe sizes for both quorum systems considered here on PlanetLab50a. As Ta-
ble 5.2 shows, the overhead increases with the number of quorums, reaching approxi-
mately 40 ms per request for b = 4 (m = 5985 quorums). While this value is perhaps in-
flated due to the fact that our implementation is not optimized, we unfortunately expect that
no implementation of ShiftWtOpt can eliminate the increasing overhead of ShiftWtOpt as
the system scales, since it has to at least examine all the quorums containing the server
with the highest response time, which is a number of quorums which, for any Majority
quorum system, is exponential in the number of servers.

The results from Table 5.2 suggest though that, for quorum systems with a small num-
ber of quorums, the client overhead is very good, especially considering the fact that any
request that travels over the WAN takes at least several tens of milliseconds, an amount
of time about three orders of magnitude higher than the overhead for the Grid quorum
sizes we consider. Nevertheless, the rather poor convergence time and client overheads
of ShiftWtOpt for Majorities provide sufficient motivation to search for a better quorum
selection algorithm.

5.3 A faster converging algorithm

Our new algorithm is based on the following observations. First, in the case of low load,
clients should access their closest quorums. As load increases, client response times
increase as well, exceeding at some point the network delay to the clients’ second-best
(delay-wise) quorum (or quorums). When this happens, it makes sense to start using these

80



INITIALIZATION:
curr quorum group = 1; last req = 0;
create quorum groups H1

c , . . . ,Hk
c , k ≥ 1;

corresponding delays are d1
c , . . . , d

k
c ;

d0
c = 0; dk+1

c = ∞;
BEFORE EACH REQUEST:

find j such that avg rt ∈ [dj
c, d

j+1
c ) + server compute time;

if j > curr quorum group;
curr quorum group + +;

if j < curr quorum group
curr quorum group = j;

for each Q ∈ Hcurr quorum group
c :

pc(Q) = 1/|Hcurr quorum group
c |;

for each Q ∈ Q \Hcurr quorum group
c :

pc(Q) = 0;
WHEN RECEIVING REPLY FOR REQUEST r:

history [last req] = response time(r);
last req = (last req + 1) mod history count ;
avg rt = (

∑history count
i=0 history [i])/history count ;

Figure 5.3.7: DelayBins algorithm at client c

quorums as well, since one can hope that, by doing so, load is shifted from closer to more
distant but less-loaded servers, thereby decreasing response time.

Here is a more complete description of the algorithm. Each client c partitions the
quorums into groups based on the network delay to reach them. Denote the groups by
G1

c , . . . , G
t
c and by d1

c ≤ . . . dt
c the corresponding delays. Thus, Gj

c = {Qi | d(c, Qi) =
dj

c}. Let Hj
c = {Qi | d(c, Qi) ≤ dj

c} be the collection of quorums at distance at most dj
c

from the client. Obviously, Hj
c = G1

c ∪ . . . Gj
c. At any point in time the client chooses

a quorum by sampling uniformly at random from some group Hcurr quorum group
c where

1 ≤ curr quorum group ≤ t.

The client keeps an average avg rt of the response times for its last history count
requests. To choose the quorum group used for sampling, the client compares avg rt with
the maximum response time it would expect to see from any quorum in Hcurr quorum group

c

if load were low. For instance, if a client currently uses group Hj
c , the response time it

sees in case of low load should never be higher than dj
c + server compute time (here

server compute time denotes the application processing cost per request). When this
happens, it indicates an increase in load at servers. The client however will not switch to

81



the next higher group (Hj+1
c ) unless avg rt ≥ dj+1

c + server compute time. Setting the
size of the history count parameter to different values allows one to trade-off accuracy of
the average with how quickly the algorithm adapts to load changes. Since the algorithm
partitions quorums into groups based on the distance to the client, we call it DelayBins.
The pseudocode for DelayBins is presented in Figure 5.3.7.

 100

 120

 140

 160

 180

 200

 220

 240

 0  20  40  60  80  100  120  140  160

M
ili

se
co

nd
s

Number of clients

ClosestDly
Balanced

DelayBins

Figure 5.3.8: Response time ((4b+1,5b+
1) Majority, PlanetLab50a)

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160

R
eq

ue
st

s 
pe

r 
se

co
nd

Number of clients

ClosestDly
Balanced

Delay Bins

Figure 5.3.9: Throughput ((4b+1,5b+1)
Majority, PlanetLab50a)

 60

 80

 100

 120

 140

 160

 180

 200

 0  20  40  60  80  100  120  140  160

M
ili

se
co

nd
s

Number of clients

ClosestDly
Balanced

ShiftWtOpt
DelayBins

Figure 5.3.10: Response time for
DelayBins ((4b + 1,5b + 1) Majority,
PlanetLab50b)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  20  40  60  80  100  120  140  160

R
eq

ue
st

s 
pe

r 
se

co
nd

Number of clients

ClosestDly
Balanced

ShiftWtOpt
DelayBins

Figure 5.3.11: Throughput for
DelayBins ((4b + 1,5b + 1) Major-
ity, PlanetLab50b)

We compare the performance of DelayBins to that of ClosestDly and Balanced for
different client demands on both PlanetLab50a and PlanetLab50b. Figure 5.3.8 and Fig-
ure 5.3.9 show the response time and throughput achieved by DelayBins for the (4b+1, 5b+

82



 100

 150

 200

 250

 300

 350

 0  20  40  60  80  100  120  140  160  180  200

M
ili

se
co

nd
s

Number of clients

ClosestDly
Balanced

DelayBins

Figure 5.3.12: Response time (5 × 5
Grid, PlanetLab50a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  20  40  60  80  100  120  140  160  180  200

R
eq

ue
st

s 
pe

r 
se

co
nd

Number of clients

ClosestDly
Balanced

DelayBins

Figure 5.3.13: Throughput (5 × 5 Grid,
PlanetLab50a)

 100

 150

 200

 250

 300

 350

 0  20  40  60  80  100  120  140  160  180  200

M
ili

se
co

nd
s

Number of clients

ClosestDly
Balanced

ShiftWtOpt
DelayBins

Figure 5.3.14: Response time (5 × 5
Grid, PlanetLab50b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

R
eq

ue
st

s 
pe

r 
se

co
nd

Number of clients

ClosestDly
Balanced

ShiftWtOpt
DelayBins

Figure 5.3.15: Throughput (5 × 5 Grid,
PlanetLab50b)

1) Majority with b = 2 on PlanetLab50a. In both low-load and high-load cases, DelayBins
has the same performance as the best access strategies for those cases (ClosestDly and
Balanced, respectively). A similar conclusion can be drawn from our experiments on
PlanetLab50b, the results of which are presented in Figure 5.3.10 and Figure 5.3.11. For a
head to head comparison we also include in these figures results for the ShiftWtOpt algo-
rithm. Figure 5.3.10 and Figure 5.3.11 show that in high and low load regimes ShiftWtOpt
and DelayBins perform similarly with respect to the response time and throughput mea-
sures, but in a moderate load regime ShiftWtOpt seems to slightly outperform DelayBins,
at least for this Majority quorum system. An explanation for this behavior is the rigidity
of the DelayBins algorithm: at any point in time DelayBins is a Balanced access strategy

83



that spreads load evenly on a certain set of servers without paying attention to the delays
to these servers. On the other hand ShiftWtOpt is more flexible in that it spreads load
inversely proportional to the quorum delays thereby shifting load from far away quorums
to closer quorums.

In Figure 5.3.12 and Figure 5.3.13 we show the response time and throughput of
DelayBins for the k×k Grid for k = 5 on PlanetLab50a. DelayBins yields access strategies
with performance similar to the best access strategies for each value of client demand. As
expected, though, the gap between ClosestDly and Balanced is larger than in the case of
the (4b+1, 5b+1) Majority, due to the good load dispersing properties of the Grid quorum
system. Similar conclusions can be drawn from the results for the PlanetLab50b topology
in Figure 5.3.14 and Figure 5.3.15.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  2  4  6  8  10  12  14  16

M
ili

se
co

nd
s 

(m
s)

History count

Figure 5.3.16: Convergence time dependency on history count (PlanetLab50a)

In order to evaluate convergence time, we begin by showing the dependence of the
convergence time on history count , the size of the history used for computing the average
response time avg rt for the current group. Figure 5.3.16 shows the convergence time to
ClosestDly after initializing the algorithm to Balanced for different values of the history
size. As expected, convergence time increases with history size. A small value of history
size different from 1 seems to work best, since it gracefully reconciles the two contradic-
tory goals of having a quickly adapting algorithm and one that does not react to sporadic
spikes in load. We use a value of history count = 3 in the following experiments.

We compare the convergence time of DelayBins to that of ShiftWt and ShiftWtOpt.
We perform the same experiments as before: we start clients with ClosestDly as the initial
access strategy (by setting curr quorum group = 1, i.e., clients use the closest quorums
delay-wise) in a regime of high load (150 clients, or clientsPerNode = 15) and measure
the time it takes them to change the average of their access strategies to Balanced. We

84



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60

L2
 N

or
m

 to
 C

lo
se

st

Time (seconds)

ShiftWt
ShiftWtOpt
DelayBins

Figure 5.3.17: Convergence time to
ClosestDly (5× 5 Grid, PlanetLab50a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70

L2
 N

or
m

 to
 B

al
an

ce
d

Time (seconds)

ShiftWt
ShiftWtOpt
DelayBins

Figure 5.3.18: Convergence time to
Balanced (5× 5 Grid, PlanetLab50a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50

L2
 N

or
m

 to
 C

lo
se

st

Time (seconds)

ShiftWt
ShiftWtOpt
DelayBins

Figure 5.3.19: Convergence time to
ClosestDly (5× 5 Grid, PlanetLab50b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20  25  30  35  40  45  50

L2
 N

or
m

 to
 C

lo
se

st

Time (seconds)

ShiftWt
ShiftWtOpt
DelayBins

Figure 5.3.20: Convergence time to
Balanced (5× 5 Grid, PlanetLab50b)

also perform the converse experiment, starting from Balanced (i.e., make clients use the
highest group number) and measuring how fast their average access strategy converges to
ClosestDly with only 10 clients (clientsPerNode = 1). Figure 5.3.17 shows that DelayBins
converges much faster than ShiftWtOpt to ClosestDly (in about 1–2 seconds). At the same
time, Figure 5.3.18 shows that the convergence time to Balanced is about the same as that
of ShiftWtOpt (again 1–2 seconds). The results for the PlanetLab50b illustrate a similar
picture, with two small exceptions: Figure 5.3.19 shows that DelayBins has a slightly
larger convergence time to ClosestDly than before (of about 4 seconds). The convergence
to Balanced has also increased to about 5 seconds.

To perform a more exhaustive comparison we evaluate DelayBins with respect to the

85



b Conv. to ClosestDly Conv. to Balanced
ShiftWtOpt DelayBins ShiftWtOpt DelayBins

1 1 s 1 s 3 s 2 s
2 1 s 1 s 3 s 1 s
3 6 s 4 s 4 s 2 s
4 4 s 4 s 5 s 2 s

Table 5.3: Convergence times ((4b + 1,5b + 1) Majority, PlanetLab50a)

k Conv. to ClosestDly Conv. to Balanced
ShiftWtOpt DelayBins ShiftWtOpt DelayBins

2 5 s 1 s 3 s 2 s
3 6 s 1 s 1 s 1 s
4 7 s 2 s 2 s 3 s
5 8 s 2 s 2 s 2 s

Table 5.4: Convergence times (k × k Grid, PlanetLab50a)

convergence time measure for different universe sizes for the two quorum systems con-
sidered here on PlanetLab50a. Table 5.3 compares the convergence times of DelayBins
and ShiftWtOpt to both ClosestDly and Balanced on the (4b + 1, 5b + 1) Majority. In all
cases, DelayBins converges as fast or faster than ShiftWtOpt. This benefit of DelayBins is
further pronounced with the Grid quorum system, as can be seen in Table 5.4. The best
explanation for this difference is that ShiftWtOpt bases its decisions on more fine-grained
(i.e., per server) but consequently more stale response time information than DelayBins
does.

The last measure with respect to which we evaluate DelayBins is client overhead. Ta-
ble 5.5 lists results for both DelayBins and ShiftWtOpt for both the Majority and the Grid
on PlanetLab50a. In all cases the overhead of DelayBins is smaller than that of ShiftWtOpt
and also similar to that of ClosestDly and Balanced, both of which have an overhead be-
tween 1 and 2 µs in our evaluations.

b (4b + 1, 5b + 1) Majority k k × k Grid
ShiftWtOpt DelayBins ShiftWtOpt DelayBins

1 11.39 µs 1.32 µs 2 8.31 µs 1.64 µs
2 44.82 µs 1.51 µs 3 14.52 µs 1.69 µs
3 659.24 µs 1.84 µs 4 23.92 µs 1.82 µs
4 41026.65 µs 2.31 µs 5 38.03 µs 1.92 µs

Table 5.5: Client overhead per request (PlanetLab50a)

86



The primary reason for the superior client-side overhead of DelayBins is the following
observation. Even though the pseudocode of Figure 5.3.7 updates the access strategy pc

per quorum each time it is updated (a computational cost proportional to m), it is possible
to dramatically optimize this implementation. Specifically, it is not necessary to maintain
pc explicitly; rather, a quorum from Hcurr quorum group

c can be chosen uniformly at random
to perform a request, after curr quorum group has been updated. As such, a performance
of DelayBins can be achieved that is independent of m in practice. In fact, the execution
time of DelayBins depends only on the number of groups Gi

c into which we partition the
quorums, which by construction is never greater than the number of servers. Furthermore,
these groups do not change often — in practice they need only change when network
delays to servers change significantly — and thus can be precomputed. This makes the
performance of DelayBins typically depend only on the number of servers.

This is a significant difference from ShiftWtOpt, for which the client overhead grows
quickly as the number of quorums grows. In some cases, ShiftWtOpt must go through
exponentially many (in the number of servers) quorums to update the access strategy ac-
cording to which it samples quorums. Even if this is decoupled from the actual process of
choosing a quorum, for large quorum system sizes the overhead associated with updating
the access strategy can delay the sampling task.

5.4 Related work

Although dynamic quorum selection on WANs has not been studied before, choosing
a single server to optimize client response time on WANs is a well-studied problem.
The solutions proposed range from selecting servers based only on distance from clients
(e.g., Carter and Crovella [1997], Guyton and Schwartz [1995], Ratnasamy et al. [2002])
or only on load at servers (Starobinski and Wu [2005]), to using both network delay and
load at servers when choosing the best server (Ranjan et al. [2004]). From this perspective
our work is more closely related to the last approach since we use both network delay and
server load in deciding how to access quorums. On the other hand, our quorum selection
algorithms are more efficient, imposing practically no overhead on servers (no external
load monitoring mechanism is necessary) and only negligible overhead on clients, and
make no assumptions about client behavior to achieve good performance.

The design of the response time estimation algorithm from Section 5.2 is based on the
idea of placing more weight on the response times observed from more recent requests.
Similar ideas have been used elsewhere (e.g., Yoshikawa et al. [1997]). More generally,
there has been a lot of work on finding server selection policies that make use of possi-

87



bly stale load information (e.g., Mirchandaney et al. [1989, 1990], Mitzenmacher [1997],
Shivaratri et al. [1992], Dahlin [1999]). In particular Mitzenmacher [1997] shows how to
avoid the ‘herd effect’ by choosing the lightest loaded server not from all the servers, but
from a randomly selected subset of size k. Dahlin [1999] extends these ideas even further
by examining algorithms that interpret load information based on the age of that infor-
mation. The algorithms from Dahlin [1999] also rely on certain assumptions about client
interarrival time. As mentioned before, we also estimate the response time of a client ac-
cess to a server by taking into account the age of response times from previous invocations.
At the same time we make no assumptions about knowing the client interarrival time.

The idea of improving client response time by shifting load between quorums with a
certain probability is based on earlier work on selfish load balancing by Berenbrink et al.
[2006]. That work studies the problem of assigning each of m tasks to n resources in a
way that optimizes the completion time of each task. Berenbrink et al. [2006] presents a
probabilistic task reassignment policy that converges in O(log log m) to Nash equilibrium.
An important assumption made there is that the set of m tasks does not change over time.
As noted previously though, workloads tend to change substantially over different times
of day. This motivates our evaluation of a different convergence measure that more closely
illustrates how our algorithms adapt to load changes.

Balancing load for quorum systems in general (i.e., without accounting for network
delays) is a fairly well-studied problem as well. Naor and Wool [1998] defined a formal
notion of load and developed load-optimal quorum constructions and access strategies to
achieve optimal load for these constructions. Malkhi and Reiter [1998], Malkhi et al.
[2000] extended this treatment to quorum systems with stronger intersection requirements
that enable quorums to be used in systems that may suffer Byzantine server failures; the
Q/U access protocol (Abd-El-Malek et al. [2005]), which we use in our evaluations, is
designed for this fault model. Holzman et al. [1997] examined quorum systems from the
perspective of the load balancing ratio: the ratio between the most and the least loaded
server of a quorum system. They showed methods for determining the access strategies for
which a quorum system achieves optimal balancing. None of these works however shows
how to adapt access strategies to dynamic workloads on WANs.

Prior work (Gupta et al. [2005], Golovin et al. [2006], Oprea and Reiter [2007], Amir
et al. [2006], Amir and Wool [1996]) studies ways to optimize performance of quorum sys-
tems on WANs. Of these, only our own (Oprea and Reiter [2007]) considers the problem
of finding optimal access strategies, but only for static workloads. Adapting to dynamic
workloads was the focus of this chapter.

88



5.5 Discussion and conclusion

In this chapter we described two algorithms (ShiftWt/ShiftWtOpt, and DelayBins) for
choosing quorums so as to achieve good response time and throughput for operations
in wide-area networks, and that adapt quickly to workload changes. We showed that both
algorithms approximate the best possible access strategies in cases of very low or very
high client load (ClosestDly and Balanced, respectively). In addition, we showed that
ShiftWtOpt and DelayBins converge quickly to ClosestDly and Balanced when these are
the best access strategies, and in fact that DelayBins converges somewhat faster and more
accurately. The reason for the superior performance of DelayBins in our experiments is
best explained by the fact that decisions made by ShiftWtOpt are based on greater un-
certainty than those made by DelayBins. This is due to the staleness of the response time
information on which ShiftWtOpt’s decisions are made.

The second differentiating factor between ShiftWtOpt and DelayBins is the client over-
head. When the number of quorums (m) is small, both are efficient. However, when the
number of quorums grows large, the client side overhead of ShiftWtOpt grows with the
number of quorums, which can be exponential in the number of servers. In contrast,
DelayBins enables a much more efficient implementation as m grows for the quorum sys-
tems we considered here, and thus is particularly advantageous when the number of servers
is large.

We have experimented with several variations of ShiftWtOpt, but none seem to per-
form much better than the one described here. In general one faces the following trade-off
when using this approach: either one makes the algorithm simple enough to be efficient
(e.g., shifting weight between two quorums), but increases the convergence time by doing
so. Or, one can be more aggressive, either when choosing the quorums or when choos-
ing the number of pairs of quorums between which load is shifted, but in doing so the
algorithm becomes more expensive.

89



90



Chapter 6

Conclusions

Edge computing represents one of the most successful architectures of our time for large
scale Internet services. In this model, content is published at an origin server and then
pushed to servers sitting at the edge of the network, close to the clients requesting it.
This is particularly well-suited for static content and applications where the state does not
change too frequently. At the same time, serving highly consistent dynamic content is still
a topic of active research (e.g., Reiter and Samar [2007], Gao et al. [2005], Amza et al.
[2003]).

One of the potential solutions to the problem of publishing highly consistent dynamic
content in a scalable manner is to use quorum systems. Any quorum-based solution, how-
ever, needs to find a balance between several measures that affect performace on a wide-
area network: network delay (latency), network congestion and server load. This thesis
describes several methods for approximately minimizing the network measures when con-
sidered separately, and also methods for finding the right balance between network delay
and server load so as to minimize client response time and maximize throughput.

In our treatment of these problems we look for the most general results. For instance
in Chapter 2 our results refer to arbitrary quorum systems, arbitrary access strategies and
arbitrary networks. The quorum selection algorithms in Chapters 4 and 5 are also designed
for arbitrary quorum systems and networks, even though we evaluate them on specific
topologies and for specific quorum constructions. In some cases we try to improve the
general results for known quorum systems (in Chapter 2) and for specific networks (in
Chapter 3).

There are several places where this thesis leaves room for further investigation. For
instance, in Chapter 2 the problem of finding an optimal placement for any of the Crum-

91



bling Wall quorum systems (Peleg and Wool [1997]) is left open. In Chapter 3 we only
briefly look at the benefits brought by migrating quorum elements between network nodes.
We believe, however, that one can get substantial benefits in terms of congestion through
the use of this technique (c.f., Westermann [2001]). Coupling migration with dynamically
adapting the universe size (e.g., Alvisi et al. [2000], Kong et al. [2003]) may also enable
quorum systems to better adapt to workload changes.

An interesting theoretical question left open in Chapter 5 is whether either of the
ShiftWt and ShiftWtOpt quorum selection algorithms converges to Nash equilibrium in
the case of a static workload. An answer in the affirmative to this question would also raise
the issue as to how far is such a solution from the global optimum. Even more exciting (but
probably harder) problems are those that consider these questions in a dynamic context.

Today’s distributed services face an increased pressure from two contradictory goals:
the need for better scalability or performance on one hand and the need for better re-
liability on the other. This thesis makes several steps towards finding a middle ground
between these two goals. An important thing to note here however is that most of the
work presented so far does not cosider failures. A very natural and interesting question
that this thesis leaves open regards the extent to which the performance of the techniques
developed here is affected by server or network failures.

92



Bibliography

M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. Fault-
scalable Byzantine fault-tolerant services. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles, 2005. 1.4, 4, 4.1, 4.1, 5, 5.1.2, 5.4

L. Alvisi, E. T. Pierce, D. Malkhi, M. K. Reiter, and R. N. Wright. Dynamic Byzantine
quorum systems. In DSN ’00: Proceedings of the International Conference on Depend-
able Systems and Networks, pages 283–292, 2000. 6

Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage.
Scaling Byzantine fault-tolerant replication to wide area networks. In DSN ’06: Pro-
ceedings of the 2006 International Conference on Dependable Systems and Networks,
pages 105–114, June 2006. 4.7, 5.4

Y. Amir and A. Wool. Evaluating quorum systems over the Internet. In Proceedings of the
26th International Symposium on Fault-Tolerant Computing, June 1996. 4.7, 5.4

Y. Amir and A. Wool. Optimal availability quorum systems: theory and practice. Infor-
mation Processing Letters, 65(5):223–228, 1998. 2.5

C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent replication
for scaling back-end databases of dynamic content web sites. In Middleware, pages
282–304, 2003. 6

O. Bakr and I. Keidar. Evaluating the running time of a communication round over the
Internet. In Proceedings of the 21st ACM Symposium on Principles of Distributed Com-
puting, pages 243–252, July 2002. 4.7

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe,
T. Spalink, and M. Wawrzoniak. Operating system support for planetary-scale network
services. In Proceedings of the 1st USENIX Symposium on Networked Systems Design
and Implementation, March 2004. 1.3, 4, 4.7, 5

93



R. A. Bazzi. Planar quorums. Theoretical Computer Science, 243(1-2):243–268, 2000.
2.5

R. A. Bazzi. Access cost for asynchronous Byzantine quorum systems. Distributed Com-
puting, 14(1):41–48, 2001. 2.5

P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg, Z. Hu, and R. Martin. Dis-
tributed selfish load balancing. In SODA ’06: Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithm, pages 354–363, 2006. 5.4

M. Bienkowski, M. Korzeniowski, and H. Räcke. A practical algorithm for cosntructing
oblivious routing schemes. In Proceedings of the 15th ACM Symposium on Parallelism
in Algorithms and Architectures, pages 24–33, 2003. 3.2.1

P. Carmi, S. Dolev, S. Har-Peled, M. J. Katz, and M. Segal. Geographic quorum system
approximations. Algorithmica, 41(4):233–244, 2005. 2.5

R. L. Carter and M. E. Crovella. Server selection using dynamic path characterization in
wide-area networks. In INFOCOM ’97: Proceedings of the 16th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, page 1014, 1997. 5.4

M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems, 20(4), November 2002. 4.7

C. Chekuri and S. Khanna. On multi-dimensional packing problems. In SODA ’99: Pro-
ceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 185–
194, 1999. 3.5, 2

S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protocol: A high performance
scheme for maintaining replicated data. IEEE Transactions on Knowledge and Data
Engineering, 4(6):582–592, 1992. 1.1, 1.4, 2.1.3, 2.1.1, 2.3, 2.3.1, 5, 5.1.2

M. Dahlin. Interpreting stale load information. In ICDCS ’99: Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, page 285, 1999. 5.4

Y. Dinitz, N. Garg, and M. X. Goemans. On the single-source unsplittable flow problem.
Combinatorica, 19(1):17–41, 1999. 1.2, 3.1.2, 3.2.2, 3.2.3, 3.7

S. Dolev, S. Gilbert, N. A. Lynch, A. A. Shvartsman, and J. L. Welch. Geoquorums:
Implementing atomic memory in mobile ad hoc networks. In DISC ’03: Proceedings
of the 17th International Symposium on Distributed Computing, pages 306–320, 2003.
2.5

94



L. Engebretsen and J. Holmerin. Towards optimal lower bounds for clique and chromatic
number. Theoretical Computer Science, 299(1-3):537–584, 2003. 3.5

A. W. Fu. Delay-optimal quorum consensus for distributed systems. IEEE Transactions
on Parallel and Distributed Systems, 8(1):59–69, 1997. 1.1, 2.5, 4, 4.2.1

L. Gao, M. Dahlin, J. Zheng, L. Alvisi, and A. Iyengar. Dual-quorum replication for edge
services. In Middleware 2005, pages 184–204, 2005. 4, 6

D. K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th ACM Sym-
posium on Operating Systems Principles (SOSP), pages 150–162, 1979. 1, 1.1, 2.1.3,
2.1.1, 2.3, 4.7, 5.1.2

S. Gilbert and G. Malewicz. The quorum deployment problem. In 8th International
Conference on Principles of Distributed Systems (OPODIS’04), 2004. 2.5

D. Golovin, A. Gupta, B. Maggs, F. Oprea, and M.K. Reiter. Quorum placement in net-
works: Minimizing network congestion. In Proceedings of the 25th ACM Symposium
on Principles of Distributed Computing, 2006. 4, 5.4

K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between arbi-
trary internet end hosts. In Proceedings of the 2nd Usenix/ACM SIGCOMM Internet
Measurement Workshop (IMW), 2002. 1.3, 4.3, 5.1.1

A. Gupta, B. Maggs, F. Oprea, and M. K. Reiter. Quorum placement in networks to min-
imize delays. In Proceedings of the 24th ACM Symposium on Principles of Distributed
Computing, 2005. 4, 4.2.1, 5.4

J. D. Guyton and M. F. Schwartz. Locating nearby copies of replicated internet servers.
ACM SIGCOMM Computer Communication Review, 25(4):288–298, 1995. 5.4

C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time tree decomposition to minimize
congestion. In Proceedings of the 15th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 34–43, 2003. 3.2.1

M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,
1990. 1

R. Holzman, Y. Marcus, and D. Peleg. Load balancing in quorum systems. SIAM Journal
on Discrete Mathematics, 10(2):223–245, 1997. 5.4

95



J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of service attacks:
characterization and implications for cdns and web sites. In WWW ’02: Proceedings of
the 11th International Conference on World Wide Web, pages 293–304, 2002. 5

B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the
ACM, 47(4):617–643, 2000. 2.2.3

N. Kobayashi, T. Tsuchiya, and T. Kikuno. Minimizing the mean delay of quorum-based
mutual exclusion schemes. Journal of Systems and Software, 58(1):1–9, 2001. 1.1, 2.5,
4, 4.2.1

L. Kong, A. Subbiah, M. Ahamad, and D. M. Blough. A reconfigurable Byzantine quorum
approach for the agile store. In SRDS ’03: Proceedings of the 22nd Symposium on
Reliable Distributed Systems, pages 219–, 2003. 6

A. Kumar, M. Rabinovich, and R. K. Sinha. A performance study of general grid structures
for replicated data. In Proceedings of the 13th International Conference on Distributed
Computing Systems, pages 178–185, 1993. 1.1, 1.4, 2.1.3, 2.1.1, 2.3, 2.3.1, 5, 5.1.2

L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):
133–169, 1998. 4.7

T. Leighton, F. Makedon, and I. G. Tollis. A 2n-2 step algorithm for routing in an nxn
array with constant size queues. In SPAA ’89: Proceedings of the 1st ACM Symposium
on Parallel Algorithms and Architectures, pages 328–335, 1989. 3.7

J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46(3):259–271, 1990. 2.2.3

J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of scheduling under precedence con-
straints. Operations Research, 26(1):22–35, 1978. 2.2.2

X. Lin. Delay optimizations in quorum consensus. In ISAAC ’01: Proceedings of the 12th
International Symposium on Algorithms and Computation, pages 575–586, 2001. 1.1,
2.5, 4, 4.2.1, 4.4

B. M. Maggs, F. Meyer auf der Heide, B. Vocking, and M. Westermann. Exploiting lo-
cality for data management in systems of limited bandwidth. In IEEE Symposium on
Foundations of Computer Science, pages 284–293, 1997. 3.7

D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):
203–213, 1998. 5.4

96



D. Malkhi, M. K. Reiter, and A. Wool. The load and availability of Byzantine quorum
systems. SIAM Journal on Computing, 29(6):1889–1906, 2000. 2.5, 5.4

D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probabilistic quorum systems.
Information and Computation, 170(2):184–206, 2001. 2.5

R. Mirchandaney, D. Towsley, and J. A. Stankovic. Analysis of the effects of delays on
load sharing. IEEE Transactions on Computers, 38(11):1513–1525, 1989. 5.4

R. Mirchandaney, D. Towsley, and J. A. Stankovic. Adaptive load sharing in heteroge-
neous distributed systems. Journal of Parallel and Distributed Computing, 9(4):331–
346, 1990. 5.4

M. Mitzenmacher. How useful is old information? (extended abstract). In PODC ’97: Pro-
ceedings of the 16th ACM Symposium on Principles of Distributed Computing, pages
83–91, 1997. 5.4

M. Naor and A. Wool. The load, capacity, and availability of quorum systems. SIAM
Journal on Computing, 27(2):423–447, 1998. 2.1, 2.3.1, 5.4

T. S. E. Ng and H. Zhang. Predicting internet network distance with coordinates-based
approaches. In INFOCOM: Proceedings of the 21st Annual Joint Conference of the
IEEE Computer and Communications Societies, 2002. 5.1.1

D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, and A. Vahdat. Service place-
ment in shared wide-area platforms. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles, 2005. 4.7

F. Oprea and M. K. Reiter. Minimizing response time for quorum-system protocols over
wide-area networks. In Proceedings of the 2007 International Conference on Depend-
able Systems and Networks, June 2007. 5.4

V. N. Padmanabhan and K. Sripanidkulchai. The case for cooperative networking. In
IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer Sys-
tems, pages 178–190, 2002. 5

D. Peleg and A. Wool. Crumbling walls: A class of practical and efficient quorum systems.
Distributed Computing, 10(2):87–97, 1997. 6

H. Racke. Minimizing congestion in general networks. In IEEE Symposium on Founda-
tions of Computer Science, 2002. 1.2, 3.1.2, 3.2, 3.2.1, 3.7

97



P. Raghavan and C. D. Thompson. Provably good routing in graphs: regular arrays. In
STOC ’85: Proceedings of the 17th ACM Symposium on Theory of Computing, pages
79–87, 1985. 3.7

S. Ranjan, R. Karrer, and E. W. Knightly. Wide area redirection of dynamic content
by internet data centers. In INFOCOM ’04: Proceedings of the 23rd Annual Joint
Conference of the IEEE Computer and Communications Societies, 2004. 5.4

S. Ranjan, J. Rolia, E. Knightly, and H. Fu. Qos-driven server migration for internet data
centers. In IWQoS ’02: Proceedings of the 10th International Workshop on Quality of
Service, 2002. 5

S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker. Topologically-aware overlay
construction and server selection. In INFOCOM ’02: Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and Communications Societies, 2002. 5.4

M. K. Reiter and A. Samar. Quiver: Consistent and scalable object sharing for edge
services. IEEE Transactions on Parallel and Distributed Systems, 2007. 6

N. G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally distributed
systems. Computer, 25(12):33–44, 1992. 5.4

D. B. Shmoys and E. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62(3):461–474, 1993. 1.1, 2.2.3, 2.2.12

S. Sivasubramanian, G. Pierre, and M. van Steen. Autonomic data placement strategies
for update-intensive web applications. In AAA-IDEA ’05: Proceedings of the First In-
ternational Workshop on Advanced Architectures and Algorithms for Internet Delivery
and Applications, pages 2–9, 2005. 1

A. Srinivasan. Distributions on level-sets with applications to approximation algorithms.
In FOCS ’01: Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science, page 588, 2001. 1.2, 3.1.2, 3.5.1, 3.5.1

D. Starobinski and T. Wu. Performance of server selection algorithms for content replica-
tion networks. In NETWORKING, pages 443–454, 2005. 5.4

R. H. Thomas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Transactions on Database Systems, 4(2):180–209, 1979. 1, 1.1, 2.1.3,
2.1.1, 2.3, 4.7, 5.1.2

98



T. Tsuchiya, M. Yamaguchi, and T. Kikuno. Minimizing the maximum delay for reaching
consensus in quorum-based mutual exclusion schemes. IEEE Transactions on Parallel
and Distributed Systems, 10(4):337–345, 1999. 1.1, 2.5, 4

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and D. Becker. Scal-
ability and accuracy in a large-scale network emulator. SIGOPS Operating Systems
Review, 36(SI):271–284, 2002. 4, 4.1, 5, 5.1.2

L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing,
11(2):350–361, May 1982. 3.7

L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In STOC
’81: Proceedings of the 13th ACM Symposium on Theory of Computing, pages 263–277,
1981. 3.7

V. V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001. 2.2.3

M. Westermann. Caching in Networks: Non-Uniform Algorithms and Memory Capacity
Constraints. Dissertation, Universität Paderborn, Heinz Nixdorf Institut, Theoretische
Informatik, 2001. 3.6.1, 3.7, 6

G. J. Woeginger. On the approximability of average completion time scheduling under
precedence constraints. In Proceedins of the 28th International Colloquium on Au-
tomata, Languages and Programming (ICALP’ 2001), LNCS 2076, pages 862–874,
2001. 2.2.2, 2.2.5

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Using smart
clients to build scalable services. In ATEC ’97: Proceedings of the Annual Conference
on USENIX Annual Technical Conference, pages 8–8, 1997. 5.4

H. Yu. Signed quorum systems. In Proceedings of the 23rd ACM Symposium on Principles
of Distributed Computing, pages 246–255, 2004. 2.5

99


	1 Introduction
	1.1 Minimizing network delays
	1.2 Minimizing network congestion
	1.3 Minimizing response time for static workloads
	1.4 Minimizing response time for dynamic workloads

	2 Quorum Placement in Networks: Minimizing Network Delays
	2.1 Background and model
	2.1.1 Roadmap and Techniques

	2.2 Maximum delay access cost
	2.2.1 Reduction to the Single Client Case
	2.2.2 NP-hardness of Problem 2.2.2
	2.2.3 A Linear Program Rounding Solution

	2.3 Optimal Layouts for Specific Constructions
	2.3.1 The Grid Construction
	2.3.2 The Majority Construction

	2.4 Total delay access cost
	2.5 Related Work
	2.6 Summary and Discussion

	3 Quorum Placement in Networks: Minimizing Network Congestion
	3.1 Model
	3.1.1 Results
	3.1.2 Techniques

	3.2 Background
	3.2.1 Congestion Trees
	3.2.2 Single Source Unsplittable Flow

	3.3 The Arbitrary Routing Model: The Single Client Case
	3.3.1 A Hardness Result
	3.3.2 The Algorithm for the Single Client Case

	3.4 The General Case of QPPC in the Arbitrary Routing Model
	3.4.1 Translating the QPPC Instance to a Congestion Tree
	3.4.2 Single Node Solutions are Good on Trees
	3.4.3 The Algorithm for General QPPC

	3.5 The Fixed Routing Paths Model
	3.5.1 Uniform Element Loads
	3.5.2 The General Case

	3.6 The Migration Model
	3.6.1 A solution for arbitrary graphs.

	3.7 Related work
	3.8 Conclusions

	4 Minimizing Response Time for Quorum-System Protocols over Wide-Area Networks
	4.1 A motivating example
	4.2 Algorithms
	4.2.1 Model
	4.2.2 New techniques

	4.3 Simulation methodology
	4.4 Low client demand
	4.5 High client demand
	4.6 Moderate client demand
	4.7 Related work
	4.8 Conclusions

	5 Dynamic Quorum Selection on Wide-Area Networks
	5.1 Preliminaries
	5.1.1 Terminology and assumptions
	5.1.2 Evaluation setup

	5.2 A weight shifting algorithm
	5.3 A faster converging algorithm
	5.4 Related work
	5.5 Discussion and conclusion

	6 Conclusions
	Bibliography

