
A Protocol Graph Based Anomaly Detection System

Michael Collins

April 28, 2008

School of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Michael Reiter (chair)

John McHugh

Srinivasan Seshan

Hui Zhang

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2008 Michael Collins

Contents

1 Introduction 19

1.1 Anomaly Detection Using Protocol Graphs 23

1.2 Training IDS on Noisy Data 25

1.3 Evaluating IDS Impact . 26

1.4 Outline of the Work . 28

2 Protocol Graphs 31

2.1 Previous Work . 35

2.2 Preliminaries . 37

2.2.1 Protocol Graphs . 37

2.2.2 Data Set . 39

2.3 Building a Hit-List Worm Detector 41

2.3.1 Graph Behavior Over Time 43

2.3.2 Detection and the False Alarm Rate 45

2.4 Protocol Graph Change During Attack 47

2.4.1 Attack and Defense Model 47

2.4.2 Experiment Construction 49

3

4 CONTENTS

2.4.3 True Alarms . 52

2.5 Bot Identification . 57

2.6 Implementation . 64

2.7 Conclusion . 67

3 Training Anomaly Detectors 69

3.1 Related Work . 74

3.2 System Architecture and Log-level Filtering 77

3.2.1 Source Data . 77

3.2.2 System Architecture 80

3.2.3 Log-level Filtering . 83

3.3 Implementing a State-level Filter 85

3.3.1 State Data . 87

3.3.2 Process . 89

3.3.3 State Filtering: Sample Size 91

3.4 Evaluation . 93

3.5 Impact Evaluation and Notification 100

3.6 Attacking Attack Reduction 101

3.7 Conclusions . 103

4 Evaluating Anomaly Detection Systems 105

4.1 Previous Work . 109

4.2 Alarm Construction and Training 110

4.2.1 Raw Data . 110

4.2.2 Alarm State Variables 112

4.2.3 Alarm Thresholds . 114

CONTENTS 5

4.3 Observable Attack Spaces and Detection Probability 118

4.3.1 Observable Attack Spaces and Alarms 119

4.3.2 Estimating the Detection Surface 120

4.3.3 Detection Surface Comparison 123

4.4 Modeling Acquisition . 124

4.4.1 Acquisition Payoff Model 127

4.4.2 Calculating Alarm Efficiency 130

4.4.3 Determining a Minimum False Positive Rate 131

4.5 Modeling Reconnaissance . 135

4.6 Conclusion . 138

5 Conclusions 141

6 CONTENTS

List of Tables

2.1 Means and standard deviations (to three significant digits on

standard deviation) for Vdur
am , Cdur

am , Vdur
pm and Cdur

pm for dur ∈

{30s, 60s} on March 12–16, 2007. 50

2.2 Count of servers observed between 12:00GMT and 13:00GMT

on each of March 12–16, 2007. 51

2.3 True alarm percentages for combined detector (conditions (2.4)

and (2.5)). 52

3.1 Breakdown of activity in recorded data set by flows and bytes

(bytes in parentheses); source data is all SSH traffic from

September 10th to 24th, 2007. 85

4.1 Summary of Gaussian state variables in SSH training set. . . 115

7

8 LIST OF TABLES

List of Figures

2.1 Attributes of Oracle traffic on March 5th, 2007; start time of

π is on x-axis; dur = 60s. 41

2.2 Atributes and model of Oracle traffic (after filtering) on March

5th, 2007. Start times and dur as in Figure 2.1. 42

2.3 Distributions for Oracle over March 12–16, 2007, fitted to

normal distributions. 44

2.4 Graphical representation of attacks, where “C”, “S” and “A”

denote a client, server and attacker-controlled bot, respec-

tively. The left hand attack affects total graph size (v(Λπ)),

but not largest component size. The attack on the right af-

fects largest component size (c(Λπ)), but not total graph size. 48

2.5 Contributions of conditions (2.4) and (2.5) to true alarms in

Table 2.3. For clarity, only true alarms where v(Λπ)−µΠ,dur
V

σΠ,dur
V

≤

20 or c(Λπ)−µΠ,dur
C

σΠ,dur
C

≤ 20 are plotted. 54

2.6 Effects of eliminating high degree vertices n from FTP attack

traffic logs Λ. 59

9

10 LIST OF FIGURES

2.7 Attacker identification accuracy of (2.8); hitListPerc ∈ {25%, 50%, 75%},

|hidegree| = 10, |bots| = 5. 62

2.8 Accuracy of (2.8) versus (2.9); hitListPerc = 25%, |hidegree| =

10, |bots| = 5. 65

3.1 Communication of the three highest-degree SSH clients per

thirty second period on the monitored network. As the fig-

ure shows, multiple clients appear to be communicating with

hundreds or thousands of servers at a time, a likely indicator

of scanning or failed harvesting. 71

3.2 Information flow diagram for the attack reduction system. . . 81

3.3 Contribution of significant and insignificant flows to traffic. . 86

3.4 Histogram of total graph size with closeup on normally dis-

tributed minimal area; this figure supports our hypothesis

that the majority of the high-level traffic are simply HCFAs. 88

3.5 Impact of removing observations using shapfilt; note the de-

cided increase in the W -statistic after removing all HCFAs. . 94

3.6 Impact of removing vertices after W exceeds θW for different

sample sizes of equivalent composition. 96

3.7 Impact of state-level and log-level filtering on data set. 99

4.1 Distribution and normal approximations of h and d in ob-

served data set. 116

4.2 Detection surface (Pall
det(a, s), as a percentage) for combined

alarms. 122

LIST OF FIGURES 11

4.3 Detection surfaces (Px
det(a, s), as a percentage) for individual

alarms. 125

4.4 Plot of the payoff for acquisition attacks over the OAS. 129

4.5 False positive rates required to limit expected hosts compro-

mised to 1. 133

4.6 Values of a and s for which Hc
acq(a, s, k) can be limited to at

most the specified value, using a threshold θc = µC + 3.5σC . . 135

4.7 Plot of the payoff for reconnaissance attacks over the OAS. . 138

12 LIST OF FIGURES

Abstract

Anomaly detection systems offer the potential to identify new attacks

before signatures are identified. To do so, these systems build models of

normal user activity from historical data and then use these models to iden-

tify deviations from normal behavior caused by attacks.

In this thesis, we develop a method of anomaly detection using proto-

col graphs, graph-based representations of network traffic. These protocol

graphs model the social relationships between clients and servers, allow-

ing us to identify clever attackers who have a hit list of targets, but don’t

understand the relationships these targets have to each other.

While this method can identify subtle attacks, anomaly detection sys-

tems and IDS in general are challenged by the rise of large-scale industrial-

ized attacks conducted by botnets. The attackers who use botnets have an

active interest in acquiring new hosts, leading to a general form of attack

we refer to as harvesting. Harvesting attacks consist of a constant stream

of low-success high-volume attempts to take over multiple hosts. Because

attackers face relatively little risk of detection, harvesting attacks are con-

ducted continuously. These attacks result in a constant stream of garbage

traffic that can mistrain an anomaly detector, if the detector assumes that

attacks are rare. Furthermore, since harvesting attacks have such a low suc-

cess rate, they generally represent minimal risk to a network, treating all

attacks as equivalent raises the alarm rate extensively even when the attacks

represent little risk to the systems that the anomaly detector monitors.

To that end, we complement our anomaly detection system by developing

14 LIST OF FIGURES

a novel training method that can eliminate hostile activity even when it

makes up the majority of logged traffic. Using this training method, we are

able to increase the sensitivity of our detection method by two orders of

magnitude, in order to detect subtle and successful compromises.

Finally, we examine the impact of our anomaly detection system on at-

tacks by developing a novel payoff-based evaluation method. This approach

treats alarms as a design specification to the attacker and demonstrates

that by using alarms in combination, we can develop a system that caps the

attacker’s maximum effectiveness. However, we also show that all the sys-

tems we examine (ours and otherwise) have specific limits to their detection

capabilities which reward a subtle attacker.

Acknowledgements

Even if there’s only one name on the cover, a thesis is the product of a team of

people who alternately inspire, guide, goad, question and support the person

doing the actual writing. I should therefore first thank my inordinately

patient advisor, Mike Reiter, for performing all of the above tasks in roughly

equal portions. Especially during those periods when it seemed like I was

about to start writing Latin poetry than actually work on the problem in

front of me.

My thanks also go to my committee: John McHugh, Hui Zhang and

Srinivasan Seshan, all of whom provided informative feedback on the devel-

opment of this thesis and were very patient with a sudden shift over to ssh

error correction halfway through.

My thanks also go to the platoons of people who helped create and

support the data that made this work possible, both at the CERT and

elsewhere. There isn’t sufficient space to list all of the people involved, so if

you aren’t on the list of Tan Dang, Roman Danyliw, Jim Downey, Michael

Duggan, Carrie Gates, Jeff Jaime, Marc Kellner, Andrew Kompanek, Sean

McAllister, Jim McCurley, Tim Shimeall, Mark Thomas, Brian Trammell,

and Greg Virgin, that’s only because a list of everyone involved would be

longer than the thesis.

Over the years I’ve spent at CMU, I’ve had the honor of working with cer-

tain faculty who have been both inspiring and generous with their time even

when I was bouncing around as a staff developer. My gratitude also there-

fore to Jay Kadane, Phil Koopman, Jon Peha, Brian Quinn and Eswaran

16 LIST OF FIGURES

Subramanian.

Without my parents I’d have never gotten here, and I have to thank

them both for their support over the past few years and their unending

confidence that I would, at some point, actually wrap up this work and go

onto something else.

Dedicated to the memory of Suresh Konda

18 LIST OF FIGURES

Chapter 1

Introduction

A protocol graph is a graph-based model of network traffic on a particular

protocol; in the context of this work “protocol” means a service running

on top of TCP or UDP, such as SSH, DNS or SMTP. Protocol graphs are

constructed from traffic logs and represent the activity of that protocol over

a short time — in these graphs, the vertices are the entities engaged in the

protocol (e.g., the clients, servers or peers), and the edges indicate that a

communication took place between two entities.

The structure of a protocol graph reflects the social relationships between

users of a particular protocol. As an example of this, consider a protocol

graph representing SSH traffic: since SSH users must use passwords or keys

to log onto servers, an SSH protocol graph will consist of multiple discrete

components, each of which represents a group of users with access to a

particular server. In comparison, a protocol graph representing HTTP traffic

will have far fewer components which are much larger, as HTTP servers

generally provide open access.

19

20 CHAPTER 1. INTRODUCTION

We hypothesize that the social structures described by protocol graphs

provide us with a useful method for detecting anomalies caused by stealthy

attackers. An example of such an attacker is a hit-list scanner, who uses a list

of IP addresses gained from previous reconnaissance to identify vulnerable

hosts. An example of a hit-list scanner includes the SSH attackers observed

by Alata et al. [3] in their deployments and studies of high-interaction hon-

eypots. In Alata’s honeypot studies, there is evidence that attackers would

split their efforts into multiple phases of reconnaissance and exploit. By

doing so, attackers were able to ensure that the bots used in the actual at-

tacks would come from IP addresses far removed from the scanning bots. IP

addresses that blindly scanned the network might be identified and blocked,

but the information acquired by the bots at those addresses would be passed

on to bots at different locations, who could then apply that hit list to avoid

detection.

Protocol graphs provide a method for identifying these attacks because

they model the social relationship between hosts. Even if an attacker knows

that a particular SSH server is present on a particular network, he is unlikely

to know which hosts on the network use that server, and which other SSH

servers those hosts communicate with.

Protocol graphs therefore provide a potential mechanism for detecting

particularly subtle harvesting attacks. Harvesting attacks were first iden-

tified by Mirkovic and Reiher [39] as part of a general two-phase pattern

for DDoS attacks. During the first phase of one of DDoSes, an attacker

acquires hosts to build a network of DDoS bots. During the second phase,

the attacker uses these bots to actually DDoS the target.

21

Since Mirkovic and Reiher identified this differentiation between acqui-

sition and assault, botnets have been used for other purposes in electronic

crime and network attacks. The key feature of all of these attacks, examples

of which are given by Freiling et al. [18], is that the attacker uses a large

number of bots to implement the attack.

A particularly important use of large botnets is to hide the identity

and intent of attackers. The value of anonymous bots to attackers was

first demonstrated by Ramachandran et al. [48]’s study of blacklists, which

provided evidence that attackers have a preference for non-blacklisted hosts.

However, with access to hundreds or thousands of addresses, an attacker

simply switches to a new host. The most aggressive example of this is the

Fast-flux phishing network [41], which uses a large proxy network of occupied

hosts that hide the identity of a “mothership” server. Fast-flux is distinctive

in that it not only uses bots to hide identity, but that it aggressively switches

out bots, expending several hundred a week.

The need for large numbers of expendable bots leads to a new form

of attacker that we term an opportunistic attacker [12]. An opportunistic

attacker has minimal interest in a target except insofar as the target is

exploitable — once an attacker has acquired a host, he will reconfigure it for

his own purposes. We can therefore characterize opportunistic attackers as

more interested in the quantity of hosts they control rather than the qualities

of any particular host.

By switching between bots as described above, an attacker does not need

to be subtle with all his bots, just the right ones. An attacker can afford

to expend bots in very clumsy attacks and then use other bots for subtle

22 CHAPTER 1. INTRODUCTION

and stealthy followups. For network traffic analysis, this directly leads to a

pollution problem caused by a constant stream of failed takeover attempts.

This problem is particularly challenging for anomaly detection, because

the promise of anomaly detection is that it can detect novel attacks by iden-

tifying changes in network behavior [15]. However, as Gates and Taylor [23]

note, anomaly detection systems require access to clean and labeled data,

and this data is generally labeled by assuming that past history is largely

free of attacks. In the noise from constant clumsy attacking, an anomaly

detection system will be unable to identify subtle or successful attacks.

Furthermore, even if an anomaly detection system can be trained to

identify subtle attacks, attackers will still engage in clumsy ones. In order

for an anomaly detection system to be a viable IDS, it must be able to

distinguish and diagnose different classes of attacks. In particular, an IDS

must be at least as effective at identifying events where an attacker has the

potential to damage at network as ones where the attacker has no effect.

The contributions of this thesis are an anomaly detection system that

uses protocol graphs, a method for training such a system on constantly

attacked data, and a method for evaluating the efficacy of such an IDS

against different forms of attacks. The presence of automated harvesting

leads to novel problems beyond the simple identification of attacks. Constant

attacks impact the training and evaluation of IDS, as it is no longer of

question of whether a network is being attacked, but rather the type and

impact of that attack – both on the attacker and defender.

1.1. ANOMALY DETECTION USING PROTOCOL GRAPHS 23

1.1 Anomaly Detection Using Protocol Graphs

Our anomaly detection system uses a novel network traffic representation

we call a protocol graph. A protocol graph is a graph-based representation

of the network traffic observed on a particular protocol over a limited period

of time. In protocol graphs, the vertices represent hosts using a particular

protocol (e.g., SMTP) and edges represent communications between those

hosts.

The advantage of using protocol graphs over other detection methods is

that the protocol networks mapped by graphs should have social attributes

that are reflected in the graph structure. For example, as shown in this

thesis, protocols that require some form of authentication for access (such

as SSH or Oracle’s database client/server protocol), produce protocol graphs

broken into discrete components.

We hypothesize that protocol graphs are a viable method for detecting

subtle attacks, specifically hit-list attacks such as the one used for the Witty

worm [54]. A hit-list attacker will know which IP addresses point to actual

hosts, so they will not produce the type of errors or magnitude of traffic that

scan detection systems such as TRW [26] use to identify attackers. However,

even if an attacker knows which addresses on a network they can connect to,

they should not know how other parties on the network normally interact

with those hosts, and consequently risk detection by disrupting measurable

attributes of the corresponding protocol graph.

To test our hypothesis, we develop a simple protocol-graph based anomaly

detection system which monitors two attributes of a protocol graph: the

24 CHAPTER 1. INTRODUCTION

graph size, v, and the largest component size c. We demonstrate that in the

absence of attack, these qualities can be modeled using a Gaussian distribu-

tion and their values predicted using simple statistical techniques. Further-

more, using a sequence of simulated hit-list attack, we demonstrate that an

attacker will affect both attributes.

We refer to these attacks as graph inflation or component inflation. In

graph inflation, a bot increases the size of the current protocol graph by

communicating with absent or nonexistent hosts. In component inflation, a

bot increases the size of the largest component by connecting components

which are normally separate. Depending on the protocol involved and the

rate at which it hits targets, an attacking bot will trigger alarms based on

graph inflation, component inflation, or both.

In addition to demonstrating that we can use protocol graphs to de-

tect anomalies, we introduce a graph based diagnostic mechanism that uses

changes in the total number of components to identify attackers. While the

total number of components is not a sufficiently stable value to use as an

alarm, a bot’s impact on the component count is observable. We demon-

strate that when a hit-list bot’s traffic is removed from a network, the total

component count of the graph will increase. This increase is both distinctive

and characteristic of hit-list bots — when normal users are removed from

the graph, this same increase does not occur.

These results demonstrate that we can identify anomalies and attackers

using graph manipulations and provides us a coherent model of anomaly

detection and attacker identification using protocol graphs as a model.

1.2. TRAINING IDS ON NOISY DATA 25

1.2 Training IDS on Noisy Data

Recall that the the total graph size and largest component size of a protocol

graph can be modeled by a Gaussian distribution in the absence of attacks.

However, because attackers have an active interest in acquiring additional

hosts for their botnets, and because they have little concern about retribu-

tion, they regularly scan multiple protocols for viable targets. On a large

network, such as the one we observe, protocols such as SSH are scanned

literally every minute.

In order to compensate for this, we develop a training mechanism that

integrates two stages of filtering to recover a normal distribution. The model

is based on the assumption that instead of eliminating all attacks from

training, we specifically intend to remove clumsy attacks, and that these

attacks will be common and easily identified. We classify clumsy attacks as

HCFAs: High Connection Failure Attacks; in traffic logs, HCFAs appear as

long sequences of failed connections from a particular host.

Our attack filtering method combines two forms of filtering: log-level

and state-level. Log-level filtering eliminates individual log records when

there is evidence that the record is an HCFA. For example, for flow records,

evidence that a flow is not a complete session (e.g., it has less than 3 packets,

no ACK flags or no payload beyond TCP options) is a strong indicator that

the flow describes an HCFA. Log-level filtering is intended as a coarse first

step to reduce the volume of traffic examined by more sophisticated models.

Managing the volume of traffic from scanners is a significant performance

problem, especially on large networks; an attacker scanning a single /27 will

26 CHAPTER 1. INTRODUCTION

normally generate more flows than a legitimate SSH session. The goal of

log-level filtering is therefore to eliminate indicia of hostile activity without

eliminating indicia of normal user activity.

Log-level filtering reduces the amount of data that state-level filtering

must process. The intuition motivating state-level filtering is that if a traffic

log record was part of a scan, but passed log-level filtering, then that indi-

cates a common mode failure on the part of the log-level filter. In such a

case, we will see many traffic records associated with that particular scan.

State-level filtering therefore operates by assuming that the state attribute

monitored (such as graph size or largest component size) is Gaussian in

the absence of attacks, and that the attacker can only increase the state

attribute. For example, an attacker can increase the total graph size of a

protocol graph by scanning, but they cannot decrease that graph because

they can’t eliminate normal activity. Using a simple normality test and a

progressive elimination process, we can recover the body of traffic which is

Gaussian and then use those results to train an anomaly detector.

1.3 Evaluating IDS Impact

The automated scanning discussed in §1.2 comes from automated harvesting

attempts by attackers. In this section of our work, we evaluate the ability

of an IDS to deter harvesting attempts.

In order to do so, we make two assumptions about attacker and defender

behavior. We assume that the attacker is a rational entity — he is interested

in acquiring new hosts without excess risk to himself. Furthermore, we

1.3. EVALUATING IDS IMPACT 27

assume that defenders are vigilant entities — if they find a host on their

network has been damaged or occupied, they will attempt to rectify this.

Using these two assumptions, we build a model of IDS evaluation based

around what we term an observable attack space or OAS. An OAS is the

space of attacks that an attacker can conduct as observed by a particular

logging mechanism. For example, an attacker observed with NetFlow traffic

can conduct many attacks (such as password guessing and buffer overflows)

that, from the log data, will appear to be similar. Consequently, attacks

such as scanning and automated botnet harvesting, by virtue of the data

collected, will appear to be identical and can only be differentiated by the

degree to which an attack is carried out. We quantify that degree as an

attacker’s aggressiveness, the number of IP addresses they contact during

an attack, and their success rate, the number of IP addresses they contact

which are actually present.

We contend that the observable attack space can be used as a form of

design specification for an attacker. Attacks are represented by points on

the OAS, and the probability that a particular attack can be detected is

determinable via simulation. Using these results, we calculate a detection

surface over the OAS, and then can apply a payoff function to the detection

surface to determine the attacker’s results in each case. We can, at this

point, treat the attack as a zero-sum game — the attacker wins by taking

over hosts, while the defender wins by reclaiming hosts after they have been

taken over.

This methodology allows us to examine the successes and failures of vari-

ous attack detection mechanisms as a function of attacker behavior, expand-

28 CHAPTER 1. INTRODUCTION

ing traditional ROC-based analysis into a payoff-based framework. Using

the OAS/Detection Surface approach, we are able to compare various forms

of IDS, including our own protocol-graph based approaches and Jung et al.’s

TRW [26] method to evaluate how well they operate against various classes

of attacks. We find, for example, that our largest component size protocol

graph detection and TRW complement each other.

We evaluate anomaly detection mechanisms individually and in concert.

In addition, we develop two models of attacker payoff — one for hit-list

attacks and one for scanning. Using these payoff models, we are able to ask

questions about the minimum false positive rate (FPR) required to detect

attacks and determine what FPR is required to effectively limit attacker

behavior.

1.4 Outline of the Work

The core of this thesis is divided into three chapters. Chapter 2 describes

the construction and use of protocol graphs for anomaly detection. Chap-

ter 3 describes the problem of training protocol graphs on protocols that are

constantly attacked. Chapter 4 compares protocol graph based detection

and other anomaly detection methods by examining their potential impact

on attacker behavior.

Chapter 2 describes a simple anomaly detection mechanism. In this

chapter, we develop an anomaly detector for extremely subtle attacks by

using protocol graphs. This analysis studies two particular graph attributes:

the total graph size (v) and the largest component size (c). We demonstrate

1.4. OUTLINE OF THE WORK 29

that these attributes are, in the absence of attacks, predictable. In addition,

we demonstrate that protocol-graph based anomaly detection mechanisms

can be used to identify attacks which are, on a flow-by-flow basis, extremely

subtle. Specifically, since protocol graphs mirror social structure, an attacker

with no knowledge of the interrelationships between hosts on a network will

damage a protocol graph’s structure in a directly observable fashion.

Chapter 3 addresses the problem of training IDS to effectively use a

threshold-based anomaly detection system. IDS training is complicated by

the presence of a large number of extremely clumsy attackers who conduct

blatantly obvious scans. If a threshold-based IDS does not address these

common attacks, the resulting thresholds will be so high as to make anomaly

detection meaningless. We address this problem by combining filtering on

both individual records and the aggregate system. By doing so, we are

able to increase the sensitivity of our detection mechanism by two orders of

magnitude.

Chapter 4 compares protocol graph based detection methods against

other harvesting detection attacks. To do so, we develop a novel IDS eval-

uation scheme that focuses on the potential impact an alarm can have on

an attacker’s goals, rather than focusing exclusively on the IDS’ capacity

to detect attacks. Using this method, we are able to identify systematic

weaknesses of several IDS. In addition, we are able to use this method to

address the problem of minimum false positive rates: how high an FPR an

IDS must have in order to prevent attackers from reaching their goals.

30 CHAPTER 1. INTRODUCTION

Chapter 2

Protocol Graphs

Large numbers of Internet worms have prompted researchers to develop

a variety of anomaly-based approaches to detect these attacks. Exam-

ples include monitoring the number of failed connection attempts by a

host (e.g., [10, 51, 71]), or the connection rate of a host to new targets

(e.g., [64, 52]). These systems are designed to detect abnormally frequent

connections and often rely on evidence of connection failure, such as half-

open TCP connections. To avoid detection by these systems, an attacker

can use a hit list [57] generated previous to the attack or generated by an-

other party [4]. An attacker using an accurate hit list contacts only targets

known to be running an accessible server, and therefore will not trigger an

alarm predicated on connection failure. By constraining the number of at-

tack connections initiated by each attacker-controlled bot, the attacker could

compromise targets while evading detection by most (if not all) techniques

that monitor the behavior of individual hosts or rely on connection failures.

In this chapter, we propose a new detection method, based on moni-

31

32 CHAPTER 2. PROTOCOL GRAPHS

toring protocol graphs. A protocol graph is a graph-based representation of

a traffic log for a single protocol. In a protocol graph, the vertices repre-

sent the IP addresses used as clients or servers for a particular protocol (e.g.,

FTP), and the edges represent communication between those addresses. We

expect that a protocol graph will have properties that derive from its under-

lying protocol’s design and use. For example, we expect that since Oracle

communications require password authentication and HTTP interactions

do not, a protocol graph representing Oracle will have more connected com-

ponents than a protocol graph representing HTTP. Conversely, while the

HTTP graph will have fewer connected components, its largest connected

component will be much larger relative to the total size ofthe graph.

Our detection approach focuses on two graph properties: the number of

vertices comprising the graph (“graph size”) and the number of vertices in

the largest connected component of the graph (“largest component size”)

for traffic logs collected in a fixed duration. We hypothesize that while an

attacker may have a hit list identifying servers within a network, he will not

have accurate information about the activity or audience for those servers.

As a consequence, a hit-list attack will either artificially inflate the number of

vertices in a protocol graph, or it will connect disjoint components, resulting

in a larger than expected size for the largest connected component.

To test this, we examine protocol graphs generated from traffic of sev-

eral common protocols as observed in a large (larger than a /8) network.

Specifically, we examine HTTP, SMTP, Oracle and FTP. Using this data, we

confirm that protocol graphs for these protocols have predictable graph and

largest component sizes. We then inject synthetic hit-list attacks into the

33

network, launched from one or more attacker-controlled bots, to determine

if these attacks detectably modify either graph size or largest component

size of the observed protocol graphs. The results of our study indicate that

monitoring graph size and particularly largest component size is an effec-

tive means of hit-list worm detection for a wide range of attack parameters

and protocols. For example, if tuned to yield one false alarm per day, our

techniques reliably detect aggressive hit-list attacks and detect even mod-

erate hit-list attacks with regularity, whether from one or many attacker-

controlled bots.

Once an alarm is raised, an important component of diagnosis is deter-

mining which of the vertices in the graph represent bots. We show how to

use protocol graphs to achieve this by measuring the number of connected

components resulting from the removal of high-degree vertices in the graph.

We demonstrate through extensions to our analysis that we can identify

bots with a high degree of accuracy for FTP, SMTP and HTTP, and with

somewhat less (though still useful) accuracy for Oracle. We also show that

our bot identification accuracy exceeds what can be achieved by examining

vertex degree alone.

While there are many conceivable measures of a protocol graph that

might be useful for detecting worms, any such measure must be efficient to

monitor if detection is to occur in near-real-time. The graph size and largest

component size are very advantageous in this respect, in that they admit

very efficient computation via well-known union-find algorithms (see [20]).

A union-find algorithm implements a collection of disjoint sets of elements

supporting two operations: two sets in the collection can be merged (union),

34 CHAPTER 2. PROTOCOL GRAPHS

and the set containing a particular element can be located (find). In our

application, the elements of sets are IP addresses, and the sets are the con-

nected components of the protocol graph. As such, when a new communi-

cation record is observed, the set containing each endpoint is located (two

find operations) and, if these two sets are distinct, they can be merged (a

union operation). Using well-known techniques, communication records can

be processed in amortized time that is effectively a small constant per com-

munication record, and in space proportional to the number of IP addresses

observed. By comparison, detection approaches that track connection rates

to new targets (e.g., [64, 52]) require space proportional to the number of

unique connections observed, which can far exceed the number of unique IP

addresses observed. While our attacker identification that is performed fol-

lowing an alarm incurs costs similar to these prior techniques, we emphasize

that it can be proceed simultaneously with reactive defenses being deployed

and so need not be as time-critical as detection itself.

To summarize, the contributions of this chapter include (i) defining pro-

tocol graphs and detailing their use as a hit-list attack detection technique;

(ii) demonstrating through trace-driven analysis on a large network that

this technique is effective for detecting hit-list attacks; (iii) extending pro-

tocol graph analysis to infer the locations of bots when hit-list worms are

detected; and (iv) describing efficient algorithms by which worm detection

and bot identification can be performed, in particular with detection being

even more efficient than techniques that focus on localized behavior of hosts.

Our chapter proceeds as follows. § 2.1 summarizes previous relevant

work. § 2.2 describes protocol graphs and the data we use in our analysis.

2.1. PREVIOUS WORK 35

§ 2.3 examines the size of graphs and their largest components under normal

circumstances, and introduces our anomaly detection technique. In § 2.4,

we test our technique through simulated hit-list attacks. We extend our ap-

proach to identify attackers in § 2.5. § 2.6 addresses implementation issues.

§ 2.7 summarizes our results and discusses ongoing and future research.

2.1 Previous Work

Several intrusion detection and protocol identification systems have used

graph-based communication models. Staniford et al.’s GrIDS system [58]

generates graphs describing communications between IP addresses or more

abstract entities within a network, such as the computers comprising a de-

partment. A more recent implementation of this approach by Ellis et al. [16]

has been used for worm detection. Karagiannis at al. [29] develop a graph-

ical traffic profiling system called BLINC for identifying applications from

their traffic. Stolfo et al.’s [61] Email Mining Toolkit develops graphical rep-

resentations of email communications and uses them to detect email viruses

and worms.

In all of these cases, the systems detect phenomena of interest based on

localized (e.g., per-vertex or vertex neighborhood) properties of the graph.

GrIDS generates rules describing how internal departments or organizations

communicate, and can develop threshold rules (e.g., “trigger an alarm if

the vertex has degree more than 20”). Ellis’ approach uses combinations

of link predicates to identify a host’s behavior. Karagiannis’ approach ex-

presses these same communications using subgraph models called graphlets.

36 CHAPTER 2. PROTOCOL GRAPHS

Stolfo et al.’s approach identifies cliques per user, to whom the user has been

observed sending the same email, and flags emails that span multiple cliques

as potentially containing a virus or worm. In comparison to these efforts,

our work focuses on aggregate graph behavior (graph size and largest com-

ponent size) as opposed to localized properties of the graph or individual

vertices. Moreover, some of these approaches utilize more protocol semantics

(e.g., the event of sending an email to multiple users [61], or the expected

communication patterns of an application [29]) that we do not consider here

in the interest of both generality and efficiency.

Several empirical studies have attempted to map out the structure of ap-

plication networks. Such studies of which we are aware have been conducted

by actively crawling the application network in a depth- or breadth-first

manner, starting from some seed set of known participants. For example,

Broder et al. [8] studied web interconnectivity by characterizing the links

between pages. Ripeanu et al. [49] and Saroiu et al. [50] similarly conducted

such studies of Gnutella and BitTorrent, respectively. Pouwelse et al. [47]

use a similar probe and crawl approach to identify BitTorrent networks over

an 8-month period. Our work differs from these in that our techniques are

purely passive and are assembled (and evaluated) for the purpose of worm

detection.

Our protocol graphs are more closely related to the call graphs studied by

Aiello et al. [2] in the context of the AT&T voice network. In a call graph,

each vertex represents a phone number and each (directed) edge denotes

a call placed from one vertex to another. Aiello et al. observe that the

size of the largest connected component of observed call graphs is Θ(|V |),

2.2. PRELIMINARIES 37

where V denotes the vertices of the graph. These call graphs are similar

to our protocol graphs, the primary differences being that call graphs are

directed (the protocol graphs we study are undirected) and that they are

used to characterize a different domain (telephony, versus data networks

here). However, Aiello et al. studied call graphs to understand their basic

structure, but not with attention to worm detection (and in fact we are

unaware of worms in that domain).

2.2 Preliminaries

In this section, we investigate the construction and composition of protocol

graphs. Protocol graphs are generated from traffic logs; our analyses use

CISCO Netflow, but graphs can also be constructed using tcpdump data or

server logs.

This section is structured as follows. § 2.2.1 describes the construction of

protocol graphs and our notation for describing them and their properties.

§ 2.2.2 describes our source data.

2.2.1 Protocol Graphs

We consider a log file (set) Λ = {λ1, . . . , λn} of traffic records. Each record

λ has fields for IP addresses, namely source address λ.sip and destination

address λ.dip. In addition, λ.server denotes the address of the server in the

protocol interaction (λ.server ∈ {λ.sip, λ.dip}), though we emphasize that we

require λ.server only for evaluation purposes; it is not used in our detection

or attacker identification mechanisms.

38 CHAPTER 2. PROTOCOL GRAPHS

Given Λ, we define an undirected graph G(Λ) = 〈V(Λ),E(Λ)〉, where

V(Λ) =
⋃
λ∈Λ

{λ.sip, λ.dip} E(Λ) =
⋃
λ∈Λ

{(λ.sip, λ.dip)}

In addition to E(Λ) and V(Λ), we use K(Λ) to describe the set of connected

components of a graph. Each connected component is treated as a discrete

set of vertices; the largest connected component of a graph G(Λ) is denoted

C(Λ) ⊆ V(Λ). Note that by construction, G(Λ) has no connected compo-

nent of size one (i.e., an isolated vertex); all components are of size two or

greater.1

We denote by Λπ a log file that is recorded during the interval π ⊆

[00:00GMT, 23:59GMT] on some specified date. For each log file Λπ, we

define the graph size as:

v(Λπ) ≡ |V(Λπ)| (2.1)

The largest component size as:

c(Λπ) ≡ |C(Λπ)| (2.2)

And the component set size as:

k(Λπ) ≡ |K(Λπ)| (2.3)

Where the vertical bars indicate the cardinality of the corresponding set.

We model the graph size and largest component size for logs Λπ collected

1It is possible for various logging mechanisms, under specific circumstances, to record
a flow from a host to itself. We eliminate those records for this work.

2.2. PRELIMINARIES 39

in dur-length time intervals π ⊆ Π, using the random variables Vdur
Π and Cdur

Π .

For example, in the following sections we will focus on Π = [00:00GMT,

11:59GMT] (denoted am) and Π = [12:00GMT, 23:59GMT] (denoted pm),

and take v(Λπ) and c(Λπ) with π ⊆ am of length 60 seconds (s) as an

observation of V60s
am and C60s

am , respectively.

We calculate the means and standard deviations of these variables from

vectors of observed values. A vector V dur
Π consists of all the v observations

in the interval Π using log files of duration dur. The vector Cdur
Π is the same

vector consisting of c observations. We refer to the arithmetic mean of a

vector V dur
Π as µΠ,dur

V and the corresponding standard deviation as σΠ,dur
V .

2.2.2 Data Set

The source data for these analyses are CISCO Netflow traffic summaries

collected on a large (larger than a /8) ISP network. We use collectors at the

border of the network’s autonomous intranets in order to record the internal

and cross border network activity. Therefore, all protocol participants that

communicate between intranets or with the Internet are observed. Netflow

reports flow logs, where a flow is a sequence of packets with the same ad-

dressing information that are closely related in time. Flow data is a compact

summary of network traffic and therefore useful for maintaining records of

traffic across large networks.

Flow data does not include payload information, and as a result we

identify protocol traffic by using port numbers. Given a flow record, we

convert it to a log record λ of the type we need by setting λ.server to the

IP address that has the corresponding service port; e.g., in a flow involving

40 CHAPTER 2. PROTOCOL GRAPHS

ports 80 and 3946, the protocol is assumed to be HTTP and the server is

the IP address using port 802. Protocol graphs constructed using log files

with payload could look for banners within the payload to identify services.

The protocols used for analysis are listed below.

• HTTP: The HTTP dataset consists of traffic where the source or des-

tination port is port 80 and the other port is ephemeral (≥ 1024).

HTTP is the most active protocol on the monitored network, com-

prising approximately 50% of the total number of bytes crossing the

network during the workday.

• SMTP: SMTP consists of TCP traffic where the source or destination

port is port 25 and the other port is ephemeral. After HTTP, SMTP

is the most active protocol on the monitored network, comprising ap-

proximately 30% of the total number of bytes.

• Oracle: The Oracle dataset consists of traffic where one port is 1521

and the other port is ephemeral. While Oracle traffic is a fraction

of HTTP and SMTP traffic, it is a business-critical application. More

importantly, Oracle connections are password-protected and we expect

that as a consequence any single user will have access to a limited

number of Oracle servers.

• FTP: The FTP dataset consists of records where one port is either 20

or 21, and the other port is ephemeral. While FTP provides password-

based authentication, public FTP servers are still available.

2We note that the construction process assumes that the flow in this context describes
a legitimate interection; the difficulties involved in this assumption are addressed in Chap-
ter 3

2.3. BUILDING A HIT-LIST WORM DETECTOR 41

 1

 10

 100

 1000

 10000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

S
iz

e
(v

er
tic

es
)

Time (GMT)

v(Λπ)

c(Λπ)

Figure 2.1: Attributes of Oracle traffic on March 5th, 2007; start time of π
is on x-axis; dur = 60s.

2.3 Building a Hit-List Worm Detector

In this section we describe the general behavior of protocol graphs over

time, and show that the distributions of Vdur
Π and Cdur

Π can be satisfactorily

modeled as normal for appropriate choices of Π and dur (§ 2.3.1). The pa-

rameters of these distributions change as a function of the protocol (HTTP,

SMTP, FTP, Oracle), the interval in which logging occurs (Π), and the du-

ration of log collection (dur). Nevertheless, in all cases the graph and largest

component sizes are normally distributed, which enables us to postulate a

detection mechanism for hit-list worms and estimate the false alarm rate for

any detection threshold (§ 2.3.2).

42 CHAPTER 2. PROTOCOL GRAPHS

 0

 50

 100

 150

 200

 250

 300

 350

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

S
iz

e
(v

er
tic

es
)

Time (GMT)

v(Λπ)

µV
Π,60s±tσV

Π,60s

(a) v(Λπ) after filtering

 0

 10

 20

 30

 40

 50

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

S
iz

e
(v

er
tic

es
)

Time (GMT)

c(Λπ)

µC
Π,60s±tσC

Π,60s

(b) c(Λπ) after filtering

Figure 2.2: Atributes and model of Oracle traffic (after filtering) on March
5th, 2007. Start times and dur as in Figure 2.1.

2.3. BUILDING A HIT-LIST WORM DETECTOR 43

2.3.1 Graph Behavior Over Time

Figure 2.1 is a plot of the observed values of v(ΛΠ) and c(ΛΠ) for Ora-

cle traffic on the monitored network for Monday, March 5th, 2007. Each

logging interval π begins at a time indicated on the x-axis, and continues

for dur = 60s. In this figure, the x-axis represents the starting time for

the observation (recorded in GMT) and the y-axis is the total size of the

observation expressed as a count of vertices. Traffic between servers inter-

nal to the monitored network and their clients (internal or external to the

monitored network) was recorded. Plots including external servers show the

same business-cycle dependencies and stability. However, we ignore external

servers because the vantage point of our monitored network will not allow

us to see an external attack on an external server.

Figure 2.1 is plotted logarithmically due to the anomalous activity visible

after 18:00GMT. At this time, multiple bots scanned the monitored network

for Oracle servers. These types of disruptive events are common to all

the training data; we identify and eliminate these scans using Jung et al.’s

sequential hypothesis testing method [26]. In this method, scanners are

identified when they attempt to connect to servers that are not present

within the targeted network. This method will not succeed against hit-list

attackers, as a hit-list attacker will only communicate with servers that are

present on the network.

Figure 2.2(a)–(b) is a plot of the same activity as in Figure 2.1 after

the scan events are removed: Figure 2.1(a) plots v(Λπ), while Figure 2.1(b)

plots c(Λπ).

44 CHAPTER 2. PROTOCOL GRAPHS

D
en

si
ty

0 50 100 150 200 250 3000.
00

0
0.

00
4

0.
00

8
0.

01
2

D
en

si
ty

10 20 30 40 500.
00

0.
02

0.
04

0.
06

0.
08

V60s
am C60s

am

D
en

si
ty

150 200 250 300 3500.
00

0
0.

00
4

0.
00

8
0.

01
2

D
en

si
ty

10 20 30 40 50 600.
00

0.
01

0.
02

0.
03

0.
04

0.
05

V60s
pm C60s

pm

Figure 2.3: Distributions for Oracle over March 12–16, 2007, fitted to normal
distributions.

Once scans are removed from the traffic logs, the distribution of traf-

fic can be satisfactorily modeled with normal distributions. More precisely,

we divide the day into two intervals, namely am = [00:00GMT, 11:59GMT]

and pm = [12:00GMT, 23:59GMT]. For each protocol we consider, we define

random variables V60s
am and V60s

pm , of which the points on the left and right

halves of Figure 2.2(a) are observations for Oracle, respectively. Similarly,

we define random variables C60s
am and C60s

pm , of which the points on the left and

2.3. BUILDING A HIT-LIST WORM DETECTOR 45

right halves of Figure 2.2(b) are observations, respectively. By taking such

observations from all of March 12–16, 2007 for each of V60s
am , V60s

pm , C60s
am and

C60s
pm , we fit a normal distribution to each effectively; see Figure 2.3.3 Fig-

ure 2.3 are histograms: the x-axis describes the value of an observation, and

the y-axis its frequency. The line drawn in each histogram is an estimated

normal distribution using the empirically observed mean and standard de-

viation for that histogram.

On the left half of Figure 2.2(a), we plot µam,60s
V as a horizontal line

and γ σam,60s
V as error bars with γ = 3.5. We do similarly with µpm,60s

V and

γ σpm,60s
V on the right half, and with µam,60s

C and γ σam,60s
C and µpm,60s

C and

γ σpm,60s
C on the left and right halves of Figure 2.2(b), respectively. The

choice of γ = 3.5 will be justified below.

In exactly the same way, we additionally fit normal distributions to V30s
am ,

C30s
am , V30s

pm , and C30s
pm for each protocol, with equally good results. And, of

course, we could have selected finer-granularity intervals than half-days (am

and pm), resulting in more precise means and standard deviations on, e.g.,

an hourly basis. Indeed, the tails on the distributions of V60s
am and C60s

am in

Figure 2.3 are a result of the coarse granularity of our chosen intervals, owing

to the increase in activity at 07:00GMT (see Figure 2.2(a)). We elect to not

refine our am and pm intervals here, however, for presentational convenience.

2.3.2 Detection and the False Alarm Rate

Our detection system is a simple hypothesis testing system; the null hy-

pothesis is that an observed log file Λ does not include a worm propagation.

3For all protocols, the observed Shapiro-Wilk statistic is in excess of 0.95.

46 CHAPTER 2. PROTOCOL GRAPHS

Recall from § 2.3.1 that for a fixed interval Π ∈ {am, pm}, graph size Vdur
Π and

largest component size Cdur
Π are normally distributed with mean and stan-

dard deviation µΠ,dur
V and σΠ,dur

C , respectively. As such, for a dur-length pe-

riod π ⊆ Π, we raise an alarm for a protocol graph G(Λπ) = 〈V(Λπ),E(Λπ)〉

if either of the following conditions holds:

v(Λπ) > µΠ,dur
V + γ σΠ,dur

V (2.4)

c(Λπ) > µΠ,dur
C + γ σΠ,dur

C (2.5)

Recall that for a normally distributed random variable X with mean µX and

standard deviation σX ,

P [X ≤ x] =
1
2

[
1 + erf

(
x− µX

σX
√

2

)]
(2.6)

where erf(·) is the so called “error function” [30]. This enables us to compute

the contribution of condition (2.4) to the false negative (alarm) rate FNR

for a given threshold γ as 1−P
[
Vdur

Π ≤ µΠ,dur
V + γ σΠ,dur

V

]
, and similarly for

the contribution of condition (2.5) to FNR. Conversely, since erf−1(·) exists,

given a desired FNR we can compute a threshold γ so that our FNR is not

exceeded:

γ =
√

2 erf−1

(
1
2
− FNR

2

)
(2.7)

Note that the use of FNR
2 in (2.7) ensures that each of conditions (2.4)

and (2.5) contribute at most half of the target FNR and consequently that

both conditions combined will yield at most the target FNR.

Finally, recall that each Λπ represents one dur-length time period π, and

2.4. PROTOCOL GRAPH CHANGE DURING ATTACK 47

FNR is expressed as a fraction of the log files, or equivalently, dur-length

time intervals, in which a false alarm occurs. We can obviously extrapolate

this FNR to see its implications for false alarms over longer periods of time.

For the remainder of this chapter, we will take as our goal a false alarm

frequency of one per day (with dur = 60s), yielding a threshold of γ = 3.5.

This estimate depends on accurate calculations for µΠ,dur
V , µΠ,dur

C , σΠ,dur
V ,

and σΠ,dur
C for the time interval Π in which the monitoring occurs. In the

remainder of this chapter, we will compute these values based on data col-

lected on March 12–16, 2007.

2.4 Protocol Graph Change During Attack

We showed in § 2.3 that, for the protocols examined, Cdur
am , Vdur

am , Cdur
pm and Vdur

pm

are normally distributed (§ 2.3.1), leading to a method for computing the

false alarm rate for any given detection threshold (§ 2.3.2). In this section,

we test the effectiveness of this detection mechanism against simulated hit-

list attacks. § 2.4.1 describes the model of attack used. § 2.4.2 describes

the experiment and our evaluation criteria. The detection results of our

simulations are discussed in § 2.4.3.

2.4.1 Attack and Defense Model

We simulate hit-list attacks, as described by Staniford et al. [57]. A hit list is

a list of target servers identified before the actual attack. An apparent exam-

ple of a hit-list worm is the Witty worm: reports by Shannon and Moore [54]

hypothesized that Witty initially spread via a hit list. Further analyses by

48 CHAPTER 2. PROTOCOL GRAPHS

Figure 2.4: Graphical representation of attacks, where “C”, “S” and “A”
denote a client, server and attacker-controlled bot, respectively. The left
hand attack affects total graph size (v(Λπ)), but not largest component size.
The attack on the right affects largest component size (c(Λπ)), but not total
graph size.

Kumar et al. [31] identified Witty’s “patient zero” and demonstrated that

this host behaved in a notably different fashion from subsequently-infected

Witty hosts, lending support to the theory that patient zero used a hit list

to infect targets.

We hypothesize that an attacker who has a hit list for a targeted net-

work will be detectable by examining v(Λπ) and c(Λπ) where Λπ is a log

file recorded during a time interval π in which a hit-list worm propagated.

2.4. PROTOCOL GRAPH CHANGE DURING ATTACK 49

We assume that the attacker has the hit list, but has no knowledge of the

targeted servers’ current activity or audience. If this is the case, then the

attacker contacting his hit list will alter the observed protocol graph through

graph inflation or component inflation.

Figure 2.4 shows how these attacks impact protocol graphs. Graph infla-

tion occurs when an attacker communicates with servers that are not active

during the observation period π. When this occurs, the attacker artificially

inflates the number of vertices in the graph, resulting in a value of v(Λπ) that

is detectably large. The vertices of a protocol graph include both clients and

servers, while the attacker’s hit list will be composed exclusively of servers.

As a result, we expect that graph inflation will require communicating with

many of the hit-list elements (roughly γ σΠ,dur
V for dur-length π ⊆ Π) to

trigger condition (2.4).

Component inflation occurs when the attacker communicates with servers

already present in Λπ during the observation period π. When this occurs, the

attacker will merge components in the graph, and c(Λπ) will be detectably

large. In comparison to graph inflation, component inflation can happen

very rapidly; it may occur in a detectable way if an attacker communicates

with two servers. However, if the graph already has a small number of com-

ponents (as is the case with SMTP), or the attacker uses multiple bots to

attack, then the attack may not be noticed.

2.4.2 Experiment Construction

The training period for our experiments was March 12–16, 2007. We consid-

ered two different values for dur, namely 30s and 60s. Table 2.1 contains the

50 CHAPTER 2. PROTOCOL GRAPHS

HTTP SMTP Oracle FTP
r.v. µ σ µ σ µ σ µ σ

V30s
am 10263 878 2653 357 65.3 18.7 291.9 57.0
C30s

am 9502 851 2100 367 17.52 4.00 65.30 8.10
V30s

pm 16460 2540 3859 336 128.7 32.4 359.8 67.1
C30s

pm 15420 2420 3454 570 30.60 6.28 80.02 8.23
V60s

am 14760 1210 4520 634 111.8 28.1 467.4 76.9
C60s

am 13940 1180 4069 650 12.92 4.24 37.3 11.3
V60s

pm 23280 3480 6540 935 240.3 31.7 555.5 94.8
C60s

pm 22140 3320 6200 937 28.84 8.44 45.9 12.2

Table 2.1: Means and standard deviations (to three significant digits on
standard deviation) for Vdur

am , Cdur
am , Vdur

pm and Cdur
pm for dur ∈ {30s, 60s} on

March 12–16, 2007.

computed means and standard deviations for Vdur
am , Cdur

am , Vdur
pm and Cdur

pm for

the training period and for each choice of dur, which are needed to evaluate

conditions (2.4) and (2.5). As shown in Table 2.1, the largest component for

HTTP and SMTP was close to the total size of the protocol graph after 60s,

and the relative difference between the two values decreases as dur grows.

An important point illustrated in Table 2.1 is that the graph sizes can

differ by orders of magnitude depending on the protocol. This demonstrates

the primary argument for generating per-protocol graphs: the standard de-

viations in graph size and largest component size for HTTP and SMTP are

larger than the mean sizes for Oracle and FTP.

For testing, we model our attack as follows. During a period π, we collect

a log Λctl
π of normal traffic. In parallel, the attacker uses a hit-list set HitList

to generate its own traffic log Λatk. This log is merged with Λctl
π to create a

new log Λtest
π = Λctl

π ∪ Λatk. We then examine conditions (2.4) and (2.5) for

2.4. PROTOCOL GRAPH CHANGE DURING ATTACK 51

Protocol Servers
SMTP 2818
HTTP 8145
Oracle 262
FTP 1409

Table 2.2: Count of servers observed between 12:00GMT and 13:00GMT on
each of March 12–16, 2007.

interval Π ∈ {am, pm} such that π ⊆ Π; if either condition is true, then we

raise an alarm. In our tests, we select periods π of length dur from March

19, 2007, i.e., the next business day after the training period.

To generate the HitList sets, we intersect the sets of servers which are

observed as active on each of March 12–16, 2007 between 12:00GMT and

13:00GMT. The numbers of servers so observed are shown in Table 2.2.

The attacker attacks the network over a protocol by selecting hitListPerc

percentage of these servers (for the corresponding protocol) at random to

form HitList. The attacker (or rather, his bots) then contacts each element

of HitList in order to generate the log file Λatk.

More precisely, we allow the attacker to use multiple bots in the attack;

let bots denote the bots used by the attacker. We assume that bots do not

appear in the log Λctl
π and, given that dur is short, we keep bots static through

the simulation. Each bot boti ∈ bots is assigned a hit list HitListi consisting

of a random |HitList|
|bots| fraction of HitList. Each bot’s hit list is drawn randomly

from HitList, but hit lists do not intersect. That is,
⋃

i HitListi = HitList and

for i 6= j, HitListi ∩ HitListj = ∅. Λatk is generated by creating synthetic

attack records from each boti to all members of HitListi.

52 CHAPTER 2. PROTOCOL GRAPHS

HTTP SMTP
hitListPerc = hitListPerc =

dur |bots| 25 50 75 100 25 50 75 100

30s
1 73 80 95 100 28 74 100 100
3 72 80 95 100 25 50 97 100
5 60 80 92 100 23 45 98 100

60s
1 68 80 100 100 20 50 70 80
3 65 68 100 100 10 35 65 70
5 65 63 100 100 5 30 60 55

Oracle FTP
hitListPerc = hitListPerc =

dur |bots| 25 50 75 100 25 50 75 100

30s
1 100 100 100 100 100 100 100 100
3 33 95 100 100 100 100 100 100
5 16 87 99 100 100 100 100 100

50s
1 100 100 100 100 100 100 100 100
3 28 100 100 100 100 100 100 100
5 12 100 100 100 100 100 100 100

Table 2.3: True alarm percentages for combined detector (conditions (2.4)
and (2.5)).

2.4.3 True Alarms

Table 2.3 shows the effectiveness of the detection mechanism as a function

of dur for different hitListPerc values. hitListPerc varies between 25% and

100%. The value in each cell is the percentage of attacks that were detected

by the system.

Table 2.3 sheds light on the effectiveness of our approach. The most

aggressive worms we considered, namely those that contacted hitListPerc ≥

75% of known servers (see Table 2.2) within dur = 30s, were easily detected:

our tests detected these worms more than 90% of the time for all protocols

2.4. PROTOCOL GRAPH CHANGE DURING ATTACK 53

and all numbers of |bots|, and at least 95% of the time except in one case.

The table also sheds light on approaches an adversary might take to make

his worm more stealthy. First, the adversary might decrease hitListPerc.

While this does impact detection, our detection capability is still useful:

e.g., as hitListPerc is decreased to 50% in dur = 30s, the true detection rates

drop, but remain 80% or higher for all protocols except SMTP. Second, the

adversary might increase dur. If the adversary keeps hitListPerc ≥ 75%, then

increasing dur from 30s to 60s appears to have no detrimental effect on the

true alarm rate of the detector for HTTP, Oracle or FTP, and it remains at

60% or higher for SMTP, as well.

Third, the adversary might increase |bots|. Note that whereas the previ-

ous two attempts to evade detection necessarily slow the worm propagation,

increasing |bots| while keeping hitListPerc and dur fixed need not—though it

obviously requires the adversary to have compromised more hosts prior to

launching his hit-list worm. Intuitively, increasing |bots| might decrease the

likelihood of detection by our technique by reducing the probability that one

boti will merge components of the graph and thereby trigger condition (2.5).

(Recall that bots’ individual hit lists do not intersect.) However, Table 2.3

suggests that in many cases this is ineffective unless the adversary simul-

taneously decreases hitListPerc: with hitListPerc ≥ 75%, all true detection

rates with |bots| = 5 remain above 92% with the exception of SMTP (at

60% for dur = 60s). The effects of increasing |bots| may become more pro-

nounced with larger numbers, though if |bots| approaches γ σ(Vdur
Π) then

the attacker risks being detected by condition (2.4) immediately.

Figure 2.5 compares the effectiveness of conditions (2.4) and (2.5) for

54 CHAPTER 2. PROTOCOL GRAPHS

 0

 5

 10

 15

 20

 0 5 10 15 20

c(
Λ

π)
-µ

CΠ
,d

ur

σ CΠ
,d

ur

v(Λπ)-µV
Π,dur

σv

Π,dur

Detected by Condition (2.4)
D

et
ec

te
d

by
 C

on
di

tio
n

(2
.5

) HTTP

(a) HTTP

 0

 5

 10

 15

 20

 0 5 10 15 20

c(
Λ

π)
-µ

CΠ
,d

ur

σ CΠ
,d

ur

v(Λπ)-µV
Π,dur

σv

Π,dur

Detected by Condition (2.4)

D
et

ec
te

d
by

 C
on

di
tio

n
(2

.5
) SMTP

(b) SMTP

Figure 2.5: Contributions of conditions (2.4) and (2.5) to true alarms

in Table 2.3. For clarity, only true alarms where v(Λπ)−µΠ,dur
V

σΠ,dur
V

≤ 20 or

c(Λπ)−µΠ,dur
C

σΠ,dur
C

≤ 20 are plotted.

2.4. PROTOCOL GRAPH CHANGE DURING ATTACK 55

 0

 5

 10

 15

 20

 0 5 10 15 20

c(
Λ

π)
-µ

CΠ
,d

ur

σ CΠ
,d

ur

v(Λπ)-µV
Π,dur

σv

Π,dur

Detected by Condition (2.4)

D
et

ec
te

d
by

 C
on

di
tio

n
(2

.5
) Oracle

(c) Oracle

 0

 5

 10

 15

 20

 0 5 10 15 20

c(
Λ

π)
-µ

CΠ
,d

ur

σ CΠ
,d

ur

v(Λπ)-µV
Π,dur

σv

Π,dur

Detected by Condition (2.4)

D
et

ec
te

d
by

 C
on

di
tio

n
(2

.5
) FTP

(d) FTP

Figure 2.5 continued.

56 CHAPTER 2. PROTOCOL GRAPHS

each of the test protocols. Each plot in this figure is a scatter plot comparing

the deviation of v(Λtest
π) against the deviation of c(Λtest

π) during attacks.

Specifically, values on the x-axis are v(Λtest
π)−µΠ,dur

V

σΠ,dur
V

, and values on the y-axis

are c(Λtest
π)−µΠ,dur

C

σΠ,dur
C

, for Π ⊇ π. The points on the scatter plot represent the true

alarms summarized in Table 2.3, though for presentational convenience only

those true alarms where vΛtest
π −µΠ,dur

V

σΠ,dur
V

≤ 20 or c(Λtest
π)−µΠ,dur

C

σΠ,dur
C

≤ 20 are shown.

Each plot has reference lines at γ = 3.5 on the horizontal and vertical axes

to indicate the trigger point for each detection mechanism. That is, a “•”

above the horizontal γ = 3.5 line indicates a test in which condition (2.5)

was met, and a “•” to the right of the vertical γ = 3.5 line indicates a test

in which condition (2.4) was met.

We would expect that if both conditions were effectively equivalent, then

every “•” would be in the upper right “quadrant” of each graph. While

HTTP (Figure 2.5(a)) shows this behavior, the other graphs demonstrate

different behaviors. Figure 2.5(c) and (d) shows that the growth of |C(Λπ)|

is an effective mechanism for detecting disruptions in both Oracle and FTP

networks. The only protocol where graph inflation appears to be a more

potent indicator than component inflation is SMTP. From this, we conclude

that component inflation (condition (2.5)) is a more potent detector than

graph inflation (condition (2.4)) when the protocol’s graph structure is dis-

joint, but that each test has a role to play in detecting attacks.

2.5. BOT IDENTIFICATION 57

2.5 Bot Identification

Once an attack is detected, individual attackers (bots) are identifiable by

how they deform the protocol graph. As discussed in § 2.4.1, we expect a

bot to impact the graph’s structure by connecting otherwise disjoint com-

ponents. We therefore expect that removing a bot from a graph G(Λ) will

separate components and so the number of connected components will in-

crease.

To test this hypothesis, we consider the effect of removing all records λ

involving an individual IP address from Λ. Specifically, for a log file Λ and

an IP address n, define:

Λ¬n = {λ ∈ Λ : λ.sip 6= n ∧ λ.dip 6= n}

As such, G(Λ) differs from G(Λ¬n) in that the latter includes neither n nor

any n′ ∈ V(Λ) of degree one that is adjacent only to n in G(Λ).

In order to detect a bot, we are primarily interested in comparing G(Λ)

and G(Λ¬n) for vertices n of high degree in G(Λ), based on the intuition that

bots should have high degree. Figure 2.6 examines the impact of eliminating

each of the ten highest-degree vertices n in G(Λ) from each log file Λ for

FTP discussed in § 2.4 that resulted in a true alarm. Specifically:

• Figure 2.6(a) represents the empirical distribution of v(Λ¬n) − v(Λ),

i.e., the difference in the number of vertices due to eliminating n and

all isolated neighbors, which will be negative;

• Figure 2.6(b) represents the empirical distribution of c(Λ¬n) − c(Λ),

58 CHAPTER 2. PROTOCOL GRAPHS

i.e., the difference in the size of the largest connected component due

to eliminating n and all isolated neighbors, which can be negative or

zero; and

• Figure 2.6(c) represents k(Λ¬n)−k(Λ), i.e., the difference in the num-

ber of connected components due to eliminating n and all isolated

neighbors, which can be positive, zero, or −1 if eliminating n and its

isolated neighbors eliminates an entire connected component.

Each boxplot separates the cases in which n is a bot (right) or is not a

bot (left). In each case, five horizontal lines from bottom to top mark the

minimum, first quartile, median, third quartile and maximum values, with

the lines for the first and third quartiles making a “box” that includes the

median line. The five horizontal lines and the box are evident, e.g., in the

“bot” boxplot in Figure 2.6(c). However, because some horizontal lines are

on top of one another in other boxplots, the five lines or the box is not

evident in all cases.

This figure shows a strong dichotomy between the two graph parameters

used for detection (graph size and largest component size) and the number

of components. As shown in Figures 2.6(a) and 2.6(b), the impact of elimi-

nating bots and the impact of eliminating other vertices largely overlap, for

either graph size or largest component size. In comparison, eliminating bots

has a radically different effect on the number of components, as shown in

Figure 2.6(c): when a non-bot vertex is eliminated, the number of compo-

nents increases a small amount, or sometimes decreases. In contrast, when

a bot is eliminated, the number of components increases strongly.

2.5. BOT IDENTIFICATION 59

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

Not bot Bot

v(
Λ

¬
v)

-
v(

Λ
)

(a) v(Λ¬n)− v(Λ)

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

Not bot Bot

c(
Λ

¬
v)

-
c(

Λ
)

(b) c(Λ¬n)− c(Λ)

Figure 2.6: Effects of eliminating high degree vertices n from FTP attack
traffic logs Λ.

60 CHAPTER 2. PROTOCOL GRAPHS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Not bot Bot

k(
Λ

¬
v)

-
k(

Λ
)

(c) k(Λ¬n)− k(Λ)

Figure 2.6 continued.

Also of note is that the change in the total number of components (Fig-

ure 2.6(c)) is relatively small, and small enough to add little power for attack

detection. For example, if we were to define a random variable Kdur
pm analo-

gous to Vdur
pm and Cdur

pm , and then formulate a worm detection rule analogous to

(2.4) and (2.5) for component count—i.e., raise an alarm for log file Λπ where

π ∈ pm had duration dur, if k(Λπ) > µpm,dur
K + γ σpm,dur

K —then roughly 80%

of our hit-list attacks within FTP would go undetected by this check. This

is because of the large standard deviation of this measure: σpm,60s
K ≈ 12.5.

Despite the fact that the number of components does not offer additional

power for attack detection, Figure 2.6(c) suggests that removing a high-

degree vertex n from a graph G(Λ) on which an alarm has been raised, and

checking the number of connected components that result, can provide an

2.5. BOT IDENTIFICATION 61

effective test to determine whether n is a bot. More specifically, we define

the following bot identification test:

isbotΛ,θ(n) =

1 if k(Λ¬n)− k(Λ) > θ

0 otherwise
(2.8)

We characterize the quality of this test using ROC curves. Each curve

in Figure 2.7 is a plot of true positive (i.e., bot identification) rate on the

y-axis versus false positive rate on the x-axis for one of the protocols we

consider and for the simulated hit-list worm attacks discussed in § 2.4 that

yielded a true alarm with |bots| = 5 (the hardest case in which to find

the bots) and hitListPerc ∈ {25%, 50%, 75%}. Each point on a curve shows

the true and false positive rates for a particular setting of θ. More specif-

ically, if hidegree ⊆ V(Λ) is a set of highest-degree vertices in G(Λ), and

if hidegreebots ⊆ hidegree denotes the bots in hidegree, then any point in

Figure 2.7 is defined by

true positive rate =

∑
n∈hidegreebots isbotΛ,θ(n)

|hidegreebots|

false positive rate =

∑
n∈hidegree\hidegreebots isbotΛ,θ(n)

|hidegree \ hidegreebots|

As Figure 2.7 shows, a more aggressive worm (i.e., as hitListPerc grows)

exposes its bots with a greater degree of accuracy in this test, not surpris-

ingly, and the absolute detection accuracy for the most aggressive worms

we consider is very good for HTTP, SMTP and FTP. Moreover, while the

curves in Figure 2.7 were calculated with |hidegree| = 10, we have found

62 CHAPTER 2. PROTOCOL GRAPHS

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40 45 50

T
ru

e
po

si
tiv

e
ra

te
 (

pe
rc

en
ta

ge
)

False positive rate (percentage)

75%
50%
25%

(a) HTTP

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40 45 50

T
ru

e
po

si
tiv

e
ra

te
 (

pe
rc

en
ta

ge
)

False positive rate (percentage)

75%
50%
25%

(b) SMTP

Figure 2.7: Attacker identification accuracy of (2.8); hitListPerc ∈
{25%, 50%, 75%}, |hidegree| = 10, |bots| = 5.

2.5. BOT IDENTIFICATION 63

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T
ru

e
po

si
tiv

e
ra

te
 (

pe
rc

en
ta

ge
)

False positive rate (percentage)

75%
50%
25%

(c) Oracle

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40 45 50

T
ru

e
po

si
tiv

e
ra

te
 (

pe
rc

en
ta

ge
)

False positive rate (percentage)

75%
50%
25%

(d) FTP

Figure 2.7 continued.

64 CHAPTER 2. PROTOCOL GRAPHS

that the accuracy is very robust to increasing |hidegree| as high as 100. As

such, when identifying bots, it does not appear important to the accuracy

of the test that the investigator first accurately estimate the number of bots

involved in the attack. We are more thoroughly exploring the sensitivity of

(2.8) to |hidegree| in ongoing work, however.

Because we evaluate (2.8) on high-degree vertices in order to find bots,

a natural question is whether degree in G(Λ) alone could be used to iden-

tify bots with similar accuracy, an idea similar to those used by numerous

detectors that count the number of destinations to which a host connects

(e.g., [64, 52]). To shed light on this question, we consider an alternative

bot identification predicate, namely

isbot′Λ,θ(n) =

1 if degreeΛ(n) > θ

0 otherwise
(2.9)

where degreeΛ(n) is the degree of n in G(Λ), and compare this test to (2.8) in

Figure 2.8. Figure 2.8 is a ROC curve and interpreted in the same fashion as

Figure 2.7. As this figure shows, using (2.9) offers much less accurate results

in some circumstances, lending support to the notion that our proposal (2.8)

for bot identification is more effective than this alternative.

2.6 Implementation

Any worm detection system must be efficient to keep up with the high pace

of flows observed in some protocols. A strength of our detection approach

based on conditions (2.4) and (2.5) in § 2.3 is that it admits very efficient im-

2.6. IMPLEMENTATION 65

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T
ru

e
po

si
tiv

e
ra

te
 (

pe
rc

en
ta

ge
)

False positive rate (percentage)

isbotΛ,θ(v)
isbot´Λ,θ(v)

(a) HTTP

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T
ru

e
po

si
tiv

e
ra

te
 (

pe
rc

en
ta

ge
)

False positive rate (percentage)

isbotΛ,θ(v)
isbot´Λ,θ(v)

(b) SMTP

Figure 2.8: Accuracy of (2.8) versus (2.9); hitListPerc = 25%, |hidegree| = 10,
|bots| = 5.

66 CHAPTER 2. PROTOCOL GRAPHS

plementation by well-known union-find algorithms [20]. Such an algorithm

maintains a collection of disjoint sets, and supports three types of operations

on that collection: a makeset operation creates a new singleton set contain-

ing its argument; a find operation locates the set containing its argument;

and a union operation merges the two sets named in its arguments into one

set. The size of each set in the collection can be maintained easily because

each set in the collection is disjoint: a new set created by makeset has size

one, and the set resulting from a union is of size the sum of the sizes of the

merged sets.

The implementation of a worm detection system using a union-find algo-

rithm is straightforward: for each λ ∈ Λ, the sets containing λ.sip and λ.dip

are located by find operations (or created via makeset if the address has

not yet been observed in Λ), and if these sets are distinct, they are merged

by a union operation. k(Λ) is the total number of sets, c(Λ) is simply the

size of the largest set, vΛ is the sum of the sizes of the sets.

The efficiency of this implementation derives from the use of classic tech-

niques (see [20]). A famous result by Tarjan (see [63]) shows that with these

techniques, a log file Λ can be processed in time O(|Λ|α(vΛ)), where α(·) is

the inverse of Ackermann’s function A(·), i.e., α(n) = arg mink : A(k) ≥ n.

Due to the rapid growth of A(k) as a function of k (see [1, 63]), α(n) ≤ 5

for any practical value of v(Λ). So, practically speaking, this algorithm en-

ables the processing of flows with computation only a small constant per

flow. Perhaps as importantly, this can be achieved in space O(v(Λ)). In

contrast, accurately tracking the number of unique destinations to which

a vertex connects—a component of several other worm detection systems

2.7. CONCLUSION 67

(e.g., [64, 52])—requires Ω(|E(Λ)|) space, a much more significant cost for

large networks. Hence our approach is strikingly efficient while also being

an effective detection technique.

Once an alarm is raised for a graph G(Λ) = 〈V(Λ),E(Λ)〉 due to it

violating condition (2.4) or (2.5), identifying the bots via the technique of

§ 2.5 requires that we find the high-degree vertices in V(Λ), i.e., the vertices

that have the most unique neighbors. To our knowledge, the most efficient

method to do this amounts to simply building the graph explicitly and

counting each vertex’s neighbors, which does involve additional overhead,

namely O(|E(Λ)|) space and O(|Λ| log(|E(Λ)|)) time in the best algorithm

of which we are aware. However, this additional cost must be incurred

only after a detection and so can proceed in parallel with other reactive

measures, presumably in a somewhat less time-critical fashion or on a more

resource-rich platform than the detection itself.

2.7 Conclusion

In this chapter, we have introduced a novel form of network monitoring

technique based on protocol graphs. We have demonstrated using logs col-

lected from a very large intercontinental network that the graph and largest

component sizes of protocol graphs for representative protocols are stable

over time (§ 2.3.1). We have used this observation to postulate tests to de-

tect hit-list worms, and showed how these tests can be tuned to limit false

alarms to any desired level (§ 2.3.2). We have also shown that our tests are

an effective approach to detecting a range of hit-list attacks (§ 2.4).

68 CHAPTER 2. PROTOCOL GRAPHS

We have additionally examined the problem of identifying the attacker’s

bots once a detection occurs (§ 2.5). We demonstrated that examining

the change in the number of connected components caused by removing a

vertex from the graph can be an accurate indicator of whether this vertex

represents a bot. We also showed that this indicator is substantially more

accurate than examining merely vertex degrees.

Finally, we examined algorithms for implementing both hit-list worm

detection and bot identification using our techniques (§ 2.6). We found that

hit-list worm detection, in particular, can be implemented using more effi-

cient algorithms than many other worm detection approaches, using classic

union-find algorithms. For networks of the size we have considered here,

such efficiencies are not merely of theoretical interest, but can make the

difference between what is practical and what is not. Our bot identification

algorithms are of similar performance complexity to prior techniques, but

need not be executed on the critical path of detection.

As a preliminary work in this area, we have focused on a limited number

of properties of protocol graphs. However, we believe that other properties

of protocol graphs can be useful, as well, and are exploring this avenue of

research in ongoing work.

Chapter 3

Training Anomaly Detectors

While scanners and bot harvesters can evade detection by limiting their be-

havior [42], sometimes they don’t have to bother with subtlety. Automated

tools used to exploit vulnerabilities on well-known applications are widely

disseminated, resulting in a constant stream of crude scanning and infiltra-

tion attempts that are largely aimed at nonexistent targets. The presence of

these constant clumsy attacks means that anomaly detection systems face a

bootstrap problem: before they can build an accurate model of normalcy1,

they need an effective means to filter out hostility.

In this chapter, we demonstrate a method for recovering the normal

activity of a network in the presence of constant attacks. We use this method

of attack reduction to eliminate the noise caused by common high-failure

attacks, and are able to produce a model of normal system activity that is

1Throughout this chapter, by “normal” behavior we mean behavior that is both normal
and legitimate. That is, we do not intend to include these constant, clumsy attacks in what
we describe as the “normal” traffic, and in fact the point of this chapter is to eliminate
these simplistic attacks to create a model of normal and legitimate traffic.

69

70 CHAPTER 3. TRAINING ANOMALY DETECTORS

far more precise than one derived from raw data. To illustrate the utility

of our approach, we show that a graph-based anomaly detection method

that counts the number of hosts observed over time [13], when trained on

raw SSH data observed on a network we monitor, resulted in an anomaly

detection threshold of 91,000 hosts in a system with 15,000 known servers.

As such, without applying our techniques, the anomaly detection system

would fail to detect, say, a distributed denial-of-service from an entire /16.

Using our attack reduction approach, the model of normalcy can be tuned

far more precisely, to reduce the detection threshold to only 370 hosts.

Our method combines statistical and heuristic filtering to recover periods

of normal activity. This approach leads to two distinct advantages outside

of support for the statistical learning system we have developed. First, since

the attack reduction methodology identifies periods of normal activity, traffic

records during those normal periods can be used to train other forms of IDS,

such as Jung et al.’s TRW [26]. In addition, using our statistical approach,

we are able to establish the training time required by our anomaly detection

system and other approaches that rely on parametrized distributions. In

our case, we demonstrate that we expect to achieve a 95% accuracy within

5 hours of wall clock time, including attacks.

To illustrate the noisy and clumsy attacks that we seek to filter out,

Figure 3.1 plots the degree (number of servers contacted) for the first, second

and third-highest degree SSH clients observed on our monitored network in

30s periods beginning on September 10th, 2007. Each plot in this figure is a

time-series blot showing the degree of the corresponding client on the y-axis

and the time (GMT) on the x-axis. As this figure shows, the highest-degree

71

 0
 2000
 4000
 6000
 8000

 10000

H00 H03 H06 H09 H12 H15 H18 H21 H00

Ta
rg

et
s

(h
os

ts
)

Busiest client

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

H00 H03 H06 H09 H12 H15 H18 H21 H00

Ta
rg

et
s

(h
os

ts
)

2nd busiest client

 0

 500

 1000

 1500

 2000

H00 H03 H06 H09 H12 H15 H18 H21 H00

Ta
rg

et
s

(h
os

ts
)

3rd busiest client

Figure 3.1: Communication of the three highest-degree SSH clients per thirty
second period on the monitored network. As the figure shows, multiple
clients appear to be communicating with hundreds or thousands of servers
at a time, a likely indicator of scanning or failed harvesting.

clients regularly contact over 2,000 targets per period during this time; in

the most extreme cases, an individual client contacted over 250,000 distinct

targets. The feasibility of a single client opening thousands of simultaneous

SSH connections in half a minute notwithstanding, the observed network

has less than 15,000 SSH servers.2

These results are consistent over the data examined for this chapter: a

two week log of SSH traffic in which we are reasonably confident that some

form of attack occurs in over 80% of the 30s periods observed. The majority

of these attacks are scans and automated botnet harvesting attempts, how-

2Servers were identified by looking for hosts that had payload-bearing responses from
port 22 during the observation period.

72 CHAPTER 3. TRAINING ANOMALY DETECTORS

ever since the failure rate for these attacks is so inordinately high, we cannot

actually determine what an attacker was doing in the majority of cases. We

will refer to these attacks as High Connection Failure Attacks (HCFAs) to

emphasize this.

The key properties of HCFAs, as seen in the SSH data, is that they

are persistent, continuous, massive and almost entirely failures. SSH traffic

has been persistently scanned for several years by script kiddies and bots,

generally by using brute-force password attacks3. The level of hostile traffic

is so pervasive that various security publications recommend moving the

SSH listener port in order to evade scanning4.

Anomaly detection systems generally classify attacks as deviations from

a model of normal behavior generated from historical data [17, 13, 58]. While

anomaly detectors have the potential to detect subtle attacks quickly and

effectively, these systems must train on clean data in order to produce an

accurate model [23]. As shown above, however, for protocols such as SSH,

clean data is rare – HCFAs are, on a flow by flow basis, the most common

form of traffic. If an anomaly detection system trains on such data, it will

correctly and uselessly model normal activity with the HCFAs. A statistical

model based on this traffic will have an inordinately wide variance that

will allow subtle attacks to hide in the noise. Raising alerts on HCFAs is

also counterproductive – they are so common and so rarely successful, that

validating the traffic will distract operators from far more serious threats, if

3“Protecting Linux against automated attackers”, Ryan Twomey, http://www.linux.
com/articles/48138, last fetched January 18th, 2008.

4“Analyzing Malicious SSH Login Attempts”, Christian Seifert, http://www.

securityfocus.com/infocus/1876, last fetched January 18th, 2008.

73

those threats are even noticed.

Our attack reduction process assumes that the IDS models normal net-

work activity using a parametrized distribution. In this chapter we use the

Gaussian distribution N (µV , σV) as the model, which we will refer to as

the state model of the system. To extract this state model from the traffic,

attack reduction utilizes three steps. The first, log-level filtering, examines

records for evidence of significance. A significant record is one which may

have been received and processed by the targeted application. The major-

ity of HCFA flows will be insignificant since they will communicate with

nonexistent targets. This process ensures that the filtered data set is man-

ageably small without eliminating important normal interactions, but the

simple heuristics used by the log-level filter mean that it cannot filter all

HCFAs.

We therefore complement log-level filtering with a second, state-level

filtering method. In this work, we use a filter based on the Shapiro-Wilk

normality test to identify and eliminate outlier states [55]. The Shapiro-Wilk

test statistic is an estimate of how closely a set of observations matches a

Gaussian distribution. State-level filtering assumes that if an HCFA’s traffic

records pass log-level filtering, the HCFA’s aggregate behavior will still be an

observable outlier. More specifically, an HCFA will only be able to increase

the observed state and it will do so in an obvious manner, and the Shapiro-

Wilk based filter will identify this deviation.

The third and final step of attack reduction is impact evaluation. The

previous filtering steps identify outliers in their datasets and pass sources of

those outliers, anomalous addresses, to an impact evaluator to determine if

74 CHAPTER 3. TRAINING ANOMALY DETECTORS

the addresses have done anything to warrant further investigation. Since the

majority of HCFAs are failures, the evaluation step differentiates between

actionable and inactionable activities. An actionable address is one that

has engaged in action that merits operator response, such as successfully

communicating with a target; inactionable addresses have done nothing to

merit further investigation yet.

This approach will therefore be applicable for the constant HCFAs seen

in our SSH data. While the majority of HCFAs are scans and failed har-

vesting, any attack where the attacker is willing to generate a large number

of failed TCP connections will be filtered by this model.

The remainder of this chapter is structured as follows: §3.1 is a survey

of previous work in anomaly detection and the problem of error reduction

in IDS. §3.2 describes the architecture of our system, the source data and

the problems associated with log-level filtering. §3.3 describes our methods

for state-level filtering. §3.4 examines the impact of our methods on SSH

data. §3.5 discusses impact evaluation and notification, while §3.6 discusses

methods that an attacker can use to evade detection or control the system.

Finally, §3.7 concludes our work.

3.1 Related Work

While our work is within the domain of anomaly detection, we emphasize

that the focus of this chapter is on IDS training and use in the presence

of persistent interference from HCFAs. Since HCFAs are likely to be scans

or failed harvesting attempts, our work is strongly influenced by existing

3.1. RELATED WORK 75

anomaly and scan detection methods, with the notable difference that we

assume attacks are the norm within our data.

The pollution from HCFAs has been studied by multiple researchers.

Moore et al. [40] developed the standard method for examining aggregate

behavior by studying dark space. Pang et al. [43] have discussed the char-

acteristics of the random traffic on the Internet as “background radiation”.

More directly relevant to our work is the approach of Garg et al. [21] for

managing the data from this background radiation in NIDS. Our approach

differs from that of Garg et al. both in application (our method is anomaly-

based, whereas theirs is payload-dependent) and implementation, as their

work is a hardware-driven solution and ours is more general.

The problem addressed by eliminating HCFAs is best understood by

addressing the types of learning done by anomaly detection systems. For

the purposes of this chapter, we break down these systems into three broad

categories: threshold systems, which include GrIDS [58] and our graph-based

method [13]; data mining systems, such as MINDS [17] and LERAD [36];

and map-based systems, most notably TRW [26]. Each of these systems

relies on past history and is consequently vulnerable to HCFAs.

Threshold systems detect anomalous behavior by looking for a measur-

able change in traffic levels. Examples of these systems include the original

IDES [35] and EMERALD [46], and systems for identifying and quaran-

tining worms [67, 25, 69]. These systems all identify anomalies by looking

for a change in behavior that exceeds a threshold estimate. This threshold

may be generated by an automatic process, as is the case with Soule et

al. [56], or provided by a human expert, as is the case with GRiDS [58] and

76 CHAPTER 3. TRAINING ANOMALY DETECTORS

MISSILE [22]. When these thresholds are set automatically (a process we

seek to enable here), such systems have assumed that attacks are rare (often

implicitly). Here we focus on situations in which this is not the case.

Data mining systems apply undirected learning and clustering techniques

to traffic data [6, 17, 36, 33, 24, 65]. These systems group together traffic

by log features in order to differentiate attacks from normal activity. As

before, they expect that traffic will generally be attack-free (in particular,

LERAD [36] is specifically designed to detect “rare time series events”). An

exception to this is Barbara et al. [7] who address the problem of bootstrap-

ping a data-mining IDS. However, the data set they use, the 1999 Lincoln

Labs data [34] is synthetic and does not contain attacks with remotely the

frequency of our SSH data.

Mapping systems rely on an inventory of network hosts to identify aber-

rations. The most well-known of these systems is Jung et al.’s TRW method

of scan detection [26] and Shankar and Paxson’s Active Mapping tool for

Bro [53]. These systems have a varying degree of vulnerability to HCFAs

based primarily on the mapping method used. Active approaches will not

be affected by HCFAs but on larger networks, passive mapping approaches

become increasingly attractive [68]. Since passive mapping systems must

also deal with HCFAs communicating with nonexistent hosts, HCFAs can

become a significant challenge.

Our system is not intended to supplant these IDS but rather supports

them by providing a method to identify normal activity. Consequently, the

results generated by our attack reduction methodology can also be used as a

source of labeled normal data for data mining systems or to build the maps

3.2. SYSTEM ARCHITECTURE AND LOG-LEVEL FILTERING 77

used by mapping systems.

3.2 System Architecture and Log-level Filtering

The majority of connections in HCFAs fail to reach real targets and conse-

quently result in a large number of flow records that are easily distinguished

from normal traffic. Log-level filtering is the process by which these in-

significant flows are distinguished from significant flows which may have

actually communicated with a server process. Log-level filtering is stateless

and inexpensive in order to manage the expected volume of flow records.

This section describes the system architecture and the process of log-level

filtering. It is divided into three sections: §3.2.1 describes our source data

and the notation we use to describe it. §3.2.2 provides an information flow

diagram for the system and describes the expected format of log data and

state data. §3.2.3 describes the log filtering process and shows the impact

of log-level filtering on representative SSH data.

3.2.1 Source Data

The source data used in this chapter consists of NetFlow V5 records5 gen-

erated by internal routers in a large (in excess of 16 million distinct IP

addresses) network. We use a two-week NetFlow trace of SSH traffic col-

lected over this network during the period of September 10th-24th, 2007.

The routers record both internal and cross-border traffic.

5CISCO Systems, “CISCO IOS Netflow Datasheet”, http://www.cisco.com/en/

US/products/ps6601/products data sheet0900aecd80173f71.html, last fetched Octo-
ber 8th, 2007.

78 CHAPTER 3. TRAINING ANOMALY DETECTORS

NetFlow records approximate TCP sessions by grouping packets into

flows, sequences of identically addressed packets that occur within a timeout

of each other [11]. NetFlow records contain size and timing information, but

no payload. We treat NetFlow records as tuples of the form (clntip, srvip,

direction, stime, bytes, packets, syn, ack). These elements are a modified

subset of the fields available in CISCO NetFlow. When referring to a single

flow record λ, we will reference constituent elements of a single flow record

via “dot” notation (e.g., λ.srvip or λ.packets).

We classify traffic by port number; any flow which is sent to or from

TCP port 22 is labeled an SSH flow. Because we examine only SSH traffic,

port numbers are not germane to our analyses. Instead, we use the port

number to define the srvip, clntip and direction fields. srvip is the address

that uses port 22, clntip is the address which used an ephemeral port6, and

direction indicates which direction the recorded traffic flowed (i.e., traffic in

the flow was from srvip to clntip or vice versa).

syn and ack refer to the TCP SYN and ACK flags respectively. CISCO’s

NetFlow implementation contains a field providing a logical OR of all TCP

flags observed in a TCP flow. However, this field is not available under all

IOS implementations. We therefore limit the use of flag data to exploratory

analysis and scan validation; the implementations of log- and state-level

filtering in this chapter do not use these fields.

The source data for state filters are observations of a state function con-

structed from flow records that have already gone through the log filtering

6We constrain the flows used in this chapter to flows which used an ephemeral port
between 1024 and 5000.

3.2. SYSTEM ARCHITECTURE AND LOG-LEVEL FILTERING 79

process. We group flow records into distinct log files Λ = {λ1 . . . λn}. The

contents of any log file are determined by the stime field. In this chapter,

each unique log file contains all records whose stime is within a distinct 30s

period, and the records within the log file are ordered by stime.

In chapter 2, we demonstrated that the graph size and largest compo-

nent size of graph representations of several major protocols could be sat-

isfactorily modeled using a Gaussian distribution. For this chapter we rely

exclusively on graph size for brevity and generality – graph size is equivalent

to the the total host count for a protocol, and consequently the state model

does not rely on any special features of our previous work.

An observation of the graph size, v(Λ), is the graph size for a particular

log file Λ. Recall that these log files cover unique 30s periods within the

source data, so the graph size is the size of the observed protocol graph

for SSH within a 30s observation period. Recall that v(Λ) is defined in

Equation 2.1 as the cardinality of the set of all IP addresses (client and

server) in Λ.

State-level data is a vector of graph size observations V = (v1 . . . vk)

where each vi is a v(Λ) value. V ’s observations are ordered by increasing

magnitude rather than chronological order, so v10 may have been observed

some time after v11. The source Λsig data is comprised of 39,600 distinct

log files, each covering a 30s period beginning on September 10th 2007 and

continuing until September 24th. 720 log files were discarded from the data

set due to sensory or collector failures; if a single log file in an hour had an

observed failure, we discarded the entire hour. We assume the graph sizes

are the result of a random process modeled as N (µV , σV) where µV is the

80 CHAPTER 3. TRAINING ANOMALY DETECTORS

mean and σV is the standard deviation of the random variable V.

When referring to the mean and standard deviation of the vector V , we

use the same notation as in Chapter 2: µV refers to sample mean of the

vector V , and σV the observed standard deviation of the vector V . Recall

that in Chapter 2 we also adapted a specific notation for the log file duration

and the interval during which the log file was collected. Our observed SSH

data does not show the time dependency of the other data sets, so we do

not use the interval notation. Similarly, since we now used a fixed duration

(30s), we no longer use the duration notation.

3.2.2 System Architecture

Figure 3.2 is an information flow diagram that describes how log-level and

state-level data are handled by the attack reduction system. This diagram

describes four processes: log-level filtering, state-level filtering, normal op-

eration, and impact evaluation/notification. Recall that a single log file

contains all the flow records observed during a particular 30s period – the

information flow in Figure 3.2 takes place within this time constraint (i.e., all

processing decisions take place within the 30s after Λ is reported). Numbers

in the following text refer to the corresponding arrows in Figure 3.2.

The first phase of the process is log-level filtering, during which data are

collected from multiple sensors located throughout the monitored network.

These sensors generate NetFlow records which are then passed (1) to a

log filter that partitions the log file Λ into two log files: Λsig, a log file of

significant flow records, and Λinsig, a log file of insignificant flow records. We

approximate significance using the number of packets in a flow, a process

3.2. SYSTEM ARCHITECTURE AND LOG-LEVEL FILTERING 81

Log
Filter

Sensor

State
Generator

State
Processor

Λ Λsig

ΛinsigΛ

v

Vtest

€

(µV ,σV)

v

v

A

Log
Processor

A

Evaluator

Alerts

Λsig

State
Filter

Buffer

State-level Filtering

State
Model

Normal Operation

Impact Evaluation / Notification

Log-level Filtering

(1) (2)

(3) (2)

(5)

(4) (6)

(7)

(8)

(9)

(10)
(11)

(12)

Figure 3.2: Information flow diagram for the attack reduction system.

described in §3.2.3. Λinsig is passed (3) to the log processor, which produces

a list of the busiest hosts for further examination by the evaluator.

After log-level filtering, Λsig is passed (2) to a state generator which

realizes the observation v(Λsig). This is then processed either by the state-

level filter (4) or normal operations (5). Where observations are processed is

a function of whether the system is in bootstrap phase (during which time,

the data is processed by the state-level filter) or operating normally.

During the bootstrap phase, the system has insufficient information to

judge whether or not any particular observation is an outlier. Consequently,

82 CHAPTER 3. TRAINING ANOMALY DETECTORS

during this phase, the state data is passed to a buffer to create a test vector,

V test. When |V test| exceeds a sample limit, z, it is run through the state-

level filter (6) and outliers are removed. If the filtered sample still exceeds

the threshold, then the filter generates parameters for a model of normal

traffic: (v̄, σV). The filter then passes those parameters to the state model

(7) and the system shifts into normal operations. If the filtered test vector

is smaller than the sample limit, additional data is collected (4) and the

process repeated (6) until the filtered vector reaches sufficient size.

During normal operation, v observations are passed directly to the state

model (5). Recall that the state model used in this chapter is a simple

statistically derived threshold: v(Λsig) is calculated and compared to the

model. If v(Λsig) exceeds the anomaly threshold, then an alert is passed

to the state processor (9). During normal operation, the state model can

update by feeding normal observations back into the model (8).

Anomaly processors examine anomalous addresses to determine whether

they are worth deeper investigation by the evaluator for validation and noti-

fication. The method used by each processor is dependent on the source data

(Λsig or Λinsig). The log processor receives Λinsig (3) data and consequently

must process much higher volumes than the state processor. (In our present

implementation the log processor simply returns the top-5 highest degree

addresses; see Section 3.5.) The state processor receives the much smaller

Λsig (2) and will use whatever method is appropriate for its state model.

Our implementation uses a graph-based method described in our previous

work [13]: it returns a list of those vertices whose removal substantially

alters the shape of the graph (see Section 3.5).

3.2. SYSTEM ARCHITECTURE AND LOG-LEVEL FILTERING 83

Once each processor generates a list of anomalous addresses, this list is

passed to the evaluator. The evaluator examines the anomalous addresses

for evidence of actionability. We expect the majority of scans to be, if

not harmless, then pointless – they include residue from ancient worms (a

phenomenon noted by Yegneswaran et al. [70]) and blind bot scanning. As

such, an anomaly detection system which raises an alarm for every scan

will be counterproductive; unless a HCFA is actionable, it is noted in other

collection systems but otherwise ignored.

3.2.3 Log-level Filtering

During log-level filtering, we apply simple heuristics to individual flow records

in order to identify the majority of HCFA traffic and remove it from further

analysis. The criterion for keeping or removing a flow record is a property

we term significance. A flow record is significant if the traffic it describes

constitutes communication with the targeted host’s process rather than just

the TCP stack; e.g., an SSH flow record is significant if the target’s SSH

process receives payload. Otherwise, the flow record is insignificant.

We approximate significance by using properties of the TCP stack. Since

TCP implements a state machine on top of packet switching protocols, a

correct TCP session requires 3 packets of synchronization in addition to

any packets for payload [59]. Flows which contain three packets or fewer

are likely to be insignificant. While it is possible to have a significant flow

below this limit (such as keep-alives), we expect that they will represent a

small proportion of the total number of short flows. Of more concern is that,

due to the timeout-based aggregation mechanism used by NetFlow, multiple

84 CHAPTER 3. TRAINING ANOMALY DETECTORS

SYN packets to the same host will be grouped together as a single flow.

Potential alternative significance criteria include TCP flag combinations

and payload. We have elected not to use flags because scanning applications

such as nmap7 specifically include packet-crafting options that use eccentric

flag combinations. We elect not to use payload because the prevalence of

SYN packets also makes estimating the actual payload of a flow problematic:

SYN packets usually contain nontrivial stack-dependent TCP options [45],

meaning that a “zero payload” TCP flow may contain 12 bytes of payload per

SYN packet. Alternatively, a flow record describing the ACK packets from

a host receiving a file may have no recorded payload, but is still significant.

Payload estimates are used for impact evaluation in §3.5, but at that time

we are specifically looking for activity initiated by a single client.

We therefore label a flow λ as significant if λ.packets > 3 and insignif-

icant otherwise. Table 3.1 is a contingency table showing the breakdown

of our source data traffic using this rule. As this table shows, the total

data describes approximately 2.4 TB of traffic contained in approximately

230 million records, and that approximately 87% of the observed flows are

insignificant but make up less than 8% of the observed traffic by volume.

Examining those sensors that provide flag data indicates that approxi-

mately 70% of insignificant flows have no ACK flag – an indication that the

flow was part of a HCFA. Of the remaining insignificant flows, 21% have

SYN, ACK and FIN flags raised. While this type of traffic is potentially

normal, it is also characteristic of certain forms of SYN scans8.

7http://www.insecure.org
8This particular scan can be implemented using the ’-sS’ option in nmap.

3.3. IMPLEMENTING A STATE-LEVEL FILTER 85

λ.ack
0 1 Total

λ.packets
1-3 1.59e+08 (1.37e+10) 3.75e+08 (4.84e+09) 1.97e+08 (1.86e+11)

4-∞ 1.15e+07 (8.36e+11) 1.86e+07 (1.53e+12) 3.02e+07 (2.37e+12)
Total 1.71e+08 (8.50e+11) 5.61e+07 (1.54e+12) 2.27e+08 (2.39e+12)

Table 3.1: Breakdown of activity in recorded data set by flows and bytes
(bytes in parentheses); source data is all SSH traffic from September 10th
to 24th, 2007.

From these results, we conclude that insignificant flows are dominated

by HCFAs. A more stringent criterion for significance, such as a higher

number of packets, risks removing more normal traffic from the data.

Figure 3.3 shows the impact of removing insignificant flows from the

data set. This figure plots total graph size for the periods between 12:00

and 14:00 GMT for September 4th, 2007. The x-axis of this plot is the

time of the observation (GMT), and the y-axis is the value of v(Λsig) (the

filled-in shape) or v(Λ) (the outlined shape). As this figure shows, even with

the removal of insignificant flows, it is likely that scanning still appears in

the data.

3.3 Implementing a State-level Filter

In §3.2 we demonstrated that log-level filtering was a necessary but insuf-

ficient method for recovering a system’s normal behavior. While log-level

filtering can reduce the amount of data to a manageable level and remove the

most obvious effects of HCFAs, aggressive log-level filtering raises a serious

risk of eliminating normal traffic.

Recall from §3.2.1 that our hypothetical anomaly detection system tracks

86 CHAPTER 3. TRAINING ANOMALY DETECTORS

 100

 1000

 10000

12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00

g(
Λ)

Time (September 4, 2007, GMT)

All Records
Significant records

Figure 3.3: Contribution of significant and insignificant flows to traffic.

a single type of observation (in the case of this chapter, observed graph size).

In this section we introduce a state-level filter which is used during the

bootstrap phase of the IDS to identify and eliminate anomalies in training

data.

State-level filtering applies the same clumsiness assumption that was

used in log-level filtering. Specifically, we assume that the attacker’s activi-

ties will increase the observed state function and regularly produce outliers

due to the attacker’s general lack of knowledge about the observed state

function.

This section describes the construction of a state-level filter that uses the

v value discussed before. We emphasize that this approach is not depen-

dent on protocol graphs, only that the state function have a parametrizable

distribution. This section is divided as follows: §3.3.1 describes the source

3.3. IMPLEMENTING A STATE-LEVEL FILTER 87

data, §3.3.2 process of state filtering, and §3.3.3 describes how much data is

required to build a satisfactory model.

3.3.1 State Data

Figure 3.4 plots the frequency of v(Λsig) values for all Λsig in the source data.

In this figure, the x-axis is the magnitude of v(Λsig) and the y-axis is the fre-

quency with which that particular value was observed. As this figure shows,

the distribution of v(Λsig) observations has a very long tail, but the major-

ity of the observations (approximately 75%) can be modeled by a Gaussian

distribution. This Gaussian fraction of the data is shown in the closeup

in Figure 3.4. We hypothesize that the data set consists of two classes of

periods: normal and attack. During a normal period, v(Λsig) is a function

of the true population of the network and can be modeled by a Gaussian

distribution. During an attack period, the v(Λsig) observation increases to

the impact of HCFAs. Since HCFAs are caused by clumsy attackers, we

further expect that the attacker cannot decrease v(Λsig), and consequently

all observations above a certain threshold are likely to be attacks.

In order to test this, we sampled log files from the upper 40% of the

Λsig set for scanning activity. Our sample consisted of 60 Λsig log files

chosen randomly, 20 from each of three strata: 300 < v(Λsig) < 600, 600 <

v(Λsig) < 5000 and v(Λsig) > 5000.

Within each log file, we examined the traffic for signs of HCFAs such

as an unusually high-degree client, or a client which appeared only during

the associated phenomenon. Of the 60 log files we examined, a single client

dominated each log file, in each case communicating with at least 200 dis-

88 CHAPTER 3. TRAINING ANOMALY DETECTORS

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000

Fr
eq

ue
nc

y

g(Λsig)

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

Detail

Figure 3.4: Histogram of total graph size with closeup on normally dis-
tributed minimal area; this figure supports our hypothesis that the majority
of the high-level traffic are simply HCFAs.

tinct targets. While different clients dominated different log files, the set of

clients was small: 31 distinct clients out of 60 log files. This result is due to

the brazenness of the attackers; in certain cases, an attacker scanned contin-

uously for several hours in a row. Using DNS, we checked client identity and

verified that all of the clients were from outside the monitored network. By

extracting full log files of the clients’ activity over the observation period, we

found no examples of payload-bearing interactions from these clients. From

these results, we conclude that the clients were engaged in either scanning

or the use of automated harvesting tools.

Given these results, we partition V , the vector of graph size observations,

into two subsidiary vectors, V atk and V normal. The partitioning criterion is

3.3. IMPLEMENTING A STATE-LEVEL FILTER 89

v(Λsig): V atk consists of all v(Λsig) observations where v(Λsig) > 300, V normal

consists of everything else. Out of the 39,600 observations in V , 10,101 or

approximately 25.5% ended up in V atk. As with V , V atk and V normal are

ordered by increasing magnitude. We emphasize that this classification is

intended for experimental validation and does not necessarily indicate that

these observations actually contain HCFAs. During our experiments, we

use the top 3000 values of V atk in order to gain confidence that all of those

observations are due to attacks.

3.3.2 Process

Assume V test is a vector of graph size observations wherein the majority of

observations are normal. A state-level filter is a process which examines V test

and returns one of two values: either an observed (µV , σV), or a requirement

for further data.

For this chapter, we eliminate outliers by using the Shapiro-Wilk test [55].

The Shapiro-Wilk test specifically evaluates the similarity of an ordered vec-

tor of observations to a Gaussian distribution. In comparison to other sta-

tistical tests, the Shapiro-Wilk test can generate results with a wide variety

of sample sizes (between 40 and 2,000 observations) and without advance

knowledge of the modeled distribution (i.e., the µV and σV do not have to be

supplied). The statistic generated by the Shapiro-Wilk test (W) is a value

in the range of [0, 1], with 1 representing a perfect fit to a Gaussian model.

We calculate the W -statistic, using a vector of observations V test =

(v1 . . . vl) ordered by increasing magnitude and an equal size vector M that

consists of order statistics for a Gaussian distribution of the form (m1 . . .ml).

90 CHAPTER 3. TRAINING ANOMALY DETECTORS

W is then formulated as:

W =

(∑l
i=1 aivi

)2

∑l
i=1(vi − µV)2

(3.1)

where

(a1 . . . al) =
MT V −1

√
MT V −1V −1M

(3.2)

and where V is the covariance matrix of M and µV is the sample mean of

V .

To filter out HCFAs we use a state-level filter shapfilt(V test, θW). shapfilt

takes two parameters: V test and θW , which is the minimal W value we

use to determine if a vector contains a Gaussian distribution. Recall that

V test is ordered by magnitude and that attackers cannot decrease v(Λsig).

We therefore expect that there will be a pivot value below which v(Λsig)

observations are normal and above which v(Λsig) observations are attack

observations. shapfilt will return the index of that pivot.

shapfilt starts by calculating the W value for the complete V test. If the

resulting W exceeds θW , then shapfilt terminates and returns |V test| as its

result. Otherwise it removes the largest value and repeats the process with

the reduced vector. shapfilt will iteratively test every vector, progressively

eliminating the larger observations until W > θW or all the observations

are eliminated. The resulting index, z, is then checked against a minimum

sample size. If z is too small (i.e., there were too many attacks in the log

data), then more observations will be requested and added to V test. If z is

3.3. IMPLEMENTING A STATE-LEVEL FILTER 91

sufficiently large, then µV and σV are calculated from the reduced vector

and passed to the state model.

3.3.3 State Filtering: Sample Size

Recall that shapfilt is intended for the initial training and configuration of

an IDS. The longer the system remains in training, the more accurate the

resulting model. However, while the system is training, it cannot react to

attacks.

When shapfilt completes operation on a V test vector, it returns its esti-

mate of how many observations within that vector can be used for training.

We can calculate the lower limit for this value by relying on our previous

assumption that, in the absence of HCFAs, V test would consist of observa-

tions following a Gaussian distribution and calculate the margin of error.

For our model, the error is the difference between the true mean and the

sample mean (i.e., |µV − µV |); the margin of error is the upper bound on

that value.

Assume a random process modeled as N (µV , σV). We estimate µV via

the sample mean µV . The margin of error, E, is then written as:

E = Zα/2
σV√

z
(3.3)

Zα/2, the critical value, is a factor derived from α, the probability that

the error is greater than the margin of error. Since the process is modeled

with a Gaussian distribution, the critical value is expressed as the number of

standard deviations to produce a (1− α) probability of the error being less

92 CHAPTER 3. TRAINING ANOMALY DETECTORS

than the margin. For example, 68% of all observations within 1 standard

deviation of the mean of a Gaussian distribution. In this case, α = 0.32

(that is, the probability of the error falling outside this range is 32%), and

Zα/2 = 1.

Given a known standard deviation, σV , we can express z as follows:

z =
(

σVZα/2

E

)2

(3.4)

We will limit the margin of error to 0.05µV (5% of the true mean). To

achieve a 95% degree of confidence in the margin of error, α = 0.05 and the

corresponding critical value is 1.96. We can then rewrite Equation 3.4 to

estimate that z should be at least:

z = 1536
(

σV
µV

)2

(3.5)

This formula provides us with a method to estimate a lower limit on z,

number of samples required. In Table 2.1 we encountered standard devia-

tions which were anywhere from approximately one quarter to one twelfth of

the mean. Given this, we will assume that our worst case scenario is where

the standard deviation is half the mean. If so, then z = 1536/4 = 384. For

convenience, we will round this value up to 400 observations, which equates

to 3 hours and 20 minutes of 30s samples if there are no HCFAs.

This value assumes that normal traffic can be modeled via a Gaussian

distribution. This may result in a longer clock time to gather those 400

observations based on seasonal phenomena, such as the business cycle. For

example, in our original work, we divided the traffic into active and fallow

3.4. EVALUATION 93

periods of 12 hours each. Under this model, each period would require a

distinct 400 observations, changing the minimum time required to just under

7 hours. If a different model was calculated for every hour of the day, than

the minimum time required would be slightly longer than 3 days.

HCFAs within the data set will also impact the training time. The sys-

tem will not switch from training mode until it receives a sufficient amount

of uncorrupted data, and will reject outlying scans.

3.4 Evaluation

We now evaluate the ability of state-level filtering to recover an accurate

model of normal activity. Our evaluation method uses synthetic V test vectors

created by randomly selecting observations from V atkand V normal. Since

HCFAs cannot decrease graph size, we expect that every V test will have a

pivot point: all observations before the pivot point will be normal and all

observations after the pivot point will be HCFAs.

We measure the efficacy of the state filtering mechanism by comparing

the true pivot point of V test against an estimate generated using the Shapiro-

Wilk test. This metric, the pivot error, is the difference between the pivot

point as estimated by shapfilt and the true pivot point generated when the

test vector is constructed. Intuitively, the preferred value for the pivot error

is zero, which indicates that shapfilt was able to perfectly separate attack and

normal events. However, given the choice of a negative or a positive pivot

error, a negative pivot error is tolerable. We expect normal observations will

be clustered around the mean, and consequently removing some of them will

94 CHAPTER 3. TRAINING ANOMALY DETECTORS

−100 −80 −60 −40 −20 0 10 20 30 40 50 60 70 80 90 100

0.
2

0.
4

0.
6

0.
8

1.
0

Pivot error

W
 S

ta
tis

tic

Figure 3.5: Impact of removing observations using shapfilt; note the decided
increase in the W -statistic after removing all HCFAs.

have minimal effect on the resulting model. However, since HCFAs will be

extreme outliers, including one will severely damage the model.

We use pivot error to calculate the efficacy of the W statistic. To do

so, we calculate W as a function of pivot error and see how W changes

as HCFAs are removed from V test. We ran 500 simulations using synthetic

V test vectors generated by randomly selecting 300 observations from V normal

and 100 observations from V atk. This vector agrees with our calculated z

(400 observations), and matches the observed ratio of attack observations

to non-attack observations. Recall that in §3.3.1 we determined that after

log-level filtering, approximately 25.5% of v(Λsig) observations were attacks.

Figure 3.5 plots the result of our simulation. The shape in Figure 3.5 is

a series of boxplots, with the x-axis describing the pivot error and the y-axis

3.4. EVALUATION 95

the range of values taken by the boxplot. In this figure, each boxplot shows

the minimum, first quartile, median, third quartile and maximum observed

value for each pivot error. As this figure shows, W jumps significantly as

the pivot error approaches zero. Once the scans are removed, the W value

remains stable even as we remove more observations from the data set. This

result justifies using a relatively stringent θW , and so we will set θW to 0.95.

Given the stability of W with negative pivot errors, we now address two

problems: removing observations after W is above θW , and using different

V test sizes. Our interest in the former problem is a redundancy and reliability

issue. Recall that a positive pivot error is unacceptable while a negative error

is tolerable. By removing additional points we guarantee that the resulting

vector has a negative pivot error. The second problem is a test of the validity

of the estimate we generated in §3.3.3: if the efficacy of the estimate improves

with larger vectors, then the investment in additional learning time may be

worthwhile.

Figure 3.6 plots the pivot error as a function of the number of observa-

tions removed after W > θW : 5, 10, 20 and 30 observations respectively.

As before, each plot in Figure 3.6 is a series of boxplots; in this case, the

x-axis is the number of observations eliminated once θW is reached, and the

y-axis is the pivot error. Each plot uses a boxplot with outliers represented

as single points. Furthermore each figure uses a different total V test size:

400 observations (our standard case) in Figure 3.6(i), 135 in Figure 3.6(ii)

and 4000 in Figure 3.6(iii).

Our standard case, Figure 3.6(i), shows that the pivot error is identical

to the number of observations removed after reaching θW . For that sample

96 CHAPTER 3. TRAINING ANOMALY DETECTORS

5 10 20 30

−
30

−
25

−
20

−
15

−
10

−
5

Observations eliminated (300 Normal, 100 Attack)

P
iv

ot
 E

rr
or

(a) 300 normal, 100 attack

5 10 20 30

−
80

−
60

−
40

−
20

Observations eliminated (100 Normal, 35 Attack)

P
iv

ot
 E

rr
or

(b) 100 normal, 35 attack

Figure 3.6: Impact of removing vertices after W exceeds θW for different
sample sizes of equivalent composition.

3.4. EVALUATION 97

5 10 20 30

−
25

−
20

−
15

−
10

−
5

0

Observations eliminated (3000 Normal, 1000 Attack)

P
iv

ot
 E

rr
or

(c) 3000 normal, 1000 attack

Figure 3.6 continued.

size, there is no reason to remove additional observations. Furthermore, we

note that this boxplot has no variation. However, for different vector sizes,

we see greater variation, and of different types depending on the sizes.

Figure 3.6(ii) plots the results with 135 observations, a considerably

smaller vector size. This figure shows that the value of the pivot error is

relatively stable, but that there are a significant number of outliers (approxi-

mately 15% of all the runs). More significant, however is that the pivot error

was consistently negative even before removing observations, sometimes by

up to 20 observations. In these cases, shapfilt is overestimating the pivot.

This is likely a result of the small size of V test in these simulation runs. We

can compensate for these results by using a less stringent θW , but see no

compelling reason to do so. We have access to data as long as we are willing

98 CHAPTER 3. TRAINING ANOMALY DETECTORS

to wait a sufficiently long time, and the savings on training time is minimal

compared to the loss in accuracy.

Figure 3.6(iii) plots the pivot error using a much larger vector: 4000 total

observations. In this case, the pivot error is actually slightly higher than

the number observations removed (e.g., when five observations are removed,

the actual pivot error is -2). As before, the estimates are very stable, with a

limited number of outliers that are even higher. This result indicates that,

at least for these vector sizes, the number of normal observations reduces the

loss in accuracy caused by missing attack observations. However, we also

have to note that this is a very large amount of normal observations – 3,000

normal observations are offsetting the effect of around 2 attack observations.

Consequently, we conclude that at larger sample sizes, removing additional

observations is useful, but not critical for acquiring a more accurate estimate.

Furthermore, we note that we have no compelling reason for training the

system for forty hours when we have achieved comparable results after three.

Given these results, we are confident that we can train the system with

500 observations in V test, setting θW to 0.95 and without removing any ad-

ditional observations. We must now evaluate the impact of this filtering

method. To do so, we calculate the anomaly threshold: µV + 3.5σV . This

value is the expected point at which our IDS, trained on a filtered or un-

filtered dataset, would raise an alarm. Figure 3.7 compares the anomaly

thresholds generated using µV and σV values for three different scenarios:

raw data (i.e., no filtering at either the log or the state level), after log-level

filtering and after state-level filtering. In this figure, the x-axis is the es-

timated anomaly threshold, and the y-axis is the frequency with which we

3.4. EVALUATION 99

 0

 200

 400

 600

 800

 1000

 1200

 1400

100 500 1000 5000 10000 50000 100000

F
re

qu
en

cy

Anomaly Threshold (log scale)

After state-level filtering

After log-level
 filtering

Before filtering

Figure 3.7: Impact of state-level and log-level filtering on data set.

derived that threshold in our tests. The x-axis on this plot is logarithmically

scaled, and plots the distribution of observed thresholds over 5000 test runs

for each scenario. As this plot shows, the impact of the filtering is significant

- the expected threshold without filtering is 91,000 vertices, with expected

thresholds of 4,600 and 370 vertices for the other two categories.

These numbers show that unless aggressive traffic filtering such as ours

is implemented, the attacker needn’t bother with subtlety. In the worst case

scenario an attacker can use the resources of a full /16 without the IDS

noticing an attack. Even with just log-level filtering, the attacker can DDoS

a target and hide in the noise.

100 CHAPTER 3. TRAINING ANOMALY DETECTORS

3.5 Impact Evaluation and Notification

Since HCFAs are common and rarely successful, simple alerts mean that

an accurate warning system is still counterproductive: we have developed a

system that can now accurately detect attacks and, based on the observed

attack frequency, will raise an alarm every two minutes.

We address this problem by dividing alerts on a criterion of actionabil-

ity. The majority of HCFAs are inactionable in the sense that there is

relatively little do that an operator can do about them. They are likely to

be automated and conducted from compromised hosts, meaning that the

actual culprit is elsewhere and the actual owner of the host is unaware of

the attack. An attack is actionable if it merits activity by an operator,

inactionable otherwise.

Determining actionability is a two-stage process. In the first stage, each

of the processors (log-level and state-level) generates a list of anomalous

addresses, A, from the current period’s log data. These addresses are then

passed to an evaluator, which determines if there is any activity from the

addresses in A that is actionable. As with significance, actionability is a

quality that we approximate from concrete behaviors in the log files. Cur-

rently, an anomalous address is actionable if there exists a flow from the

anomalous address which includes nontrivial payload. For example, if an

anomalous address does find an actual target and communicates with it,

then that address is actionable. If an anomalous address is actionable, it is

sent to operators for further examination, while inactionable addresses are

placed on a watchlist which can be examined by operators at their discretion.

3.6. ATTACKING ATTACK REDUCTION 101

Log-level and state-level processors use different criteria for determining

if an address is anomalous. Recall that Λinsig will generally be orders of

magnitude larger than Λsig for any time, and consequently the log processor

cannot conduct particularly subtle analyses. In the current implementation,

the log processor uses a simple top-5 list, identifying the 5 highest degree

clients and passing them to the evaluator. The state-level processor will use

different methods based on the state model, since our implementation of

state-level filtering is graph based, we use the component counting method

from §2.5.

An important consequence of this processing approach is that the log

processor will generate a steady stream of anomalies and will have a high

false positive rate. However, while the log processor has a high false positive

rate, the aggregate system does not: the evaluator will not pass an alert

about a high-degree host unless that host has done something actionable.

In comparison to the log processor, the state processor will generate alerts

infrequently (based on the provided data, approximately once every two

minutes). The evaluator also expects some degree of redundancy between

the anomaly lists - an attack with mixed success may appear in both Λsig

and Λinsig.

3.6 Attacking Attack Reduction

Attack reduction reduces distractions from HCFAs so that an IDS can focus

on more successful, and therefore higher-risk, attacks. To do so, it assumes

that the majority of attacks are HCFAs high failure, reaching targets that

102 CHAPTER 3. TRAINING ANOMALY DETECTORS

don’t exist and having little impact on the network. We must now address

intelligent attackers: how an attacker conversant in attack reduction can

manipulate the system to their advantage.

We contend that the primary result of our statistical IDS is to effectively

throttle attacker behavior. We assume that an intelligent attacker does not

want to be noticed, and too much activity is going to raise alerts from the

IDS. Using our graph-based IDS, he can effectively only engage in any ac-

tivity that involves payload-bearing communications to less than 370 clients

and servers combined in a 30s period. This is an upper limit, since it does

not include normal activity. Evasion therefore consists of operating under

this limit.

An attacker could manipulate the attack reduction system by inserting

consistent chaff. Assume that the attacker is aware of when the IDS is in

state-level filtering. Throughout this training period, the attacker consis-

tently sends short sessions crafted to pass the log-level filter into the model

to nonexistent targets. Because the other traffic is normally distributed,

the constant attacks will increase µV and provide the attacker with a buffer.

Then, during normal operations the attacker can disengage the sources send-

ing chaff traffic and use that breathing room for his own activity.

To do this, the attacker must consistently commit hosts to an attack.

Once the system is trained, however, he may return those hosts to his own

uses. One way to identify for this type of anomaly would be to use symmetric

thresholds. Since Gaussian distributions are symmetric, an unusually low

value should be as rare as an unusually high value. If those thresholds are

incorporated, than an attacker would have to maintain his hosts in place

3.7. CONCLUSIONS 103

until the attack was actually conducted.

3.7 Conclusions

This chapter has developed a method to implement an anomaly detection

model in protocols that are under constant attack. These consistent HCFAs

impact the training and notification processes of anomaly detection systems,

and we have shown that without aggressive filtering, an anomaly detection

system cannot detect massive attacks in popularly targeted protocols. Using

attack reduction we are able to develop a more precise model of normalcy.

The impact of having a more precise model is substantial. For example, we

showed that in our monitored network, a simple form of anomaly detection

improves by more than two orders of magnitude: it will detect 370 attacking

hosts with our techniques, but would miss 91,000 attacking hosts (e.g., in

a massive DDoS) in the absence of our techniques. By then filtering these

detections into actionable and inactionable anomalies, we are then able to

better focus the attention of human analysts on attacks that otherwise would

have been lost in the noise of HCFAs and that are likely to be more important

to examine.

104 CHAPTER 3. TRAINING ANOMALY DETECTORS

Chapter 4

Evaluating Anomaly

Detection Systems

We address the problem of evaluating network intrusion detection systems,

specifically against scan and harvesting attacks. In the context of this work,

a harvesting attack is a mass exploitation where an attacker initiates com-

munications with multiple hosts in order to control and reconfigure them.

This type of automated exploitation is commonly associated with worms,

however, modern bot software often includes automated buffer-overflow and

password exploitation attacks against local networks1. In contrast, in a

scanning attack, the attacker’s communication with multiple hosts is an

attempt to determine what services they are running; i.e., the intent is re-

connaissance.

1A representative example of this class of bot is the Gaobot family, which uses a vari-
ety of propagation methods including network shares, buffer overflows and password lists.
A full description is available at http://www.trendmicro.com/vinfo/virusencyclo/

default5.asp?VName=WORM AGOBOT.GEN.

105

106 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

While harvesting attacks and scanning may represent different forms of

attacker intent (i.e., reconnaissance vs. host takeover), they can appear sim-

ilarly in traffic logs. More specifically, a single host, whether scanning or

harvesting, will open communications to an unexpectedly large number of

addresses within a limited timeframe. This behavior led to Northcutt’s ob-

servation that in the absence of payload—either due to the form of log data,

encryption or simply a high connection failure rate—methods for detecting

these attacks tend to be threshold-based [42]. That is, they raise alarms after

identifying some phenomenon that exceeds a threshold for normal behavior.

Historically, such IDS have been evaluated purely as alarms. Lipp-

mann et al. [34] established the practice for IDS evaluation in their 1998

work on comparing IDS data. To compare intrusion detectors, they used

ROC curves to compare false positive and false negative rates among detec-

tors. Since then, the state of the practice for IDS evaluation and comparison

has been to compare the effectiveness of ROC curves [23].

The use of ROC curves for IDS evaluation has been criticized on several

grounds. For our purposes, the most relevant is the critique of the base rate

fallacy described by Axelsson [5]. Axelsson observes that a low relative false

positive rate can result in a high number of actual false positives when a

test is frequently exercised. For NIDS, where the test frequency may be

thousands or tens of thousands of per day, a false positive rate as low as 1%

may still result in hundreds of alarms.

In this chapter, we introduce an alternative method of evaluating IDS

based around their capacity to deter attackers. In order to do so, we develop

a model for evaluating IDS over an observable attack space. The observable

107

attack space represents a set of attacks an attacker can conduct as observed

by a particular logging system. The role of logging in the observable at-

tack space is critical; for example, NetFlow, the logging system used in

this chapter, does not record payload. As such, for this chapter, we define

an observable attack space that classifies attacks by the attacker’s aggres-

siveness (the number of addresses to which they communicate in a sample

period) and their success (the probability that a communication opened to

an address actually contacts something).

Using this notion of an observable attack space, we develop a payoff-

based method for evaluating IDS effectiveness. This mechanism consists of

constructing a detection surface, which is the aggregate probability of detec-

tion over the observable attack space, and then applying a payoff function

to this detection surface. The payoff function is a function representing the

rate at which an attacker achieves the strategic goal of that attack, which

is either occupying hosts (in a harvesting attack) or scouting network com-

position (in a scanning attack).

By combining detection surfaces with a payoff function, we are able to

compare IDS with greater insight about their relative strengths and weak-

nesses. In particular, we are able to focus on the relationship between de-

tection capacity and attacker payoff. Instead of asking what kind of false

positive rate we get for a specific true positive rate, we are able to map

the false positive rates to the attacker’s goals. By doing so, we are able

to determine how high a false positive rate we must tolerate in order to

prevent an attacker from, say, substantially compromising a network via a

harvesting attack. Our work therefore extends ROC-based analysis into a

108 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

payoff framework, and by doing so we are able to address problems such as

the minimal acceptable false positive rate to deter attackers.

Using this approach, we compare the efficacy of five different detection

techniques: client degree (i.e., number of addresses contacted); protocol

graph size and protocol graph largest component size [13]; server address

entropy [32]; and Threshold Random Walk [26]. We train these systems

using traffic traces from a large (larger than /8) network. Using this data,

we demonstrate the configurations of aggressiveness and success rate with

which an attack will go undetected by any of these techniques. Furthermore,

we show that in order to ensure that an attacker is consistently detected,

these anomaly detection systems must accept false positive rates resulting

in hundreds of false alarms daily.

To summarize, the contributions of this chapter are the following. First,

we introduce a new methodology for evaluating NIDS that do not utilize

payload. Second, we apply this methodology to evaluate several attack

detection methods previously proposed in the literature, using data from a

very large network. And third, we demonstrate via this evaluation the limits

that these techniques face in their ability to deter attackers from reaching

harvesting or scanning goals.

The remainder of this chapter is structured as follows. §4.1 is a review

of relevant work in IDS evaluation and anomaly detection. §4.2 describes

the IDS that we evaluate in this chapter, and how we configure them for

analysis. §4.3 describes the observable attack space and detection surface.

§4.4 describes the first of our two attack scenarios, in this case the acquisition

of hosts by an attacker with a hit list. §4.5 describes the second scenario:

4.1. PREVIOUS WORK 109

reconnaissance by attackers scanning networks. §4.6 concludes this work.

4.1 Previous Work

Researchers have conducted comparative IDS evaluations in both the host-

based and network-based domains. In the host-based domain, the most

extensive work done is by Tan and Maxion [62, 37] who develop an experi-

mental and evaluation methodology for comparing the effectiveness of mul-

tiple host-based IDS. Of particular importance in their methodology is the

role of the data that an IDS can actually analyze, an idea further extended

in Killourhy et al.’s work on Defense-centric taxonomy [27]. The methods

of Tan, Maxion and Killourhy informed our experimental methodology and

the concept of an observable attack space, however their approach is focused

on host-based IDS and they consequently work with a richer dataset then

we believe feasible for NIDS.

A general approach to evaluating IDS was proposed by Cárdenas et

al. [9], who developed a general cost-based model for evaluating IDS based

on the work of Gaffney and Ulvila [19] and Stolfo et al. [60]. However,

these approaches all model cost from a defender-centric viewpoint — the

defensive mechanism is assumed to have no impact on the attacker. Our

work is motivated by previous work on opportunistic attackers [12], where

we assumed that attackers had no interest in a target except insofar as it

was exploitable.

The general problem of NIDS evaluation was first systematically studied

by Lippmann et al. [34]. Lippmann’s comparison first used ROC curves

110 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

to measure the comparative effectiveness of IDS. The ROC-based approach

has been critiqued on multiple grounds [38, 23, 5]. Our evaluation model

is derived from these critiques, specifically Axelsson’s [5] observations on

the base-rate fallacy. Our work uses a ROC based approach (specifically,

comparing Type I and Type II errors) as a starting point to convert the

relative error rates into payoffs.

4.2 Alarm Construction and Training

In the context of this work, an alarm is an anomaly based detection system

that compares the current state of a network against a model of that net-

work’s state developed from historical data. In this section, we describe our

candidate alarms, and the method for training and configuring them. This

section is divided as follows: §4.2.1 describes the raw data, §4.2.2 describes

the types of alarm used, and §4.2.3 describes the measurement and final

estimates used for our alarm.

4.2.1 Raw Data

Every alarm in this chapter is trained using a common data source over

a common period of time. The source data used in this chapter consists

of unsampled NetFlow records2 generated by internal routers in a large

(in excess of 16 million distinct IP addresses) network. For training and

evaluation, we use SSH traffic. SSH was chosen because it is a very popular

2CISCO Systems, “CISCO IOS Netflow Datasheet”, http://www.cisco.com/en/

US/products/ps6601/products data sheet0900aecd80173f71.html, last fetched Octo-
ber 8th, 2007.

4.2. ALARM CONSTRUCTION AND TRAINING 111

target for attack, as observed by Alata et al. [3].

For the purposes of this chapter, we treat NetFlow records as tuples of

the form (clntip, srvip, success, stime). The elements of this tuple are derived

from the fields available in CISCO NetFlow. The clntip, srvip, success and

stime fields refer, respectively, to the client address, server address, whether

a session was successful, and the start time for the session. Since SSH

is TCP based, we rely on the port numbers recorded in the original flow

record both for protocol identification and classifying the role a particular

address played in the flow. Any flow which is sent to or from TCP port

22 is labeled an SSH flow, srvip is the address corresponding to that port

and clntip the other address3. stime, the start time, is derived directly from

the corresponding value in the flow record, and is the time at which the

recording router observed the flow’s earliest packet.

The success element is a binary-valued descriptor of whether the recorded

flow describes a legitimate TCP session. success is 0 when the flow describes

a TCP communication that was not an actual session (e.g., the target com-

municated with a nonexistent host), 1 when the flow describes a real ex-

change between a client and a server. In situ, this value is an approximation

of a property that that can only be truly determined by the receiving host;

a sufficiently perverse attacker could generate one side of a session and send

that information in order to fool the data collection system. During live use,

success can be approximated using other flow properties such as the number

of packets in the flow or TCP flag combinations. For our simulations, we

3We constrain the flows used in this chapter to flows which used an ephemeral port
between 1024 and 5000.

112 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

generate success ourselves: the source data consists of traffic already subject

to log-level filtering as specified in our work on IDS training [14], and we

therefore treat all of that traffic as successful.

Alarm properties are generated using 30 second (s) samples of traffic

data. We refer to a distinct sample as a log file, Λ, consisting of all the flows

λ1 . . . λl whose stime values occur in the same 30s period.

4.2.2 Alarm State Variables

In the context of this chapter, an alarm is a threshold on a value derived

from a log file Λ; if this value exceeds the alarm’s threshold, then an alert

is generated for processing by the IDS. Each alarm in this chapter is based

around a single state variable which, when evaluated against a log file pro-

duces a scalar state value. For this chapter, we evaluate the state of a log

file using five distinct state variables: v, c, h, d and r. Each state variable is

used by one alarm; we will refer to the alarms by their state variable (e.g.,

v is an alarm).

We note that an alarm is not an IDS, but a component thereof. As noted

in Chapter 3, in addition to simply raising an alert, a useful IDS must also

provide context for the alert. We therefore consider an IDS to be a system

that interprets alarms and recommends courses of action, such as identifying

the cause of an anomaly. For the purposes of this chapter, we assume that

if an alarm is accurate, the IDS managing that alarm operates with perfect

accuracy (e.g., if an alarm is raised about a bot taking over hosts, the IDS

will identify that bot and provide that information to operators).

The first two alarms, v(Λ) and c(Λ) are, respectively, the total graph

4.2. ALARM CONSTRUCTION AND TRAINING 113

size and the largest component size of the protocol graph constructed from

Λ, as described in §2.2.1. h(Λ) is the entropy of server addresses in Λ. This

metric is derived from work by Lakhina et al. [32] on mining traffic features.

The entropy is defined as:

h(Λ) = −
∑

i∈srvs(Λ)

(
|{λ ∈ Λ|λ.srvip = i}|

|Λ|

)
log2

(
|{λ ∈ Λ|λ.srvip = i}|

|Λ|

)
(4.1)

where srvs(Λ) =
⋃

λ∈Λ λ.srvip is the set of all server addresses observed in the

log file. During a harvesting attack, an attacker will increase |srvs(Λ)|, which

reduces the probability of any one server being the target of a communication

and therefore increases the entropy.

d(Λ), the maximum degree of Λ, is the number of servers with which

the busiest client in Λ communicated. d(Λ) is arguably the simplest form

of scan detection and consequently has been used by a variety of anomaly

detection systems, notably GrIDS [58] and Bro [44].

r(Λ) is the maximum failed connection run observed in Λ. A failed

connection run is a sequence of flow records λ1 . . . λn where each λ in the

run has the same server address and λi.success = 0. This method is used

by TRW scan detection [26] to determine if an address is actively scanning.

As implemented by Jung et al., TRW is a streaming algorithm that employs

sequential hypothesis testing in order to determine if a particular host is

scanning. We use the maximum failed connection run measure to indicate

whether or not the streaming TRW approach would have detected at least

one attack during the period.

114 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

4.2.3 Alarm Thresholds

In order to calculate detection thresholds for four of the alarms we consider

(v, c, h and d), we first must train the alarm using log files of benign traf-

fic from the monitored network. However, SSH traffic is prone to constant

scanning [3] which, unless aggressively filtered, will result in artificially high

thresholds. We address this by using the attack reduction methodology from

Chapter 3. The initial training data consisted of 7,200 log files for the five

business days between February 11–15, 2008. Source data was chosen ex-

clusively from 1200GMT to 2359GMT for each day, a period corresponding

to peak activity for the network. After filtering, the resulting set consisted

of 5,619 log files from a source set of 7,200.

Applying this filtering technique in order to isolate benign traffic yields

a vector Λ1 . . .Λm of log files, each representing benign traffic in a 30s in-

terval. State values are calculated for each log file in this vector; we refer to

the resulting vector of state values using the same subscript notation, e.g.,

r(Λi) = ri. We refer to the complete vector of values for a vector of log files

by the corresponding capital letter (e.g., V = {v(Λ1) . . . v(Λm)}).

We examined the H and D distributions in the filtered data to see if they

could be modeled via a Gaussian distribution. (Our previous work already

established that V and C are Gaussian for the monitored network [13].)

Figure 4.1(a) shows a distribution of H after filtering. As this figure shows,

entropy can be satisfactorily approximated using a normal distribution, with

a Shapiro-Wilk statistic of W = 0.97 and negligible p-values. D, shown in

Figure 4.1(b), had a Shapiro-Wilk statistic of W = 0.77 with negligible

4.2. ALARM CONSTRUCTION AND TRAINING 115

State variable x Range µX ± σX

v 299.27±42.49

c 35.13±21.32

h 6.88±0.35

Table 4.1: Summary of Gaussian state variables in SSH training set.

p-value, and consequently was not considered Gaussian.

Table 4.1 summarizes the Gaussian state variables, i.e., v, c, and h. This

table shows the summary data (left hand column), the mean and standard

deviation (right side) and a sparkline for each data set. The sparkline is a

time series plot of the activity over the training period. We plot the mean

and shade an area one standard deviation from the mean in each sparkline.

For these three state variables, we can use (4.2) to calculate the detection

threshold. For a given false positive rate, FPR, the corresponding threshold

for a Gaussian alarm x is given by:

θx = µX + γσX (4.2)

Where γ is the threshold (in standard deviations) for a given false nega-

tive rate FNR = 1− FPR, as in Equation 2.7. µX is the arithmetic mean of

the vector of observations X, and σX is the standard deviation of the same

vector.

The detection threshold for d is computed differently since, as shown

above, d is not normally distributed over the sample space. We use d’s

116 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

Entropy

D
en

si
ty

6.0 6.5 7.0 7.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(a) Distribution of h in SSH data. Resulting fit has a W statis-
tic of 0.97 with negligible p-value.

Maximum Degree

D
en

si
ty

0 50 100 150

0.
00

0.
01

0.
02

0.
03

0.
04

(b) Distribution of d in SSH data. Resulting fit has a W statis-
tic of 0.72 with negligible p-value.

Figure 4.1: Distribution and normal approximations of h and d in observed
data set.

4.2. ALARM CONSTRUCTION AND TRAINING 117

maximum observed value over the benign log files as the detection threshold:

θd = max(D) (4.3)

The detection threshold for r is the only one that is not based on the

observed history of the monitored network. Rather, Jung et al. express the

threshold for detection as follows:

θr =
TPR ln TPR

FPR + (1− TPR) ln 1−TPR
1−FPR

t1 ln t1
t0

+ (1− t1) ln 1−t1
1−t0

(4.4)

Here, FPR and TPR are user configured thresholds for the maximum false

positive rate (FPR) and the minimum true positive rate (TPR). t0 and t1

are, respectively, the probabilities that a randomly scanning attacker will

successfully communicate with a target, and the probability that a normal

user will fail to communicate with a target. For this work, we set TPR =

1 − FPR, and set FPR to our acceptable FPR (see below). We use Jung’s

original values of t0 = 0.8 and t1 = 0.2.

Recall that for this work, we monitor traffic over 30s periods. We restrict

an alarm to sending one alert at the end of that period. If we constrain the

aggregate false positives for all of the detectors to one false alarm per eight

hours (i.e., the duration of a typical network analyst’s shift), this yields

a combined rate of 0.1% for the five alarms together. If we permit each

detector to contribute equally to this aggregate false positive rate, and if we

assume, for simplicity, that the five alarms are independent, then we can

118 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

solve for their individual false positive rates FPR using

0.001 = 1− (1− FPR)5 (4.5)

Plugging this value of FPR into (4.2) yields detection thresholds θv = 447,

θc = 110, and θh = 8.105, and setting FPR = FPR in (4.4) yields θr = 6. We

also use the value θd = 150, computed directly from (4.3). These are the

detection thresholds we utilize in our evaluations in the subsequent sections.

4.3 Observable Attack Spaces and Detection Prob-

ability

In §4.2, we developed and configured a combined alarm based around alarms

using five different state variables: graph size v, largest component size c,

server address entropy h, maximum client degree d and maximum failed

connection run r. In doing so, we specifically configured these systems to

yield a low false positive rate, resulting in one false positive per eight-hours

as predicted by our training data. Now that we have developed this hybrid

alarm, we can evaluate its efficacy for deterring attackers.

In order to do this, we develop a method for describing attacker utility

which we call the observable attack space (OAS). An observable attack space

describes the range of attacks that an attacker can conduct as observed by

a particular logging mechanism. In this section, we develop an observable

attack space common to our logging system (NetFlow) and our five candidate

arlams. Using this approach, we model the aggregate detection surface of the

4.3. OBSERVABLE ATTACK SPACES AND DETECTION PROBABILITY119

OAS and use this to evaluate both our combined alarm and the constituent

alarms individually.

This section is structured as follows. §4.3.1 describes the observable

attack space relation between OAS and alarms. §4.3.2 describes how we

estimate the detection surface. §4.3.3 then compares the effectiveness of

our five detection methods both in aggregate and as individual detection

schemes.

4.3.1 Observable Attack Spaces and Alarms

The type of log data that an alarm uses strongly impacts the types of at-

tacks which that alarm can detect. An example of this is the impact of

choosing NetFlow. NetFlow is a compact representation of network traf-

fic, and therefore can be effectively used on larger networks than more

payload-intensive methods will allow. However, since NetFlow lacks pay-

load, signature-matching techniques are not viable with this log format.

An observable attack space is therefore a parameterized representation

of all possible forms of a particular attack, as observable by a particular log-

ging system. For this work, the observable attack space has two attributes:

aggressiveness (a) and success (s) observed within a 30s period. The ag-

gressiveness is a natural number describing the number of distinct addresses

with which the attacker communicates in the observation period. The suc-

cess of an attack is fraction of these communications that were successful,

and is within the range of [0, 1].

When conducting simulations, we limit the a to the range of (0, θd)

because we treat the d alarm as deterministic — it will trigger if and only

120 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

if a ≥ θd. In doing so, we ignore the possibility that during an attack, a

benign host contacts more than θd addresses, thus “accidentally” causing a

true detection even though a < θd. This treatment also presumes that the

attack is launched from a bot that is not also contributing benign traffic at

the same time, i.e., a < θd implies that the bot host does, in fact, contact

fewer than θd addresses in a 30s interval. The other alarms’ chances of

detecting attacks are not so directly dependent on an attack’s characteristics

within the OAS. We express the uncertainty involving these alarms by their

probability of detection, discussed in §4.3.2.

4.3.2 Estimating the Detection Surface

Consider a particular alarm x ∈ {v, c, h, r}. Given an arbitrary log file of

control data Λctl that we are confident does not contain an attack, Px
det(a, s)

is the probability that the alarm x can identify that the log file resulting

from Λctl merged with an attack Λatk with aggressiveness a and success s.

That is,

Px
det(a, s) = P

[
x(Λatk ∪ Λctl) ≥ θx

]
(4.6)

where the probability is taken with respect to the selection of Λctl and the

generation of Λatk with aggressiveness a and success rate s. For a particular

alarm x, the detection surface of x is the surface of values Px
det(a, s) for

a ∈ (0, θd) and s ∈ [0, 1].

More specifically, to estimate the probability of detection and the cor-

responding detection surface, we evaluate the distribution of state vari-

ables for normal behavior merged with randomly generated attacks meet-

4.3. OBSERVABLE ATTACK SPACES AND DETECTION PROBABILITY121

ing the aggressiveness and success requirements specified by a and s. For

this chapter, we limit our simulations to a ∈ {10, 20, 30, 40, . . . , 140} and

s ∈ {0.1, 0.2, 0.3, . . . , 1.0}. At each point, we conduct 100 simulations, each

using one of fifty randomly selected 30s periods from the week of February

18–22 (the week following that used for training) for Λctl. Λatk is randomly

generated for each simulation. Λatk contains a unique records, where each

record has the same client address, and a different server address. The com-

position of the server addresses is a function of s: as addresses are chosen

from a hit list HitList of internal SSH servers identified in the training data4

in order to approximate hit list attacks; the remainder are sent to addresses

with no listening server. We then merge Λatk with a randomly selected

control log Λctl and then calculate the state variables.

Four of the alarms examined by this chapter (v, c, h, and d) are un-

affected by the order of log records within the monitored 30s period. The

fifth, r, is order-sensitive, however, in that TRW triggers an alert if any host

is observed making more than θr failed connections in a row. This order

sensitivity is a weakness, since an attacker can interleave scanning with con-

nections to known hosts in order to avoid a failed connection run greater

than θr [28]. As such, to avoid this weakness in TRW, we randomly per-

mute the records originating in each 30s interval. After this permutation, r

is calculated for each host in the network.

Figure 4.2 plots the detection surface for all the alarms combined. As

this figure shows, the combined detection mechanism generally increases

4This hit list is composed of all internal addresses in the training data which had one
flow originating from them on port 22 and with a payload of greater than 1kB.

122 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0
 20

 40
 60

 80
 100

 120
 140

 10
 20

 30
 40

 50
 60

 70
 80

 90

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Detection

AggressivenessSuccess

Detection

Figure 4.2: Detection surface (Pall
det(a, s), as a percentage) for combined

alarms.

proportionally to the aggressiveness of the attack and inversely relative to

the success of the attack. Furthermore, the detection mechanisms tend to

vary more as a function of the aggressiveness than due to the success rate.

The effectiveness of the aggregate alarm may be considered low, in the

sense that an attacker with a relatively small hit list (a = 40, s = 0.5) can

communicate with the network with little fear of detection. However, we

should note that the attacks represented by this OAS are the most subtle

space of attacks available. Our own experience indicates that the majority

of attacks are orders of magnitude more aggressive than these hypothetical

SSH scans, at which point any alarm will identify them. This latter point

is particularly critical. As Figure 4.2 shows, once a ≥ 100, the combined

alarm will be triggered.

4.3. OBSERVABLE ATTACK SPACES AND DETECTION PROBABILITY123

4.3.3 Detection Surface Comparison

In addition to the detection surface for the aggregate alarm, we have also

calculated the detection surfaces for each component alarm in this system.

We can use these results to evaluate the comparative effectiveness of each

alarm.

Figure 4.3 plots detection surfaces for each alarm x ∈ {v, c, h, r} as con-

tour plots. A contour plot maps a 3-dimensional value into a 2-dimensional

representation using contour lines — each pair of lines bounds a range of

values indicated by the value of the line.

These plots show that the most successful individual alarms are c and

r: these alarms are the only ones to have significant (≥ 10%) detection

rates over the majority of the OAS. In contrast, the entropy-based detec-

tion method has a very low detection rate, less than 6% over the entire

OAS. Of particular interest with c and r is their relative disconnectedness

to each other: r’s detection rate is dependent on s and less dependent on

a. Conversely, c is largely independent of s, while a plays larger role in

detection.

We note at this point that all of the detection methods have relatively

low success rates. There are two reasons for this: the first is that these

techniques are calibrated to have an effective false positive rate of zero — as

a result, they are far less sensitive to anomalies. Second, as noted above, the

range of attacks represented here are extremely clever — our training data,

we eliminated scanners who would communicate with upwards of 50,000

hosts during a 30s period. Those clumsy attackers would be identified and

124 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

eliminated regardless of the detection strategy used — by the time an at-

tacker communicates with 150 addresses, the d alarm will raise an alarm,

making other approaches effectively moot.

This phenomenon is partly observable in our models in Table 4.1. Recall

that, for example, the model of graph size v, was 299 ± 42.47 hosts. If

v(Λ) = 299 for some log file Λ, then an attacker will not trigger an anomaly

until he has communicated with 149 hosts, at which point he is close to

triggering d as well as v.

4.4 Modeling Acquisition

In §4.3.3 we examined the efficacy of the detection mechanisms purely as

detectors: for a fixed false positive rate, we calculated the effective true

positive rate. In this section, we use the detection surface in Figure 4.2 to

examine the impact of alarms on acquisition attacks. We evaluate the effi-

cacy of the detection surface by building a mathematical model for attacker

payoff during an acquisition attack. Applying this model to the surface, we

can determine how many hosts an attacker can expect to take over, and

from these results determine how effective an alarm has to be in order to

keep attackers from taking over hosts.

This section is divided as follows: §4.4.1 describes our model for acqui-

sition attacks. §4.4.2 compares alarm efficiency using our payoff function.

§4.4.3 considers the problem of alarm evaluation from a different perspective

— instead of calculating efficiency in terms of true and false positives, we

determine the minimum false positive rate required to counter an attacker.

4.4. MODELING ACQUISITION 125

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

5% 10% 15%

(a) Total graph size v

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

20% 30% 40% 50%

60%

60% 70%

(b) Largest component size c

Figure 4.3: Detection surfaces (Px
det(a, s), as a percentage) for individual

alarms.

126 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

3%

3.5%

4%

4.5%

(c) Server entropy h

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

60%

50%

40%

30%

20%

10%

(d) Maximum failed connection run r

Figure 4.3 continued.

4.4. MODELING ACQUISITION 127

4.4.1 Acquisition Payoff Model

We define an acquisition attack as a game between two parties who are

competing for ownership of a single network. The two parties in the game

are the attacker, who attempts to communicate with hosts on the network,

and the defender, who attempts to prevent takeovers of hosts on the network.

The game is broken into multiple attempts, during each of which the attacker

uses a single bot to communicate with multiple addresses within the network

using a hit list acquired previous to the attack.

In each attempt, the attacker communicates with some number of ad-

dresses (specified by the attacker’s a), each of which has s chance of suc-

ceeding — for the purposes of the simulations, a successful attack is one that

communicates with a vulnerable host at that addresses, and a failed attack

is one that does not. The payoff of an attempt, Hacq, is the measure of the

expected number of hosts with which the attacker communicates during an

attempt. We assume that if an attacker talks with a host, the attacker has

taken the host over.

The game is zero-sum: the goal of the defender is to minimize Hacq, the

goal of the attacker to maximize the same. To do so, the defender deploys

multiple alarms x each of which has a different detection surface. The

probability of detecting a particular attempt is Px
det(a, s). If the defender

detects an attacker during an attempt, then the defender recovers all of the

hosts the attacker has communicated with using that particular bot during

the game (i.e., if the same bot is used during multiple attempts, the defender

recovers all the hosts taken over by that bot during the attempt that the

128 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

bot was detected and all previous attempts using that bot).

Let owned be a random variable indicating the number of hosts taken

over, and let alarmed be the event that the bot is detected. Below, we assume

that the probability of detection in each attempt is independent. If such is

the case, then we can derive the payoff for an attack for an alarm x as:

Hx
acq(a, s, k)

= E [owned]

= P [alarmed] E [owned | alarmed] + P [¬alarmed] E [owned | ¬alarmed]

= (1− Px
det(a, s))k(ask) (4.7)

The last step follows by taking E [owned | alarmed] = 0, since we presume

that if the defender detects an attacker during an attempt, then the defender

recovers all of the hosts the attacker has communicated with using that

particular bot. Note that

Hx
acq(a, s, k + 1)−Hx

acq(a, s, k) = (1− Px
det(a, s))k as[1− Px

det(a, s)(1 + k)]

(4.8)

As such, it is fruitful for the attacker to use the same bot for multiple

attempts (i.e., increment k) so long as Hacq(a, s, k + 1) − Hacq(a, s, k) > 0

or, in other words,

k <
1− Px

det(a, s)
Px

det(a, s)
(4.9)

Figure 4.4 plots the payoff over the observed attack space using (4.7) with

the maximum k satisfying (4.9). As this figure shows, aggressive attacks have

4.4. MODELING ACQUISITION 129

 0

 50

 100

 150

 200

 250

 0
 20

 40
 60

 80
 100

 120
 140 10

 20
 30

 40
 50

 60
 70

 80
 90

 0

 50

 100

 150

 200

 250

Payoff

Aggressiveness

Success

Payoff

Figure 4.4: Plot of the payoff for acquisition attacks over the OAS.

a minimal payoff, a result that can be expected based on Figure 4.2. Above

approximately a ≥ 80, the attacker is consistently identified and stopped

regardless of their success rate.

This behavior is the result of the interaction of two detectors: c and r.

As s increases, the probability of the attacker combining previously separate

components of the protocol graph increases, increasing the likelihood of

detection by the c alarm. As the attacker’s success rate decreases, he is

more likely to generate a sufficiently long failed connection run to trigger

the r detector. The other detectors will identify attackers, however their

effectiveness is limited for attacks that are this subtle — an attacker who

does disrupt v or h will already have disrupted d.

130 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

4.4.2 Calculating Alarm Efficiency

We can use (4.7) to also calculate a comparative efficiency metric for an

alarm. The volume under the surface specified by (4.7) is the ability of

the attacker to take over hosts in the presence of a particular alarm. The

efficiency of an alarm x is therefore the indicator of how much x reduces

an attacker’s payoff. We can express alarm efficiency as the ratio between

the number of hosts an attacker expects to take over in the presence of an

alarm, and the number of hosts the attacker can take over in that alarm’s

absence.

Ex
acq = 1−

∑
a∈(0,θd)

∑
s∈(0,1]Hx

acq(a, s, kx
max(a, s))∑

a∈(0,θd)

∑
s∈(0,1]H

∅
acq(a, s, kx

max(a, s))
(4.10)

where kx
max(a, s) = maxk Hx

acq(a, s, k) (i.e., the maximum k satisfying (4.9))

and where H∅
acq(a, s, k) = ask is the payoff for an acquisition attack if no

alarm is available. The subtraction in (4.10) is included simply to provide

an intuitive progression for efficiency: if E is greater for alarm A than alarm

B, then A is a better alarm than B. Based on (4.10), we can calculate an

efficiency of 0.14 for v, 0.0099 for h, 0.73 for c and 0.22 for TRW. The

effectiveness of the combined alarm is 0.80.

The most interesting result from these calculations is the relatively low

efficiency of r as an alarm. Recall from Figure 4.3 that r has a very high true

positive rate. However, because the detection mechanism relies on attacker

failures, it is better at detecting attacks which have a relatively low s. r

detection is therefore very good at detecting attacks with low payoff.

We expect that the comparative efficiency of these alarms will differ from

4.4. MODELING ACQUISITION 131

one protocol to the next. v, c and h are affected by the aggregate traffic

for one protocol, e.g., the total number of hosts using a particular protocol.

Conversely, r relies exclusively on per-host behavior. Consequently, using

protocols with more clients or servers (such as HTTP) should result in less

v and c efficiency, while r should have the same efficiency as on SSH.

4.4.3 Determining a Minimum False Positive Rate

As Figure 4.4 implies, even with all the detection mechanisms operating,

attackers can still acquire a high rate of return with a sufficiently subtle

hit-list attack. In this section, we will now address the question of detection

from a different perspective: how high a false positive rate do we have to

tolerate in order to prevent the attacker from seriously compromising the

monitored network?

To do so, we invert (4.7) so that instead of calculating the attacker’s

payoff as a function of detectability, we calculate the probability of detection

as a function of payoff. Solving for Px
det(a, s) in (4.7) yields

Px
det(a, s) = 1− k

√
Hx

acq(a, s, k)
ask

(4.11)

Suppose the defender wishes to minimize Px
det(a, s) (and hence also the false

alarm rate) while restricting Hx
acq(a, s, k) ≤ 1, and so the attacker wishes to

maximize Px
det(a, s) in order to achieve Hx

acq(a, s, k) = 1. The attacker does

so by choosing k so as to minimize (ask)−1/k, for any a and s.

Using this strategy, we calculate the detection probability required to

identify and stop attackers at points within the OAS. To calculate the result-

132 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

ing detection thresholds for each alarm, we use our simulated attacks with

parameters a and s to calculate the threshold needed to filter off Px
det(a, s)

of the attacks when overlaid on our training data.

The results of these runs are given in Figure 4.5. These figures are

contour plots over the OAS as before. However, the contours for the figure

are the false positive rates that would result from this analysis. For the v,

c and h detectors, these values are calculated using (4.2). For r this value

is calculated by using (4.4).

[hpt] As Figure 4.5 indicates, anomaly detection systems that are capable

of defending against subtle attacks will require extremely high false positive

rates. Recall that our measurement system conducts a test every 30s; for

every 1% false positive rate we accept, we pay 10 alerts per eight-hour shift.

As such, this figure indicates that the false positive rates for building systems

that can limit the attacker to Hx
acq(a, s, k) ≤ 1 are much higher than we can

consider accepting.

One way to avoid such high false positive rates would be to not place

such a stringent limit of Hx
acq(a, s, k) ≤ 1. For example, if the defender

insists on a near-zero false positive rate, we can determine if there is a

higher threshold for the payoff that can accommodate this rate, such as

Hx
acq(a, s, k) ≤ 5. Figure 4.6 shows this for the c alarm, for Hc

acq(a, s, k) ∈

{5, 10, 15}. Specifically, each contour line shows the values of a and s for

which Hc
acq(a, s, k) can be limited to at most the specified value, using a

threshold θc = µC + 3.5σC , which is large enough to ensure a false positive

rate very close to zero. As this figure shows, the defender can effectively

impose an upper limit on the attacker’s payoff, but unfortunately this limit

4.4. MODELING ACQUISITION 133

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

32%

62%

(a) Total graph size v

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

5%

32%

(b) Largest component size c

Figure 4.5: False positive rates required to limit expected hosts compromised
to 1.

134 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

1.2%

5%

13%

(c) Server entropy h

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

3%

4%

(d) Maximum failed connection run r

Figure 4.5 continued.

4.5. MODELING RECONNAISSANCE 135

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

Hacq = 10

Hacq = 5

Hacq = 15

Figure 4.6: Values of a and s for which Hc
acq(a, s, k) can be limited to at

most the specified value, using a threshold θc = µC + 3.5σC .

must be rather large (Hc
acq(a, s, k) = 15) in order to cover the majority of

the attack space.

From Figures 4.5 and 4.6, we conclude that in order for an anomaly

detection system to be a viable deterrent to host compromise, it must either

use finer resolution data than NetFlow, or it must develop mechanisms for

coping with a high false positive rate. These mechanisms may include an

explicit upper limit on what a NIDS can identify, or host-based intrusion

detection compensating for the limits of the NIDS.

4.5 Modeling Reconnaissance

In this section, we develop an alternative attack scenario based around a

different measure of value. In this scenario, to which we refer as reconnais-

sance, the attacker scouts out the network with his bots. In each attack, he

communicates with addresses to simply determine the presence of hosts at

136 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

certain addresses. The reconnaissance scenario differs from the acquisition

scenario by the attacker’s knowledge and goals. Specifically, the attacker’s

goal is to contact as many addresses as possible within a short period. To

do so, the attacker uses a chaff hit list consisting of hosts that the attacker

already knows about, and a target space of addresses to probe. The chaff

hit list reduces the attacker’s probability of detection by lowering his fail-

ure rate. However, it also reduces the attacker’s payoff by requiring him to

“sacrifice” a certain number of targets every round.

Let alarmed = i be the event that the bot is detected at the end of

attempt i (and before attempt i + 1); as before, an attempt is comprised

of contacting a addresses with success rate (in this case, owing to the chaff

hit list) of s. Let scanned denote a random variable indicating the number

of scans that one bot performs successfully (i.e., determines whether the

scanned address has a listening service or not), not counting the “chaff” that

it introduces to avoid detection. Note that we suppose that the number of

listening services the bot finds is sufficiently small that it does not relieve

the bot from introducing a fraction s of chaff scans. We also presume that

the probability the bot is detected in each attempt is independent.

4.5. MODELING RECONNAISSANCE 137

Hx
rec(a, s) = E [scanned]

=
∞∑
i=1

P [alarmed = i] E [scanned | alarmed = i]

=
∞∑
i=1

(
(1− Px

det(a, s))i−1Px
det(a, s)

)
(ia(1− s))

= a(1− s)
Px

det(a, s)
1− Px

det(a, s)

∞∑
i=1

i(1− Px
det(a, s))i

= a(1− s)
Px

det(a, s)
1− Px

det(a, s)
1− Px

det(a, s)
Px

det(a, s)2

= a(1− s)
1

Px
det(a, s)

(4.12)

Applying (4.12) to the detection matrix over our OAS results in the

payoff plot shown in Figure 4.7. This figure plots the aggregate payoff over

the OAS for reconnaissance. Of particular note with this result is that

it demonstrates that a sufficiently motivated and subtle attacker can scan

a network by subtly exploiting attacks with high s rates. In this case, the

attacker can slowly scan the network for an extended period — the observed

peak at the a = 20 segment of the graph implies that the attacker scans for

25 minutes before being detected.

However, the attacker can achieve just as effective results by aggressively

scanning the network. Recall that the effective aggressiveness of the attacker

is bound by θd to less than 150 nodes. In the reconnaissance scenario, the

attacker faces no penalty for scanning at a higher aggressiveness rate, since

the defender can only block an address. Consequently, this plot can continue

out to whatever the practical upper limit for a is, a result which would

138 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

 0
 20

 40
 60

 80
 100

 120
 140 10

 20
 30

 40
 50

 60
 70

 80
 90

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Payoff

Aggressiveness

Success

Payoff

Figure 4.7: Plot of the payoff for reconnaissance attacks over the OAS.

correspond to the scanning we observe right now.

4.6 Conclusion

In this chapter we have developed a new method for evaluating the perfor-

mance of alarms based on an observable attack space, specifically the view

of a harvesting or scanning attack that is available in flow logs that lack

payload data. Our approach complements ROC-based analysis by enabling

the creation of detection surfaces — models of an alarm’s ability to detect

different attacks. Moreover, we augment this analysis with a payoff-based

metric. By incorporating payoffs, we are better able to characterize the

deterrence offered by an alarm. In particular, instead of describing the de-

tection of a system in terms of pure false positive and false negative rates,

4.6. CONCLUSION 139

we are able to use payoff functions to calculate the gain that an attacker

can expect from a certain type of attack. This also enables us to determine

how high a false positive rate we must endure in order to limit the attacker’s

payoff to a target value.

Several useful and, in some cases, discouraging results fall out of our

analysis techniques as applied to SSH traffic observed on a very large net-

work. For example, in §4.3.3 our analysis elucidated the complementary

capabilities of detection using the size c of the largest component of a pro-

tocol graph [13] and the TRW scan detector r [26]. Consequently, there is

good reason to use both simultaneously. Moreover, we showed that these

detectors significantly outperform the server address entropy detector h,

the graph-size detector v, and the degree-based detector d, for the stealthy

attacks that form our observable attack space. That said, using our pay-

off analysis for acquisition attacks, we showed in §4.4.2 that r detection is

primarily effective at detecting acquisition attacks with low payoff for the

attacker, and so its utility for acquisition attacks is less compelling. In ad-

dition, we showed in §4.4.3 that in order to severely limit the attacker’s

acquisitions, the false positive rates that would need to be endured by any

of the detectors we considered would be significant and, for a network of the

size we studied, impractical. Consequently, we showed how to derive the

payoff limits that would enable near-zero false positive rates for an alarm.

140 CHAPTER 4. EVALUATING ANOMALY DETECTION SYSTEMS

Chapter 5

Conclusions

“Am I being scanned?”

–Querying on this string to Google groups returns 123,000 mes-

sages

In this dissertation, we have developed a novel anomaly detection method

which uses protocol graphs to identify subtle attacks. By using a two-stage

filtering method, we have been able to train this system on heavily polluted

traffic, in particular SSH logs. Finally, we have developed a new evaluation

approach to compare detection methods, and using this approach we have

shown how our detection method compares to other scan and harvesting

detection methods.

Several open research directions are evident from this work. As originally

intended, this dissertation would have focused more extensively on the use

of protocol graphs to describe traffic. However, the exigencies of working

on a live dataset led to problems in making any anomaly detection system

141

142 CHAPTER 5. CONCLUSIONS

viable. As a consequence, there are a large body of graph-based descrip-

tion problems left to be addressed. The anomaly detection methodology of

Chapter 2 is the beginning of an integrated approach to anomaly detection

that uses graph attributes both for detection and attacker identification. A

richer vocabulary of graph attributes is available, and we have already iden-

tified several qualities that may result in deeper insights into attackers and

normal behavior.

The most interesting problem that this dissertation raises, however, is

about evaluating and reacting to attacks. As Chapter 3 shows, while we

can remove attacks to train the IDS, the fact remains that the network is

attacked (more precisely, scanned) continuously. The majority of attacks we

observe in our dataset our failures — while the system is being attacked,

there is little compelling evidence that the attacking IP addresses actually

communicated with anyone within the observed network, and consequently

these attacks may warrant no reaction.

In particular, our work in Chapter 4 treats the problem of IDS con-

struction as a design challenge to the attacker — a question that must be

extended out more thoroughly. Our initial work shows that simple IDS will

likely remain insufficient, at least at the scale of networks we have observed.

However, further work must be done to model attacker choices, to see if

there are other methods an attacker can exploit to systematically take over

a network.

In this thesis, we modeled attackers who treat all IP addresses as ei-

ther known (on the hit list) or unknown (off of the list). However, there

are other models of attacker knowledge which are critical for future eval-

143

uations. Weaver et al. [66] outline a variety of means by which a worm

can spread outside of blind scanning, including hit-list and topological at-

tacks. Topological attacks are a particularly interesting threat to protocol

graph detection, because in this scenario a bot attacks its neighbors, rather

than blindly scanning. These attacks would therefore reflect the same social

structures that protocol graphs model.

The attackers we have observed in this work benefit from an industri-

alized technology. At the time of this writing, botnet technology has been

available for approximately a decade, and attackers have developed new at-

tacks and methods based around their ability to expend hundreds, if not

thousands of hosts in order to achieve their goals. As a consequence, the

question we now face is not whether we are being attacked — we are, con-

tinuously — but what we can do to mitigate the impact of these attacks.

144 CHAPTER 5. CONCLUSIONS

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley, 1975.

[2] W. Aiello, F. Chung, and L. Lu. A random graph model for massive

graphs. In Proceedings of the 32nd ACM Symposium on Theory of

Computing, pages 171–180, 2000.

[3] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, and M. Herrb. Lessons

learned from the deployment of a high-interaction honeypot. In Pro-

ceedings of the 2006 European Dependable Computing Conference, 2006.

[4] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis.

Defending against hitlist worms using network address space random-

ization. In WORM ’05: Proceedings of the 2005 ACM Workshop on

Rapid Malcode, pages 30–40, 2005.

[5] S. Axelsson. The base rate fallacy and the difficulty of intrusion detec-

tion. ACM Transactions on Information and System Security, 3(3):186–

205, 2000.

[6] D. Barbará, J. Couto, S. Jajodia, and N. Wu. ADAM: a testbed for ex-

145

146 BIBLIOGRAPHY

ploring the use of data mining in intrusion detection. Record of the ACM

Special Interest Group on Management of Data (SIGMOD), 30(4):15–

24, 2001.

[7] D. Barbará, Y. Li, J. Couto, J. Lin, and S. Jajodia. Bootstrapping

a data mining intrusion detection system. In Proceedings of the 2003

ACM Symposium on Applied Computing, 2003.

[8] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,

R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web.

In Proceedings of the 9th World Wide Web Conference, pages 309–320,

2000.

[9] A. Cárdenas, J. Baras, and K. Seamon. A framework for evaluation of

intrusion detection systems. In Proceedings of the 2006 IEEE Sympo-

sium on Security and Privacy, 2006.

[10] S. Chen and Y. Tang. Slowing down Internet worms. In Proceedings of

the 24th International Conference on Distributed Computing Systems,

pages 312–319, March 2004.

[11] K. Claffy, H. Braun, and G. Polyzos. A parameterizable methodology

for internet traffic flow profiling. IEEE Journal of Selected Areas in

Communications, 13(8):1481–1494, 1995.

[12] M. Collins, C. Gates, and G. Kataria. A model for opportunistic net-

work exploits: The case of P2P worms. In Proceedings of the 2006

Workshop on Economics and Information Security, 2006.

[13] M. P. Collins and M. K. Reiter. Hit-list worm detection and bot iden-

BIBLIOGRAPHY 147

tification in large networks using protocol graphs. In Proceedings of the

2007 Symposium on Recent Advances in Intrusion Detection, 2007.

[14] M. P. Collins and M. K. Reiter. Anomaly detection amidst constant

anomalies: Training IDS on constantly attacked data. Technical Report

CMU-CYLAB-08-006, Carnegie Mellon University, CyLab, 2008.

[15] D. Denning. An intrusion-detection model. IEEE Transactions on

Software Engineering, 13(2):222–232, 1987.

[16] D. Ellis, J. Aiken, A. McLeod, D. Keppler, and P. Amman. Graph-

based worm detection on operational enterprise networks. Technical

Report MTR-06W0000035, MITRE Corporation, April 2006.

[17] L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar,

and P. Dokas. Next Generation Data Mining, chapter 3. MIT Press,

2004.

[18] F. Freiling, T. Holz, and G. Wicherski. Botnet tracking: Exploring

a root-cause methodology to prevent distributed denial-of-service at-

tacks. In Proceedings of the 2005 European Symposium on Research in

Computer Security, 2005.

[19] J. Gaffney and J. Ulvila. Evaluation of intrusion detectors: a deci-

sion theory approach. In Proceedings of the 2001 IEEE Symposium on

Security and Privacy, 2001.

[20] Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint

set union problems. ACM Computing Surveys, 23:319–344, September

1991.

148 BIBLIOGRAPHY

[21] V. Garg, V. Yegneswaran, and P. Barford. Improving NIDS perfor-

mance through hardware-based connection filtering. In Proceedings of

the 2006 International Conference on Communications, 2006.

[22] C. Gates, J. McNutt, J. Kadane, and M. Kellner. Detecting scans at

the ISP level. Technical Report SEI-2006-TR-005, Software Engineering

Institute, 2006.

[23] C. Gates, J. McNutt, J. Kadane, and M. Kellner. Scan detection on

very large networks using logistic regression modeling. In Proceedings of

the IEEE Symposium on Computers and Communications, June 2006.

[24] G. Giacinto and F. Roli. Intrusion detection in computer networks by

multiple classifier systems. In Proceedings of the 2002 International

Conference on Pattern Recognition, 2002.

[25] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley. Worm

detection, early warning and response based on local victim informa-

tion. In Proceedings of the 2004 Annual Computer Security Applications

Conference, 2004.

[26] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan

detection using sequential hypothesis testing. In Proceedings of the 2004

IEEE Symposium on Security and Privacy, May 2004.

[27] R. Maxion K. Killourhy and K. Tan. A defense-centric taxonomy based

on attack manifestations. In Proceedings of the 2004 Conference on

Dependable Systems and Networks (DSN), 2004.

[28] M. Kang, J. Cabllero, and D. Song. Distributed evasive scan techniques

BIBLIOGRAPHY 149

and countermeasures. In Proceedings of the 2007 Conference on the

Detection of Intrusions, Malware and Vulnerability Assessment, 2007.

[29] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: multilevel

traffic classification in the dark. In Proceedings of ACM SIGCOMM,

pages 229–240, 2005.

[30] E. Kreyszig. Advanced Engineering Mathematics, 9th Edition. J. Wiley

and Sons, 2005.

[31] A. Kumar, V. Paxson, and N. Weaver. Exploiting underlying structure

for detailed reconstruction of an Internet scale event. In Proceedings of

the ACM Internet Measurement Conference, October 2005.

[32] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic

feature distributions. In Proceedings of ACM SIGCOMM, pages 217–

228, 2005.

[33] W. Lee, S. Stolfo, P. Chan, E. Eskin, W. Fan, M. Miller, and J. Her-

shkop, S.and Zhang. Real time data mining-based intrusion detection.

In Proceedings of the 2001 DARPA Information Survivability Confer-

ence and Exposition, 2001.

[34] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung,

D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Ziss-

man. Evaluating intrusion detection systems: the 1998 DARPA off-line

intrusion detection evaluation. In Proceedings of the DARPA Informa-

tion Survivability Conference and Exposition, 2000.

[35] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, and P. Neu-

150 BIBLIOGRAPHY

man. A real-time intrusion-detection expert system (IDES). Technical

Report Project 6784, CSL, SRI International, 1992.

[36] M. Mahoney and P. Chan. Learning rules for anomaly detection of

hostile network trafic. In Proceedings of the 2003 IEEE International

Conference on Data Mining, 2003.

[37] R. Maxion and K. Tan. Benchmarking anomaly-based detection sys-

tems. In Proceedings of the 2000 Conference on Dependable Systems

and Networks (DSN), 2000.

[38] J. McHugh. Testing intrusion detection systems: a critique of the 1998

and 1998 DARPA intrusion detection system evaluations as performed

by lincoln laboratory. IEEE Transactions on Information and Systems

Security, 3(4):262–294, 2000.

[39] J. Mirkovic and P. Reiher. D-ward: A source-end defense against flood-

ing denial-of-service attacks. IEEE Transactions on Dependable and

Secure Computing, 2(3):216–232, 2005.

[40] D. Moore, C. Shannon, G. Voelker, and S. Savage. Network telescopes.

Technical report, CAIDA, 2003.

[41] T. Moore and R. Clayton. Examining the impact of website take-down

or phishing. In Proceedings of the 2007 eCrime Researchers’ Summit,

2007.

[42] S. Northcutt. Network Intrusion Detection: An Analyst’s Handbook.

New Riders, 1999.

[43] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson.

BIBLIOGRAPHY 151

Characteristics of internet background radiation. In Proceedings of the

2004 Internet Measurement Conference, 2004.

[44] V. Paxson. Bro: A system for detection network intruders in real time.

In Proceedings of the 2008 Usenix Security Symposium, 1998.

[45] K. Pentikousis and H. Badr. Quantifying the deployment of TCP op-

tions, a comparative study. IEEE Communications Letters, 8(10):647–

649, 2004.

[46] P. Porras and P. Neumann. EMERALD: Event monitoring enabling

responses to anomalous live disturbances. In Proceedings of the 20th

National Information Systems Security Conference. NIST, 1997.

[47] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. A measurement study

of the BitTorrent peer-to-peer file-sharing system. Technical Report

PDS-2004-007, Delft University of Technology, April 2004.

[48] A. Ramachandran, N. Feamster, and D. Dagon. Revealing botnet mem-

bership using DNSBL counter-intelligence. In Proceedings of the 2006

USENIX Workshop on Steps for Reducing Unwanted Traffic on the In-

ternet (SRUTI), 2006.

[49] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella net-

work: Properties of large-scale peer-to-peer systems and implications

for system design. IEEE Internet Computing, 6(1), 2002.

[50] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of

peer-to-peer file sharing systems. In Proceedings of Multimedia Com-

puting and Networking 2002, 2002.

152 BIBLIOGRAPHY

[51] S. Schechter, J. Jung, and A. Berger. Fast detection of scanning worm

infections. In 7th International Symposium on Recent Advances in In-

trusion Detection (RAID), pages 59–81, September 2004.

[52] V. Sekar, Y. Xie, M. K. Reiter, and H. Zhang. A multi-resolution

approach to worm detection and containment. In Proceedings of the

2006 International Conference on Dependable Systems and Networks,

pages 189–198, June 2006.

[53] U. Shankar and V. Paxson. Active mapping: Resisting NIDS evasion

without altering traffic. In Proceedings of the 2003 IEEE Symposium

on Security and Privacy, page 44. IEEE Computer Society, 2003.

[54] C. Shannon and D. Moore. The spread of the Witty worm. IEEE

Security and Privacy, 2(4):46–50, 2004.

[55] S. Shapiro and M. Wilk. An analysis of variance test for normality

(complete samples). Biometrika, 52:591–611, 1965.

[56] A. Soule, K. Salamatian, and N. Taft. Combining filtering and statisti-

cal methods for anomaly detection. In Proceedings of the 2005 Internet

Measurement Conference, 2005.

[57] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in

your spare time. In Proceedings of the 11th USENIX Security Sympo-

sium, pages 149–167, August 2002.

[58] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,

J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS – A

graph-based intrusion detection system for large networks. In Proceed-

BIBLIOGRAPHY 153

ings of the 19th National Information Systems Security Conference,

pages 361–370, 1996.

[59] R. Stevens. TCP/IP Illustrated. Addison Wesley Longman, Inc., 1994.

[60] S. Stolfo, W. Fan, Wl. Lee, A. Prodromidis, and P. Chan. Cost-

based modeling for fraud and intrusion detection: Results from the jam

project. In Proceedings of the 2000 DARPA Information Survivability

Conference and Exposition, 2000.

[61] S. J. Stolfo, S. Hershkop, C. Hu, W. Li, O. Nimeskern, and K. Wang.

Behavior-based modeling and its application to email analysis. ACM

Transactions on Internet Technology, 6(2):187–221, May 2006.

[62] K. Tan and R. Maxion. The effects of algorithmic diversity on anomaly

detector performance. In Proceedings of the 2005 Conference on De-

pendable Systems and Networks (DSN), 2005.

[63] R. E. Tarjan. Data Structures in Network Algorithms, volume 44 of Re-

gional Conference Series in Applied Mathematics. Society for Industrial

and Applied Mathematics, 1983.

[64] J. Twycross and M. W. Williamson. Implementing and testing a virus

throttle. In Proceedings of the 12th USENIX Security Symposium, pages

285–294, August 2003.

[65] S. Venkataraman, J. Caballero, D. Song, A. Blum, and J.Yates. Black

box anomaly detection: is it utopian? In Proceedings of the 2006

HotNets Workshop, 2006.

[66] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy

154 BIBLIOGRAPHY

of computer worms. In Proceedings of the 2003 Workshop on Rapid

Malcode (WORM), 2003.

[67] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scan-

ning worms. In Proceedings of the 2004 USENIX Security Symposium,

2004.

[68] S. Webster, R. Lippmann, and M. Zissman. Experience using active

and passive mapping for network situational awareness. In Proceedings

of the 2006 IEEE International Symposium on Network Computing and

Applications, 2006.

[69] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An efficient architecture and

algorithm for detecting worms with various scan techniques. In Proceed-

ings of the 2004 Network and Distributed Systems Security Symposium,

2004.

[70] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: Global

characteristics and prevalence. In Proceedings of the 2003 ACM SIG-

METRICS Conference, 2003.

[71] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early

warning for Internet worms. In Proceedings of the 10th ACM Conference

on Computer and Communications Security, pages 190–199, 2003.

