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Abstract

The growth of outsourced storage in the form of storage service providers underlines the
importance of developing efficient security mechanisms to protect the data stored in a net-
worked storage system. For securing the data stored remotely, we consider an architecture
in which clients have access to a small amount of trusted storage, which could either be
local to each client or, alternatively, could be provided by a client’s organization through
a dedicated server. In this thesis, we propose new approaches for various mechanisms
that are currently employed in implementations of secure networked storage systems. In
designing the new algorithms for securing storage systems, we set three main goals. First,
security should be added by clients transparently for the storage servers so that the storage
interface does not change; second, the amount of trusted storage used by clients should be
minimized; and, third, the performance overhead of the security algorithms should not be
prohibitive.

The first contribution of this dissertation is the construction of novel space-efficient
integrity algorithms for both block-level storage systems and cryptographic file systems.
These constructions are based on the observation that block contents typically written to
disks feature low entropy, and as such are efficiently distinguishable from uniformly ran-
dom blocks. We provide a rigorous analysis of security of the new integrity algorithms
and demonstrate that they maintain the same security properties as existing algorithms
(e.g., Merkle tree). We implement the new algorithms for integrity checking of files in
the EncFS cryptographic file system and measure their performance cost, as well as the
amount of storage needed for integrity and the integrity bandwidth (i.e., the amount of
information needed to update or check the integrity of a file block) used. We evaluate
the block-level integrity algorithms using a disk trace we collected, and the integrity algo-
rithms for file systems using NFS traces collected at Harvard university.

We also construct efficient key management schemes for cryptographic file systems
in which the re-encryption of a file following a user revocation is delayed until the next
write to that file, a model called lazy revocation. The encryption key evolves at each
revocation and we devise an efficient algorithm to recover previous encryption keys with
only logarithmic cost in the number of revocations supported. The novel key management
scheme is based on a binary tree to derive the keys and improves existing techniques by
several orders of magnitude, as shown by our experiments.

Our final contribution is to analyze theoretically the consistency of encrypted shared
file objects used to implement cryptographic file systems. We provide sufficient conditions
for the realization of a given level of consistency, when concurrent writes to both the file
and encryption key objects are possible. We show that the consistency of both the key

iii



distribution and the file access protocol affect the consistency of the encrypted file object
that they implement. To demonstrate that our framework simplifies complex proofs for
showing the consistency of an encrypted file, we provide a simple implementation of a
fork consistent encrypted file and prove its consistency.

iv



Acknowledgments

Always try to climb very high to be able to see far away.
Constantin Brancusi

I deeply thank my advisor, Mike Reiter, for giving me the first insight into the field of
applied cryptography, opening new research perspectives to me, and closely guiding my
work that led to this dissertation. His optimism and constant encouragement throughout
the years always motivated me to go on.

I am very grateful to Christian Cachin for mentoring me during the summer I spent at
IBM Research in Zurich and suggesting the project on key management schemes for lazy
revocation that became Chapter 4 of this dissertation. I enjoyed and learned a lot from our
engaging discussions and arguments on different research topics. I also thank Christian for
carefully proofreading this dissertation and providing detailed comments and suggestions.
I am greatly indebted to my other committee members, Greg Ganger and Dawn Song, for
their suggestions that contributed to the improvement of this dissertation.

The years I have spent at Carnegie Mellon would not have been so enjoyable without
the people from the security group. I would particularly like to thank Asad Samar, Charles
Fry, Lea Kissner and Scott Garriss for numerous discussions on various research topics
and beyond. I thank several people from the group for providing me statistics on the file
contents in their home directories that were reported in Chapter 3 of this dissertation.

I also thank my dearest friends, Oana Papazoglu and Irina Dinu, for always being close
when I needed them. My friends from Pittsburgh also contributed to my general well-being
and happiness during all these years: Cristina Canepa, Adina Soaita, Cristina Arama and
Emil Talpes.

Finally, I owe everything to my family. My grandparents raised me during early child-
hood. My parents have always believed in me and encouraged me to pursue my own path
in life. Florin has been my constant support and source of energy during the last six years.
And last but not least, Andrei’s genuine smile helps me climb a bit higher everyday.

v



vi



Contents

1 Introduction 1

1.1 Securing Networked Storage Systems . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Efficient Integrity Algorithms for Encrypted Storage Systems . . 5

1.2.2 Key Management Schemes for Lazy Revocation . . . . . . . . . 7

1.2.3 Consistency of Encrypted Files . . . . . . . . . . . . . . . . . . 9

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Block-Level Integrity in Encrypted Storage Systems 13

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Tweakable Enciphering Schemes . . . . . . . . . . . . . . . . . 14

2.1.2 Everywhere Second Preimage Resistant Hash Functions . . . . . 14

2.1.3 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Security of Message-Authentication Codes . . . . . . . . . . . . 16

2.1.5 Chernoff Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Block Write Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Length-Preserving Stateful Encryption . . . . . . . . . . . . . . . . . . . 19

2.5 Notions of Integrity for Encrypted Block-Level Storage . . . . . . . . . . 20

2.6 Constructions of Integrity Schemes for Encrypted Block-Level Storage . . 22

2.6.1 Hash scheme HASH-BINT . . . . . . . . . . . . . . . . . . . . . 22

vii



2.6.2 Schemes Based on a Randomness Test . . . . . . . . . . . . . . . 23

2.6.3 The Compression Scheme COMP-BINT . . . . . . . . . . . . . . 28

2.7 The Entropy Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Integrity in Cryptographic File Systems with Constant Trusted Storage 37

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Write Counters for File Blocks . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Integrity Constructions for Encrypted Storage . . . . . . . . . . . . . . . 46

3.4.1 The Merkle Tree Construction MT-FINT . . . . . . . . . . . . . 46

3.4.2 The Randomness Test Construction RAND-FINT . . . . . . . . . 48

3.4.3 The Compress-and-Hash Construction COMP-FINT . . . . . . . 51

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 The Impact of File Block Contents on Integrity Performance . . . 56

3.6.2 The Impact of File Access Patterns on Integrity Performance . . . 61

3.6.3 File Content Statistics . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.4 Amount of Trusted Storage . . . . . . . . . . . . . . . . . . . . . 63

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Lazy Revocation in Cryptographic File Systems 69

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Trapdoor Permutations . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 CPA-Security of Symmetric Encryption . . . . . . . . . . . . . . 71

4.1.4 Signature Schemes and Identity-Based Signatures . . . . . . . . . 72

viii



4.2 Formalizing Key-Updating Schemes . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Definition of Key-Updating Schemes . . . . . . . . . . . . . . . 74

4.2.2 Security of Key-Updating Schemes . . . . . . . . . . . . . . . . 75

4.3 Composition of Key-Updating Schemes . . . . . . . . . . . . . . . . . . 77

4.3.1 Additive Composition . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Multiplicative Composition . . . . . . . . . . . . . . . . . . . . 80

4.4 Constructions of Key-Updating Schemes . . . . . . . . . . . . . . . . . . 83

4.4.1 Chaining Construction (CKU) . . . . . . . . . . . . . . . . . . . 83

4.4.2 Trapdoor Permutation Construction (TDKU) . . . . . . . . . . . 86

4.4.3 Tree Construction (TreeKU) . . . . . . . . . . . . . . . . . . . . 88

4.5 Performance of the Constructions . . . . . . . . . . . . . . . . . . . . . 93

4.6 Experimental Evaluation of the Three Constructions . . . . . . . . . . . . 94

4.7 Cryptographic Primitives in the Lazy Revocation
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7.1 Symmetric Encryption Schemes with Lazy Revocation (SE-LR) . 97

4.7.2 Message-Authentication Codes with Lazy Revocation (MAC-LR) 101

4.7.3 Signature Schemes with Lazy Revocation (SS-LR) . . . . . . . . 104

4.7.4 Applications to Cryptographic File Systems . . . . . . . . . . . . 108

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 On Consistency of Encrypted Files 113

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Basic Definitions and System Model . . . . . . . . . . . . . . . . 114

5.1.2 Eventual Propagation . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.3 Ordering Relations on Operations . . . . . . . . . . . . . . . . . 115

5.2 Classes of Consistency Conditions . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Orderable Conditions . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.2 Forking Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



5.3 Definition of Consistency for Encrypted Files . . . . . . . . . . . . . . . 120

5.4 A Necessary and Sufficient Condition for the Consistency of Encrypted
File Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Dependency among Values of Key and File Objects . . . . . . . . 123

5.4.2 Key-Monotonic Histories . . . . . . . . . . . . . . . . . . . . . . 124

5.4.3 Simpler Conditions for Single-Writer Key Object . . . . . . . . . 125

5.4.4 Obtaining Consistency for Encrypted File Objects . . . . . . . . 127

5.5 A Fork-Consistent Encrypted File Object . . . . . . . . . . . . . . . . . 133

5.5.1 Implementation of High-Level Operations . . . . . . . . . . . . . 134

5.5.2 The File Access Protocol . . . . . . . . . . . . . . . . . . . . . . 134

5.5.3 Consistency Analysis . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Conclusions 143

Bibliography 147

x



List of Figures

1.1 Network storage architecture. . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Experiments defining the security of pseudorandom function family PRF. 15

2.2 The UpdateCtr and GetCtr algorithms. . . . . . . . . . . . . . . . . . . . 18

2.3 Implementing a length-preserving stateful encryption scheme with write
counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Experiments for defining storage integrity. . . . . . . . . . . . . . . . . . 21

2.5 Scheme HASH-BINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Scheme SRAND-BINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Scheme RAND-BINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Scheme COMP-BINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 The entropy test IsRandb,THEnt
(M). . . . . . . . . . . . . . . . . . . . . 31

2.10 Block access distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 Client storage for integrity for the three replay-secure algorithms. . . . . . 35

3.1 Merkle tree for a file with 6 blocks on the left; after block 7 is appended
on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The UpdateTree, CheckTree, AppendTree and DeleteTree algorithms for
a Merkle tree T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Cumulative distribution of number of writes per block. . . . . . . . . . . 44

3.4 Cumulative distribution of number of counter intervals in files. . . . . . . 44

3.5 The AuthCtr and CheckCtr algorithms for counter intervals. . . . . . . . 46

xi



3.6 The Update, Check, Append and Delete algorithms for the MT-FINT con-
struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 The Update, Check, Append and Delete algorithms for the RAND-FINT
construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 The DelIndexTree algorithm for a tree T deletes the hash of block i from
T and moves the last leaf in its position, if necessary, to not allow holes in
the tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 The Update, Check, Append and Delete algorithms for the COMP-FINT
construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Prototype architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Micro-benchmarks for text and compressed files. . . . . . . . . . . . . . 57

3.12 Evaluation for low-entropy files (text, object and executable files). . . . . 59

3.13 Evaluation for high-entropy files (image and compressed files). . . . . . . 60

3.14 Running time, average integrity bandwidth and storage for integrity of
CMC-Entropy and AES-Compression relative to AES-Merkle. Labels on
the graphs represent percentage of random-looking blocks. . . . . . . . . 61

3.15 Number of files for which the counter intervals are stored in the untrusted
storage space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Experiments defining the security of pseudorandom generator G. . . . . . 70

4.2 Experiments defining the CPA-security of encryption. . . . . . . . . . . . 72

4.3 Experiments defining the security of key-updating schemes. . . . . . . . . 76

4.4 The additive composition of KU1 and KU2. . . . . . . . . . . . . . . . . . 78

4.5 The multiplicative composition of KU1 and KU2. . . . . . . . . . . . . . 81

4.6 The Derive(t, CSt) and Extract(t, UKt, i) algorithms of the chaining con-
struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 The Update(t, (Pt, Lt)) algorithm. . . . . . . . . . . . . . . . . . . . . . 89

4.8 The Extract(t, UKt, i) algorithm. . . . . . . . . . . . . . . . . . . . . . . 91

4.9 Evaluation of the chaining scheme. . . . . . . . . . . . . . . . . . . . . . 95

4.10 Evaluation of the trapdoor scheme. . . . . . . . . . . . . . . . . . . . . . 95

4.11 Evaluation of the tree scheme. . . . . . . . . . . . . . . . . . . . . . . . 95

xii



5.1 Classes of consistency conditions. . . . . . . . . . . . . . . . . . . . . . 119

5.2 Linearizable history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Causal consistent history. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 FORK-Linearizable history. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 A forking tree for the history. . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 A history that is not key-monotonic. . . . . . . . . . . . . . . . . . . . . 124

5.7 A history that does not satisfy condition (KM2). . . . . . . . . . . . . . . 126

5.8 First case in which read r1 cannot be inserted into S. . . . . . . . . . . . 129

5.9 Second case in which read r1 cannot be inserted into S. . . . . . . . . . . 129

5.10 The encrypted file protocol for client u. . . . . . . . . . . . . . . . . . . 135

5.11 The file access protocol for client u. . . . . . . . . . . . . . . . . . . . . 137

5.12 The code for the block store SBS. . . . . . . . . . . . . . . . . . . . . . . 138

5.13 The code for the consistency server SCONS. . . . . . . . . . . . . . . . . . 138

xiii



xiv



List of Tables

3.1 Average storage per file for two counter representation methods. . . . . . 45

3.2 File set characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 NFS Harvard trace characteristics. . . . . . . . . . . . . . . . . . . . . . 61

3.4 Statistics on file contents. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Worst-case time and space complexities of the constructions for T time
intervals. ∗Note: the amortized complexity of Update(t, CSt) in the binary
tree scheme is constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Evaluation of the three constructions for 1024 revocations. . . . . . . . . 96

xv



xvi



Chapter 1

Introduction

As enterprise storage needs grow at approximately 50% per year, companies have to in-
vest in storage resources that are often under-utilized. Moreover, there is a large increase
in the cost of managing huge amounts of data. To overcome these difficulties, many small
and medium-size companies choose to outsource their data to third party storage ser-
vice providers that provide on-demand storage space and storage management services.
Data is transferred from the storage service provider using a high-speed networked stor-
age solution such as a storage-area network (i.e., SAN) or network-attached storage (i.e.,
NAS). The advantage of using a storage service provider is that companies only pay for
the amount of storage used at a certain time and it is easy to gradually increase the amount
of storage used.

Recently, companies also have to comply with a growing number of federal and state
regulations that require that, for instance, financial information and patient records are
handled securely. One obstacle in the adoption of outsourced storage is the need to protect
the data stored remotely from disclosure or corruption. Thus, it is necessary to develop new
security mechanisms to protect the data stored remotely in a networked storage system. As
the clients cannot rely on the storage servers for security guarantees, security should be
implemented on the client side in a manner transparent to the storage servers.

For securing the data stored remotely, we consider a model depicted in Figure 1.1 in
which clients have access to a small amount of trusted storage, which could either be lo-
cal to each client or, alternatively, could be provided by a client’s organization through a
dedicated server. A similar architecture that uses a dedicated meta-data server to store all
the filesystem meta-data, as well as some integrity information and cryptographic keys for
security, has been prototyped in a secure version of the IBM StorageTank distributed file
system (Pletka and Cachin [2006]). A major challenge in designing a client-side security
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Figure 1.1: Network storage architecture.

solution for such a networked storage architecture is to preserve the traditional storage in-
terface and minimize the amount of trusted storage used, while not incurring a prohibitive
performance overhead.

1.1 Securing Networked Storage Systems

Security can be added at different layers and granularity levels in a networked storage
system. One approach is to directly encrypt individual disk blocks in a SAN, for instance,
but it is more common to implement security at the layer of files (in file systems) or objects
(in object-based storage devices).

Cryptographic file systems. Cryptographic file systems (e.g., (Fu [1999], Cattaneo et al.
[2001], Miller et al. [2002], Goh et al. [2003], Kallahalla et al. [2003], Li et al. [2004]))
augment the file system interface with client-side cryptographic operations that protect
the file secrecy and integrity against the compromise of the file store and attacks on the
network. Several cryptographic file systems support only encryption of files, but not in-
tegrity protection (e.g., CFS (Blaze [1993]), NCryptFS (Wright et al. [2003b], Windows
EFS (Russinovich [1999])), while others protect the integrity of files, but store data in
clear on the storage servers (e.g., SFS (Fu et al. [2002]), SUNDR (Li et al. [2004])). Some
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cryptographic file systems are local (e.g., CFS (Blaze [1993]), EncFS (Gough [2003]))
and others are distributed (e.g., SFS (Fu et al. [2002]), Plutus (Kallahalla et al. [2003])).
Distributed cryptographic file systems enable file sharing among their users and need to
implement a key management scheme for the distribution of the cryptographic keys to
authorized users.

Object-based storage. Object-based storage (or OSD) (T10 [2004]) is a new storage
standard that evolves the storage interface from fixed size disk blocks to variable size ob-
jects. A storage object is a set of disk blocks that are aggregated for ease of management.
The OSD standard also includes a security model (Factor et al. [2005]) based on capa-
bilities for restricting access to storage only to authorized users. Future extensions of the
standard will also include privacy protection and integrity.

Even when security is added at the layer of files or objects, it is a common practice
to add cryptographic protections at the granularity of fixed-size data blocks with typical
values of 1KB or 4KB. Several mechanisms are needed to implement security at either
the block, object or file layer, in particular primitives for data confidentiality and integrity,
access control methods to enable sharing of information, key management schemes that
support user revocation, and methods for guaranteeing consistency of encrypted data. We
detail below each of these security mechanisms.

Data Confidentiality. In order to prevent leakage of information to unauthorized parties,
clients should encrypt the data stored remotely. For that, standard block cipher algorithms
(e.g., AES (FIPS197 [2001])) or tweakable cipher implementations (e.g., CMC (Halevi
and Rogaway [2003]), EME (Halevi and Rogaway [2004]), XCB (McGrew and Fluhrer
[2004])) are suitable. Both the encryption and the decryption algorithms of a tweakable
cipher take as input (in addition to the secret key and message) a public parameter, called
a tweak, used for variability.

The block size of a standard cipher algorithm (e.g., AES) is usually small (16-32 bytes)
compared to the size of a data block secured by clients. To encrypt a large data block, a
block cipher in one of the standard modes of operations (e.g., CBC (FIPS81 [1980])) could
be used, but this has the effect of increasing the length of the encrypted block. In contrast,
tweakable ciphers are length-preserving, so that block boundaries do not shift or need to
be adjusted as a result of encryption. As such, they are compliant with the requirement of
adding security transparently to the storage servers. In fact, they were designed following
a call for algorithms for block-level encryption by the IEEE Security In Storage Working
Group and are currently considered for standardization.
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Data Integrity. The data stored on the storage servers is vulnerable to unauthorized
modification. A particularly interesting attack against data integrity is a replay attack, in
which stale versions of data are returned to clients’ read operations. To protect against
modification of data, secure hashes of data blocks could be stored in the trusted storage
space. A standard way of reducing the amount of trusted storage required for integrity is
to construct a Merkle tree (Merkle [1989]) over multiple data blocks and authenticate only
the root of the tree in trusted storage.

Access Control. An access control mechanism needs to be employed to restrict access
to the stored data to only authorized users. A natural access control method for a storage
system is to distribute the appropriate cryptographic keys (e.g., for encryption, message-
authentication codes or digital signatures) only to users that have the appropriate access
permissions. However, the use of cryptography for access control does not prevent against
data destruction and overwriting by malicious clients. An alternative method uses capa-
bilities (Gobioff et al. [1997]), but assumes intelligent storage devices that can check the
validity of the capabilities presented by users before performing operations on data.

Key Management and User Revocation. Key management solutions in storage sys-
tems range from fully centralized key distribution using a trusted key server (Fu [1999]) to
completely decentralized key distribution done by the storage system users (Kubiatowicz
et al. [2000], Kallahalla et al. [2003]). Cryptographic keys are usually aggregated for mul-
tiple blocks into a set of blocks such that access permissions and ownership are managed at
the level of these sets. The users who have access to the blocks in a set form a group, man-
aged by the group owner. In the majority of cryptographic file system implementations,
keys are assigned at the granularity of individual files or directories, and in object-based
storage systems keys are assigned at the granularity of objects.

Initially, the cryptographic keys for a set of blocks are distributed to all users that have
access permissions to the set. Upon revocation of a user from the group, the keys for the
set needs to be changed to prevent access by revoked users to the data. Additionally, the
cryptographic information for each block in the set (either an encryption of the block or
some integrity information) has to be recomputed with the new cryptographic key.

There are two revocation models, depending on when the cryptographic information
for the blocks in a set is updated, following a user revocation. In an active revocation
model, all cryptographic information for the blocks in a set is immediately recomputed
after a revocation takes place. This is expensive and might cause disruptions in the normal
operation of the storage system. In the alternative model of lazy revocation, the informa-
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tion for each data block in the set is recomputed only when that block is modified for the
first time after a revocation (Fu [1999]).

Consistency of Encrypted Data. When multiple users are allowed concurrent access
and modification of the remotely stored data, consistency of the encrypted data needs to
be maintained. Many different consistency models have been defined and implemented for
shared objects, ranging from strong conditions such as linearizability (Herlihy and Wing
[1990]) and sequential consistency (Lamport [1979]), to loose consistency guarantees such
as causal consistency (Ahamad et al. [1995]) and PRAM consistency (Lipton and Sand-
berg [1988]). When files are encrypted in cryptographic file systems, their consistency
depends not only on the consistency of the file objects, but also on the consistency of the
key object used to encrypt file contents. New challenges arise in defining consistency of
encrypted files (starting from existing consistency conditions) and providing consistent
implementations.

1.2 Contributions

In this thesis, we demonstrate that storage systems can be secured using novel, provably
secure cryptographic constructions that incur low performance overhead and minimize
the amount of trusted storage used. For that, we propose new approaches for two dif-
ferent mechanisms used in securing networked storage systems. First, we provide new,
space-efficient integrity algorithms for both block-level encrypted storage systems and
cryptographic file systems. Second, we construct new key management schemes for cryp-
tographic file systems adopting lazy revocation. In addition, we study the consistency of
encrypted file objects when multiple clients are allowed concurrent access to files in a
cryptographic file system. We describe in detail each of the three contributions below.

1.2.1 Efficient Integrity Algorithms for Encrypted Storage Systems

Integrity in block-level storage systems. In Chapter 2 we present new methods to pro-
vide block-level integrity in encrypted storage systems (Oprea et al. [2005]). To preserve
the length of the encrypted blocks sent to the storage servers, clients encrypt the blocks
with a length-preserving stateful encryption scheme (a type of encryption we define and for
which we provide two constructions). We present cryptographic definitions for integrity
in this setting extending the security definitions for authenticated encryption (Bellare and
Namprempre [2000]). One of the definitions formally expresses the notion that if the client
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returns a data block in response to a read request for an address, then the client previously
wrote that data block to that address. The second definition is stronger by providing de-
fense against replay attacks; informally, it expresses the notion that if the client returns a
data block in response to a read request for an address, then that data block is the content
most recently written to that address.

We construct novel integrity algorithms that are based on the experimental observation
that contents of blocks written to disk are usually efficiently distinguishable from random
blocks. In two of our constructions, SRAND-BINT and RAND-BINT, data blocks are en-
crypted with a tweakable cipher. In this case, the integrity of the blocks that are efficiently
distinguishable from random blocks can be checked by performing a randomness test on
the block contents. The security properties of tweakable ciphers imply that if the block
contents after decryption do not look random, then it is very likely that the contents are
authentic. This idea permits a reduction in the amount of trusted storage needed for check-
ing block integrity: a hash is stored in trusted storage only for those (usually few) blocks
that are indistinguishable from random blocks (or, in short, random-looking blocks).

An example of a statistical test, called the entropy test, that can be used to distinguish
block contents from random-looking blocks evaluates the entropy of a block and considers
random those blocks that have an entropy higher than a threshold chosen experimentally.
We provide a theoretical bound of the false negative rate for this statistical test. The bound
is derived using Chernoff bounds and is useful in the security analysis of the algorithm.

A third algorithm, COMP-BINT, uses again the intuition that many workloads feature
low-entropy files to reduce the space needed for integrity. In COMP-BINT the block con-
tent written to a disk block is compressed before encryption. If the compression level of
the block content is high enough, then a message-authentication code of the block can be
stored in the block itself, reducing the amount of storage necessary for integrity. In this
construction, any length-preserving encryption scheme (and not necessarily a tweakable
cipher) can be used to encrypt disk blocks.

The new integrity constructions are provably secure assuming the second preimage
resistance of the hash function used to authenticate the random-looking blocks. We con-
firm through a month-long empirical evaluation in a Linux environment that the amount
of trusted storage required by the new constructions is reduced compared to existing solu-
tions.

Integrity in cryptographic file systems. We extend these ideas to construct two algo-
rithms that protect the integrity of files in a cryptographic file system using only a constant
amount of trusted storage per file (on the order of several hundred bytes). In the first algo-
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rithm, called RAND-FINT, file blocks are encrypted with a tweakable cipher and integrity
information is stored only for the random-looking blocks. To achieve a constant amount
of trusted storage per file, a Merkle tree is built over the hashes of the random-looking
blocks and the root of the Merkle tree is authenticated in trusted storage.

To protect against replay attacks, a possible solution is to make the tweak used in
encrypting and decrypting a block dependent on a write counter for the block that denotes
the total number of write operations performed to that block. The write counters for all
blocks in a file should be authenticated using a small amount of trusted storage. We present
a representation method for the block write counters that optimizes the amount of storage
needed by the counters in the common case in which the majority of the files are written
sequentially.

A second algorithm COMP-FINT proposed for file integrity in cryptographic file sys-
tems is an extension of the COMP-BINT construction for block storage systems. For the
file blocks that can be compressed enough, their hash is stored inside the block. Like in the
RAND-FINT construction, a Merkle tree is built over the hashes of the blocks in a file that
cannot be compressed enough, and the root of the tree is authenticated in trusted storage.

Chapter 3 describes the two algorithms RAND-FINT and COMP-FINT that provide file
integrity in cryptographic file systems (Oprea and Reiter [2006c]). We have also imple-
mented our integrity constructions and the standard integrity algorithm based on Merkle
trees in EncFS (Gough [2003]), an open-source user-level file system that transparently
provides file block encryption on top of FUSE (FUSE). We provide an extensive evalua-
tion of the three alogorithms with respect to the performance overhead, the bandwidth used
for integrity and the amount of additional storage required for integrity, demonstrating how
file contents, as well as file access patterns, have a great influence on the performance of
the three schemes. Our experiments demonstrate that there is not a clear winner among
the three integrity algorithms for all workloads, in that different integrity constructions are
best suited to particular workloads.

1.2.2 Key Management Schemes for Lazy Revocation

In Chapter 4 we address the problem of efficient key management in cryptographic file
systems using lazy revocation (Backes et al. [2005a, 2006, 2005b]). In systems adopting
the lazy revocation model, the blocks in a set that initially share the same cryptographic
keys might use different versions of the key after several user revocations. Storing and
distributing these keys becomes more difficult in such systems than in systems using active
revocation. An immediate solution to this problem, adopted by the first cryptographic file
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systems using lazy revocation (Fu [1999]), is to store all keys for the blocks in a set at a
trusted key server, but this results in a linear amount of trusted storage in the number of
revocations. However, we are interested in more storage-efficient methods, in which the
number of stored keys is not proportional to the number of revocations.

We formalize the notion of key-updating schemes for lazy revocation and give a rigor-
ous security definition. The pseudorandom keys generated by our key-updating schemes
can be used with a symmetric encryption algorithm to encrypt files for confidentiality or
with a message-authentication code to authenticate files for integrity protection. In our
model, a center (or trusted entity) initially generates some state information, which takes
the role of the master secret key. The center state is updated at every revocation. We call
the period of time between two revocations a time interval. Upon a user request, the center
uses its current local state to derive a user key and gives that to the user. From the user
key of some time interval, a user must be able to extract the key for any previous time
interval efficiently. Security for key-updating schemes requires that any polynomial-time
adversary with access to the user key for a particular time interval does not obtain any
information about the keys for future time intervals.

We also describe two generic composition methods that combine two secure key up-
dating schemes into a new scheme in which the number of time intervals is either the
sum or the product of the number of time intervals of the initial schemes. Additionally,
we investigate three constructions of key-updating schemes. The chaining scheme (CKU)
uses a chain of pseudorandom generator applications and is related to existing methods
using one-way hash chains. It has constant update cost for the center, but the complexity
of the user-key derivation is linear in the total number of time intervals. The trapdoor per-
mutation construction (TDKU) scheme can be based on arbitrary trapdoor permutations
and generalizes the key rotation construction of the Plutus file system (Kallahalla et al.
[2003]). It has constant update and user-key derivation times, but the update algorithm
uses a relatively expensive public-key operation. These two constructions require that the
total number of time intervals is polynomial in the security parameter.

Our third scheme, the binary tree scheme (TreeKU), uses a novel construction. It relies
on a tree to derive the keys at the leaves from the master key at the root. The tree can
be seen as resulting from the iterative application of the additive composition method and
supports a practically unbounded number of time intervals. The binary-tree construction
balances the tradeoff between the center-state update and user-key derivation algorithms
(both of them have logarithmic complexity in the number of time intervals), at the expense
of increasing the sizes of the user key and center state by a logarithmic factor in the number
of time intervals.

We have implemented the three constructions and measured the maximum and average
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computation time of the center at every revocation, as well as the maximum and average
time of a client to extract a cryptographic key of a previous time interval. We demon-
strate through our experiments that the binary-tree construction performs several orders of
magnitude better than the existing constructions of key-updating schemes.

In Chapter 4, we also formalize three cryptographic primitives that can be used in a
cryptographic file system with lazy revocation: symmetric encryption schemes, message-
authentication codes and signature schemes (Backes et al. [2005b]). For each of these
cryptographic primitives, we give a rigorous definition of security and describe generic
constructions from key-updating schemes and known secure cryptographic primitives. Fi-
nally, we show how our primitives can be applied in cryptographic file systems adopting
lazy revocation.

1.2.3 Consistency of Encrypted Files

In Chapter 5 we address the problem of consistency for encrypted file objects used to im-
plement a cryptographic file system (Oprea and Reiter [2006a,b]). An encrypted file object
is implemented through two main components: the key object that stores the encryption
key, and the file object that stores (encrypted) file contents. The key and file objects may
be implemented via completely different protocols and infrastructures. We are interested
in the impact of the consistency of each on the consistency of the encrypted file object
that they are used to implement. The consistency of the file object is essential to the con-
sistency of the encrypted data retrieved. At the same time, the encryption key is used to
protect the confidentiality of the data and to control access to the file. So, if consistency
of the key object is violated, this could interfere with authorized users decrypting the data
retrieved from the file object, or it might result in a stale key being used indefinitely, en-
abling revoked users to continue accessing the data. We thus argue that the consistency of
both the key and file objects affects the consistency of the encrypted file object. Knowing
the consistency of a key distribution and a file access protocol, our goal is to find neces-
sary and sufficient conditions that ensure the consistency of the encrypted file that the key
object and the file object are utilized to implement.

The problem that we consider is related to the locality problem. A consistency condi-
tion is local if a history of operations on multiple objects satisfies the consistency condition
if the restriction of the history to each object does so. However, locality is a very restric-
tive condition and, to our knowledge, only very powerful consistency conditions, such as
linearizability (Herlihy and Wing [1990]), satisfy it. In contrast, the combined history of
key and file operations can satisfy weaker conditions and still yield a consistent encrypted
file. We give a generic definition of consistency (C1, C2)

enc for an encrypted file object,
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starting from any consistency conditions C1 and C2 for the key and file objects that belong
to one of the two classes of generic conditions we consider. Intuitively, our consistency
definition requires that the key and file operations seen by each client can be arranged such
that they preserve C1-consistency for the key object and C2-consistency for the file object,
and, in addition, the latest key versions are used to encrypt file contents. The requirement
that the most recent key versions are used for encrypting new file contents is important
for security, as usually the encryption key for a file is changed when some users’ access
permissions are revoked. We allow the decryption of a file content read with a previous
key version (not necessarily the most recent seen by the client), as this would not affect
security. Thus, a system implementing our definition guarantees both consistency for file
contents and security in the sense that revoked users are restricted access to the encrypted
file object.

An independent contribution of this work is the definition of two generic classes of
consistency conditions. The class of orderable consistency conditions includes and gen-
eralizes well-known conditions such as linearizability (Herlihy and Wing [1990]), causal
consistency (Ahamad et al. [1995]) and PRAM consistency (Lipton and Sandberg [1988]).
The class of forking consistency conditions is particularly tailored to systems with un-
trusted shared storage and it extends fork consistency (Mazieres and Shasha [2002]) to
other new, unexplored consistency conditions. These generic definitions of consistency
might find other useful applications in the area of distributed shared memory consistency.

Our main result provides a framework to analyze the consistency of a given imple-
mentation of an encrypted file object: if the key object and file object satisfy consistency
conditions C1 and C2, respectively, and the given implementation is key-monotonic with
respect to C1 and C2, then the encrypted file object is (C1, C2)

enc-consistent. We prove
in our main result of this chapter (Theorem 15) that ensuring that an implementation is
key-monotonic is a necessary and sufficient condition for obtaining consistency for the
encrypted file object, given several restrictions on the consistency of the key and file ob-
jects. Intuitively, in a key-monotonic implementation, there exists a consistent ordering
of file operations such that the written file contents are encrypted with monotonically in-
creasing key versions. We formally define this property that depends on the consistency
of the key and file objects.

Finally, we give an example implementation of a consistent encrypted file from a se-
quentially consistent key object and a fork consistent file object. The proof of consistency
of the implementation follows immediately from our main theorem. This demonstrates
that complex proofs for showing consistency of encrypted files are simplified using our
framework.
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1.3 Organization

This thesis lies at the intersection of several distinct research areas: cryptography, storage
systems and distributed systems. Each chapter describes a different contribution and can
be read independently from the others (with the exception of Chapter 3 that uses some
ideas from Chapter 2). We include the relevant background material at the beginning of
each chapter and discuss the detailed comparison with related work at the end of each
chapter. The beginning of each chapter contains a detailed outline of its contents.

Chapter 2 describes novel space-efficient integrity algorithms for block-level storage
systems. In Chapter 3, we give the new integrity algorithms for cryptographic file systems
that use only a constant amount of trusted storage per file. Chapter 3 uses some of the
ideas developed in Chapter 2 to reduce the amount of storage for integrity, in particular the
observation that typical block contents written to disks or files are not randomly distributed
and the fact that the integrity of the file blocks efficiently distinguishable from random
blocks can be easily checked with an efficient randomness test if file blocks are encrypted
with a tweakable cipher. Chapter 4 formalizes a model of key management schemes for
lazy revocation and some cryptographic primitives that can be used in a cryptographic
file system adopting lazy revocation. Chapter 5 provides a framework for analyzing the
consistency of an encrypted file object, starting from the consistency of the underlying
file and key objects. Finally, Chapter 6 contains our conclusions and several thoughts for
future work.

11



12



Chapter 2

Block-Level Integrity in Encrypted
Storage Systems

In this chapter, we address the problem of designing efficient integrity algorithms for
encrypted block-level storage systems. We present two new definitions of integrity for
encrypted storage systems and give new constructions that are provably secure. The con-
structions reduce the additional space needed for integrity used by existing integrity meth-
ods by exploiting the high redundancy of the block contents usually written to disks. We
confirm the space efficiency of the proposed integrity algorithms using some disk traces
collected during a one-month period.

We start in Section 2.1 by describing some preliminary material needed for our defi-
nitions and proofs, in particular the definition of tweakable enciphering schemes and their
security, everywhere second preimage resistance of hash functions, pseudorandom func-
tions, message-authentication codes and Chernoff bounds. After describing our system
model in Section 2.2, we define block write counters in Section 2.3 useful for preventing
against replay attacks and for implementing a length-preserving encryption scheme (as
shown in Section 2.4). We introduce the new integrity definitions in Section 2.5. The new
integrity algorithms are given in Section 2.6 and an example of a statistical test used to
distinguish block contents written to disk from uniformly random blocks is presented in
Section 2.7. Our performance evaluation is in Section 2.8. We conclude this chapter by a
discussion of related work in Section 2.9.
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2.1 Preliminaries

2.1.1 Tweakable Enciphering Schemes

In this section, we review the definitions and security notions for tweakable enciphering
schemes (Halevi and Rogaway [2003]). A tweakable enciphering scheme is a function
of a tweak and has the property that for a fixed tweak, it is a strong, length-preserving
pseudorandom permutation. More formally, a tweakable enciphering scheme is a function
E : KE×T ×M→M, where KE is the key space, T is the tweak set, M is the plaintext
space (strings of length l bits), and for every k ∈ KE, T ∈ T , E(k, T, ·) = ET

k (·) is a
length preserving permutation. The inverse of the enciphering scheme E is the enciphering
scheme D : KE × T ×M→M, where X = DT

k (Y ) if and only if ET
k (X) = Y .

We define Perm(M) the set of all permutations π : M→M and PermT (M) the set
of all functions π : T ×M → M such that π(T ) ∈ Perm(M) for any T ∈ T . For a
function π : T ×M → M, we define π−1 : T ×M → M such that π−1(T, y) = x if
and only if π(T, x) = y.

Definition 1 (PRP security of tweakable enciphering schemes) Let E : KE×T ×M→
M be a tweakable enciphering scheme and A an adversary algorithm. A has access to
oracles Ek(·, ·) and Dk(·, ·) that take as input a tweak and a plaintext, and a tweak and a
ciphertext, respectively. The PRP-advantage of adversary A is defined as:

Advprp
E,A = |Pr[k

R←KE : AEk,Dk = 1]− Pr[π
R← PermT (M) : Aπ,π−1

= 1]|.
We denote by Advprp

E (τ, q1, q2) the maximum advantage Advprp
E,A over all adversariesA that

run in time at most τ , make q1 queries to Ek and q2 queries to Dk.

The definition of PRP-security is a natural extension of the strong pseudorandom per-
mutation definition by Naor and Reignold (Naor and Reingold [1997]).

2.1.2 Everywhere Second Preimage Resistant Hash Functions

Let HMAC : KHMAC × M → {0, 1}s be a family of hash functions. Intuitively, ev-
erywhere second preimage resistance requires that for any message m ∈ M, it is hard
to find a collision for a function chosen at random from the family, i.e., m′ 6= m such
that HMACk(m

′) = HMACk(m), with k
R←KHMAC. This definition has been formalized

by Rogaway and Shrimpton (Rogaway and Shrimpton [2004]) and it is stronger than the
standard definition of second preimage resistance, but weaker than collision resistance.
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Definition 2 (Everywhere second preimage resistance of a hash function) For an ad-
versary algorithm A, we define the advantage of A for the everywhere second preimage
resistance of hash function family HMAC as:

Advspr
HMAC,A = max

m∈M
{Pr[k

R←KHMAC, m′ ← A(k, m) : (m 6= m′)

∧ HMACk(m
′) = HMACk(m)]}.

Advspr
HMAC(τ) denotes the maximum advantage Advspr

HMAC,A for all adversariesA running in
time at most τ .

An unkeyed hash function h : M → {0, 1}s can be viewed as a particular case of a
hash function family with the key space of size 1. The definition of everywhere second
preimage resistance for an unkeyed hash function h follows immediately from Defini-
tion 2.

2.1.3 Pseudorandom Functions

A pseudorandom function is a family of functions PRF : KPRF × D → R with the prop-
erty that the behavior of a random instance from the family is computationally indistin-
guishable from that of a random function with the same domain and codomain. A formal
definition is below.

Expprf-0PRF,A Expprf-1PRF,A
k

R←KPRF g
R← RandD→R

d ← APRFk d ← Ag

return d return d

Figure 2.1: Experiments defining the security of pseudorandom function family PRF.

Definition 3 (Pseudorandom functions) Let PRF be a family of functions as above and
A an adversary algorithm that has access to an oracle g : D → R and participates in the
experiments from Figure 2.1. Let RandD→R be the set of all functions from D to R. We
define the prf-advantage of A in attacking the security of the family PRF as:

AdvprfPRF,A = |Pr[Expprf-1PRF,A = 1]− Pr[Expprf-0PRF,A = 1]|.

We denote by AdvprfPRF(τ, q) the maximum advantage AdvprfPRF,A of all adversary algorithms
A running in time at most τ and making q queries to its oracle.

15



2.1.4 Security of Message-Authentication Codes

A message-authentication code (MAC) consists of three algorithms: a key generation algo-
rithm Gen(1κ) that outputs a key taking as input a security parameter, a tagging algorithm
Tagk(m) that outputs the authentication tag v of a given message m with key k, and a veri-
fication algorithm Verk(m, v) that outputs a bit. A tag v is said to be valid on a message m
for a key k if Verk(m, v) = 1. The first two algorithms might be probabilistic, but Ver is
deterministic. The correctness property requires that Verk(m, Tagk(m)) = 1, for all keys
k generated with the Gen algorithm and all messages m from the message space.

CMA-security for a message-authentication code (Bellare et al. [1994]) requires that
any polynomial-time adversary with access to a tagging oracle Tagk(·) and a verification
oracle Verk(·, ·) is not able to generate a message and a valid tag for which it did not query
the tagging oracle.

Definition 4 (CMA-Security of Message-Authentication Codes) Let MA be a message-
authentication code andA an adversary algorithm. We define the cma-advantage ofA for
MA as:

Advcma
MA,A = Pr[k ← Gen(1κ), (m, v) ← ATagk(·),Verk(·,·)() : Verk(m, v) = 1 AND

m was not a query to Tagk(·)].
We define Advcma

MA (τ, q1, q2) to be the maximum advantage Advcma
MA,A over all adversary

algorithms A running in time at most τ and making q1 queries to the tagging oracle and
q2 queries to the verification oracle.

The tagging algorithm of a message-authentication code can also be viewed as a family
of keyed hash functions HMAC : KHMAC × {0, 1}∗ → {0, 1}s that given a key from the
key space KHMAC and a message, outputs a tag of length s bits. Sometimes we refer
to a message-authentication code using only its tagging algorithm and omitting explicit
reference to the key generation and verification algorithms.

2.1.5 Chernoff Bounds

Let X1, . . . , Xn be independent Poisson trials with Pr[Xi = 1] = pi, Pr[Xi = 0] = 1− pi,
for 0 < pi < 1. Denote X =

∑n
i=1 Xi and µ = E(X) =

∑n
i=1 pi. Then the following

bounds hold:

1. For any ε > 0, Pr[X > (1 + ε)µ] <
(

eε

(1+ε)1+ε

)µ

.
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2. For any 0 < ε ≤ 1, Pr[X < (1− ε)µ] < e−
µε2

2 .

These bounds are taken from Motwani and Raghavan [1995].

2.2 System Model

We consider a limited storage client that keeps its data on an untrusted storage device,
denoted by “storage server”. The data is partitioned into fixed-length sectors or blocks.
In our model, the server can behave maliciously, by mounting attacks against the confi-
dentiality and integrity of the client’s data. We assume that the server is available, i.e., it
responds to client’s read and write queries. However, no guarantees are given about the
correctness of its replies.

For data confidentiality, we assume that blocks are encrypted by clients using a length-
preserving encryption scheme that can be implemented by either a tweakable enciphering
scheme or an encryption scheme constructed from a block cipher in CBC mode, as de-
scribed in Section 2.4. The client is responsible for protecting its data integrity from ma-
licious server behavior by using a small amount of additional trusted storage denoted TS.
As trusted storage is expensive, our goal is to design schemes that minimize the amount
of trusted storage for integrity and provide provable integrity.

The storage interface provides two basic operations to the clients: WriteBlock(bid, C)
stores content C at block address bid and C ← ReadBlock(bid) reads (encrypted) content
from block address bid. In addition, in an integrity scheme for encrypted storage defined
below, a client can compute or check the integrity of a data block.

Definition 5 (Integrity schemes for encrypted block-level storage) An integrity scheme
for encrypted block-level storage is a tuple of algorithms IntS = (Init,Write,Check) where:

1. The initialization algorithm Init runs the key generation algorithm of the length-
preserving stateful encryption scheme and outputs a secret key k for the client that
can be used in the encryption and decryption algorithms. It also initializes the client
trusted state TS ← ∅;

2. The write algorithm Write(k, bid, B) takes as input the secret key generated by the
Init algorithm, block content B and block identifier bid. The client encrypts the block
B and updates the integrity information stored in TS. The client also invokes the
WriteBlock operation to send the encrypted block content to the server. The Write
algorithm returns the encrypted block content sent to the storage server.
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3. When performing a Check(k, bid, C) operation, the client checks the integrity of the
block content C read from block bid in a ReadBlock operation using client state TS.
It outputs either the decrypted block if the client believes that it is authentic, or ⊥,
otherwise.

2.3 Block Write Counters

The integrity constructions for encrypted storage described in Section 2.6 use write coun-
ters for disk blocks to keep track of the number of writes done to a particular block.
Besides their use to prevent against replay attacks, block write counters can be used to
implement length-preserving stateful encryption schemes, as shown in the next section.

We define several operations for the write counters of disk blocks:

- The UpdateCtr(bid) algorithm either initializes the value of the counter for block
bid to 1, or it increments the counter for block bid if it has already been initialized.

- Function GetCtr(bid) returns the value of the counter for block bid.

To store the counters for disk blocks, we keep a flag (one bit for each block) that is
initially set to 0 for all blocks and becomes 1 when the block is written first. We do not
need to store counters for blocks that are written once or not written at all, as the counter
could be inferred in these cases from the flags. An implementation of the UpdateCtr and
GetCtr algorithms is given in Figure 2.2. We denote by LC the associative array of (block
identifiers, counter) pairs and by F (bid) the flag of block identifier bid.

UpdateCtr(bid): GetCtr(bid):
if F (bid) = 1 if (bid, w) ∈ LC

if (bid, w) ∈ LC return w
remove (bid, w) from LC else
w ← w + 1 if F (bid) = 1

else return 1
w ← 2 else

insert (bid, w) into LC return 0
else
F (bid) ← 1

Figure 2.2: The UpdateCtr and GetCtr algorithms.
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2.4 Length-Preserving Stateful Encryption

Secure encryption schemes are usually not length-preserving. However, one of our design
goals is to add security (and, in particular, encryption) to storage systems in a manner
transparent to the storage servers. For this purpose, we introduce here the notion of length-
preserving stateful encryption scheme, an encryption scheme that constructs encrypted
blocks that preserve the length of original blocks (storing additional information in either
trusted or untrusted storage). We define a length-preserving stateful encryption scheme to
consist of a key generation algorithm Genlen that generates an encryption key at random
from the key space, an encryption algorithm Elen that encrypts block content B for block
identifier bid with key k and outputs ciphertext C, and a decryption algorithm Dlen that
decrypts the encrypted content C of block bid with key k and outputs the plaintext B. We
present two different constructions of length-preserving stateful encryption schemes, one
based on tweakable ciphers and one derived from any block cipher in CBC mode using
write counters for disk blocks.

Construction from tweakable ciphers. Let E : KE × T ×M → M be a tweakable
enciphering scheme and D its inverse. A length-preserving stateful encryption scheme can
be immediately implemented as follows:

• The Genlen algorithm selects a key k at random from the key space KE;

• Both the Elen and Dlen algorithms use the block identifier (or any function of the
block identifier) as a tweak in E, and D, respectively (e.g., Elen

k (bid, B) = Ebid
k (B)

and Dlen
k (bid, B) = Dbid

k (B)).

Construction using block write counters. Write counters for disk blocks can be used to
construct a length-preserving stateful encryption scheme. Let (Gen, E, D) be an encryption
scheme constructed from a block cipher in CBC mode. To encrypt a n-block message in
the CBC encryption mode, a random initialization vector is chosen. The ciphertext consists
of n + 1 blocks, with the first being the initialization vector. We denote by Ek(B, iv)
the output of the encryption of B (excluding the initialization vector) using key k and
initialization vector iv, and similarly by Dk(C, iv) the decryption of C using key k and
initialization vector iv.

We replace the random initialization vectors for encrypting a block in the file in CBC
mode with a pseudorandom function application of the block index concatenated with
the write counter for the block. This is intuitively secure because different initialization
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vectors are used for different encryptions of the same block, and moreover, the proper-
ties of pseudorandom functions imply that the initialization vectors are indistinguishable
from random. It is thus enough to store the write counters for the disk blocks, and the
initialization vectors can be easily inferred.

The Genlen, Elen and Dlen algorithms for a length-preserving stateful encryption scheme
are described in Figure 2.3. Here PRF : KPRF×C → KB denotes a pseudorandom function
family with key spaceKPRF, message space C (i.e., the set of all block indices concatenated
with block counter values), and output spaceKB (i.e., the space of encryption blocks for E).

Genlen(): Elen
<k1,k2>(bid,B): Dlen

<k1,k2>(bid, C):
k1

R←KPRF UpdateCtr(bid) iv ← PRFk1(bid||GetCtr(bid))
k2 ← Gen() iv ← PRFk1(bid||GetCtr(bid)) B ← Dk2(C, iv)
return <k1, k2> C ← Ek2(B, iv) return B

return C

Figure 2.3: Implementing a length-preserving stateful encryption scheme with write coun-
ters.

2.5 Notions of Integrity for Encrypted Block-Level Stor-
age

In formally defining integrity for encrypted storage, we consider adversary algorithms
A1 and A2 with access to two oracles: a write oracle Write(k, ·, ·) and a check oracle
Check(k, ·, ·). Both oracles are stateful in the sense that they maintain an internal state
across invocations. The write oracle takes as input a block identifier and a block content.
It computes the encryption of the block content given as input and its integrity information,
invokes a WriteBlock query to the storage interface and returns the encrypted block content
written to disk. The check oracle takes as input a block identifier and a ciphertext. It
decrypts the encrypted block, checks its integrity information using its internal state and
outputs either the decrypted block if its integrity is verified or ⊥, otherwise. Adversaries
A1 and A2 play the storage server’s role in our model.

In the first notion of integrity we define, an adversary wins if, intuitively, it outputs a
block identifier and a ciphertext whose decryption is considered valid by the Check algo-
rithm, but which has not been generated through a call to the Write oracle for that particular
block identifier. Our second notion of integrity is stronger than the first one and incorpo-
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rates defense against replay attacks. An adversary succeeds if it outputs a block identifier
and a ciphertext whose decryption is valid, and which has not been generated in the latest
Write query to that block identifier. These two notions of integrity are straightforward
generalizations of the notions of integrity for symmetric encryption schemes defined by
Bellare and Namprempre (Bellare and Namprempre [2000]) (i.e., integrity of plaintexts
and integrity of ciphertexts) and we define them formally below.

Expint-st
IntS,A1

: Expint-st-rep
IntS,A2

:

k ← Init() k ← Init()
A1 adaptively queries Write(k, ·, ·) and Check(k, ·, ·). A2 adaptively queries Write(k, ·, ·) and Check(k, ·, ·).
If A1 outputs (bid, C) such that: If A2 outputs (bid, C) such that:

1. Check(k, bid, C) returns B 6= ⊥; 1. Check(k, bid, C) returns B 6= ⊥;
2. A1 did not receive C from a query to 2. A2 did not receive C from the latest query to

Write(k, bid, ·), Write(k, bid, ·),
then return 1, else return 0. then return 1, else return 0.

Figure 2.4: Experiments for defining storage integrity.

Definition 6 (Security of integrity schemes for encrypted block-based storage) Let
IntS = (Init,Write,Check) be an integrity schemes for encrypted block-based storage and
A1 and A2 two adversary algorithms that participate in the experiments defined in Fig-
ure 2.4.

We define the advantages of the adversaries for the integrity of the scheme IntS as:

Advint-st
IntS,A1

= Pr[Expint-st
IntS,A1

= 1];

Advint-st-rep
IntS,A2

= Pr[Expint-st-rep
IntS,A2

= 1].

We denote by Advint-st
IntS (τ, q1, q2) and Advint-st-rep

IntS (τ, q1, q2) the maximum advantages Advint-st
IntS,A

and Advint-st-rep
IntS,A , respectively, over all adversaries A that run in time at most τ and make

q1 queries to Write(k, ·, ·) and q2 queries to Check(k, ·, ·).

The two notions of integrity require different correctness properties:

1. int-st: If the client performs Write(k, bid, B), then block B is accepted as valid, i.e.,
if C ← ReadBlock(bid), then Check(k, bid, C) returns B.

2. int-st-rep: If Write(k, bid, B) is the most recent write operation to block bid, then
block content B is accepted as valid, i.e., if C ← ReadBlock(bid), then Check(k, bid,
C) returns B.
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Remark. The attack model considered here is stronger than the one in the real storage
scenario. In our definitions, the adversary has adaptive access to the Write and Check ora-
cles, which is infeasible for the storage server. The storage server only receives encrypted
blocks from the client, for which it does not know the actual plaintexts.

2.6 Constructions of Integrity Schemes for Encrypted Block-
Level Storage

We describe four constructions of integrity schemes for encrypted block-level storage and
analyze their security and efficiency tradeoffs. We first describe a very simple int-st-rep
secure construction HASH-BINT, which is used in many storage systems. We include this
basic scheme here to compare its client-side storage to the more sophisticated schemes that
we propose. Second, we propose three new constructions SRAND-BINT, RAND-BINT,
and COMP-BINT that use the redundancy in typical block contents to reduce the storage
space needed for integrity. The integrity of SRAND-BINT and RAND-BINT relies on the
properties of tweakable ciphers that are used for block encryption. COMP-BINT has the
advantage that any length-preserving stateful encryption scheme as defined in Section 2.4
can be used for block encryption.

2.6.1 Hash scheme HASH-BINT

The hash scheme is very simple: for each block written at a particular address, the client
computes and stores the block identifier and a hash of the block in trusted storage. For a
given address, the stored hash corresponds to the last written block, thus preventing the
adversary in succeeding with a replay attack. The amount of additional storage kept by
the client is linear in the number of blocks written to the server, i.e., 20 bytes per block if
a cryptographically secure hash function such as SHA-1 is used plus the block identifiers
(e.g., 2 or 4 bytes, depending on the implementation).

In order to fully specify the scheme, we need a length-preserving encryption scheme
(Genlen, Elen, Dlen) and an everywhere second preimage resistant unkeyed hash function
defined on the plaintext space M of Elen, h : M → {0, 1}s. The client keeps in the
local trusted storage TS a list of pairs (block identifier, block hash), that is initialized
to the empty set. The scheme HASH-BINT is detailed in Figure 2.5. Below we prove
the security of the hash scheme HASH-BINT based on the everywhere second preimage
resistance property of the hash function used.
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Init(): Write(k, bid, B): Check(k, bid, C):
k

R← Genlen() remove (bid, ∗) from TS B ← Dlen
k (bid, C)

TS ← ∅ insert (bid, h(B)) into TS if (bid, h(B)) ∈ TS
C ← Elen

k (bid, B) return B
WriteBlock(bid, C) else

return ⊥

Figure 2.5: Scheme HASH-BINT.

Proposition 1 If h is an everywhere second preimage resistant hash function, then the
integrity scheme HASH-BINT is int-st-rep secure:

Advint-st-rep
HASH-BINT(τ, q1, q2) ≤ Advspr

h (τ).

Proof: Assume there is an adversary A for HASH-BINT with advantage Advint-st-rep
HASH-BINT,A

that runs in time τ . From Definition 6, it follows that A outputs a block identifier bid
and an encrypted block content C such that: (1) Check(k, bid, C) returns B 6= ⊥, i.e.,
(bid, h(B)) ∈ TS, with B = Dlen

k (bid, C); and (2) C was not received by A in the last
query to Write(k, bid,
·). There are two possibilities:

• C was never written by A at block identifier bid. Since (bid, h(B)) ∈ TS, there
exists a different query Write(k, bid, B′) with B′ 6= B and h(B′) = h(B). But then
an adversary B with the same advantage and running time as A can be constructed
for the everywhere second preimage resistance of h.

• C was written at block identifier bid, but it was overwritten by a subsequent query
Write(k, bid, B′). Assume that B′ is the last block written in a Write(k, bid, ·) query.
Then h(B) = h(B′) and in this case again an adversary B with the same advantage
and running time for the everywhere second preimage resistance of h can be con-
structed.

The claim of the proposition follows immediately.

2.6.2 Schemes Based on a Randomness Test

We design new, storage-efficient constructions to obtain int-st and int-st-rep integrity, re-
spectively. Our constructions are based on two observations. The first one is that blocks
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written to disk do not look random in practice; in fact they tend to have very low entropy.
And, second, if an adversary tries to modify ciphertexts encrypted with a tweakable enci-
phering scheme, the resulting plaintext is indistinguishable from random with very high
probability. The second property derives immediately from the PRP security of a tweak-
able enciphering scheme defined in Section 2.1.1.

We start by giving a simple and very space-efficient construction that is only int-st
secure and then extend it to an int-st-rep secure algorithm.

A Simple Scheme SRAND-BINT

In construction SRAND-BINT, we need a statistical test IsRand that can distinguish uni-
formly random blocks from non-random ones. More explicitly, IsRand(M),M ∈ M
returns 1 with high probability if M is a uniformly random block in M, and 0 otherwise.
Of course, the statistical test is not perfect. It is characterized by the false negative rate α,
defined as the probability that a uniformly random element is considered not random by
the test, i.e:

α = Pr[M
R←M : IsRand(M) = 0].

In designing such a statistical test, the goal is to have a very small false negative rate. We
will discuss more in Section 2.7 about a particular instantiation for IsRand.

The idea of our new construction is very intuitive: before encrypting a block M with
tweakable enciphering scheme E, the client computes IsRand(M). If this returns 1, then
the client keeps a hash of that block for authenticity in a list LR in the trusted storage space.
Otherwise, the client stores nothing, as the fact that the block is efficiently distinguishable
from random blocks will be used to verify its integrity upon return. The block is then
encrypted with a tweak equal to the block identifier and sent over to the server. When
reading a ciphertext from an address, the client first decrypts it to obtain a plaintext M
and then computes IsRand(M). If IsRand(M) = 1 and its hash is not stored in the hash
list, then the client knows that the server has tampered with the ciphertext. Otherwise, the
block is authentic.

We denote by LR the associative array of (block identifier, block hash) pairs for random-
looking blocks. The new construction SRAND-BINT is detailed in Figure 2.6. We give
the following theorem that guarantees the int-st integrity of SRAND-BINT.

Theorem 2 If E is a PRP-secure tweakable enciphering scheme with the plaintext size l
bits, D is its inverse, h is an everywhere second preimage resistant hash function and α
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Init(): Write(k, bid, B): Check(k, bid, C):
k

R←KE remove (bid, ∗) from LR T ← bid
LR ← ∅ if IsRand(B) = 1 B ← DT

k (C)
insert (bid, h(B)) into LR if IsRand(B) = 0

T ← bid return B
WriteBlock(bid, C ← ET

k (B)) else
if (bid, h(B)) ∈ LR

return B
else
return ⊥

Figure 2.6: Scheme SRAND-BINT.

(the false negative rate of IsRand) is small, then SRAND-BINT is int-st secure:

Advint-st
SRAND-BINT(τ, q1, q2) ≤ Advprp

E (τ, q1, q2) + Advspr
h (τ) +

(q2 + 1)α2l

2l − q1

.

Proof: Assume there exists an attacker A for the int-st integrity of RAND-BINT that runs
in time τ and makes q1 queries to the Write oracle and q2 queries to the Check oracle.
Since T = bid in the description of the construction from Figure 2.6, we use T instead of
bid in the Write and Check queries. We construct a distinguisher D for the PRP-security
of E. D has access to oracles G and G−1, which are either Ek, Dk with k

R←KE or π, π−1

with π
R← PermT (M).

D simulates the oracles Write(k, ·, ·) and Check(k, ·, ·) for A and keeps a list LR of
block identifiers and hashes for the randomly looking block contents that A queries to the
Write oracle. D replies to a Write(k, T, B) query with C = G(T,B) and stores (T, h(B))
in LR if IsRand(B) = 1. D replies to a Check(k, T, C) query with B = G−1(T, C) if
IsRand(B) = 0 or (T, h(B)) ∈ LR, and ⊥, otherwise. D makes the same number of
queries to its G and G−1 oracles as A makes to the Write and Check oracles, respectively.
The running time of D is τ .

If A succeeds, i.e., outputs a block identifier T and an encrypted block content C such
that Check(k, T, C) returns B 6= ⊥ and C was not output to A in a Write(k, T, ·) query,
then D outputs 1. Otherwise, D outputs 0. We express the advantage of distinguisher D
as a function of the advantage of adversary A.

From Definition 1, the PRP-advantage of adversary D is:

Advprp
E,D = Pr[k

R←KE,DEk,Dk = 1]− Pr[π
R← PermT (M),Dπ,π−1

= 1].
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It is immediate that the probability of D outputting 1 in the case when the oracles G and
G−1 are Ek, Dk, respectively, is equal to the probability of success of A:

Pr[k
R←KE,DEk,Dk = 1] = Pr[A succeeds] = Advint-st

SRAND-BINT,A.

In the case when the oracles G and G−1 are π and π−1, with π drawn randomly from
PermT (M), we can express the probability of D outputting 1 as a function of the false
negative rate of IsRand and the everywhere second preimage resistance of h.

Pr[π
R← PermT (M),Dπ,π−1

= 1]
= Pr[A succeeds |A receives random C1, . . . , Cq1 from Write(k, ·, ·)

and random B1, . . . , Bq2 from Check(k, ·, ·)].
Making the notation A ∼ (T, B, C) for A outputting block identifier T and encrypted

block content C such that B = G−1(T, C), the last probability can be written as:

Pr[π
R← PermT (M),Dπ,π−1

= 1]
= Pr[A ∼ (T, B,C) : C was not received in a Write(k, T, ·) query by A AND

Check(k, T, C) = B]
= Pr[A ∼ (T, B,C) : (T, B) was not a query to Write(k, ·, ·) AND

(IsRand(B) = 0 OR (T, h(B)) ∈ LR)]
≤ Pr[A ∼ (T, B,C) : (T, B) was not a query to Write(k, ·, ·) AND IsRand(B) = 0]+

Pr[A ∼ (T, B,C) : (T, B) was not a query to Write(k, ·, ·) AND (T, h(B)) ∈ LR].

Denote the last of these probabilities by p1 and p2, respectively:

p1 = Pr[A ∼ (T,B,C) : (T, B) was not a query to Write(k, ·, ·) AND IsRand(B) = 0];

p2 = Pr[A ∼ (T, B, C) : (T, B) was not a query to Write(k, ·, ·) AND (T, h(B)) ∈ LR].

We try to upper bound each of these two probabilities. In order to bound p1, let’s compute
the probability that A outputs a block identifier T and a ciphertext C for which π−1(T, C)
is considered not random by the entropy test. Amakes q1 queries to Write(k, ·, ·). From the
int-st definition of adversary’s success, A cannot output (T,C) such that C was received
from a query to Write(k, T, ·). If A picks a C ∈ M, then IsRand(π−1

k (T, C)) = 0 with
probability α, the false negative rate of the entropy test. So, in M, there are α|M| = α2l

ciphertexts for which IsRand(π−1
k (T,C)) = 0. A makes q2 queries to Check, and it can

make one more guess to output if the decryption of none of those resulting plaintexts B
satisfies IsRand(B) = 0. Thus:

p1 ≤ (q2 + 1)α2l

2l − q1

.
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For bounding p2, if (T, h(B)) ∈ LR and (T,B) was not a query to Write(k, ·, ·), then there
exists B′ ∈ M such that (T, B′) was a query to Write(k, ·, ·) and h(B) = h(B′). Then
there exists an adversary B for h such that p2 ≤ Advspr

h,B.

To conclude, we have:

Pr[π
R← PermT (M),Dπ,π−1

= 1] ≤ p1 + p2 ≤ (q2 + 1)α2l

2l − q1

+ Advspr
h (τ),

and

Advint-st
SRAND-BINT,A = Advprp

E,D + Pr[π
R← PermT (M),Dπ,π−1

= 1]

≤ Advprp
E,D + Advspr

h (τ) +
(q2 + 1)α2l

2l − q1

.

The statement of the theorem follows from the last relation.

Scheme Secure Against Replay Attacks RAND-BINT

The construction we propose here stems from the observation that the block access dis-
tribution in practice is not uniformly random, in fact it follows a Zipf-like distribution.
More specifically, there are few blocks that are written more than once, with the majority
of the blocks being written just once. If all the blocks were written only once, then scheme
SRAND-BINT would suffice to defend against replays, as well. If the blocks were written
uniformly, then scheme HASH-BINT could be used. The solution we give here is a hybrid
scheme, that combines the previous two constructions.

Briefly, the solution is to keep in trusted storage a counter for each block that is written
more than once. The counter denotes the number of writes to a particular block. We
compute the tweak as a function of the block identifier and the counter, so that if a block is
written more than once, it is encrypted every time with a different tweak. After computing
the tweak as indicated, the scheme proceeds as in SRAND-BINT: at each Write operation,
if the message has high entropy, then its hash is stored in a list LR in trusted storage. A
message is considered valid if either it has low entropy or its hash is stored in LR. The
intuition for the correctness of this scheme is that decryptions of the same ciphertext using
the same key, but different tweaks, are independent. Thus, if the server replies with an
older version of an encrypted block, the client uses a different tweak for decrypting it than
the one with which it was originally encrypted. Then, the chances that it still yields a
low-entropy plaintext are small. The detailed scheme RAND-BINT is given in Figure 2.7.
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Init(): Write(k, bid, B): Check(k, bid, C):
k

R←KE UpdateCtr(bid) T ← bid‖GetCtr(bid)
LR ← ∅ T ← bid‖GetCtr(bid) B ← DT

k (C)
if (bid, hval) ∈ LR if IsRand(B) = 0

remove (bid, hval) from LR returnB
if IsRand(B) = 1 else

insert (bid, h(B)) into LR if (bid, h(B)) ∈ LR

WriteBlock(bid, C ← ET
k (B)) return B

else
return ⊥

Figure 2.7: Scheme RAND-BINT.

The proof for the integrity of RAND-BINT is similar to that of the integrity of SRAND-
BINT. Here we just state the theorem that relates the security of RAND-BINT to the PRP
security of E, the everywhere second preimage resistance of the hash function and the false
negative rate of the entropy test.

Theorem 3 If E is a PRP-secure tweakable enciphering scheme with the plaintext size l
bits, D is its inverse, h is an everywhere second preimage resistant hash function and α
(the false negative rate of IsRand) is small, then RAND-BINT is int-st-rep secure:

Advint-st
SRAND-BINT(τ, q1, q2) ≤ Advprp

E (τ, q1, q2) + Advspr
h (τ) +

(q2 + 1)α2l

2l − q1

.

2.6.3 The Compression Scheme COMP-BINT

This construction is again based on the intuition that many workloads feature low-entropy
blocks, but attempts to exploit this in a different way. In this construction, the block is
compressed and padded before encryption. If the compression level of the block content
is high enough, then a message-authentication code of the block can be stored in the block
itself, reducing the amount of storage necessary for integrity. In order to prevent replay
attacks, it is necessary that the message-authentication code is computed over block con-
tents and block write counters that need to be authenticated in trusted storage. For blocks
that can not be compressed enough, the block identifier together with the block hash is
stored in a list LR in trusted storage.

The authentication information (i.e., tags) for blocks that can be compressed is stored
on untrusted storage, and consequently a message-authentication code is required. In con-
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trast, the hashes of the blocks that cannot be compressed enough are stored in trusted
storage, and thus an unkeyed hash is enough to authenticate these blocks.

The advantage of this construction compared to the SRAND-BINT and RAND-BINT
constructions is that here blocks can be encrypted with any length-preserving encryption
scheme, and not necessarily with a tweakable cipher.

In the description of the integrity scheme, we assume we are given a compression
algorithm compress and a decompression algorithm decompress such that decompress(
compress(m)) = m, for any message m. We can also pad messages up to a certain fixed
length by using the pad function, and unpad a padded message with the unpad function
such that unpad(pad(m)) = m, for all messages m of length less than the output of the pad
function. We can use standard padding methods for implementing these algorithms (Black
and Urtubia [2002]). We also need a hash function h : {0, 1}∗ → {0, 1}s and a message-
authentication code HMAC : KHMAC × {0, 1}∗ → {0, 1}s with key space KHMAC that
outputs messages of length s bits.

The Init, Write, and Check algorithms of the COMP-BINT construction are detailed in
Figure 2.8. Here Z is the byte length of the largest plaintext size for which the ciphertext is
of length at most the file block length less the size of a hash function output. For example,
if the block size is 4096 bytes, SHA-1 is used for hashing (whose output is 20 bytes) and
16-byte AES is used for encryption, then Z is the largest multiple of the AES block size
(i.e., 16 bytes) less than 4096−20 = 4076 bytes. The value of Z in this case is 4064 bytes.

Init(): Write(<k1, k2>, bid,B): Check(<k1, k2>, bid, C):
k1 ← Genlen() UpdateCtr(bid) if (bid, hval) ∈ LR

k2 ← KHMAC if (bid, hval) ∈ LR B ← Dlen
k1

(bid, C)
LR ← ∅ remove (bid, hval) from LR if h(bid||GetCtr(bid)||B) = hval

Bc ← compress(B) return B
if |Bc| ≤ Z else
C ← Elen

k1
(bid, pad(Bc)) return ⊥

WriteBlock(bid, C||HMACk2(bid|| else
GetCtr(bid)||B)) parse C as C ′||hval

else Bc ← unpad(Dlen
k1

(bid, C ′))
insert (bid, h(bid||GetCtr(bid)||B))) B ← decompress(Bc)

into LR if HMACk2(bid||GetCtr(bid)||B) = hval
C ← Elen

k1
(bid,B) return B

WriteBlock(bid, C) else
return ⊥

Figure 2.8: Scheme COMP-BINT.
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Theorem 4 If h is an everywhere second preimage resistant hash function and HMAC is
a cma-secure message-authentication code, then COMP-BINT is int-st-rep secure:

Advint-st-rep
COMP-BINT(τ, q1, q2) ≤ Advspr

h (τ) + Advcma
HMAC(τ, q1, q2).

Proof: Assume there is an adversary A for COMP-BINT with advantage Advint-st-rep
COMP-BINT,A

running in time τ and making q1 queries to the Write oracle and q2 queries to the Check
oracle. From Definition 6, it follows thatA outputs a block identifier bid and an encrypted
block content C such that: (1) Check(<k1, k2>, bid, C) returns B 6= ⊥; and (2) C was not
received by A in the last query to Write(<k1, k2>, bid, ·).

For these conditions to be satisfied, one of the following two cases occurs:

1. Assuming that the last block written by A to block bid cannot be compressed, A
finds a different block content that hashes to the value stored in trusted storage in
the list LR. The probability of this event is upper bounded by Advspr

h (τ).

2. Assuming that the last block written to block bid can be compressed, A finds a
different block content that hashes under key k2 to the value stored at the end of the
block. The probability of this event is upper bounded by Advcma

HMAC(τ, q1, q2).

From the two cases, it follows that the probability of success ofA is upper bounded by
Advspr

h (τ) + Advcma
HMAC(τ, q1, q2), and thus the conclusion of the theorem follows.

2.7 The Entropy Statistical Test

In this section we give an example of a statistical test IsRand that can distinguish between
random and non-random blocks. IsRand(M), M ∈ M returns 1 with high probability
if M is a uniformly random block in M, and 0 otherwise. Consider a block M divided
into n parts of fixed length M = M1M2 . . . Mn with Mi ∈ {1, 2, . . . , b}. For example, a
1024-byte block could be either divided into 1024 8-bit parts (for b = 256), or alternatively
into 2048 4-bit parts (for b = 16). The empirical entropy of M is defined as Ent(M) =
−∑b

i=1 pi log2(pi), where pi is the frequency of symbol i in the sequence M1, . . . ,Mn.

If we fix a threshold THEnt depending on n and b (we will discuss later how to choose
THEnt), then the entropy test parameterized by b and THEnt is defined in Figure 2.9. In
the following, we call IsRand8,THEnt

(·) the 8-bit entropy test and IsRand4,THEnt
(·) the 4-bit

entropy test.
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Write M as M = M1M2 . . .Mn with Mi ∈ {1, 2, . . . , b}
Compute pi = the frequency of symbol i in M , i = 1, . . . , b

Compute Ent(M) = −∑b
i=1 pi log2(pi)

If Ent(M) < THEnt, then return 0
Else return 1

Figure 2.9: The entropy test IsRandb,THEnt
(M).

Analysis. We give an analytical bound for the false negative rate, as a function of n, b
and THEnt.

Theorem 5 For a given threshold THEnt, if we denote δ the solution of the following
equation:

THEnt = −(1− δ) log2

(
1− δ

b

)
, (2.1)

then the false negative rate α of IsRandb,THEnt
(·) satisfies:

α ≤ be−
n
2b

δ2

+ b

(
1

e

)n
b
(

4e

b

)n
4

. (2.2)

In the proof of Theorem 5, we use the following well-known lemma.

Lemma 1 (Union bound) Assume A1, . . . , Am are some events, not necessarily indepen-
dent. Then:

1. Pr[A1 ∪ · · · ∪ Am] ≤ ∑m
i=1 Pr[Ai];

2. Pr[A1 ∩ · · · ∩ Am] ≥ 1−∑m
i=1(1− Pr[Ai]).

We can now proceed to the proof of Theorem 5.

Proof: The false negative rate of IsRand is by definition:

α = Pr[Ent(R = R1R2 . . . Rn) ≤ THEnt],

for R1, R2, . . . , Rn uniformly random in {1, 2, . . . , b}.

Consider a fixed i ∈ {1, 2, . . . , b}. To each Rj we associate a 0-1 variable Xj with the
property: Xj = 1 ⇔ Rj = i. X1, . . . , Xn are independent and the mean of each Xj is
E(Xj) = 1

b
.
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Define fi =
∑n

j=1 Xj , i.e., fi denotes the number of blocks that have value i. From the
independence of X1, . . . , Xn, it follows that E(fi) =

∑n
i=1 E(Xj) = n

b
. We also define

pi = fi

n
. Then the entropy of R is Ent(R) = −∑b

i=1 pi log2(pi).

Applying the Chernoff bounds for fi, it follows that for any δ ∈ (0, 1]:

Pr
[
pi <

1

b
(1− δ)

]
= Pr

[
fi <

n

b
(1− δ)

]
= Pr

[
fi < E(fi)(1− δ)

]
< e

−E(fi)δ
2

2 = e−
n
2b

δ2

.

Assume that all pi are less or equal to 1
4
. The function x → −x log2(x) is monotoni-

cally increasing on the interval (0, 1
4
]. Therefore, if pi ≥ 1

b
(1− δ), then:

Ent(R) = −
b∑

i=1

pi log2(pi) ≥ −(1− δ) log2

(1− δ

b

)
= THEnt. (2.3)

For a fixed i, it follows from the Chernoff bounds that pi ≥ 1
b
(1 − δ) with probability

at least 1− e−
n
2b

δ2
. Applying the union bound, it follows that:

Pr
[
pi ≥ 1

b
(1− δ),∀i = 1, . . . , b

]
≥ 1− be−

n
2b

δ2

. (2.4)

(2.3) and (2.4) imply that:

Pr
[
Ent(R) ≥ THEnt|pi ≤ 1

4
, i = 1, . . . , b

]
≥ 1− be−

n
2b

δ2

. (2.5)

Let’s bound the probability Pr[pi ≤ 1
4
, i = 1, . . . , b] using Chernoff bounds. Denote

ε = b
4
− 1. Then for a fixed i ∈ {1, . . . , b}, we have:

Pr
[
pi >

1

4

]
= Pr

[
pi >

1

b
(1 +

b

4
− 1)

]

= Pr
[
fi >

n

b
(1 +

b

4
− 1)

]
<

[
eε

(1 + ε)1+ε

]n
b

=

(
1

e

)n
b
(

4e

b

)n
4

.

Using the union bound, it follows that:

Pr
[
pi ≤ 1

4
, i = 1, . . . , b

]
≥ 1− b

(
1

e

)n
b
(

4e

b

)n
4

. (2.6)
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Using (2.5) and (2.6), we get:

Pr[Ent(R) ≥ THEnt]

= Pr
[
Ent(R) ≥ THEnt|pi ≤ 1

4
, i = 1, . . . , b

]
·Pr

[
pi ≤ 1

4
, i = 1, . . . , b

]

+ Pr
[
Ent(R) ≥ THEnt|∃ i = 1, . . . , b st pi ≤ 1

4

]
·Pr

[
∃ i = 1, . . . , b st pi ≤ 1

4

]

≥ [
1− be−

n
2b

δ2]
[
1− b

(
1

e

)n
b
(

4e

b

)n
4

]
.

In conclusion:

α = Pr[Ent(R) ≤ τ ] = 1− Pr[Ent(R) ≥ τ ]

≤ 1− [
1− be−

n
2b

δ2]
[
1− b

(
1

e

)n
b
(

4e

b

)n
4

]

≤ be−
n
2b

δ2

+ b

(
1

e

)n
b
(

4e

b

)n
4

.

Discussion. The derived bound for the false negative rate of the entropy test is mostly
of theoretical interest. It demonstrates that the false negative rate decreases exponentially
with the increase of the block length. However, for small values of n such as 1KB or 4KB,
the bound does not give tight constraints on the false negative rate of the entropy test.

2.8 Evaluation

In order to project the behavior of the integrity algorithms proposed in practice, we col-
lected approximately 200 MB of block disk traces from a SuSe Linux environment. They
represent a sampling of disk activity from one machine during one month. The applica-
tions used most frequently were: the Netscape browser and e-mail client, the g++ compiler,
the Java compiler from Sun, the XMMS audio player, the image viewer GIMP, the text ed-
itor Kedit, the LATEX compiler, the Acrobat and GV viewers, and the VNC server. The
reasons we collected traces only from one computer are two-fold: first, getting the traces
proved to be cumbersome, as it required non-trivial kernel modification and the installa-
tion of a new drive to store them. Secondly, collecting disk traces from users has strong
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implications for users’ privacy. The block sizes used by the disk interface were 1024 and
4096 bytes.

We implemented the HASH-BINT, RAND-BINT and COMP-BINT integrity algorithms
and evaluated the amount of storage necessary for integrity. The performance evaluation
of the similar constructions for file systems is done in the context of a cryptographic file
system in Section 3.6. We choose the threshold THEnt experimentally as follows. We gen-
erated 100,000 uniformly random blocks and computed, for each, its entropy. Then, we
pick THEnt smaller than the the minimum entropy of all the random blocks generated. For
1KB blocks, the 8-bit entropy threshold is set to 7.68 and the 4-bit entropy threshold is
3.96. For 4KB blocks, the thresholds are set to 7.9 and 3.98 for the 8-bit and 4-bit entropy
tests, respectively.

In the trace we collected, there were 813,124 distinct block addresses, from which only
276,560 were written more than once. Therefore, a counter has to be stored for about 35%
of the block addresses. The block access distribution is represented in Figure 2.10. In this
graph, the fraction of blocks written i times is represented for i = 1, 2, . . . , 14. For i = 15,
the graph accumulates all the blocks that have been written at least 15 times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

F
ra

ct
io

n 
of

 B
lo

ck
s

Number of Writes

Block Access Distribution

Figure 2.10: Block access distribution.

From the block contents in the trace, 0.56% are random-looking by using the 8-bit
entropy test, 0.87% are random-looking by using the 4-bit entropy test and 0.68% are
not compressible enough to be able to fit a message-authentication code inside the block.
The amount of storage that the client needs to keep for the three schemes secure against
replay attacks is given in Figure 2.11. We only considered here the amount of storage for
RAND-BINT using the better 8-bit entropy test. The amount of storage of RAND-BINT
and COMP-BINT are 1.86% and 1.98%, respectively, of that needed by HASH-BINT.

Of course, the client storage increases with the lifetime of the system, as more blocks
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are overwritten. One solution to prevent the indefinite expansion of client state is to peri-
odically change the encryption key, re-encrypt all the data under the new key, recompute
all the integrity information and reset all the block flags.

Storage for HASH-BINT Storage for RAND-BINT Storage for COMP-BINT
854.43 KB 15.92 KB 16.98 KB

Figure 2.11: Client storage for integrity for the three replay-secure algorithms.

2.9 Related Work

Encryption algorithms for secure storage have received much attention in recent years,
leading to the development of tweakable block ciphers (Liskov et al. [2002]). In addition
to a key and a plaintext, a tweakable block cipher has as input a tweak, for variability. In
the secure storage model, a tweak might be the address of a disk block or the block identi-
fier. This notion has been extended to that of tweakable enciphering schemes (Halevi and
Rogaway [2003]) that operate on larger plaintexts (e.g., 512 or 1024 bytes). Constructions
of tweakable enciphering schemes designed recently include CMC (Halevi and Rogaway
[2003]), the parallelizable EME (Halevi and Rogaway [2004]) and XCB (McGrew and
Fluhrer [2004]).

Adopting one of these tweakable encryption schemes for confidentiality, our goal is to
augment it to provide efficient integrity for the storage scenario. Therefore, there are two
main orthogonal fields related to our work: authenticated encryption and storage security.

Authenticated encryption. Authenticated encryption (e.g., (Bellare and Namprempre
[2000], Katz and Yung [2001], Krawczyk [2001])) is a primitive that provides privacy and
message authenticity at the same time. That is, in addition to providing some notion of
encryption scheme privacy (e.g., Bellare et al. [1998]), authenticated encryption ensures
either integrity of plaintexts or integrity of ciphertexts. The traditional approach for con-
structing authenticated encryption is by generic composition, i.e., the combination of a
secure encryption scheme and an unforgeable message-authentication code (MAC). How-
ever, Bellare and Namprempre (Bellare and Namprempre [2000]) analyze the security of
the composition and provide proofs that some of the widely believed secure compositions
are actually insecure. Krawczyk (Krawczyk [2001]) proves that the generic composition
method used in the Secure Socket Layer (SSL) protocol is insecure, but the particular stan-
dard implementation is secure with respect to both privacy and integrity. The authenticated
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encryption in SSH is also insecure, as demonstrated by Bellare et al. (Bellare et al. [2002]).
There, a new definition for integrity is given, that protects against replay and out-of-order
delivery attacks; Kohno et al. (Kohno et al. [2003]) also supply such definitions. While we
also define integrity against replay attacks, our definitions are particularly tailored to the
storage scenario, and are thus different from the network case.

A different approach to obtain integrity is to add redundancy to plaintexts. Bellare and
Rogaway (Bellare and Rogaway [2000]) and Ann and Bellare (Ann and Bellare [2001])
give necessary and sufficient conditions for the redundancy code such that the composition
of the encryption scheme and the redundancy code provide integrity.

Integrity in block-level storage systems. We elaborate on methods for data integrity in
storage systems in Section 3.8 in the next chapter.
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Chapter 3

Integrity in Cryptographic File Systems
with Constant Trusted Storage

In this chapter, we construct new algorithms for integrity protection of files in cryp-
tographic file systems that use only a constant amount of trusted storage (Oprea and
Reiter [2006c]). The new integrity algorithms exploit two characteristics of many file-
system workloads, namely low entropy of file contents and high sequentiality of file block
writes. The algorithms extend the RAND-BINT and COMP-BINT constructions from Sec-
tion 2.6.2 to the setting of a cryptographic file system where individual file blocks need to
be authenticated with a small amount of trusted storage and a low integrity bandwidth (i.e.,
the amount of information needed to update or check the integrity of a file block). Both
algorithms achieve their storage efficiency by using counters for file blocks (that denote
the number of writes to that block) for replay protection. Based on real NFS traces col-
lected at Harvard University (Ellard et al. [2003]), we propose an efficient representation
method for counters that reduces the additional space needed for integrity. We evaluate
the performance and storage requirements of our new constructions compared to those of
the standard integrity algorithm based on Merkle trees. We conclude with guidelines for
choosing the best integrity algorithm depending on typical application workload.

We describe the well known Merkle tree algorithm in Section 3.1. After elaborating on
our system model in Section 3.2, we investigate two counter representation methods and
perform an analysis of their storage requirements in Section 3.3. We detail the two new
integrity algorithms for encrypted file systems and analyze their security in Section 3.4.
Our prototype architecture is given in Section 3.5 and our performance evaluation in Sec-
tion 3.6. We conclude the chapter in Section 3.7 with a discussion of the suitability of
each integrity algorithm to particular classes of workloads. We also discuss there an alter-
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native application of the integrity algorithms proposed. Lastly, we provide in Section 3.8
a comparison of the different integrity methods used in existing storage systems.

3.1 Preliminaries

In this section we review the use of Merkle trees for authenticating a set of data items, and
show how they can be applied to provide integrity of files in file systems. We describe
several algorithms on a Merkle tree for a file that will be used later in our constructions for
integrity in encrypted file systems.

Merkle trees (Merkle [1989]) are used to authenticate n data items with constant-size
trusted storage. A Merkle tree for data items M1, . . . ,Mn, denoted MT(M1, . . . , Mn), is
a binary tree that has M1, . . . , Mn as leaves. An interior node of the tree with children CL

and CR is the hash of the concatenation of its children (i.e., h(CL||CR), for h a collision-
resistant hash function). The value stored in the root of the tree thus depends on all the
values stored in the leaves of the tree and can be used to authenticate all the leaf values.
If the root of the tree is stored in trusted storage, then all the leaves of the tree can be
authenticated by reading O(log(n)) hashes from the tree. The size of the Merkle tree that
authenticates a set of data items is double the number of items authenticated, but it can be
reduced using a higher degree Merkle tree instead of a binary tree. However, increasing the
degree of the Merkle tree might increase the number of hash values needed to authenticate
a data item. In our work, we only consider binary Merkle trees.

We define the Merkle tree for a file F with n blocks B1, . . . , Bn to be the binary tree
MTF = MT(h(1||B1), . . . , h(n||Bn)). The file block index is hashed together with the
block content in order to prevent block swapping attacks in some of our constructions, in
which a client considers valid the content of a different file block than the one he intended
to read. A Merkle tree with a given set of leaves can be constructed in multiple ways. Here
we choose to append a new block in the tree as a right-most child, so that the tree has the
property that all the left subtrees are complete. Before giving the details of the algorithms
used to append a new leaf in the tree, update the value stored at a leaf, check the integrity
of a leaf and delete a leaf from the tree, we give first a small example.

Example. We give an example in Figure 3.1 of a Merkle tree for a file that initially has
six blocks: B1, . . . , B6. We also show how the Merkle tree for the file is modified when
block B7 is appended to the file.
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h(1||B1) h(2||B2) h(3||B3) h(5||B5)

h(7||B7)

h(l3||l4)h(l1||l2)

l1 l2 l3 l4

v4 l7v1 v2

v3
v5

R

h(v1||v2)

h(v3||v5)

l5 l6

h(4||B4) h(6||B6)

h(l5||l6)

h(v4||l7)

h(1||B1) h(2||B2) h(3||B3) h(4||B4)

h(5||B5) h(6||B6)

h(l3||l4)h(l1||l2)

l1 l2 l3 l4

l5 l6v1 v2

v3
v4

R

h(v1||v2)

h(v3||v4)

h(l5||l6)

Figure 3.1: Merkle tree for a file with 6 blocks on the left; after block 7 is appended on the
right.

Notation. For a tree T , T.root is the root of the tree, T.no leaves is the number of leaves
in T and T.leaf[i] is the i-th leaf in the tree counting from left to right. For a node v in the
tree, v.hash is the hash value stored at the node and for a non-leaf node v, v.left and v.right
are pointers to the left and right children of v, respectively. v.sib and v.parent denote the
sibling and parent of node v, respectively.

Merkle tree algorithms. The algorithms UpdatePathRoot, CheckPathRoot, UpdateTree,
CheckTree, AppendTree and DeleteTree on a Merkle tree T are described in Figure 3.2.

- The UpdatePathRoot(R, v) algorithm for tree T is called after a modification of the
hash value stored at node v. In this algorithm, the hashes stored in the nodes on the
path from node v to the root of the tree are updated. For that, all the hashes stored
in the siblings of those nodes are read. Finally, the hash from the root of T is stored
in R.

- In the CheckPathRoot(R, v) algorithm for tree T , the hashes stored in the nodes on
the path from node v to the root of the tree are computed, by reading all the hashes
stored in the siblings of those nodes. Finally, the hash of the root of T is checked to
match the parameter R. If the hash stored in the root matches the parameter R, then
the client is assured that all the siblings read from the tree are authentic.

- In the UpdateTree(R, i, hval) algorithm for tree T , the hash stored at the i-th leaf
of T is updated to hval. This triggers an update of all the hashes stored on the path
from the i-th leaf to the root of the tree and an update of the value stored in R with
algorithm UpdatePathRoot. It is necessary to first check that all the siblings of the
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T.UpdatePathRoot(R, v): T.CheckPathRoot(R, v):
while v 6= T.root hval ← v.hash
s ← v.sib while v 6= T.root
if v.parent.left = v s ← v.sib
v.parent.hash ← h(v.hash||s.hash) if v.parent.left = v

else hval ← h(hval||s.hash)
v.parent.hash ← h(s.hash||v.hash) else

v ← v.parent hval ← h(s.hash||hval)
R ← T.root.hash v ← v.parent

if R = hval
return true

else
return false

T.UpdateTree(R, i, hval): T.CheckTree(R, i, hval):
if T.CheckPathRoot(R, T.leaf[i]) = true if T.leaf[i].hash 6= hval
T.leaf[i].hash ← hval return false
T.UpdatePathRoot(R, T.leaf[i]) return T.CheckPathRoot(R, T.leaf[i])

T.AppendTree(R, hval): T.DeleteTree(R):
u.hash ← hval v ← T.root
u.left ← null; u.right ← null while v.right
depth ← dlog2(T.no leaves)e v ← v.right
d ← 0; v ← T.root if v = T.root
while v.right and d < depth T ← null
v ← v.right; d ← d + 1 else

if d = depth p ← v.parent
p ← T.root if T.CheckPathRoot(R, p) = true

else if p = T.root
p ← v.parent T.root ← p.left

if T.CheckPathRoot(R, p) = true else
p.left ← p p.parent.right ← p.left
p.right ← u T.UpdatePathRoot(R, p)
p.hash ← h(p.hash||u.hash)
T.UpdatePathRoot(R, p)

Figure 3.2: The UpdateTree, CheckTree, AppendTree and DeleteTree algorithms for a
Merkle tree T .

nodes on the path from the updated leaf to the root of the tree are authentic. This is
done by calling the algorithm CheckPathRoot.

- The CheckTree(R, i, hval) algorithm for tree T checks that the hash stored at the
i-th leaf matches hval. Using algorithm CheckPathRoot, all the hashes stored at the
nodes on the path from the i-th leaf to the root are computed and the root of T is
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checked finally to match the value stored in R.

- Algorithm AppendTree(R, hval) for tree T appends a new leaf u that stores the hash
value hval to the tree. The right-most node v in the tree is searched first. If the tree
is already a complete tree, then the new leaf is added as the right child of the root of
the tree and the existing tree becomes the left child of the new root. Otherwise, the
new leaf is appended as the right child of the parent p of v, and the subtree rooted
at p becomes the left child of p. This way, for any node in the Merkle tree, the
left subtree is complete and the tree determined by a set of leaves is unique. Upon
completion, the parameter R keeps the hash from the root of T .

- The DeleteTree(R) algorithm for tree T deletes the last leaf from the tree. First, the
right-most node v in the tree is searched. If this node is the root itself, then the tree
becomes null. Otherwise, node v is removed from the tree and the subtree rooted
at the sibling of v is moved in the position of v’s parent. Upon completion, the
parameter R keeps the hash from the root of T .

3.2 System Model

We consider the model of a cryptographic file system that provides random access to files.
Encrypted data is stored on untrusted storage servers and there is a mechanism for dis-
tributing the cryptographic keys to authorized parties. A small (on the order of several
hundred bytes), fixed-size per file, trusted storage is available for authentication data.

We assume that the storage servers are actively controlled by an adversary. The adver-
sary can adaptively alter the data stored on the storage servers or perform any other attack
on the stored data, but it cannot modify or observe the trusted storage. A particularly inter-
esting attack that the adversary can mount is a replay attack, in which stale data is returned
to read requests of clients. Using the trusted storage to keep some constant-size informa-
tion per file, and keeping more information per file on untrusted storage, our goal is to
design and evaluate different integrity algorithms that allow the update and verification of
individual blocks in files and that detect data modification and replay attacks.

In our framework, a file F is divided into n fixed-size blocks B1B2 . . . Bn (the last
block Bn might be shorter than the first n − 1 blocks), each encrypted individually with
the encryption key of the file and stored on the untrusted storage servers (n differs per file).
The constant-size, trusted storage for file F is denoted TSF . Additional storage for file F ,
which can reside in untrusted storage, is denoted USF .
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Similar to the model in the previous chapter, the storage interface provides two basic
operations to the clients: F.WriteBlock(i, C) stores content C at block index i in file F and
C ← F.ReadBlock(i) reads (encrypted) content from block index i in file F . In addition,
in an integrity scheme for an encrypted file, a client can compute or check the integrity of
a file block.

Definition 7 (Integrity schemes for encrypted files) An integrity scheme for an encrypted
file F consists of five operations F.IntS = (F.Init,F.Update,F.Append,F.Check,F.Delete),
where:

1. In the initialization algorithm Init for file F , the encryption key for the file is gener-
ated.

2. In the update operation Update(i, B) for file F , an authorized client updates the
i-th block in the file with the length-preserving encryption of block content B and
updates the integrity information for the i-th block stored in TSF and USF .

3. In the append operation Append(B) for file F , a new block that contains the length-
preserving encryption of B is appended to the encrypted file. Integrity information
for the new block is stored in TSF and USF .

4. In the check operation Check(i, C) for file F , an authorized client checks that the
(decrypted) block content C read from the i-th block in file F (by calling C ←
F.ReadBlock(i)) is authentic, using the additional storage TSF and USF for file
F . The check operation returns the decrypted block if the client accepts the block
content as authentic and ⊥ otherwise.

5. The Delete operation deletes the last block in a file and updates the integrity infor-
mation for the file.

Remark. An integrity scheme for encrypted block-level storage defined in Definition 5
consists of only three algorithms: Init, Write and Check. In defining an integrity scheme for
an encrypted file, we divide the Write algorithm into the Update and Append algorithms.
The Update algorithm is called when an existing file block is modified, and the Append
algorithm is used to append new file blocks to the file. We also added a new Delete
algorithm useful for shrinking file sizes, which is not necessary in block-level storage
where the space of available block addresses is fixed over time.

Using the algorithms we have defined for an integrity scheme for an encrypted file, a
client can read or write at any byte offset in the file. For example, to write to a byte offset
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that is not at a block boundary, the client first reads the block the byte offset belongs to,
decrypts it and checks its integrity using algorithm Check. Then, the client constructs the
new data blocks by replacing the appropriate bytes in the decrypted block, encrypts the
new block and updates its integrity information using algorithm Update.

In designing an integrity algorithm for a cryptographic file system, we consider the
following metrics. First is the size of the untrusted storage USF ; we will always enforce
that the trusted storage TSF is of constant size, independent of the number of blocks.
Second is the integrity bandwidth for updating and checking individual file blocks, defined
as the number of bytes from USF accessed (updated or read) when accessing a block of file
F , averaged over either: all blocks in F when we speak of a per-file integrity bandwidth;
all blocks in all files when we speak of the integrity bandwidth of the file system; or all
blocks accessed in a particular trace when we speak of one trace. Third is the performance
cost of writing and reading files.

3.3 Write Counters for File Blocks

In Chapter 2, block write counters are used for replay protection in the new block-level
integrity algorithms proposed and for constructing length-preserving stateful encryption
schemes. The integrity algorithms for cryptographic file systems are immediate extensions
of the corresponding algorithms for block storage systems, and as such they make use of
file block counters in the same two ways. The write counters of the blocks in a file F
support two basic operations: F.UpdateCtr(i) and F.GetCtr(i), which are similar to the
operations defined in Section 2.3.

When counters are used for encryption, they can be safely stored in the untrusted stor-
age space for a file. However, in the case in which counters protect against replay attacks,
they need to be authenticated with a small amount of trusted storage. We define two algo-
rithms for authenticating block write counters, both of which are invoked by an authorized
client:

- Algorithm AuthCtr modifies the trusted storage space TSF of file F to contain the
trusted authentication information for the write counters of F .

- Algorithm CheckCtr checks the authenticity of the counters stored in USF using the
trusted storage TSF for file F and returns true if the counters are authentic and false,
otherwise.

A problem that needs to be addressed in the design of the various integrity algorithms
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described below is the storage and authentication of the block write counters. If a counter
per file block were used, this would result in significant additional storage for counters. We
investigate more efficient methods of storing the block write counters, based on analyzing
the file access patterns in NFS traces collected at Harvard University (Ellard et al. [2003]).

Counter intervals. We performed some experiments on NFS Harvard traces (Ellard
et al. [2003]) in order to analyze the file access patterns. We considered three different
traces (LAIR, DEASNA and HOME02) for a period of one week. The LAIR trace con-
sists from research workload traces from Harvard’s computer science department. The
DEASNA trace is a mix of research and email workloads from the division of engineering
and applied sciences at Harvard. HOME02 is mostly the email workload from the campus
general purpose servers.

We first plotted the cumulative distribution of the number of writes per block for each
trace in Figure 3.3 in a log-log scale (i.e., for x number of writes on the x-axis, the y axis
represents the number of blocks that have been written at least x times).

Ellard et al. (Ellard et al. [2003]) make the observation that a large number of file
accesses are sequential. This leads to the idea that the values of the write counters for
adjacent blocks in a file might be correlated. To test this hypothesis, we represent counters
for blocks in a file using counter intervals. A counter interval is defined as a sequence of
consecutive blocks in a file that all share the same value of the write counter. For a counter
interval, we need to store only the beginning and end of the interval, and the value of the
write counter. We plot the cumulative distribution of the number of counter intervals per
files for the three Harvard traces in Figure 3.4 (i.e., for x number of intervals on the x-axis,
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the y axis represents the number of files that have at least x counter intervals).

Figure 3.4 validates the hypothesis that for the large majority of files in the three traces
considered, a small number of counter intervals needs to be stored and only for few files
the number of counter intervals is large (i.e., over 1000). The average storage per file using
counter intervals is several orders of magnitude smaller than that used by storing a counter
per block, as shown in Table 3.1. This justifies our design choice to use counter intervals
for representing block counters in the integrity algorithms proposed.

LAIR DEASNA HOME02
Counter per block 1.79 MB 2.7 MB 8.97 MB
Counter intervals 5 bytes 9 bytes 163 bytes

Table 3.1: Average storage per file for two counter representation methods.

Counter representation. The counter intervals for file F are represented by two arrays:
IntStartF keeps the block indices where new counter intervals start and CtrValF keeps the
values of the write counter for each interval. The trusted storage TSF for file F includes
either the arrays IntStartF and CtrValF if they fit into TSF or their hashes, otherwise. In
the limit, to reduce the bandwidth for integrity, we could build a Merkle tree to authenticate
each of these arrays and store the root of these trees in TSF , but we have not seen in the
Harvard traces files that would warrant this.

We omit here the implementation details for the UpdateCtr, GetCtr and DelCtr oper-
ations on counters (which are immediate), but describe the algorithms for authenticating
counters with a constant amount of trusted storage. Assume that the length of available
trusted storage for counters for file F is Lctr. For an array A, A.size is the number of bytes
needed for all the elements in the array and h(A) is the hash of concatenated elements
in the array. We also store in trusted storage a flag ctr-untr whose value is true if the
counter arrays IntStartF and CtrValF are stored in the untrusted storage space of F and
false otherwise. The AuthCtr and CheckCtr algorithms are described in Figure 3.5.

If the counter intervals for a file get too dispersed, then the size of the arrays IntStartF
and CtrValF might increase significantly. To keep the untrusted storage for integrity low,
we could periodically change the encryption key for the file, re-encrypt all blocks in the
file, and reset the block write counters to 0.
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F.AuthCtr(): F.CheckCtr():
if IntStartF .size + CtrValF .size > Lctr if ctr-untr = true

store h1 = h(IntStartF ) and h2 = h(CtrValF ) in TSF get IntStartF and CtrValF from USF

store IntStartF and CtrValF in USF get h1 and h2 from TSF

ctr-untr = true if h1 = h(IntStartF ) and h2 = h(CtrValF )
else return true

store IntStartF and CtrValF in TSF else
ctr-untr = false return false

else
get IntStartF and CtrValF from TSF

return true

Figure 3.5: The AuthCtr and CheckCtr algorithms for counter intervals.

3.4 Integrity Constructions for Encrypted Storage

In this section, we first present a Merkle tree integrity construction MT-FINT for en-
crypted storage, used in file systems such as Cepheus (Fu [1999]), FARSITE (Adya et al.
[2002]), and Plutus (Kallahalla et al. [2003]). Second, we extend the RAND-BINT and
COMP-BINT constructions for integrity in block storage systems from Section 2.6 to al-
gorithms RAND-FINT and COMP-FINT for integrity protection in cryptographic file sys-
tems. The challenge in constructing integrity algorithms for cryptographic file systems is
to reduce the amount of trusted storage needed per file to a constant value.

In the MT-FINT and COMP-FINT algorithms, file blocks are encrypted with a length-
preserving stateful encryption scheme. We extend the notion defined in Section 2.4 so
that the encryption and decryption algorithms take as input parameters a file and a block
index instead of a block identifier. The two implementations of a length-preserving state-
ful encryption scheme given in Section 2.4 can be easily extended to this case. In the
RAND-FINT algorithm, a tweakable enciphering scheme as defined in Section 2.1.1 is
used for encrypting file blocks.

3.4.1 The Merkle Tree Construction MT-FINT

In this construction, file blocks can be encrypted with any length-preserving stateful en-
cryption scheme and they are authenticated with a Merkle tree. More precisely, if F =
B1 . . . Bn is a file with n blocks, then the untrusted storage for integrity for file F is
USF = MT(h(1||B1), . . . , h(n||Bn)) (for h an everywhere second preimage resistant hash
function), and the trusted storage TSF is the root of this tree.
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The algorithm Init runs the key generation algorithm Genlen of the length-preserving
stateful encryption scheme for file F . The algorithms Update, Check, Append and Delete
of the MT-FINT construction are given in Figure 3.6. We denote here by F.enc key the
encryption key for file F (generated in the Init algorithm) and F.blocks the number of
blocks in file F .

- In the Update(i, B) algorithm for file F , the i-th leaf in MTF is updated with the
hash of the new block content using the algorithm UpdateTree and the encryption
of B is stored in the i-th block of F .

- To append a new block B to file F with algorithm Append(B), a new leaf is ap-
pended to MTF with the algorithm AppendTree, and then an encryption of B is
stored in the (n + 1)-th block of F (for n the number of blocks of F ).

- In the Check(i, C) algorithm for file F , block C is decrypted, and its integrity is
checked using the CheckTree algorithm.

- To delete the last block from a file F with algorithm Delete, the last leaf in MTF is
deleted with the algorithm DeleteTree.

F.Update(i, B): F.Check(i, C):
k ← F.enc key k ← F.enc key
MTF .UpdateTree(TSF , i, h(i||B)) Bi ← Dlen

k (F, i, C)
C ← Elen

k (F, i, B) if MTF .CheckTree(TSF , i, h(i||Bi)) = true
F.WriteBlock(i, C) return Bi

else
return ⊥

F.Append(B): F.Delete():
k ← F.enc key n ← F.blocks
n ← F.blocks MTF .DeleteTree(TSF )
MTF .AppendTree(TSF , h(n + 1||B)) delete Bn from file F
C ← Elen

k (F, n + 1, B)
F.WriteBlock(n + 1, C)

Figure 3.6: The Update, Check, Append and Delete algorithms for the MT-FINT construc-
tion.

The MT-FINT construction detects data modification and block swapping attacks, as
file block contents are authenticated by the root of the Merkle tree for each file. The
MT-FINT construction is also secure against replay attacks, as the tree contains the hashes
of the latest version of the data blocks and the root of the Merkle tree is authenticated in
trusted storage.
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3.4.2 The Randomness Test Construction RAND-FINT

Whereas in the Merkle tree construction any length-preserving stateful encryption algo-
rithm can be used to individually encrypt blocks in a file, the randomness test construction
uses the observation from Chapter 2 that the integrity of the blocks that are efficiently dis-
tinguishable from random blocks can be checked with a randomness test if a tweakable
cipher is used to encrypt them. As such, integrity information is stored only for random-
looking blocks.

In this construction, a Merkle tree per file that authenticates the contents of the random-
looking blocks is built. The untrusted storage for integrity USF for file F = B1 . . . Bn

includes this tree RTreeF = MT(h(i||Bi) : i ∈ {1, . . . , n} and IsRand(Bi) = 1), and,
in addition, the set of block indices that are random-looking RArrF = {i ∈ {1, . . . , n} :
IsRand(Bi) = 1}, ordered the same as the leaves in the previous tree RTreeF . The root of
the tree RTreeF is kept in the trusted storage TSF for file F .

To prevent against replay attacks, clients need to distinguish different writes of the
same block in a file. A simple idea (similar to that used in construction RAND-BINT for
encrypted block-level storage in Section 2.6.2) is to use a counter per file block that denotes
the number of writes of that block, and make the counter part of the encryption tweak.
The block write counters need to be authenticated in the trusted storage space for the file
F to prevent clients from accepting valid older versions of a block that are considered not
random by the randomness test (see Section 3.3 for a description of the algorithms AuthCtr
and CheckCtr used to authenticate and check the counters, respectively). To ensure that
file blocks are encrypted with different tweaks, we define the tweak for a file block to be
a function of the file, the block index and the block write counter. We denote by F.Tweak
the tweak-generating function for file F that takes as input a block index and a block
counter and outputs the tweak for that file block. The properties of tweakable ciphers
imply that if a block is decrypted with a different counter, then it will look random with
high probability.

The algorithm Init selects a key at random from the key space of the tweakable en-
cryption scheme E. The Update, Check, Append and Delete algorithms of RAND-FINT
are detailed in Figure 3.7. For the array RArrF , RArrF .items denotes the number of
items in the array, RArrF .last denotes the last element in the array, and the function
RArrF .SearchIndex(i) gives the position in the array where index i is stored (if it exists
in the array).

- In the Update(i, B) algorithm for file F , the write counter for block i is incremented
and the counter authentication information from TSF is updated with the algorithm
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F.Update(i, B) : F.Check(i, C):
k ← F.enc key k ← F.enc key
F.UpdateCtr(i) if F.CheckCtr() = false
F.AuthCtr() return ⊥
if IsRand(B) = 0 Bi ← D

F.Tweak(i,F.GetCtr(i))
k (C)

if i ∈ RArrF if IsRand(Bi) = 0
RTreeF .DelIndexTree(TSF ,RArrF , i) return Bi

else else
if i ∈ RArrF if i ∈ RArrF
j ← RArrF .SearchIndex(i) j ← RArrF .SearchIndex(i)
RTreeF .UpdateTree(TSF , j, h(i||B)) if RTreeF .CheckTree(TSF , j, h(i||Bi)) = true

else return Bi

RTreeF .AppendTree(TSF , h(i||B)) else
append i at end of RArrF return ⊥

F.WriteBlock(i,EF.Tweak(i,F.GetCtr(i))
k (B)) else

return ⊥
F.Append(B): F.Delete():
k ← F.enc key n ← F.blocks
n ← F.blocks F.DelCtr(n)
F.UpdateCtr(n + 1) F.AuthCtr()
F.AuthCtr() if n ∈ RArrF
if IsRand(B) = 1 RTreeF .DelIndexTree(TSF ,RArrF , n)
RTreeF .AppendTree(TSF , h(n + 1||B)) delete Bn from file F
append n + 1 at end of RArrF

F.WriteBlock(n + 1,E
F.Tweak(n+1,F.GetCtr(n+1))
k (B))

Figure 3.7: The Update, Check, Append and Delete algorithms for the RAND-FINT con-
struction.

AuthCtr. Then, the randomness test IsRand is applied to block content B. If B is
not random looking, then the leaf corresponding to block i (if it exists) has to be
removed from RTreeF . This is done with the algorithm DelIndexTree, described in
Figure 3.8. On the other hand, if B is random-looking, then the leaf corresponding
to block i has to be either updated with the new hash (if it exists in the tree) or
appended in RTreeF . Finally, the tweakable encryption of B is stored in the i-th
block of F .

- When a new block B is appended to file F with algorithm Append(B), the write
counter for the new block is initialized and the authentication information for coun-
ters is updated. Furthermore, the hash of the block index concatenated with the
block content is added to RTreeF only if the block is random-looking. In addition,
the index n + 1 (where n is the current number of blocks in F ) is added to RArrF
in this case. Finally, the tweakable encryption of B is stored in the (n + 1)-th block

49



T.DelIndexTree(TSF ,RArrF , i):
j ← RArrF .SearchIndex(i)
l ← RArrF .last
if j 6= l
T.UpdateTree(TSF , j, h(l||Bl))
RArrF [j] ← l
RArrF .items ← RArrF .items− 1

T.DeleteTree(TSF )

Figure 3.8: The DelIndexTree algorithm for a tree T deletes the hash of block i from T
and moves the last leaf in its position, if necessary, to not allow holes in the tree.

of F .

- In the Check(i, C) algorithm for file F , the authentication information from TSF

for the block counters is checked first. Then block C is decrypted, and checked
for integrity. If the content of the i-th block is not random-looking, then by the
properties of tweakable ciphers we can infer that the block is valid. Otherwise, the
integrity of the i-th block is checked using the tree RTreeF . If i is not a block index
in the tree, then the integrity of block i is unconfirmed and the block is rejected.

- To delete the last block in file F with algorithm Delete, the write counter for the
last block is deleted and the authentication information for the counters is updated.
If the n-th block is authenticated through RTreeF , then its hash has to be removed
from the tree by calling the algorithm DelIndexTree, described in Figure 3.8.

It is not necessary to authenticate in trusted storage the array RArrF of indices of the
random-looking blocks in a file. The reason is that the root of RTreeF is authenticated in
trusted storage and this implies that an adversary cannot modify the order of the leaves in
RTreeF without being detected in the AppendTree, UpdateTree or CheckTree algorithms.

The construction RAND-FINT protects against unauthorized modification of data writ-
ten to disk and block swapping attacks by authenticating the root of RTreeF in the trusted
storage space for each file. By using write counters in the encryption of block contents
and authenticating the values of the counters in trusted storage, this construction provides
defense against replay attacks and provides all the security properties of the MT-FINT
construction.
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3.4.3 The Compress-and-Hash Construction COMP-FINT

This construction is an extension of the integrity construction COMP-BINT for block stor-
age systems and uses the ideas from integrity algorithm RAND-FINT to reduce the amount
of trusted storage per file to a constant value. For the blocks that can be compressed
enough, a message-authentication is stored inside the block. A Merkle tree RTreeF is built
over the hashes of the blocks in file F that cannot be compressed enough, and the root
of the tree is kept in trusted storage. To prevent against replay attacks, block indices and
contents are hashed together with the block write counter and the write counters for a file
F need to be authenticated in the trusted storage space TSF (see Section 3.3 for a descrip-
tion of the algorithms AuthCtr and CheckCtr used to authenticate and check the counters,
respectively).

The algorithm Init runs the key generation algorithm Genlen of the length-preserving
stateful encryption scheme for file F to generate key k1 and selects at random a key k2

from the key space KHMAC of HMAC. It outputs the tuple <k1, k2>. The Update, Append,
Check and Delete algorithms of the COMP-FINT construction are detailed in Figure 3.9.

- In the Update(i, B) algorithm for file F , the write counter for block i is incremented
and the counter authentication information from TSF is updated with the algorithm
AuthCtr. Then block content B is compressed to Bc. If the length of Bc (denoted
|Bc|) is at most the threshold Z defined in Section 2.6.3, then there is room to store
the message-authentication code of the block content inside the block. In this case,
the hash of the previous block content stored at the same address is deleted from the
Merkle tree RTreeF , if necessary. The compressed block is padded and encrypted,
and then stored with its message-authentication code in the i-th block of F . Oth-
erwise, if the block cannot be compressed enough, then its hash has to be inserted
into the Merkle tree RTreeF . The block content B is then encrypted with a length-
preserving stateful encryption scheme using the key for the file and is stored in the
i-th block of F .

- To append a new block B to file F with n blocks using the Append(B) algorithm, the
write counter for the new block is initialized to 1 and the authentication information
for counters stored in TSF is updated. Block B is then compressed. If it has an
adequate compression level, then the compressed block is padded and encrypted,
and a message-authentication code is concatenated at the end of the new block.
Otherwise, a new hash is appended to the Merkle tree RTreeF and an encryption of
B is stored in the (n + 1)-th block of F .

- In the Check(i, C) algorithm for file F , the authentication information from TSF
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F.Update(i, B) : F.Check(i, C):
<k1, k2> ← F.enc key <k1, k2> ← F.enc key
F.UpdateCtr(i) if F.CheckCtr() = false
F.AuthCtr() return ⊥
Bc ← compress(B) if i ∈ RArrF
if |Bc| ≤ Z Bi ← Dlen

k1
(F, i, C)

if i ∈ RArrF j ← RArrF .SearchIndex(i)
RTreeF .DelIndexTree(TSF , RArrF , i) if RTreeF .CheckTree(TSF , j,

C ← Elen
k1

(F, i, pad(Bc)) h(i||F.GetCtr(i)||Bi)) = true
F.WriteBlock(i, C||HMACk2(i||F.GetCtr(i)||B)) return Bi

else else
if i ∈ RArrF return ⊥
j ← RArrF .SearchIndex(i) else
RTreeF .UpdateTree(TSF , j, h(i||F.GetCtr(i)||B)) parse C as C ′||hval

else Bc
i ← unpad(Dlen

k1
(F, i, C ′))

RTreeF .AppendTree(TSF , h(i||F.GetCtr(i)||B)) Bi ← decompress(Bc
i )

append i at end of RArrF if hval = HMACk2(i||F.GetCtr(i)||Bi)
C ← Elen

k1
(F, i, B) return Bi

F.WriteBlock(i, C) else
return ⊥

F.Append(B) : F.Delete():
<k1, k2> ← F.enc key n ← F.blocks
n ← F.blocks F.DelCtr(n)
F.UpdateCtr(n + 1) F.AuthCtr()
F.AuthCtr() if n ∈ RArrF
Bc ← compress(B) RTreeF .DelIndexTree(TSF ,RArrF , n)
if |Bc| ≤ Z delete Bn from file F
C ← Elen

k1
(F, n + 1, pad(Bc))

F.WriteBlock(i, C||HMACk2(n + 1||F.GetCtr(n + 1)||B))
else
RTreeF .AppendTree(TSF , h(n + 1||F.GetCtr(n + 1)||B))
append n + 1 at end of RArrF
C ← Elen

k1
(F, n + 1, B)

F.WriteBlock(n + 1, C)

Figure 3.9: The Update, Check, Append and Delete algorithms for the COMP-FINT con-
struction.

for the block counters is checked first. There are two cases to consider. First, if
the hash of the block content stored at the i-th block of F is authenticated through
the Merkle tree RTreeF , then the block is decrypted and algorithm CheckTree is
called. Otherwise, the message-authentication code of the block content is stored
at the end of the block and we can thus parse the i-th block of F as C ′||hval. C ′

has to be decrypted, unpadded and decompressed, in order to obtain the original
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block content Bi. The hash value hval stored in the block is checked to match the
hash of the block index i concatenated with the write counter for block i and block
content Bi.

- To delete the last block from file F with n blocks, algorithm Delete is used. The
write counter for the block is deleted and the authentication information for counters
is updated. If the n-th block is authenticated through RTreeF , then its hash has to be
removed from the tree by calling the algorithm DelIndexTree.

The construction COMP-FINT prevents against replay attacks by hashing write coun-
ters for file blocks together with block indices and block contents and authenticating the
write counters in trusted storage. It meets all the security properties of RAND-FINT and
MT-FINT.

3.5 Implementation

Our integrity algorithms are very general and they can be integrated into any cryptographic
file system in either the kernel or userspace. For the purpose of evaluating and comparing
their performance, we implemented them in EncFS (Gough [2003]), an open-source user-
level file system that transparently encrypts file blocks. EncFS uses the FUSE (FUSE)
library to provide the file system interface. FUSE provides a simple library API for imple-
menting file systems and it has been integrated into recent versions of the Linux kernel.

In EncFS, files are divided into fixed-size blocks and each block is encrypted indi-
vidually. Several ciphers such as AES and Blowfish in CBC mode are available for
block encryption. We implemented in EncFS the three constructions that provide in-
tegrity: MT-FINT, RAND-FINT and COMP-FINT. While any length-preseving encryp-
tion scheme can be used in the MT-FINT and COMP-FINT constructions, RAND-FINT
is constrained to use a tweakable cipher for encrypting file blocks. We choose to en-
crypt file blocks in MT-FINT and COMP-FINT with the length-preserving stateful en-
cryption derived from the AES cipher in CBC mode (as shown in Section 2.4), and use
the CMC tweakable cipher (Halevi and Rogaway [2003]) as the encryption method in
RAND-FINT. For compressing and decompressing blocks in COMP-FINT we used the
zlib library (Zlib).

Our prototype architecture is depicted in Figure 3.10. We modified the user space
of EncFS to include the CMC cipher for block encryption and the new integrity algo-
rithms. The server uses the underlying file system (i.e., reiserfs) for the storage of the
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Figure 3.10: Prototype architecture.

encrypted files. The Merkle trees for integrity RTreeF and the index arrays of the random-
looking blocks RArrF are stored with the encrypted files in the untrusted storage space
on the server. For faster integrity checking (in particular to improve the running time of
the SearchIndex algorithm used in the Update and Check algorithms of the RAND-FINT
and COMP-FINT constructions), we also keep the array RArrF for each file, ordered by
indices, in untrusted storage. The roots of the trees RTreeF , and the arrays IntStartF and
CtrValF or their hashes (if they are too large) are stored in the trusted storage space. In our
current implementation, we use two extended attributes for each file F , one for the root
of RTreeF and the second for the arrays IntStartF and CtrValF , or their hashes (see the
counter authentication algorithm from Section 3.3).

By default, EncFS caches the last block content written or read from the disk. In our
implementation, we cached the last arrays RArrF , IntStartF and CtrValF used in a block
update or check operation. Since these arrays are typically small (a few hundred bytes),
they easily fit into memory. We also evaluate the effect of caching of Merkle trees in our
system in Section 3.6.1.

3.6 Performance Evaluation

In this section, we evaluate the performance of the new integrity constructions for en-
crypted storage RAND-FINT and COMP-FINT compared to that of MT-FINT. We ran our
experiments on a 2.8 GHz Intel D processor machine with 1GB of RAM, running SuSE
Linux 9.3 with kernel version 2.6.11 and file system reiserfs. The hard disk used was an
80GB SATA 7200 RPM Maxtor. To obtain accurate results in our experiments, we use a
cold cache at each run.
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The main challenge we faced in evaluating the proposed constructions was to come
up with representative file system workloads. While the performance of the Merkle tree
construction is predictable independently of the workload, the performance of the new
integrity algorithms is highly dependent on the file contents accessed, in particular on the
randomness of block contents. To our knowledge, there are no public traces that contain
file access patterns, as well as the contents of the file blocks read and written. Due to the
privacy implications of releasing actual users’ data, we expect it to be nearly impossible to
get such traces from a widely used system. However, we have access to three public NFS
Harvard traces (Ellard et al. [2003]) that contain NFS traffic from several of Harvard’s
campus servers. The traces were collected at the level of individual NFS operations and
for each read and write operation they contain information about the file identifier, the
accessed offset in the file and the size of the request, but not the actual block contents.

To evaluate the integrity algorithms proposed in this paper, we perform two sets of
experiments. In the first one, we strive to demonstrate how the performance of the new
constructions varies for different file contents. For that, we use representative files from a
Linux distribution installed on one of our desktop machines, together with other files from
the user’s home directory, divided into several file types. We identify five file types of
interest: text, object, executables, images, and compressed files, and divide the collected
files according to these five classes. All files of a particular type are first encrypted and the
integrity information for them is built; then they are decrypted and checked for integrity.
We report the performance results for the files with the majority of blocks not random-
looking (i.e., text, executable and object) and for those with mostly random-looking blocks
(i.e., image and compressed). In this experiment, all files are written and read sequentially,
and as such the access pattern is not a realistic one.

In the second set of experiments, we evaluate the effect of more realistic access patterns
on the performance of the integrity schemes, using the NFS Harvard traces. As the Harvard
traces do not contain information about actual file block contents written to the disks, we
generate synthetic block contents for each block write request. We define two types of
block contents: low-entropy and high-entropy, and perform experiments assuming that
all block contents are either low or high entropy. These extreme workloads represent the
“best” and “worst”-case for the new algorithms, respectively. We also consider a “middle”-
case, in which a block is random-looking with a 50% probability and plot the performance
results of the new schemes relative to the Merkle tree integrity algorithm for the best,
middle and worst cases.

In our performance evaluation, it would be beneficial to know what is the percentage
of random-looking blocks in practical filesystem workloads. To determine statistics on file
contents, we perform a user study on several machines from our department running Linux
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and report the results in Section 3.6.3. For each user machine, we measure the percent of
random-looking blocks and the percent of blocks that cannot be compressed enough from
users’ home directories. The results show that on average, 28% percent of file blocks are
random-looking and 32% percent of file blocks cannot be compressed enough to fit a MAC
inside.

Finally, we also evaluate how the amount of trusted storage per file affects the storage
of the counter intervals in the three NFS Harvard traces. As discussed in Section 3.3, the
counter intervals are either stored in the trusted storage space of a file if enough space is
available or they are stored in the untrusted storage space of the file and their hashes are
stored in trusted storage. We show that several hundred bytes of trusted storage per file
is enough to keep the counter intervals for a large majority of files from the NFS Harvard
traces.

3.6.1 The Impact of File Block Contents on Integrity Performance

File sets. We consider a snapshot of the file system from one of our desktop machines.
We gathered files that belong to five classes of interest: (1) text files are files with exten-
sions .txt, .tex, .c, .h, .cpp, .java, .ps, .pdf; (2) object files are system library files from
the directory /usr/local/lib; (3) executable files are system executable files from direc-
tory /usr/local/bin; (4) image files are JPEG files and (5) compressed files are gzipped tar
archives. Several characteristics of each set, including the total size, the number of files in
each set, the minimum, average and maximum file sizes and the fraction of file blocks that
are considered random-looking by the entropy test are given in Table 3.2.

Total size No files Min file size Max file size Avg file size Fraction of random-looking blocks

Text 245 MB 808 27 bytes 34.94 MB 307.11 KB 0.0351
Objects 217 MB 28 15 bytes 92.66 MB 7.71 MB 0.0001

Executables 341 MB 3029 24 bytes 13.21 MB 112.84 KB 0.0009
Image 189 MB 641 17 bytes 2.24 MB 198.4 KB 0.502

Compressed 249 MB 2 80.44 MB 167.65 MB 124.05 MB 0.7812

Table 3.2: File set characteristics.

Experiments. We consider three cryptographic file systems: (1) MT-FINT with CBC-
AES for encrypting file blocks; (2) RAND-FINT with CMC encryption; (3) COMP-FINT
with CBC-AES encryption. For each cryptographic file system, we first write the files
from each set; this has the effect of automatically encrypting the files, and running the
Update algorithm of the integrity method for each file block. Second, we read all files
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from each set; this has the effect of automatically decrypting the files, and running the
Check algorithm of the integrity method for each file block. We use file blocks of size
4KB in the experiments.
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Figure 3.11: Micro-benchmarks for text and compressed files.

Micro-benchmarks. We first present a micro-benchmark evaluation for the text and
compressed file sets in Figure 3.11. We plot the total time to write and read the set of text
and compressed files, respectively. The write time for a set of files includes the time to
encrypt all the files in the set, create new files, write the encrypted contents in the new files
and build the integrity information for each file block with algorithm Update. The read
time for a set of files includes the time to retrieve the encrypted files from disk, decrypt
each file from the set and check the integrity of each file block with algorithm Check. We
separate the total time incurred by the write and read experiments into the following com-
ponents: encryption/decryption time (either AES or CMC); SHA1 hashing time; random-
ness check time (either the entropy test for CMC-Entropy or compression/decompression
time for AES-Compression); Merkle tree operations (e.g., given a leaf index, find its index

57



in inorder traversal or given an inorder index of a node in the tree, find the inorder index
of its sibling and parent); the time to update and check the root of the tree (the root of the
Merkle tree is stored as an extended attribute for the file) and disk waiting time.

The results show that the cost of CMC encryption and decryption is about 2.5 times
higher than that of AES encryption and decryption in CBC mode. Decompression is be-
tween 4 and 6 times faster than compression and this accounts for the good read perfor-
mance of AES-Compression.

A substantial amount of the AES-Merkle overhead is due to disk waiting time (for
instance, 39% at read for text files) and the time to update and check the root of the
Merkle tree (for instance, 30% at write for compressed files). In contrast, due to smaller
sizes of the Merkle trees in the CMC-Entropy and AES-Compression file systems, the
disk waiting time and the time to update and check the root of the tree for text files are
smaller. The results suggests that caching of the hash values stored in Merkle trees in the
file system might reduce the disk waiting time and the time to update the root of the tree
and improve the performance of all three integrity constructions, and specifically that of
the AES-Merkle algorithm. We present our results on caching next.

Caching Merkle trees. We implemented a global cache that stores the latest hashes
read from Merkle trees used to either update or check the integrity of file blocks. As an
optimization, when we verify the integrity of a file block, we compute all the hashes on
the path from the node up to the root of the tree until we reach a node that is already in the
cache and whose integrity has been validated. We store in the cache only nodes that have
been verified and that are authentic. When a node in the cache is written, all its ancestors
on the path from the node to the root, including the node itself are evicted from the cache.

We plot the total file write and read time in seconds for the three cryptographic file
systems as a function of different cache sizes. We also plot the average integrity bandwidth
per block in a log-log scale. Finally, we plot the cumulative size of the untrusted storage
USF for all files from each set. We show the combined graphs for low-entropy files (text,
object and executable files) in Figure 3.12 and for high-entropy files (compressed and
image files) in Figure 3.13. The results represent averages over three independent runs of
the same experiment.

The results show that AES-Merkle benefits mostly at read by implementing a cache of
size 1KB, while the write time is not affected greatly by using a cache. The improvements
for AES-Merkle using a cache of 1KB are as much as 25.22% for low-entropy files and
20.34% for high-entropy files in the read experiment. In the following, we compare the
performance of the three constructions for the case in which a 1KB cache is used.
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Figure 3.12: Evaluation for low-entropy files (text, object and executable files).

Results for low-entropy files. For sets of files with a low percent of random-looking
blocks (text, object and executable files), CMC-Entropy outperforms AES-Merkle with
respect to all the metrics considered. The performance of CMC-Entropy compared to
that of AES-Merkle is improved by 31.77% for writes and 20.63% for reads. The perfor-
mance of the AES-Compression file system is very different in the write and read exper-
iments due to the cost difference of compression and decompression. The write time of
AES-Compression is within 4% of the write time of AES-Merkle and in the read exper-
iment AES-Compression outperforms AES-Merkle by 25.27%. The integrity bandwidth
of CMC-Entropy and AES-Compression is 92.93 and 58.25 times, respectively, lower
than that of AES-Merkle. The untrusted storage for integrity for CMC-Entropy and AES-
Compression is reduced 2.3 and 1.17 times, respectively, compared to AES-Merkle.

Results for high-entropy files. For sets of files with a high percent of random-looking
blocks (image and compressed files), CMC-Entropy adds a maximum performance over-
head of 4.43% for writes and 18.15% for reads compared to AES-Merkle for a 1KB
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Figure 3.13: Evaluation for high-entropy files (image and compressed files).

cache. AES-Compression adds a write performance overhead of 38.39% compared to
AES-Merkle, and performs within 1% of AES-Merkle in the read experiment. The av-
erage integrity bandwidth needed by CMC-Entropy and AES-Compression is lower by
30.15% and 10.22%, respectively, than that used by AES-Merkle. The untrusted storage
for integrity used by CMC-Entropy is improved by 9.52% compared to AES-Merkle and
that of AES-Compression is within 1% of the storage used by AES-Merkle. The reason
that the average integrity bandwidth and untrusted storage for integrity are still reduced in
CMC-Entropy compared to AES-Merkle is that in the set of high-entropy files considered
only about 70% of the blocks have high entropy. We would expect that for files with 100%
high-entropy blocks, these two metrics will exhibit a small overhead in both CMC-Entropy
and AES-Compression compared to AES-Merkle (this is actually confirmed in the exper-
iments from the next section). However, such workloads with 100% high entropy files are
very unlikely to occur in practice.
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Figure 3.14: Running time, average integrity bandwidth and storage for integrity of CMC-
Entropy and AES-Compression relative to AES-Merkle. Labels on the graphs represent
percentage of random-looking blocks.

3.6.2 The Impact of File Access Patterns on Integrity Performance

File traces. We considered a subset of the three NFS Harvard traces( Ellard et al. [2003])
(LAIR, DEASNA and HOME02), each collected during one day. We show several char-
acteristics of each trace, including the number of files and the total number of block write
and read operations, in Table 3.3. The block size in these traces is 4096 bytes and we have
implemented a 1KB cache for Merkle trees.

Number of files Number of writes Number of reads

LAIR 7017 66331 23281
DEASNA 890 64091 521
HOME02 183 89425 11815

Table 3.3: NFS Harvard trace characteristics.
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Experiments. We replayed each of the three traces with three types of synthetically-
generated block contents: all low-entropy, all high-entropy and 50% high-entropy. For
each experiment, we measured the total running time, the average integrity bandwidth
and the total untrusted storage for integrity for CMC-Entropy and AES-Compression rel-
ative to AES-Merkle and plot the results in Figure 3.14. We represent the performance of
AES-Merkle as the horizontal axis in these graphs and the performance of CMC-Entropy
and AES-Compression relative to AES-Merkle. The points above the horizontal axis are
overheads compared to AES-Merkle, and the points below the horizontal axis represent
improvements relative to AES-Merkle. The labels on the graphs denote the percent of
random-looking blocks synthetically generated.

Results. The performance improvements of CMC-Entropy and AES-Compression com-
pared to AES-Merkle are as high as 56.21% and 56.85%, respectively, for the HOME02
trace for low-entropy blocks. On the other hand, the performance overhead for high-
entropy blocks are at most 54.14% for CMC-Entropy (in the LAIR trace) and 61.48%
for AES-Compression (in the DEASNA trace). CMC-Entropy performs better than AES-
Compression when the ratio of read to write operations is small, as is the case for the
DEASNA and HOME02 trace. As this ratio increases, AES-Compression outperforms
CMC-Entropy.

For low-entropy files, both the average integrity bandwidth and the untrusted storage
for integrity for both CMC-Entropy and AES-Compression are greatly reduced compared
to AES-Merkle. For instance, in the DEASNA trace, AES-Merkle needs 215 bytes on
average to update or check the integrity of a block, whereas CMC-Entropy and AES-
Compression only require on average 0.4 bytes. The amount of additional untrusted stor-
age for integrity in the DEASNA trace is 2.56 MB for AES-Merkle and only 7 KB for
CMC-Entropy and AES-Compression. The maximum overhead added by both CMC-
Entropy and AES-Compression compared to AES-Merkle for high-entropy blocks is 30.76%
for the average integrity bandwidth (in the HOME02 trace) and 19.14% for the amount of
untrusted storage for integrity (in the DEASNA trace).

3.6.3 File Content Statistics

We perform a user study to collect some statistics on file contents on several machines. We
use eight machines from our department running Linux and we measure on each machine
the percent of random-looking blocks (for the 8-bit entropy test) and the percent of blocks
that cannot be compressed from users’ home directories. We use a block size of 4KB. The
results show that the the amount of random-looking blocks is between 8% and 36% of the
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total number of blocks, with an average of 28% for all the machines. On the other hand,
the amount of blocks that cannot be compressed is between 9% and 40%, with an average
of 32% on the eight machines.

In Table 3.4 we show for each machine the percent of random-looking blocks and
blocks that cannot be compressed enough to fit a MAC inside the block, as well as the
percent of blocks on each machine that belong to the five file classes we have defined in
Section 3.6.1.

Total number Random blocks Blocks that can Text Objects Executables Image Compressed
of blocks not be compressed

Machine 1 4840810 10.53% 22.03% 9.66% 4.3% 3.62% 2.14% 52.96%
Machine 2 5203769 21.71% 23.82% 36.19% 7.56% 4.34% .28% 11.05%
Machine 3 20489146 8.59% 9.04% .48% .13% 0 .05% 2.59%
Machine 4 1132932 21.61% 25.35% 6.69% 5.61% 6.77% 3.86% 4.12%
Machine 5 758939 21.6% 23.01% 23.48% 3.74% 5.35% 2.68% 3.41%
Machine 6 12314808 24.01% 26.13% 9.26% 5.8% 10.33% .08% 10.87%
Machine 7 7354332 32.57% 38.45% 4.11% .05% 3.14% .3% .21%
Machine 8 77706734 36.13% 40.32% 21.98% 0 0 0 0

Table 3.4: Statistics on file contents.

3.6.4 Amount of Trusted Storage

Finally, we perform some experiments to evaluate how the storage of the counter intervals,
in particular the arrays IntStartF and CtrValF , is affected by the amount of trusted storage
per file. For that, we plot the number of files for which we need to keep the arrays IntStartF
and CtrValF in the untrusted storage space, as a function of the amount of trusted storage
per file. The results for the three traces are in Figure 3.15. We conclude that a value of
200 bytes of constant storage per file (which we have used in our experiments) is enough
to keep the counter intervals for all the files in the LAIR and DEASNA traces, and about
88% percent of the files in the HOME02 trace.

3.7 Discussion

From the evaluation of the three constructions, it follows that none of the schemes is a
clear winner over the others with respect to all the three metrics considered. While the
performance of AES-Merkle is not dependent on workloads, the performance of both
CMC-Entropy and AES-Compression is greatly affected by file block contents and file
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Figure 3.15: Number of files for which the counter intervals are stored in the untrusted
storage space.

access patterns. We recommend that all three constructions be implemented in a cryp-
tographic file system. An application can choose the best scheme based on its typical
workload. For an application in which the large majority of files have high-entropy (e.g., a
file sharing application in which users transfer mostly audio and video files), the standard
AES-Merkle still remains the best option for integrity. On the other hand, for applications
in which typical files have low entropy, CMC-Entropy is the best choice for most ratios of
read to write operations, and AES-Compression is the best option for primarily read-only
workloads when minimizing read latency is a priority.

The new algorithms that we propose can be applied in other settings in which au-
thentication of data stored on untrusted storage is desired. One example is checking the
integrity of arbitrarily-large memory in a secure processor using only a constant amount of
trusted storage (Blum et al. [1994], Clarke et al. [2005]). In this setting, a trusted checker
maintains a constant amount of trusted storage and, possibly, a cache of data blocks most
recently read from the main memory. The goal is for the checker to verify the integrity of
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the untrusted memory using a small bandwidth overhead.

The algorithms described in this chapter can be only used in applications where the
data that needs to be authenticated is encrypted. However, the COMP-FINT integrity
algorithm can be easily modified to fit into a setting in which data is only authenticated
and not encrypted, and can thus replace Merkle trees in such applications. On the other
hand, the RAND-FINT integrity algorithm is only suitable in a setting in which data is
encrypted with a tweakable cipher, as the integrity guarantees of this algorithm are based
on the security properties of such ciphers.

3.8 Related Work

Integrity in storage systems. Integrity in storage systems can be provided at different
levels, such as the device driver level, the file system or virtual file system layers. Common
cryptographic primitives used for integrity are collision-resistant hash functions, message-
authentication codes and digital signatures.

Cryptographic file systems. Cryptographic file systems extend traditional file sys-
tems with support for security in untrusted storage environments. Most cryptographic file
systems provide to their clients mechanisms for encrypting data and checking data in-
tegrity. The cryptographic operations are performed on the client side, as both the storage
devices and the network are untrusted.

A common integrity method used in systems such as TCFS (Cattaneo et al. [2001])
and SNAD (Miller et al. [2002]) is to store a hash or message-authentication code for each
file block for authenticity, but this results in a lot of additional storage for integrity. In an
environment with all the storage servers untrusted, the use of public-key cryptography is
necessary for integrity. In systems such as SFS (Mazieres et al. [1999]), SFSRO (Fu et al.
[2002]), Cepheus (Fu [1999]), FARSITE (Adya et al. [2002]), Plutus (Kallahalla et al.
[2003]), and SUNDR (Li et al. [2004]), a Merkle tree per file is built and the root of the
tree is digitally signed for authenticity. In SiRiUS (Goh et al. [2003]) each file is digitally
signed for authenticity, but in this approach the integrity bandwidth to update or check a
block in a file is linear in the file size.

Pletka and Cachin (Pletka and Cachin [2006]) describes a security architecture for the
distributed IBM StorageTank file system (also denoted the SAN.FS file system) (Menon
et al. [2003]). SAN.FS achieves its scalability to many clients by separating the meta-
data operations from the data path. As such, the meta-data is stored on trusted meta-data
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servers, while the data is stored on the storage devices from a SAN. SAN.FS uses AES in
CBC mode for confidentiality and Merkle trees (with degree 16) for integrity protection of
files. The roots of the Merkle trees are stored together with the file system meta-data on the
meta-data servers. Thus, the security architecture for the SAN.FS file system implements
the MT-FINT scheme, with the difference that Merkle trees of degree 16 are used instead
of binary Merkle trees.

Stackable file systems (Heidemann and Popek [1994]) are a means of adding new func-
tionality to existing file systems in a portable way. They intercept calls from the virtual
file system (VFS), perform some special operations (e.g., encryption, integrity checking)
and finally, redirect them to lower level file systems. NCryptFS (Wright et al. [2003b])
and CryptFS (Zadok et al. [1998]) are stackable file systems that only guarantee confiden-
tiality. They have been extended by I3FS (Sivathanu et al. [2004]) and eCryptFS (Halcrow
[2005]), respectively, to provide integrity by computing and storing page level hashes.

For journaling file systems, an elegant solution for integrity called hash logging is
provided by PFS (Stein et al. [2001]). The hashes of file blocks together with the file
system metadata are stored in the file system log, a protected memory area. However, in
this solution the amount of storage for integrity for a file is linear in the number of blocks
in the file.

User-level integrity. Tripwire (Kim and Spafford [1994]) is a user-level tool that
computes a hash per file and stores it in trusted memory. While this approach achieves con-
stant trusted storage for integrity per file, the integrity bandwidth is linear in the number of
blocks in the file. Other tools for remote monitoring of file integrity are Samhain (Samhain)
and Osiris (Osiris).

Integrity of data on the network. There exists several storage systems in which
data is stored in clear on the storage disks. The confidentiality and integrity of data are
protected only on the untrusted network, using network transport protocols such as IPSEC.
In the NASD (Gibson et al. [1998], Gobioff et al. [1997]) object storage architecture,
intelligent storage disks are directly connected to the network and security is integrated
at the device driver level. To lower the bandwidth offered by the storage disks, NASD
uses a new integrity scheme based on message-authentication codes in which the integrity
information is precomputed and data integrity can be verified incrementally (Gobioff et al.
[1998]). Other object-based storage systems in which security is provided at the device
driver level are the ObjectStore (Azagury et al. [2003, 2002]) prototype from IBM Haifa
and Snapdragon (Aguilera et al. [2003]) from HP.
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Surveys. Riedel et al. (Riedel et al. [2002]) provides a framework for extensively
evaluating the security of storage systems. Wright et al. (Wright et al. [2003a]) evaluates
the performance of five cryptographic file systems, focusing on the overhead of encryption.
Two other recent surveys about securing storage systems are by Sivathanu et al. (Sivathanu
et al. [2004]) and Kher and Kimand (Kher and Kim [2005]).

Memory integrity checking. Another area related to our work is that of checking the
integrity of arbitrarily large untrusted memory using only a small, constant-size trusted
memory. A first solution to this problem (Blum et al. [1994]) is to check the integrity of
each memory operation using a Merkle tree. This results in a logarithmic bandwidth over-
head in the total number of memory blocks. Recent solutions try to reduce the logarithmic
bandwidth to almost a constant value. The main idea by Clarke et al. (Clarke et al. [2005])
is to verify the integrity of the memory only when a critical operation is encountered. The
integrity of sequences of operations between critical operations is checked by aggregating
these operations in a log using incremental hash functions (Clarke et al. [2003]). In con-
trast, in our model we need to be able to check the integrity of each file block read from
the storage servers.
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Chapter 4

Lazy Revocation in Cryptographic File
Systems

In this chapter, we consider the problem of efficient key management and user revocation
in cryptographic file systems that allow shared access to files. We consider a model in
which access control is done at the level of individual files. Each file is divided into fixed-
size file blocks encrypted individually with the encryption key for the file. A performance-
efficient solution to user revocation in such systems is lazy revocation, a method that de-
lays the re-encryption of a file block until the next write to that block. In contrast, in
active revocation, all blocks in a file are immediately re-encrypted at the moment of re-
vocation, but the amount of work caused by a single revocation might be prohibitive for
large files. In systems using lazy revocation, all blocks in a file are initially encrypted with
the same file key, but after several user revocations different blocks might be written with
different versions of the file key. The encryption keys for a file are generated, stored and
distributed by a trusted entity called center (e.g., the owner of the file). The focus of this
chapter is designing efficient, provable secure key management schemes for lazy revoca-
tion that require a minimum amount of trusted storage. This chapter is based on joint work
with Michael Backes and Christian Cachin from IBM Zurich Research Lab (Backes et al.
[2005a, 2006, 2005b]).

After introducing some preliminary material in Section 4.1, we formalize in Sec-
tion 4.2 the notion of key-updating schemes for lazy revocation, an abstraction to manage
cryptographic keys in file systems with lazy revocation, and give a security definition for
such schemes. We give two composition methods that combine two secure key-updating
schemes into a new secure scheme that permits a larger number of user revocations in
Section 4.3. In Section 4.4, we prove the security of two slightly modified existing con-

69



structions and propose a novel binary tree construction that is also provably secure in our
model. We analyze the computational and communication complexity of the three con-
structions in Section 4.5 and describe our performance evaluation of the constructions in
Section 4.6. We provide in Section 4.7 a comprehensive formalization of the cryptographic
primitives used in a file system with lazy revocation, in particular symmetric encryption
schemes, message authentication codes and signature schemes. Finally, we describe the
related literature in Section 4.8.

4.1 Preliminaries

4.1.1 Pseudorandom Generators

A pseudorandom generator is a function G : {0, 1}s → {0, 1}b+s that takes as input a s-bit
seed and outputs a string of length b+s bits that is computationally indistinguishable from
a random string of the same length. A formal definition is below.

Definition 8 (Pseudorandom Generators) Let G be a function as above and D a distin-
guishing algorithm that participates in the experiments from Figure 4.1. We define the
prg-advantage of D for G as:

AdvprgG,D = |Pr[Expprg-1G,D = 1]− Pr[Expprg-0G,D = 1]|.
We define AdvprgG (τ) to be the maximum advantage AdvprgG,D over all distinguishing algo-
rithms D running in time at most τ .

Expprg-0G,D Expprg-1G,D
u

R←{0, 1}s r
R←{0, 1}b+s

r ← G(u) b ← D(r)
b ← D(r) return b
return b

Figure 4.1: Experiments defining the security of pseudorandom generator G.

4.1.2 Trapdoor Permutations

A trapdoor permutation family is a family of functions with the property that it is computa-
tionally hard to invert a function drawn at random from the family at a random point in the
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domain, unless a trapdoor (i.e., some secret information) is known. A formal definition is
below.

Definition 9 (Trapdoor Permutation) Consider a family F of permutations f : {0, 1}s

→ {0, 1}s. F is a trapdoor permutation family if the following two properties are satisfied:

One-wayness: For any adversary algorithm A, we define its one-way advantage as:

Advone-way
F ,A = Pr[f

R←F , y
R←{0, 1}s, x ← A(f, y) : f(x) = y].

We define Advone-way
F (τ) to be the maximum advantage Advone-way

F ,A over all adversary
algorithms A running in time at most τ .

Trapdoor: Given the trapdoor information trapf for a function f ∈ F , there exists an
efficient algorithm I such that I(y, trapf ) = f−1(y), for all y ∈ {0, 1}s.

4.1.3 CPA-Security of Symmetric Encryption

We recall that a symmetric encryption scheme E consists of three algorithms: a key gen-
eration algorithm Gen(1κ) that takes a security parameter as input and outputs a key, an
encryption algorithm Ek(M) that outputs the encryption of a given message M with key
k, and a decryption algorithm Dk(C) that decrypts a ciphertext C with key k. The first
two algorithms might be probabilistic, but D is deterministic. The correctness property
requires that Dk(Ek(M)) = M , for all keys k generated by Gen and all messages M from
the encryption domain.

CPA-security of a symmetric encryption scheme E = (Gen, E, D) requires that any
adversary A with access to an encryption oracle Ek(·) is unable to distinguish between
encryption of two messages M0 and M1 of its choice.

Definition 10 (CPA-Security of Symmetric Encryption) Let E be a symmetric encryp-
tion scheme and A = (A1,A2) an adversary algorithm that participates in the experi-
ments from Figure 4.2. We define the cpa-advantage of A for E as:

Advcpa
E,A = |Pr[Expcpa-1

E,A = 1]− Pr[Expcpa-0
E,A = 1]|.

We define Advcpa
E,A(τ, q) to be the maximum advantage Advcpa

E,A over all adversary algorithms
A running in time at most τ and making q queries to the encryption oracle.

W.l.o.g., we can relate the success probability of A and its advantage as

Pr
[A succeeds

]
=

1

2

[
1 + Advcpa

E,A
]
. (4.1)
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Expcpa-b
E,A
k

R← Gen(1κ)
(M0,M1) ← AEk(·)

1 ()
b

R←{0, 1}
b′ ← AEk(·)

2 (Ek(Mb))
if b = b′

return 1
else

return 0

Figure 4.2: Experiments defining the CPA-security of encryption.

4.1.4 Signature Schemes and Identity-Based Signatures

Signature schemes. A signature scheme consists of three algorithms: a key generation
algorithm Gen(1λ) that outputs a public key/secret key pair (PK, SK) taking as input a
security parameter, a signing algorithm σ ← SignSK(M) that outputs a signature of a
given message M using the signing key SK, and a verification algorithm VerPK(M, σ)
that outputs a bit. A signature σ is valid on a message M if VerPK(M, σ) = 1. The first
two algorithms might be probabilistic, but Ver is deterministic. The correctness property
requires that VerPK(M, SignSK(M)) = 1, for all key pairs (PK, SK) generated with the
Gen algorithm and all messages M from the signature domain.

CMA-security for a signature scheme (Goldwasser et al. [1988]) requires that an ad-
versary with access to a signing oracle SignSK(·) is not able to generate a message and a
valid signature for which it did not query the signing oracle.

Definition 11 (CMA-Security of Signature Schemes) Let S be a signature scheme and
A an adversary algorithm. We define the cma-advantage of A for S as:

Advcma
S,A = Pr[(SK, PK) ← Gen(1λ), (M,σ) ← ASignSK(·)(PK) : VerPK(M, σ) = 1 AND

M was not a query to SignSK(·)].
We define Advcma

S,A(τ, q) to be the maximum advantage Advcma
S,A over all adversary algo-

rithms A running in time at most τ and making q queries to the signing oracle.

Identity-based signatures. Identity-based signatures have been introduced by
Shamir (Shamir [1985]). A trusted entity initially generates a master secret key and a
master public key. Later the trusted entity can generate the signing key for a user from the
master secret key and the user’s identity, which is an arbitrary bit string. In order to verify
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a signature, it is enough to know the master public key and the signer’s identity, which is
a public string.

Definition 12 (Identity-Based Signatures) An identity-based signature scheme consists
of a tuple of four probabilistic polynomial-time algorithms S = (MKGen, UKGen, Sign,
Ver) with the following properties:

• The master key generation algorithm, MKGen, takes as input the security parame-
ter 1λ, and outputs the master public key MPK and master secret key MSK of the
scheme.

• The user key generation algorithm, UKGen, takes as input the master secret key
MSK and the user’s identity ID, and outputs the secret key SKID for the user.

• The signing algorithm, Sign, takes as input the user’s secret key SKID and a message
M , and outputs a signature σ.

• The verification algorithm, Ver, takes as input the master public key MPK, the
signer’s identity ID, a message M and a signature σ and outputs a bit. The sig-
nature σ generated by the user with identity ID is said to be valid on message M if
Ver(MPK, ID,M, σ) = 1.

Correctness of IBS. The correctness property requires that, if (MPK, MSK) ← MKGen(
1κ) is a pair of master public and secret keys for the scheme, SKID ← UKGen(MSK, ID) is
the signing key for the user with identity ID, then Ver(MPK, ID,M, Sign(SKID,M)) = 1,
for all messages M and all identities ID.

Security of IBS. Consider an adversary A that participates in the following experiment:

Initialization: The master public key MPK and master secret key MSK are generated
with MKGen. MPK is given to A.

Oracle queries: The adversary has access to three oracles: InitID(·) that allows it to
generate the secret key for a new identity, Corrupt(·) that gives the adversary the
secret key for an identity of its choice, and Sign(·, ·) that generates the signature on
a particular message and identity.

Output: The adversary outputs the identity of an uncorrupted user, a message and a sig-
nature.
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The adversary succeeds if the signature it outputs is valid and the adversary did not
query the message to the signing oracle. We denote by Advibs

S,A the probability of success
of A and by Advibs

S (τ, q1, q2, q3) the maximum advantage Advibs
S,A over all adversary algo-

rithmsA running in time at most τ and making q1 queries to the InitID(·) oracle, q2 queries
to the Corrupt(·) oracle and q3 queries to the Sign(·, ·) oracle.

4.2 Formalizing Key-Updating Schemes

4.2.1 Definition of Key-Updating Schemes

In our model, we divide time into intervals, not necessarily of fixed length, and each time
interval is associated with a new key that can be used in a symmetric-key cryptographic
algorithm. In a key-updating scheme, the trusted center generates initial state information
that is updated at each time interval, and from which the center can derive a user key.
The user key for interval t permits a user to derive the keys of previous time intervals
(ki for i ≤ t), but it should not give any information about keys of future time intervals
(ki for i > t).

For simplicity, we assume that all the keys are bit strings of length a security parameter
denoted κ. The number of time intervals and the security parameter are given as input to
the initialization algorithm. We define formally key-updating schemes below.

Definition 13 (Key-Updating Schemes) A key-updating scheme consists of four deter-
ministic polynomial time algorithms KU = (Init, Update, Derive, Extract) with the follow-
ing properties:

- The initialization algorithm, Init, takes as input the security parameter 1κ, the num-
ber of time intervals T and a random seed s ∈ {0, 1}l(κ) for a polynomial l(κ), and
outputs a bit string CS0, called the initial center state.

- The key update algorithm, Update, takes as input the current time interval 0 ≤ t ≤
T − 1, the current center state CSt, and outputs the center state CSt+1 for the next
time interval.

- The user key derivation algorithm, Derive, is given as input a time interval 1 ≤ t ≤
T and the center state CSt, and outputs the user key UKt. The user key can be used
to derive all keys ki for 1 ≤ i ≤ t.

74



- The key extraction algorithm, Extract, is executed by the user and takes as input a
time interval 1 ≤ t ≤ T , the user key UKt for interval t as received from the center,
and a target time interval i with 1 ≤ i ≤ t. The algorithm outputs the key ki for
interval i.

W.l.o.g., we assume that the Update algorithm is run at least once after the Init algorithm,
before any user keys can be derived. The first time the Update algorithm is run, it is given
as input time interval t = 0. User keys and keys are associated with the time intervals
between 1 and T .

4.2.2 Security of Key-Updating Schemes

The definition of security for key-updating schemes requires, informally, that a polynomial-
time adversary with access to the user key for a time interval t is able to distinguish the key
of the next time interval from a randomly generated key only with very small probability.
The definition we give here is related to the definition of forward-secure pseudorandom
generators given by Bellare and Yee (Bellare and Yee [2003]). Formally, consider an ad-
versary A = (AU ,AG) that participates in the following experiment:

Initialization: The initial center state is generated with the Init algorithm.

Key updating: The adversary adaptively picks a time interval t such that 0 ≤ t ≤ T − 1
as follows. Starting with t = 0, 1, . . . , algorithm AU is given the user keys UKt for
all consecutive time intervals until AU decides to output stop or t becomes equal to
T −1. We require thatAU outputs stop at least once before halting. AU also outputs
some additional information z ∈ {0, 1}∗ that is given as input to algorithm AG .

Challenge: A challenge for the adversary is generated, which is either the key for time
interval t+1 generated with the Update, Derive and Extract algorithms, or a random
bit string of length κ.

Guess: AG takes the challenge and z as inputs and outputs a bit b.

The adversary succeeds if it distinguishes between the properly generated key for time
interval t + 1 and a randomly generated key. More formally, the definition of a secure
key-updating scheme is the following:
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Expsku-0KU,A(T ): Expsku-1KU,A(T ):
CS0 ← Init(1κ, T ) CS0 ← Init(1κ, T )
t ← 0 t ← 0
(d, z) ← AU (t,⊥,⊥) (d, z) ← AU (t,⊥,⊥)
while(d 6= stop) and (t < T − 1) while(d 6= stop) and (t < T − 1)

t ← t + 1 t ← t + 1
CSt ← Update(t− 1, CSt−1) CSt ← Update(t− 1, CSt−1)
UKt ← Derive(t, CSt) UKt ← Derive(t,CSt)
(d, z) ← AU (t,UKt, z) (d, z) ← AU (t,UKt, z)

CSt+1 ← Update(t,CSt) kt+1
R← {0, 1}κ

UKt+1 ← Derive(t + 1,CSt+1) b ← AG(kt+1, z)
kt+1 ← Extract(t + 1,UKt+1, t + 1) return b
b ← AG(kt+1, z)
return b

Figure 4.3: Experiments defining the security of key-updating schemes.

Definition 14 (Security of Key-Updating Schemes) Let KU = (Init, Update, Derive,
Extract) be a key-updating scheme and A an adversary algorithm that participates in one
of the two experiments defined in Figure 4.3.

The advantage of the adversary A = (AU ,AG) for KU is defined as

AdvskuKU,A(T ) =
∣∣Pr

[
Expsku-1KU,A(T ) = 1

]−Pr
[
Expsku-0KU,A(T ) = 1

]∣∣.

We define AdvskuKU (T, τ) to be the maximum advantage AdvskuKU,A(T ) over all adversary al-
gorithms A running in time at most τ .

Without loss of generality, we can relate the success probability of adversary A of
distinguishing between the two experiments and its advantage as

Pr[A succeeds] =
1

2

[
Pr

[
Expsku-0KU,A(T ) = 0

]
+ Pr

[
Expsku-1KU,A(T ) = 1

]]

=
1

2

[
1 + AdvskuKU,A(T )

]
. (4.2)

Remark. The security notion we have defined is equivalent to a seemingly stronger se-
curity definition, in which the adversary can choose the challenge time interval t∗ with the
restriction that t∗ is greater than the time interval at which the adversary outputs stop and
that t∗ is polynomial in the security parameter. This second security definition guarantees,
intuitively, that the adversary is not gaining any information about the keys of any future
time intervals after it outputs stop.
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4.3 Composition of Key-Updating Schemes

Let KU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2, Update2, Derive2,
Extract2) be two secure key-updating schemes using the same security parameter κ with
T1 and T2 time intervals, respectively. In this section, we show how to combine the two
schemes into a secure key-updating scheme KU = (Init, Update, Derive, Extract), which
is either the additive or multiplicative composition of the two schemes with T = T1 + T2

and T = T1 · T2 time intervals, respectively. Similar generic composition methods have
been given previously for forward-secure signature schemes (Malkin et al. [2002]).

For simplicity, we assume the length of the random seed in the Init algorithm of the
scheme KU to be κ for both composition methods. Let G : {0, 1}κ → {0, 1}l1(κ)+l2(κ)

be a pseudorandom generator; it can be used to expand a random seed of length κ into
two pseudorandom bit strings of length l1(κ) and l2(κ), respectively, as needed for Init1
and Init2. We write G(s) = G1(s)‖G2(s) with |G1(s)| = l1(κ) and |G2(s)| = l2(κ) for
s ∈ {0, 1}κ.

We make several notations for the running times of the algorithms of a key-updating
scheme. We denote by TimeUserKeys(T, KU) the total running time to generate the users
keys of key-updating scheme KU for intervals 1, 2, . . . , T . This includes the time to ini-
tialize the scheme, apply algorithm Update T times and algorithm Derive T times. We
denote by TimeKeys(T, KU) the total running time to generate the keys of key-updating
scheme KU for intervals 1, 2, . . . , T obtained by T runs of algorithm Extract. We denote
by TimeMaxExtract(T, KU) the maximum running time of algorithm Extract of KU.

4.3.1 Additive Composition

The additive composition of two key-updating schemes uses the keys generated by the
first scheme for the first T1 time intervals and the keys generated by the second scheme
for the subsequent T2 time intervals. The user key for the first T1 intervals in KU is the
same as that of scheme KU1 for the same interval. For an interval t greater than T1, the
user key includes both the user key for interval t−T1 of scheme KU2, and the user key for
interval T1 of scheme KU1. The details of the additive composition method are described
in Figure 4.4.

The security of the composition operation is analyzed in the following theorem.

Theorem 6 Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2,
Update2, Derive2, Extract2) are two secure key-updating schemes with T1 and T2 time
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Init(1κ, T, s): Derive(t, (CS1
t , CS2

t )):
CS1

0 ← Init1(1κ, T1, G1(s)) if t < T1

CS2
0 ← Init2(1κ, T2, G2(s)) UK1

t ← Derive1(t,CS1
t )

return (CS1
0, CS2

0) UK2
t ← ⊥

else
UK1

t ← Derive1(T1,CS1
t )

UK2
t ← Derive2(t− T1,CS2

t )
return(UK1

t , UK2
t )

Update(t, (CS1
t , CS2

t )): Extract(t, (UK1
t ,UK2

t ), i):
if t < T1 if i > T1

CS1
t+1 ← Update1(t,CS1

t ) ki ← Extract2(t− T1,UK2
t , i− T1)

CS2
t+1 ← CS2

t else
else if t < T1

CS1
t+1 ← CS1

t ki ← Extract1(t,UK1
t , i)

CS2
t+1 ← Update2(t− T1,CS2

t ) else
return (CS1

t+1,CS2
t+1) ki ← Extract1(T1, UK1

t , i)
return ki

Figure 4.4: The additive composition of KU1 and KU2.

intervals, respectively, and that G is a pseudorandom generator as above. Then KU =
(Init, Update, Derive, Extract) described in Figure 4.4 denoted as KU1 ⊕ KU2 is a secure
key-updating scheme with T1 + T2 time intervals:

AdvskuKU (T1 + T2, τ) ≤ AdvskuKU1
(T1, τ) + AdvskuKU2

(T2, τ + TimeUserKeys(T1, KU1))

+ AdvprgG (τ).

Proof: Let A = (AU ,AG) be an adversary for KU running in time τ . We build two
adversary algorithms A1 = (A1

U ,A1
G) and A2 = (A2

U ,A2
G) for KU1 and KU2, respectively.

Construction ofA1. A1 simulates the environment forA, by giving toAU at each itera-
tion t the user key UK1

t thatA1
U receives from the center. IfA aborts orAU does not output

stop until time interval T1− 1, then A1 outputs ⊥ and aborts. Otherwise, A1
U outputs stop

at the same time interval as AU . In the challenge phase, A1
G receives as input a challenge

key kt+1 and gives that to AG . A1
G outputs the same bit as AG . A1 has the same running

time as A. The success probability of A1 for b ∈ {0, 1} is

Pr
[
Expsku-bKU1,A1(T1) = b

]
= Pr

[
Expsku-bKU,A(T1 + T2) = b | E1 ∩ E2

]
, (4.3)

where E1 is the event thatAU outputs stop at a time interval strictly less than T1 and E2 the
event that A does not distinguish the simulation done by A1 from the protocol execution.
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The only difference between the simulation and the protocol execution is that the initial
state for KU1 is a random seed in the simulation and it is generated using a pseudorandom
generator G in the protocol. If A distinguishes the simulation from the protocol, then
a distinguisher algorithm for the pseudorandom generator can be constructed. By the
definition of E2, we have Pr[Ē2] ≤ AdvprgG (τ).

Construction of A2. A2 simulates the environment for A: it first picks a random seed
s of length κ and generates from G1(s) an instance of the scheme KU1. For the first T1

iterations of AU , A2 gives to AU the user keys generated from s. If A aborts or AU stops
at a time interval less than T1, thenA2 aborts the simulation. For the next T2 time interval,
A2 feeds AU the user keys received from the center. If AU outputs stop at a time interval
t ≥ T1, then A2

U outputs stop at time interval t − T1. In the challenge phase, A2
G receives

a challenge kt−T1+1, gives this challenge to AG and outputs what AG outputs. A2 runs in
time τ + TimeUserKeys(T1, KU1). The success probability of A2 for b ∈ {0, 1} is

Pr
[
Expsku-bKU2,A2(T2) = b

]
= Pr

[
Expsku-bKU,A(T1 + T2) = b | Ē1

]
. (4.4)

We can relate the success probabilities of A, A1, and A2 for b ∈ {0, 1} as follows:

Pr
[
Expsku-bKU,A(T1 + T2) = b

]
= Pr

[
Expsku-bKU,A(T1 + T2) = b ∩ E1

]
+

Pr
[
Expsku-bKU,A(T1 + T2) = b ∩ Ē1

]

= Pr
[
Expsku-bKU,A(T1 + T2) = b ∩ E1 ∩ E2

]
+

Pr
[
Expsku-bKU,A(T1 + T2) = b ∩ E1 ∩ Ē2

]
+

Pr
[
Expsku-bKU,A(T1 + T2) = b ∩ Ē1

]

≤ Pr
[
Expsku-bKU,A(T1 + T2) = b | E1 ∩ E2

]
Pr

[
E1 ∩ E2

]
+

Pr
[
Ē2

]
+

Pr
[
Expsku-bKU,A(T1 + T2) = b | Ē1

]
Pr

[
Ē1

]

≤ Pr
[
Expsku-bKU1,A1(T1) = b

]
Pr

[
E1

]
+

Pr
[
Expsku-bKU2,A2(T2) = b

]
Pr

[
Ē1

]
+ Pr

[
Ē2

]
(4.5)

= p Pr
[
Expsku-bKU1,A1(T1) = b

]
+

(1− p) Pr
[
Expsku-bKU2,A2(T2) = b

]
+ Pr

[
Ē2

]
,

where p = Pr[E1] and (4.5) follows from (4.3) and (4.4). Finally, we can infer from (4.2)

Pr[A succeeds ] ≤ p Pr[A1 succeeds ] + (1− p) Pr[A2 succeeds ] + Pr
[
Ē2

]
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and

AdvskuKU,A(T1 + T2) ≤ pAdvskuKU1,A1(T1) + (1− p)AdvskuKU2,A2(T2) + AdvprgG (τ)

≤ AdvskuKU1,A1(T1) + AdvskuKU2,A2(T2) + AdvprgG (τ). (4.6)

The statement of the theorem follows from the last relation.

Extended Additive Composition. It is immediate to extend the additive composition to
construct a new scheme with T1 +T2 +1 time intervals. The idea is to use the first scheme
for the keys of the first T1 intervals, the second scheme for the keys of the next T2 intervals,
and the seed s as the key for the (T1 + T2 + 1)-th interval. By revealing the seed s as the
user key at interval T1 + T2 + 1, all previous keys of KU1 and KU2 can be derived. This
idea will be useful in our later construction of a binary tree key-updating scheme. We call
this composition method extended additive composition.

4.3.2 Multiplicative Composition

The idea behind the multiplicative composition operation is to use every key of the first
scheme to seed an instance of the second scheme. Thus, for each one of the T1 time
intervals of the first scheme, we generate an instance of the second scheme with T2 time
intervals.

We denote a time interval t for 1 ≤ t ≤ T1 · T2 of scheme KU as a pair t = <i, j>,
where i and j are such that t = (i− 1)T2 + j for 1 ≤ i ≤ T1 and 1 ≤ j ≤ T2. The Update
algorithm is run initially for time interval t = 0, which will be expressed as <0, 0>. The
user key for a time interval t = <i, j> includes both the user key for time interval i− 1 of
scheme KU1 and the user key for time interval j of scheme KU2. A user receiving UK<i,j>

can extract the key for any time interval <m,n> ≤ <i, j> by first extracting the key K
for time interval m of KU1 (this step needs to be performed only if m < i), then using K
to derive the initial state of the m-th instance of the scheme KU2, and finally, deriving the
key k<m,n>. The details of the multiplicative composition method are shown in Figure 4.5.

The security of the multiplicative composition method is analyzed in the following
theorem.

Theorem 7 Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2,
Update2, Derive2, Extract2) are two secure key-updating schemes with T1 and T2 time
intervals, respectively, and that G is a pseudorandom generator as above. Then KU =
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Init(1κ, T, s): Derive(<i, j>, (CS1
i−1, CS1

i , CS2
j )):

CS1
0 ← Init1(1κ, T1, G1(s)) if i > 1

CS1
1 ← Update1(0,CS1

0) UK1
i−1 ← Derive1(i− 1,CS1

i−1)
k1
1 ← Extract1(1, Derive1(1, CS1

1), 1) else
CS2

0 ← Init2(1κ, T2, G2(k1
1)) UK1

i−1 ← ⊥
return (⊥, CS1

0, CS2
0) UK2

j ← Derive2(j, CS2
j )

return (UK1
i−1, UK2

j )
Update(<i, j>, (CS1

i−1, CS1
i , CS2

j )): Extract(<i, j>, (UK1
i−1,UK2

j ), <m, n>):
if j = T2 if i = m

CS1
i+1 ← Update1(i,CS1

i ) k<m,n> ← Extract2(j, UK2
j , n)

k1
i+1 ← Extract1(i + 1, else

Derive1(i + 1, CS1
i+1), i + 1) K ← Extract1(i− 1, UK1

i−1, m)
CS2

0 ← Init2(1κ, T2, G2(k1
i+1)) CS2

0 ← Init2(1κ, T2, G2(K))
CS2

1 ← Update2(0, CS2
0) k<m,n> ← Extract2(T2,CS2

0, n)
return (CS1

i , CS1
i+1, CS2

1) return k<m,n>

else
CS2

j+1 ← Update2(j, CS2
j )

return (CS1
i−1, CS1

i , CS2
j+1)

Figure 4.5: The multiplicative composition of KU1 and KU2.

(Init, Update, Derive, Extract) described in Figure 4.5 denoted as KU1 ⊗ KU2 is a secure
key-updating scheme with T1 · T2 time intervals:

AdvskuKU (T1 · T2, τ) ≤ AdvskuKU1
(T1, τ + τ1 + τ2 + τ3) + qAdvskuKU2

(T2, τ + τ4) + AdvprgG (τ),

where τ1 = TimeKeys(T1, KU1), τ2 = TimeUserKeys(T2, KU), τ3 = TimeMaxExtract(T2,
KU2) and τ4 = TimeUserKeys(T1, KU1).

Proof: Let A = (AU ,AG) be an adversary for KU running in time τ . We build two
adversary algorithms A1 = (A1

U ,A1
G) and A2 = (A2

U ,A2
G) for KU1 and KU2, respectively.

Construction of A1. A1
U gets from the center the user keys UK1

i of scheme KU1 for all
time intervals i until it outputs stop. A1 simulates the environment for A by sending the
following user keys:

1. At interval <i, 1>, for 1 ≤ i ≤ T1, A1 runs ki ← Extract1(i, UK1
i , i); CS2

0 ←
Init2(1

κ, T2, G2(ki)); CS2
1 ← Update2(0, CS2

0); UK2
1 ← Derive2(1, CS2

1) and gives
AU the user key UK<i,1> = (UK1

i−1, UK2
1).
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2. At time interval <i, j>, for 1 ≤ i ≤ T1 and 1 < j ≤ T2, A1
U computes CS2

j ←
Update2(j − 1, CS2

j−1) and UK2
j ← Derive2(j, CS2

j) and gives to AU the user key
UK<i,j> = (UK1

i−1, UK2
j).

If A aborts or AU outputs stop at a time interval <i, j> with j 6= T2, then A1
U aborts the

simulation and outputs ⊥. Otherwise, A1
U outputs stop at time interval i. In the challenge

interval, A1
G is given a challenge key ki+1 and it executes CS2

0 ← Init2(1
κ, T2, G2(ki+1));

CS2
1 ← Update2(0, CS2

0); M ← Derive2(1, CS2
1); k2

1 ← Extract2(1,M, 1). It then gives
the challenge k2

1 to AG . A1
G outputs the same bit as AG . The running time of A1 is

τ + τ1 + τ2 + τ3. The success probability of A1 for b ∈ {0, 1} is

Pr
[
Expsku-bKU1,A1(T1) = b

]
= Pr

[
Expsku-bKU,A(T1 · T2) = b | E1 ∩ E2

]
, (4.7)

where E1 is the event that AU outputs stop at a time interval (i, j) with j = T2 and E2 the
event that A does not distinguish the simulation done by A1 from the protocol execution.
If A distinguishes the simulation from the protocol, then a distinguisher algorithm for the
pseudorandom generator can be constructed. By the definition of E2, we have Pr[Ē2] ≤
AdvprgG (τ).

Construction of A2. Assuming that AU runs at most q times (and q is polynomial in κ),
A2 makes a guess for the time interval i∗ in whichAU outputs stop. A2 picks i∗ uniformly
at random from the set {1, . . . , q}. A2 generates an instance of the scheme KU1 with i∗

time intervals. For any interval <i, j> with i < i∗, A2 generates the user keys using the
keys from this instance of KU1. For time intervals <i∗, j> with 1 ≤ j ≤ T2, A2 outputs
user key (UK1

i∗−1, UK2
j), where UK1

i∗−1 is the user key for time interval i∗ − 1 of KU1 that
it generated itself and UK2

j is the user key for time interval j of KU2 that it received from
the center.

If A aborts or AU outputs stop at a time interval <i, j> with i 6= i∗ or with i = i∗ and
j = T2, then A2 aborts the simulation and outputs ⊥. Otherwise, if AU outputs stop at a
time interval <i∗, j>, then A2

U outputs stop at time interval j. In the challenge phase, A2

receives a challenge key kj+1 and gives that to AG . A2
G outputs the same bit as AG . The

running time of A2 is τ + τ4. The success probability of A2 for b ∈ {0, 1} is

Pr
[
Expsku-bKU2,A2(T2) = b

]
=

1

q
Pr

[
Expsku-bKU,A(T1 · T2) = b | Ē1 ∩ E2

]
. (4.8)

We can infer

Pr
[
Expsku-bKU,A(T1 · T2) = b

]
= Pr

[
Expsku-bKU,A(T1 · T2) = b ∩ E1 ∩ E2

]
+ (4.9)
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Pr
[
Expsku-bKU,A(T1 · T2) = b ∩ Ē1 ∩ E2

]
+ (4.10)

Pr
[
Expsku-bKU,A(T1 · T2) = b ∩ Ē2

]

≤ Pr
[
Expsku-bKU,A(T1 · T2) = b | E1 ∩ E2

]
Pr

[
E1 ∩ E2

]
+

Pr
[
Expsku-bKU,A(T1 · T2) = b | Ē1 ∩ E2

]
Pr

[
Ē1 ∩ E2

]
+

Pr[Ē2]

= Pr
[
Expsku-bKU1,A1(T1) = b

]
Pr

[
E1 ∩ E2

]
+

q Pr
[
Expsku-bKU2,A2(T2) = b

]
Pr

[
Ē1 ∩ E2

]
+

Pr[Ē2] (4.11)
≤ p Pr

[
Expsku-bKU1,A1(T1) = b

]
+

(1− p)q Pr
[
Expsku-bKU2,A2(T2) = b

]
+ Pr[Ē2],

where p = Pr[E1] and (4.11) follows from (4.7) and (4.8). Finally we can infer from (4.2)
that

AdvskuKU,A(T1 · T2) ≤ pAdvskuKU1,A1(T1) + (1− p)qAdvskuKU2,A2(T2) + AdvprgG (τ)

≤ AdvskuKU1,A1(T1) + qAdvskuKU2,A2(T2) + AdvprgG (τ). (4.12)

The statement of the theorem follows from the last relation.

4.4 Constructions of Key-Updating Schemes

In this section, we describe three constructions of key-updating schemes with different
complexity and communication tradeoffs. The first two constructions are based on previ-
ously proposed methods (Kallahalla et al. [2003], Fu et al. [2006]). We give cryptographic
proofs that demonstrate the security of the existing constructions after some subtle mod-
ifications. Additionally, we propose a third construction that is more efficient than the
known schemes. It uses a binary tree to derive the user keys and is also provably secure in
our model.

4.4.1 Chaining Construction (CKU)

In this construction, the center generates an initial random seed of length κ and applies a
pseudorandom generator iteratively i times to obtain the key for time interval T − i, for
1 ≤ i ≤ T − 1. This construction is inspired by a folklore method using a hash chain
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for deriving the keys. A construction based on a hash chain can be proven secure if the
hash function h is modeled as a random oracle. To obtain a provably secure scheme in the
standard model, we replace the hash function with a pseudorandom generator.

Let G : {0, 1}κ → {0, 1}2κ be a pseudorandom generator. We write G(s) = G1(s)‖G2(
s) with |G1(s)| = |G2(s)| = κ for s ∈ {0, 1}κ. The algorithms of the chaining construc-
tion, called CKU, are:

- Init(1κ, T, s) generates a random seed s0 of length κ from s and outputs CS0 = s0.

- Update(t, CSt) copies the state CSt into CSt+1.

- Derive(t, CSt) and Extract(t, UKt, i) are given in Figure 4.6.

Derive(t,CSt): Extract(t,UKt, i):
BT+1 ← CSt (Bt, kt) ← UKt

for i = T downto t for j = t− 1 downto i
(Bi, ki) ← G(Bi+1) (Bj , kj) ← G(Bj+1)

return UKt ← (Bt, kt) return ki

Figure 4.6: The Derive(t, CSt) and Extract(t, UKt, i) algorithms of the chaining construc-
tion.

This construction has constant center-state size and linear cost for the user-key deriva-
tion algorithm. An alternative construction with linear center-state size and constant user-
key derivation is to precompute all the keys ki and user keys UKi, for 1 ≤ i ≤ T in the Init
algorithm and store all of them in the initial center state CS0. The security of the chaining
construction is given by the following theorem.

Theorem 8 Given a pseudorandom generator G, CKU is a secure key-updating scheme:

AdvskuCKU(T, τ) ≤ AdvprgG (τ + TimeRand(κ) + T · TimePRG(G)) + (T − 1)AdvprgG (τ),

where TimePRG(G) is the time to compute one application of G and TimeRand(k) is the
time to generate a uniformly random number of length k bits.

Proof: Let A = (AU ,AG) be an adversary for the chaining key-updating scheme running
in time τ . We construct an algorithm D that distinguishes the output of the pseudorandom
generator from a random string of length 2κ with sufficiently large probability.
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Algorithm D has to simulate the environment for A. D picks BT+1 uniformly at ran-
dom from {0, 1}κ and computes the user keys for previous time intervals as (Bi, ki) =
G(Bi+1), for i = T, . . . , 1. D gives to AU user key UKi = (Bi, ki) at iteration i.

Algorithm D is given a challenge string r = r0‖r1 of length 2κ, which in experiment
Expprg-0G,D is the output of the pseudorandom generator on input a random seed of length κ,
and in experiment Expprg-1G,D is a random string of length 2κ (see the experiments defined in
Figure 4.1).

IfAU outputs stop at time interval t, D gives toAG the challenge key kt+1 = r1 and D
outputs whatAG outputs. The running time of D is τ +TimeRand(κ)+T ·TimePRG(G).
Denote by pb = Pr

[
Expsku-bCKU,A(T ) = b

]
. It is immediate that

Pr
[
Expprg-1G,D = 1

]
= Pr

[
Expsku-1CKU,A(T ) = 1

]
= p1, (4.13)

and
Pr

[
Expprg-0G,D = 0

]
= p′0, (4.14)

where p′0 is the probability that A, given the user keys as in experiment Expsku-0CKU,A(T ),
but challenge key kt+1 = G2(s) for a random seed s ∈ {0, 1}κ, outputs 0. The chal-
lenge key given to A in experiment Expsku-0CKU,A(T ) is G2(G

T−t−1
1 (s)), where Gi

1(s) =
G1(. . . G1(s) . . . ) for i applications of G1. We can bound the absolute difference between
p0 and p′0 as

|p′0 − p0| ≤ Pr
[A distinguishes between G2(s) and G2(G

T−t−1
1 (s))

]

≤ (T − t) Pr
[A distinguishes between s

R←{0, 1}κ and G1(s)
]

≤ (T − t)AdvprgG (τ). (4.15)

Using (4.13), (4.14) and (4.15), we can relate the success probabilities of A and D by

Pr
[D succeeds

]
=

1

2

(
Pr

[
Expprg-0G,D = 0

]
+ Pr

[
Expprg-1G,D = 1

])

=
1

2

(
p′0 + p1

)

=
1

2
(p0 + p1 + p′0 − p0)

≥ Pr
[A succeeds

]−1

2
(T − t)AdvprgG (τ).

It follows that

Pr
[A succeeds

]≤ Pr
[D succeeds

]
+

1

2
(T − t)AdvprgG (τ),
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and

AdvskuCKU,A(T ) ≤ AdvprgG,D + (T − t)AdvprgG (τ)

≤ AdvprgG,D + (T − 1)AdvprgG (τ).

The statement of the theorem follows from last relation.

4.4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial random state that is updated at each time
interval by applying the inverse of a trapdoor permutation. The trapdoor is known only
to the center, but a user, given the state at a certain moment, can apply the permutation
iteratively to generate all previous states. The key for a time interval is generated by
applying a hash function, modeled as a random oracle, to the current state. This idea
underlies the key rotation mechanism of the Plutus file system (Kallahalla et al. [2003]),
with the difference that Plutus uses the output of an RSA trapdoor permutation directly for
the encryption key. We could not prove the security of this scheme in our model for key-
updating schemes, even when the trapdoor permutation is not arbitrary, but instantiated
with the RSA permutation.

This construction has the advantage that knowledge of the total number of time inter-
vals is not needed in advance; on the other hand, its security can only be proved in the
random oracle model. Let a family of trapdoor permutations be given such that the do-
main size of the permutations with security parameter κ is l(κ), for some polynomial l.
Let h : {0, 1}l(κ) → {0, 1}κ be a hash function modeled as a random oracle. The detailed
construction of the trapdoor permutation scheme, called TDKU, is presented below:

- Init(1κ, T, s) generates a random s0
R←{0, 1}l(κ) and a trapdoor permutation f :

{0, 1}l(κ) → {0, 1}l(κ) with trapdoor τ from seed s using a pseudorandom generator.
Then it outputs CS0 = (s0, f, τ).

- Update(t, CSt) with CSt = (st, f, τ) computes st+1 = f−1(st) and outputs CSt+1 =
(st+1, f, τ).

- Derive(t, CSt) outputs UKt ← (st, f).

- Extract(t, UKt, i) applies the permutation iteratively t − i times to generate state
si = f t−i(UKt) and then outputs h(si).
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The security of this construction is given be the following theorem.

Theorem 9 Given a family of trapdoor permutations and a hash function h modeled as a
random oracle, TDKU is a secure key-updating scheme in the random oracle model:

AdvskuTDKU(T, τ) ≤ 2TAdvone-way
F (τ + τ1(T ) + T · TimeTrap(f)),

where τ1(n) is the time to pick a number uniformly at random from {1, 2, . . . , n} and
TimeTrap(f) is the time to compute an application of f .

Proof: Let A = (AU ,AG) be an adversary for the trapdoor key-updating scheme running
in time τ . Assuming that AU runs at most T times, we construct an adversary A′ for the
one-wayness of F , which given f and y ← f(x) with x

R←{0, 1}l(κ) computes f−1(y)
with sufficiently large probability.

Algorithm A′ has to simulate the environment for A. A′ makes a guess at the time
interval t∗ in which AU outputs stop. A′ picks t∗ uniformly at random from the set
{1, . . . , T}. If AU does not output stop at time interval t∗, then A′ aborts the simulation.
Otherwise, at time interval t less than t∗,A′ gives toAU the user key UKt = (f t∗−t(y), f).
A′ runs in time τ + τ1(T ) + T · TimeTrap(f).

Algorithm Extract is executed by A as in the description of the scheme, but A′ simu-
lates the random oracle for A. If A queries x to the random oracle for which f(x) = y,
thenA′ outputs x. Let E be the event thatA asks query x = f−1(y) to the oracle and Ē the
negation of this event. Since the adversary has no advantage in distinguishing the properly
generated key kt+1 from a randomly generated key if it does not query the random oracle
at x, it follows that

Pr
[A succeeds | Ē]≤ 1

2
,

from which we can infer

Pr
[A succeeds

]
= Pr

[A succeeds | E]
Pr

[
E

]
+ Pr

[A succeeds | Ē]
Pr

[
Ē

]

≤ Pr
[
E

]
+

1

2
. (4.16)

Equations (4.2) and (4.16) imply that Pr
[
E

]≥ 1
2
AdvskuTDKU,A(T ). Then the success proba-

bility of algorithm A′ is

Advone-way
F ,A′ =

1

T
Pr

[
E

]≥ 1

2T
AdvskuTDKU,A(T ).

The statement of the theorem follows from the last relation.
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4.4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algorithms Update, Derive and Extract has
worst-case complexity linear in the total number of time intervals. We present a tree con-
struction based on ideas of Canetti at al. (Canetti et al. [2003]) with constant complexity
for the Derive algorithm and logarithmic worst-case complexity in the number of time in-
tervals for the Update and Extract algorithms. Moreover, the amortized complexity of the
Update algorithm is constant. In this construction, the user key size is increased by at most
a logarithmic factor in T compared to the user key size of the two constructions described
above.

Our tree-based key-updating scheme, called TreeKU, generates keys using a complete
binary tree with T nodes, assuming that T = 2d− 1 for some d ∈ Z. Each node in the tree
is associated with a time interval between 1 and T , a unique label in {0, 1}∗, a tree-key in
{0, 1}κ and an external key in {0, 1}κ such that:

1. Time intervals are assigned to tree nodes using post-order tree traversal, i.e., a node
corresponds to interval i if it is the i-th node in the post-order traversal of the tree.
We refer to the node associated with interval t as node t.

2. We define a function Label that maps node t with 1 ≤ t ≤ T to its label in {0, 1}∗ as
follows. The root of the tree is labeled by the empty string ε, and the left and right
children of a node with label ` are labeled by `‖0 and by `‖1, respectively. The par-
ent of a node with label ` is denoted by parent(`), thus parent(`‖0) = parent(`‖1) =
`. We denote the length of a label ` by |`|.

3. The tree-key for the root node is chosen at random. The tree-keys for the two chil-
dren of an internal node in the tree are derived from the tree-key of the parent node
using a pseudorandom generator G : {0, 1}κ → {0, 1}2κ. For an input s ∈ {0, 1}κ,
we write G(s) = G1(s)‖G2(s) with |G1(s)| = |G2(s)| = κ. If the tree-key for the
internal node with label ` is denoted u`, then the tree-keys for its left and right chil-
dren are u`‖0 = G1(u`) and u`‖1 = G2(u`), respectively. This implies that once the
tree-key for a node is revealed, then the tree-keys of its children can be computed,
but knowing the tree-keys of both children of a node does not reveal any information
about the tree-key of the node.

4. The external key of a node t is the key kt output by the scheme to the application
for interval t. For a node t with tree-key uLabel(t), the external key kt is obtained
by computing PRFuLabel(t)

(1), where PRFu(b) = PRF(u, b) and PRF : {0, 1}κ ×
{0, 1} → {0, 1}κ is a pseudorandom function on bits.
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We describe the four algorithms of the binary tree key-updating scheme:

Update(t, (Pt, Lt))
if t = 0
P1 ← LeftKeys(ε, uT )
L1 ← ∅

else
`t ← Label(t)
ut ← SearchKey(`t, Pt)
if `t ends in 0
(`s, us) ← RightSib(`t, Pt)
Pt+1 ← Pt \ {(`t, ut)} ∪ LeftKeys(`s, us)
Lt+1 ← Lt ∪ {(`t, ut)}

else
(`s, us) ← LeftSib(`t, Lt)
Pt+1 ← Pt \ {(`t, ut)}
Lt+1 ← Lt \ {(`s, us)}

return (Pt+1, Lt+1)

LeftKeys(`, u)
A ← ∅
while |`| ≤ d
A ← A ∪ {(`, u)}
` ← `‖0
u ← G1(u)

return A

/* contains the label/tree-key pairs of the left-most nodes */
/* the set of left siblings is empty */

/* compute the label of node t */
/* compute the tree-key of node t */
/* t is the left child of its parent */
/* compute the label and tree-key of the right sibling of t */
/* update the label/tree-key pair in Pt+1 */
/* add the label and tree-key of t to the left siblings of t + 1 */
/* t is the right child of its parent */
/* compute the label and tree-key of the left sibling of t */
/* remove label/tree-key pair of t from Pt+1 */
/* remove label/tree-key pair of left sibling of t from Lt+1 */

/* initialize set A with the empty set */
/* advance to the left until we reach a leaf */
/* add the label and tree-key of the current node in A */
/* move to left child of the node with label p */
/* compute the tree-key of the left child */

Figure 4.7: The Update(t, (Pt, Lt)) algorithm.

- Init(1κ, T, s) generates the tree-key for the root node randomly, uT
R←{0, 1}κ, using

seed s, and outputs CS0 = ({(ε, uT )}, ∅).

- Update(t, CSt) updates the state CSt = (Pt, Lt) to the next center state CSt+1 =
(Pt+1,
Lt+1). The center state for interval t consists of two sets: Pt that contains pairs of
(label, tree-key) for all nodes on the path from the root to node t (including node t),
and Lt that contains label/tree-key pairs for all left siblings of the nodes in Pt that
are not in Pt.

We use several functions in the description of the Update algorithm. For a label ` and
a set A of label/tree-key pairs, we define a function SearchKey(`, A) that outputs a
tree-key u for which (`, u) ∈ A, if the label exists in the set, and⊥ otherwise. Given
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a label ` and a set of label/tree-key pairs A, function RightSib(`, A) returns the label
and the tree-key of the right sibling of the node with label `, and, similarly, function
LeftSib(`, A) returns the label and the tree-key of the left sibling of the node with
label ` (assuming the labels and tree-keys of the siblings are in A). The function
LeftKeys is given as input a label/tree-key pair of a node and returns all label/tree-
key pairs of the left-most nodes in the subtree rooted at the input node, including
label and tree-key of the input node.

The code for the Update and LeftKeys algorithms is given in Figure 4.7. We omit
the details of functions SearchKey, RightSib and LeftSib. The Update algorithm
distinguishes three cases:

1. If t = 0, the Update algorithm computes the label/tree-key pairs of all left-
most nodes in the complete tree using function LeftKeys and stores them in P1.
The set L1 is empty in this case, as nodes in P1 do not have left siblings.

2. If t is the left child of its parent, the successor of node t in post-order traversal
is the left-most node in the subtree rooted at the right sibling t′ of node t.
Pt+1 contains all label/tree-key pairs in Pt except the tuple for node t, and, in
addition, all label/tree-key pairs for the left-most nodes in the subtree rooted at
t′, which are computed by LeftKeys. The set of left siblings Lt+1 contains all
label/tree-key pairs from Lt and, in addition, the label/tree-key pair for node t.

3. If t is the right child of its parent, node t + 1 is its parent, so Pt+1 contains all
label/tree-key pairs from Pt except the tuple for node t, and Lt+1 contains all
the label/tree-key pairs in Lt except the pair for the left sibling of node t.

- Algorithm Derive(t, (Pt, Lt)) outputs the user tree-key UKt, which is the minimum
information needed to generate the set of tree-keys {ui : i ≤ t}. Since the tree-
key of any node reveals the tree-keys for all nodes in the subtree rooted at that
node, UKt consists of the label/tree-key pairs for the left siblings (if any) of all
nodes on the path from the root to the parent of node t and the label/tree-key pair
of node t. This information has already been pre-computed such that one can set
UKt ← {(Label(t), ut)} ∪ Lt.

- Algorithm Extract(t, UKt, i) first finds the maximum predecessor of node i in post-
order traversal whose label/tree-key pair is included in the user tree-key UKt. Then
it computes the tree-keys for all nodes on the path from that predecessor to node i.
The external key ki is derived from the tree-key ui as ki = PRFui

(1) using the
pseudorandom function. The algorithm is in Figure 4.8.
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Extract(t, UKt, i)
`1 . . . `s ← Label(i)
v ← s
` ← `1 . . . `v

while v > 0 and SearchKey(`, UKt) = ⊥
v ← v − 1
` ← `1 . . . `v

for j = v + 1 to s
u`1...`j ← G`j (u`1...`j−1)

k`1...`s
← PRFu`1...`s

(1)
return k`1...`s

/* the label of i has length s */

/* find a predecessor of i that is in UKt */

/* compute tree-keys of all nodes on path from predecessor to i */

/* return external key of node i */

Figure 4.8: The Extract(t, UKt, i) algorithm.

Analysis of Complexity. The worst-case complexity of the cryptographic operations
used in the Update and Extract algorithms is logarithmic in the number of time intervals,
and that of Derive is constant. However, it is easy to see that the key for each node is
computed exactly once if T updates are executed. This implies that the total cost of all
update operations is T pseudorandom-function applications, so the amortized cost per
update is constant. The size of the center state and the user key is proportional to the
height of the binary tree, so the worst-case space complexity is O(κ log2 T ) bits.

The security of the tree construction is given be the following theorem.

Theorem 10 Given a pseudorandom generator G and a pseudorandom function PRF,
TreeKU is a secure key-updating scheme:

AdvKU
TreeKU(T, τ) ≤ TAdvprfPRF(τ + TimePRF(PRF), 1) + (T − 1)AdvprgG (τ),

where TimePRF(PRF) is the time to compute one application of PRF.

Proof: Scheme TreeKU with T = 2d − 1 time intervals can be obtained from 2d−1 − 1
extended additive compositions of a trivial key-updating scheme TrivKU with one time
interval, defined as follows:

- Init(1κ, T, s) generates a random user key M
R←{0, 1}κ from the seed s and outputs

CS0 = M .

- Update(t, CSt) outputs CSt+1 ← CSt only for t = 0.

- Derive(t, CSt) outputs UKt ← M for t = 1.
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- Extract(t, UKt, i) returns k = PRFM(1) for t = i = 1.

Given that PRF is a pseudorandom function, it is easy to see that TrivKU is a secure
key-updating scheme. Consider an adversaryA for TrivKU. Since the scheme has one time
interval, A is not given any user keys and it has to output stop at time interval 0. We build
a distinguisher algorithm D for the pseudorandom function. D is given access to an oracle
G : {0, 1} → {0, 1}κ, which is either PRF(k, ·) with k

R←{0, 1}κ, or a random function
g

R←{f : {0, 1} → {0, 1}κ}. D gives to A the challenge k1 = G(1) and outputs the
same bit asA. It is immediate that the advantage ofD in distinguishing the pseudorandom
function from random functions is the same as the advantage of adversary A for TrivKU
and this implies that

AdvKU
TrivKU(1, τ) ≤ AdvprfPRF(τ + TimePRF(PRF), 1).

The tree scheme with T time intervals can be constructed as follows: generate 2d−1

instances of TrivKU and make them leaves in the tree; build the tree bottom-up by addi-
tively composing (using the extended method) two adjacent nodes at the same level in the
tree. The security of the binary tree scheme obtained by additive composition as described
above follows from Theorem 6.

An incremental tree construction. We can construct an incremental tree scheme using
ideas from the generic forward-secure signature scheme of Malkin et al. (Malkin et al.
[2002]). The incremental scheme does not require the total number of time intervals to be
known in advance.

Let TreeKU(i) be the binary tree construction with 2i − 1 nodes. Then the incremen-
tal tree scheme is obtained by additively composing binary tree schemes with increasing
number of intervals: TreeKU(1)⊕TreeKU(2)⊕TreeKU(3)⊕ . . . . The keys generated by
the tree scheme TreeKU(i) correspond to the time intervals between 2i− i and 2i+1− i−2
in the incremental scheme. Once the intervals of the tree scheme TreeKU(i) are exhausted,
an instance of TreeKU(i + 1) is generated, if needed.

In addition to allowing a practically unbounded number of time intervals, this construc-
tion has the property that the complexity of the Update, Derive and Extract algorithms and
the size of the center state and user key depend on the number of past time intervals. Be-
low we perform a detailed analysis of the cost of the scheme for an interval t that belongs
to TreeKU(i) with 2i − i ≤ t ≤ 2i+1 − i− 2:

1. The center state includes all the root keys of the previous i − 1 trees and the center
state for node t in TreeKU(i). In the worst-case, this equals (i − 1) + (2i − 1) =
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3i− 2 = 3dlog2(t)e − 2 tree-keys. Similarly, the user key for interval t includes the
user key of node t as in scheme TreeKU(i) and the root keys of the previous i − 1
trees, in total (i−1)+(i−1) = 2i−2 = 2dlog2(t)e−2 tree-keys. It follows that the
space complexity of the center state and the user key for interval t is O(κ log2(t))
bits.

2. The cost of both Update and Extract algorithms is at most i = dlog2(t)e applica-
tions of the pseudorandom generator. The cost of Derive is constant, as in the tree
construction.

4.5 Performance of the Constructions

In this section we analyze the time complexity of the cryptographic operations and the
space complexity of the center state and the user key for the three proposed constructions.
Recall that all schemes generate keys of length κ. In analyzing the time complexity of
the algorithms, we specify what kind of operations we measure and distinguish public-
key operations (PK op.) from pseudorandom generator applications (PRG op.) because
PK operations are typically much more expensive than PRG applications. We omit the
time complexity of the Init algorithm, as it involves only the pseudorandom generator for
all schemes except for the trapdoor permutation scheme, in which Init also generates the
trapdoor permutation. The space complexities are measured in bits. Table 4.1 shows the
details for a given number T of time intervals.

CKU TDKU TreeKU

Update(t,CSt) time 0 1 PK op. O(log2 T ) PRG op.∗

Derive(t, CSt) time T − t PRG op. const. O(log2 T )
Extract(t, UKt, i) time t− i PRG op. t− i PK op. O(log2 T ) PRG op.
Center state size κ poly(κ) O(κ log2 T )
User key size κ κ O(κ log2 T )

Table 4.1: Worst-case time and space complexities of the constructions for T time in-
tervals. ∗Note: the amortized complexity of Update(t, CSt) in the binary tree scheme is
constant.

In the chaining scheme CKU, the Update algorithm takes no work, but the Extract and
the Derive algorithms take linear work in the number of time intervals. On the other hand,
the trapdoor permutation scheme TDKU has efficient user-key derivation, which involves
only a copy operation, but the complexity of the Update algorithm is one application of
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the trapdoor permutation inverse and that of the Extract(t, UKt, i) algorithm is t− i appli-
cations of the trapdoor permutation. The tree-based scheme TreeKU balances the tradeoffs
between the complexity of the three algorithms, taking logarithmic work in the number of
time intervals for all three algorithms in the worst-case. The Derive algorithm involves
only O(log2 T ) copy operations, and Update and Extract algorithms involve O(log2 T )
PRG operations. This comes at the cost of increasing the center-state and user-key sizes
to O(κ log2 T ). Note that the amortized cost of the Update algorithm in the binary tree
construction is constant.

As the chaining and the trapdoor permutation schemes have worst-case complexities
linear in T for at least one algorithm, both of them require the number of time intervals
to be rather small. In contrast, the binary tree construction can be used for a practically
unbounded number of time intervals.

In an application in which the number of time intervals in not known in advance,
the incremental tree scheme can be used. Its space and time complexities only depend
on the number of past revocations and not on the total number of revocations supported.
The incremental tree construction is an interesting example of an additive composition
of tree constructions with different number of intervals. Furthermore, our additive and
multiplicative composition methods allow the construction of new schemes starting from
the basic three constructions described in Section 4.4.

4.6 Experimental Evaluation of the Three Constructions

We have implemented the chaining, trapdoor, and tree constructions for 128-bit keys. We
have used the 128-bit AES block cipher to implement the pseudorandom generator G as
G(s) = AESs(0

128)||AESs(1
128) with |s| = 128 for the CKU and TreeKU constructions

of Sections 4.4.1 and 4.4.3. In construction TDKU from Section 4.4.2, we have used the
RSA permutation with a bit length of 1024 and public exponent 3 and the SHA-1 hash
function as the random oracle h.

We performed the following experiment. For a fixed total number of revocations T ,
the center first initializes the key-updating scheme. Then, the steps below are repeated for
t = 1, . . . , T :

• The center runs the Update and Derive algorithms to simulate one revocation.

• Given the user key for interval t, the user runs the Extract algorithm to obtain the
key k1 for the first time interval.
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Note that the time to extract the key for the first interval is larger than the extraction
time for any other interval between 1 and t in all three constructions. Hence, the extraction
time for the first interval represents a worst-case measure. We measured the performance
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Figure 4.11: Evaluation of the tree scheme.

using four metrics: the maximum and average Update and Derive time for the center (over
the T revocations), and the maximum and average Extract time for clients to compute
the key for the first time interval (from one of the T time intervals). We ran our experi-
ments on a 2.4 GHz Intel Xeon processor machine, running Linux 2.6. Our unoptimized
implementation was written in C++ using gcc 3.2.1.

The results are presented in Figures 4.9, 4.10, and 4.11, respectively. The graphs show
the measured time as a function of the total number of revocations T , which ranges from
28 to 225 depending on the scheme. Note that both axis are logarithmic and that the ver-
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tical axis differs for the three constructions. In the chaining construction, the cost of both
the center and client computation increases linearly with the total number of revocations,
as expected. In the trapdoor permutation construction, the center time is always constant,
but the extraction time grows linearly with the total number of revocations. In the tree
construction, all four metrics have a logarithmic dependence on the total number of revo-
cations. We observe that the tree construction performs several orders of magnitude better
than the other schemes.

Table 4.2 gives a direct comparison of the constructions in an experiment with 1024
revocations as above. It contains also the timing measurements for the first 1024 revoca-
tions in the tree construction where the upper bound T on number of revocations was set to
a much larger value. This makes it possible to relate the tree construction to the trapdoor
permutation scheme, which has no fixed upper bound on the number of revocations. It
is evident that the tree scheme performs much better than the other schemes, even with a
bound on the number of revocations that allows a practically unlimited number of them.

Scheme T Maximum Time Average Time Maximum Time Average Time
Update+Derive (ms) Update+Derive (ms) Extract (ms) Extract (ms)

Chaining 1024 2.57 1.28 2.5 1.24
Trapdoor 1024 25.07 15.36 32.96 15.25

Tree 1024 0.079 0.015 0.025 0.006
Tree 216 0.142 0.015 0.018 0.0076
Tree 225 0.199 0.015 0.02 0.01

Table 4.2: Evaluation of the three constructions for 1024 revocations.

The space usage for T = 1024 is as follows. The center state is 16 bytes for the
chaining construction, 384 bytes for the trapdoor construction, and at most 328 bytes for
the tree scheme. The size of the user key is 32 bytes for the chaining construction, 128
bytes for the trapdoor construction, and at most 172 bytes for the tree scheme. In general,
for the tree scheme with depth d, the center state takes at most (2d− 1)(16 + d/8) bytes,
containing 2d − 1 key value/key label pairs, assuming 16-byte keys and d-bit labels. The
user key size is at most d key/label pairs, which take d(16 + d/8) bytes.

In summary, we note that the performance of the tree scheme is superior to the oth-
ers. The chaining construction has the smallest space requirements, but its computation
cost becomes prohibitive for large T . The trapdoor construction has slightly smaller space
requirements than the tree scheme, but these savings are very small compared to the addi-
tional computational overhead.
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4.7 Cryptographic Primitives in the Lazy Revocation
Model

We have described the abstraction of key-updating schemes, a method to manage the cryp-
tographic keys of any symmetric-key cryptographic algorithm used in cryptographic file
systems for lazy revocation. In this section, we provide definitions of the cryptographic
primitives that can be used in a file system adopting the lazy revocation model. We start
by giving rigorous definitions for symmetric encryption schemes in Section 4.7.1 and
message authentication codes for lazy revocation in Section 4.7.2 and provide generic
constructions starting from any secure key-updating scheme and a secure symmetric-key
encryption scheme or message authentication code, respectively.

There exists cryptographic file system implementations in which signature schemes
are used for providing file integrity (e.g., (Fu [1999], Fu et al. [2002], Adya et al. [2002],
Kallahalla et al. [2003], Goh et al. [2003], Li et al. [2004])). To simplify key distribution,
we choose to preserve the public verification key of the digital signature scheme constant
across user revocations. We define security for signature schemes for lazy revocations
that evolve the signing key at each revocation and keep the public key constant in Sec-
tion 4.7.3. We also provide a generic transformation from identity-based signatures to
signature schemes with lazy revocation.

Finally, we show how our constructions of cryptographic primitives for lazy revocation
can be used to improve the key management scheme of the Plutus file system (Kallahalla
et al. [2003]) in two ways: first, the extraction of encryption keys for previous time inter-
vals can be done more efficiently than key rotation in Plutus, using only symmetric-key
operations, and, secondly, using signature schemes with lazy revocation, the storage space
taken by the signature verification keys can be reduced from linear in the number of revo-
cations to a constant.

4.7.1 Symmetric Encryption Schemes with Lazy Revocation (SE-LR)

In a cryptographic file system adopting lazy revocation, the encryption key for a file must
be updated by the trusted entity (e.g., the owner of the file) when a user is revoked access
to the file. Users might need to encrypt file blocks using the encryption key of the current
time interval or to decrypt file blocks using any key of a previous time interval. Upon
sending a corresponding request to the trusted entity, authorized users receive the user key
of the current time interval from the trusted entity. Both the encryption and decryption
algorithms take as input the user key, and the decryption algorithm additionally takes as

97



input the index of the time interval for which decryption is performed.

Symmetric encryption schemes with lazy revocation include Init, Update and Derive
algorithms for key generation that are similar to the corresponding algorithms of key-
updating schemes, and secret-key encryption and decryption algorithms.

Definition 15 (Symmetric Encryption with Lazy Revocation) A symmetric encryption
scheme with lazy revocation consists of a tuple of five polynomial-time algorithms (Init,
Update, Derive, E, D) with the following properties:

• The Init, Update and Derive deterministic algorithms have the same specification as
the corresponding algorithms of a key-updating scheme.

• The probabilistic encryption algorithm, E, takes as input a time interval t, the user
key UKt of the current time interval and a message M , and outputs a ciphertext C.

• The deterministic decryption algorithm, D, takes as input a time interval t, the user
key UKt of the current time interval, the time interval i ≤ t for which decryption is
performed, and a ciphertext C, and outputs a plaintext M .

Correctness of SE-LR. Suppose that CS0 ← Init(1κ, T, s) is the initial trusted state com-
puted from a random seed s, CSi ← Update(i, Update(i− 1, . . . , Update(0, CS0) . . . )) is
the trusted state for time interval i ≤ T and UKi ← Derive(i, CSi) is the user key for time
interval i. The correctness property requires that D(t, UKt, i, E(i, UKi,M)) = M , for all
messages M from the encryption domain and all i, t with i ≤ t ≤ T .

CPA-security of SE-LR. The definition of CPA-security for SE-LR schemes requires
that any polynomial-time adversary with access to the user key for a time interval t that it
may choose adaptively (and, thus, with knowledge of all keys for time intervals prior to
t), and with access to an encryption oracle for time interval t + 1 is not able to distinguish
encryptions of two messages of its choice for time interval t + 1.

Formally, consider an adversary A that participates in the following experiment:

Initialization: Given a random seed, the initial trusted state CS0 is generated with the Init
algorithm.

Key compromise: The adversary adaptively picks a time interval t such that 0 ≤ t < T
as follows. Starting with t = 0, 1, . . . , the adversary is given the user keys UKt for
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all consecutive time intervals until A decides to output stop or t becomes equal to
T − 1.

Challenge: When A outputs stop, it also outputs two messages, M0 and M1. A random
bit b is selected and A is given a challenge C = E(t + 1, UKt+1,Mb), where UKt+1

is the user key for time interval t + 1 generated with the Init, Update and Derive
algorithms.

Guess: A has access to an encryption oracle E(t + 1, UKt+1, ·) for time interval t + 1. At
the end of this phase, A outputs a bit b′ and succeeds if b = b′.

For an adversaryA and a SE-LR scheme Elr with T time intervals we denote Advcpa-lrElr,A (T )
its CPA advantage. W.l.o.g., we can relate the success probability of A and its advantage
as

Pr
[A succeeds

]
=

1

2

[
1 + Advcpa-lrElr,A (T )

]
. (4.17)

We denote by Advcpa-lrElr (T, τ, q) the maximum advantage Advcpa-lrElr,A (T ) over all adver-
sary algorithms running in time at most τ and making q queries to the encryption oracle.

Tweakable ciphers (see Section 2.1.1). Tweakable ciphers with lazy revocation can be
defined and implemented in a similar way as symmetric encryption schemes with lazy
revocation. We omit here the details.

Generic construction. Let KU = (Init, Update, Derive, Extract) be a secure key-updating
scheme and E = (Gen, E, D) a CPA-secure symmetric encryption scheme such that the
keys generated by KU have the same length as those generated by E . We construct a sym-
metric encryption scheme with lazy revocation Elr = (Initlr, Updatelr, Derivelr, Elr,
Dlr) as follows:

• The Initlr, Updatelr, and Derivelr algorithms of Elr are the same as the correspond-
ing algorithms of KU.

• The Elr(t, UKt, M) algorithm runs kt ← Extract(t, UKt, t) and outputs C ← Ekt(M).

• The Dlr(t, UKt, i, M) algorithm runs ki ← Extract(t, UKt, i) and outputs M ←
Dki

(C).
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Theorem 11 Suppose that KU is a secure key-updating scheme for lazy revocation with T
time intervals and E is a CPA-secure symmetric encryption scheme with security parame-
ter κ. Then Elr is a CPA-secure symmetric encryption scheme with lazy revocation:

Advcpa-lrElr (T, τ, q) ≤ Advcpa
E (τ + TimeUserKeys(T, KU), q)

+ 2AdvskuKU (T, τ).

Proof: Correctness is easy to see. To prove CPA-security of Elr, let Alr be an adversary
algorithm for scheme Elr running in time τ . We construct an adversary A for the CPA-
security of E :

• A is given access to an encryption oracle Ek(·).
• A generates a random seed s and uses this to generate an instance of the scheme

KU.

• A gives to Alr the user keys UKt from the instance of scheme KU generated in the
step above.

• When Alr outputs stop at time interval t and two messages, M0 and M1, A also
outputs M0 and M1.

• A is given challenge C and it gives this challenge to Alr.

• When Alr makes a query to the encryption oracle for time interval t + 1, A replies
to this query using the encryption oracle Ek(·).

• A outputs the same bit as Alr.

The running time of A is τ + TimeUserKeys(T, KU). From the construction of the simu-
lation it follows that

Pr
[A succeeds

]
= Pr[Alr succeeds |E]

,

where E is the event thatAlr does not distinguish the simulation done byA from the CPA
game defined in Section 4.7.1. The only difference between the simulation and the CPA
game is that A uses in the simulation the encryption oracle with a randomly generated
key to reply to encryption queries for time interval t + 1, whereas in the CPA game the
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encryption is done with key kt+1 generated with the Update, Derive and Extract algorithms
of scheme KU. By the definition of E, we have Pr[Ē] ≤ AdvskuKU (T, τ).

We can bound the probability of success of Alr as:

Pr
[Alr succeeds

]
= Pr

[Alr succeeds | E]
Pr

[
E

]
+

Pr
[Alr succeeds | Ē]

Pr
[
Ē

]

≤ Pr
[Alr succeeds | E]

+ Pr
[
Ē

]

≤ Pr
[A succeeds

]
+AdvskuKU (T, τ). (4.18)

Using (4.1), (4.17), and (4.18) we obtain

Advcpa-lrElr,Alr(T ) ≤ Advcpa
E,A + 2AdvskuKU (T, τ).

The last relation proves the statement of the theorem.

Implementation. In practice, we can instantiate the CPA-secure symmetric-encryption
scheme with a block cipher (such as AES) in one of the CPA-secure modes of opera-
tion (FIPS81 [1980]) (e.g., cipher-block chaining) and the key-updating scheme with the
efficient binary tree construction from Section 4.4.3, which only performs symmetric-key
operations (more specifically, pseudo-random function applications implemented again by
a block cipher).

Suppose that AES with 128-bit key size is used for the derivation of the keys. In a
system that supports up to 1000 revocations, at most 10 AES computations need to be
done for the Update, Derive and Extract algorithms. The center state and user keys consist
of up to 10 AES keys or 160 bytes each. This adds a very small overhead to the cost of file
data encryption.

4.7.2 Message-Authentication Codes with Lazy Revocation (MAC-LR)

If message-authentication codes are used for providing integrity in a cryptographic file
system, then a secret key for computing and verifying authentication tags needs to be dis-
tributed to all authorized users. The users generate a tag using the key of the current time
interval and may verify tags for any of the previous time intervals with the corresponding
keys. Similar to symmetric-key encryption with lazy revocation, both the tagging and veri-
fication algorithms need to take as input the current user key, and the verification algorithm
additionally takes as input the index of the time interval at which the tag was generated.
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Message-authentication codes with lazy revocation include Init, Update and Derive
algorithms for key generation that are similar to the corresponding algorithms of key-
updating schemes, and secret-key tagging and verification algorithms.

Definition 16 (Message-Authentication Codes with Lazy Revocation) A message-au-
thentication code with lazy revocation consists of a tuple of five polynomial-time algo-
rithms MAlr = (Init, Update, Derive, Tag, Ver) with the following properties:

• The Init, Update and Derive deterministic algorithms have the same specification as
the corresponding algorithms of a key-updating scheme.

• The probabilistic tagging algorithm, Tag, takes as input a time interval t, the user
key UKt of the current time interval and a message M , and outputs an authentication
tag v.

• The deterministic verification algorithm, Ver, takes as input a time interval t, the
user key UKt of the current time interval, the time interval i for which verification is
performed, a message M , and a tag v, and outputs a bit. A tag v computed at time
interval i is said to be valid on message M if Ver(t, UKt, i, M, Tag(i, UKi,M)) = 1
for some t ≥ i.

Correctness of MAC-LR. Suppose that CS0 ← Init(1κ, T, s) is the initial trusted state
computed from a random seed s, CSi ← Update(i, Update(i−1, . . . , Update(0, CS0) . . . ))
is the trusted state for time interval i ≤ T and UKi ← Derive(i, CSi) is the user key for time
interval i. The correctness property requires that Ver(t, UKt, i, M, Tag(i, UKi,M)) = 1,
for all messages M from the message space and all i, t with i ≤ t ≤ T .

CMA-security of MAC-LR. The definition of security for MAC-LR schemes requires
that any adversary with access to the user key for a time interval t that it may choose
adaptively (and, thus, with knowledge of all keys for time intervals prior to t), and with
access to tagging and verification oracles for time interval t+1 is not able to create a valid
tag on a message not queried to the tagging oracle.

Formally, consider an adversary A that participates in the following experiment:

Initialization: Given a random seed, the initial trusted state CS0 is generated with the Init
algorithm.
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Key compromise: The adversary adaptively picks a time interval t such that 0 ≤ t < T
as follows. Starting with t = 0, 1, . . . , the adversary is given the user keys UKt for
all consecutive time intervals until A decides to output stop or t becomes equal to
T − 1.

Tag generation: A has access to a tagging oracle Tag(t + 1, UKt+1, ·) and a verification
oracle Ver(t + 1, UKt+1, ·, ·, ·) for time interval t + 1 and outputs a message M and
a tag v.

The adversary is successful if M was not a query to the tagging oracle and v is a
valid tag on M for interval t + 1. For a scheme with T time intervals, we denote by
Advcma-lrMAlr,A(T ) the probability of success of A and by Advcma-lrMAlr (T, τ, q1, q2) the maximum
advantage Advcma-lrMAlr,A(T ) over all adversary algorithms A running in time at most τ and
making q1 queries to the tagging oracle and q2 queries to the verification oracle.

Generic construction. Let KU = (Init, Update, Derive, Extract) be a secure key-updating
scheme and MA = (Gen, Tag, Ver) a CMA-secure message-authentication code such that
the keys generated by KU have the same length as those generated by MA. We construct
a message-authentication code with lazy revocation MAlr = (Initlr, Updatelr, Derivelr,
Taglr, Verlr) as follows:

• The Initlr, Updatelr, and Derivelr algorithms of scheme MAlr are the same as the
corresponding algorithms of KU.

• The Taglr(t, UKt,M) algorithm runs kt ← Extract(t, UKt, t) and outputs C ←
Tagkt

(
M).

• The Verlr(t, UKt, i,M, v) algorithm runs ki ← Extract(t, UKt, i) and outputs the
value returned by Verki

(M, v).

Theorem 12 Suppose that KU is a secure key-updating scheme for lazy revocation with
T time intervals and MA is a CMA-secure message-authentication code. Then MAlr is a
secure message-authentication code with lazy revocation:

Advcma-lrMAlr (T, τ, q1, q2) ≤ Advcma
MA (τ + TimeUserKeys(T, KU), q1, q2)

+ 2AdvskuKU (T, τ).
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Proof: Correctness is easy to see. To prove CMA-security for MAlr, let Alr be an adver-
sary algorithm for MAlr running in time τ . We construct an adversary A for MA:

• A is given access to a tagging oracle Tag(·) and a verification oracle Ver(·, ·).
• A generates a random seed s and uses this to generate an instance of scheme KU.

• A gives to Alr the user keys UKt from the instance of scheme KU generated in the
step above.

• When Alr makes a query to the tagging or verification oracle for time interval t +
1, A replies to this query using the tagging oracle Tag(·) and verification oracle
Ver(·, ·), respectively.

• A outputs the same message and tag pair as Alr.

The running time of A is τ + TimeUserKeys(T, KU). From the construction of the simu-
lation it follows that

Pr
[A succeeds

]
= Pr[Alr succeeds | E]

,

where E is the event that Alr does not distinguish between the simulation done by A and
the MAC game from Section 4.7.2. Using a similar argument as in the proof of Theorem
11, we can bound Pr[Ē] ≤ AdvskuKU (T, τ). It is immediate, as in the proof of Theorem 11
that

Pr
[Alr succeeds

]≤ Pr
[A succeeds

]
+AdvskuKU (T, τ)

and the conclusion of the theorem follows.

Implementation. In practice, there are many efficient MAC schemes, such as CBC-
MAC (Menezes et al. [1997]) or HMAC (Bellare et al. [1996]). They can be combined
with key-updating schemes and achieve the same complexities as the implementation of
symmetric encryption schemes with lazy revocation.

4.7.3 Signature Schemes with Lazy Revocation (SS-LR)

Signature schemes can be used for providing integrity of files. When differentiation of
readers and writers is desired, a MAC is not sufficient because it is a symmetric primitive,
and an asymmetric signature scheme is needed. The group signing key is distributed only
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to writers, but the group verification key is given to all readers for the filegroup. Writ-
ers may modify files and recompute signatures using the signing key of the current time
interval. Readers may check signatures on files generated at previous time intervals. We
consider a model for signature schemes with lazy revocation in which the public key re-
mains constant over time and only the signing keys change at the beginning of every time
interval.

Signature schemes with lazy revocation include Init, Update and Derive algorithms
similar to those of key-updating schemes, but with the following differences: the Init
outputs also the public key of the signature scheme, and the Derive algorithm outputs
directly the signing key for the time interval given as input. User keys in this case are the
same as signing keys, as users perform operations only with the signing keys of the current
time interval. SS-LR schemes also include signing and verification algorithms.

Definition 17 (Signature Schemes with Lazy Revocation) A signature scheme with lazy
revocation consists of a tuple of five polynomial-time algorithms Slr = (Init, Update,
Derive, Sign, Ver) with the following properties:

• The deterministic initialization algorithm, Init, takes as input the security parame-
ter 1κ, the number of time intervals T , and a random seed s, and outputs an initial
trusted state CS0 and the public key PK.

• The deterministic key update algorithm, Update, takes as input the current time
interval t and the current trusted state CSt, and outputs a trusted state CSt+1 for the
next time interval.

• The deterministic key derivation algorithm, Derive, takes as input a time interval t
and the trusted state CSt, and outputs a signing key SKt for time interval t.

• The probabilistic signing algorithm, Sign, takes as input the secret key SKt for time
interval t and a message M , and outputs a signature σ.

• The deterministic verification algorithm, Ver, takes as input the public key PK, a
time interval t, a message M and a signature σ and outputs a bit. A signature σ
generated at time t is said to be valid on a message M if Ver(PK, t, M, σ) = 1.

Correctness of SS-LR. Suppose that (CS0, PK) ← Init(1κ, T, s) are the public key and
the initial trusted state computed from a random seed s, CSi ← Update(i, Update(i −
1, . . . , Update(0, CS0) . . . )) is the trusted state for interval i ≤ T and SKi ← Derive(i, CSi)
is the signing key for interval i. The correctness property requires that Ver(PK, t,M, Sign(SKt,
M)) = 1, for all messages M and all intervals t ≤ T .
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Security of SS-LR. The definition of security for SS-LR requires that any adversary with
access to the signing keys SKi for 1 ≤ i ≤ t, with t adaptively chosen, and a signing
oracle for time interval t + 1 is not able to generate a message and a valid signature for
time interval t + 1 that was not obtained from the signing oracle.

Formally, consider an adversary A that participates in the following experiment:

Initialization: Given a random seed, the initial trusted state CS0 and the public key PK
are generated with the Init algorithm. PK is given to A.

Key compromise: The adversary adaptively picks a time interval t such that 0 ≤ t < T
as follows. Starting with t = 0, 1, . . . , the adversary is given the signing keys SKt

for all consecutive time intervals until A decides to output stop or t becomes equal
to T − 1.

Signature generation: A is given access to a signing oracle Sign(SKt+1, ·) for time inter-
val t + 1 and outputs a message M and signature σ.

The adversary is successful if M was not a query to the signing oracle and σ is a valid
signature on M for time interval t + 1. For a scheme Slr with T time intervals, we denote
by Advcma-lrSlr,A (T ) the probability of success of A and by Advcma-lrSlr (T, τ, q) the maximum
advantage Advcma-lrSlr,A (T ) over all adversary algorithms A running in time at most τ and
making q queries to the signing oracle.

Generic construction from identity-based signatures. We construct a signature scheme
with lazy revocation from an identity-based signature scheme by letting every time interval
define a different identity. Let S = (MKGen, UKGen, Sign, Ver) be a secure identity-based
signature scheme. We construct a signature scheme with lazy revocation Slr = (Initlr,
Derivelr, Updatelr, Signlr, Verlr) as follows:

• Initlr(1κ, T ) runs (MSK, MPK) ← MKGen(1κ) and outputs the initial trusted state
CS0 = MSK and the public key MPK for the signature scheme.

• Updatelr(t, CSt) outputs CSt+1 ← CSt.

• Derivelr(t, CSt) runs SKt ← UKGen(CS0, t) and outputs SKt.

• Signlr(SKt,M) runs σ ← Sign(SKt,M) and outputs σ.

• Verlr(MPK, t,M, σ) outputs the same as Ver(MPK, t, M, σ).
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Theorem 13 Suppose that S is a secure identity-based signature scheme. Then Slr is a
secure signature scheme with lazy revocation:

Advcma-lrSlr (T, τ, q) ≤ Advibs
S (τ + T · TimeCorrupt, 0, T, q),

where TimeCorrupt is the time to run Corrupt(·).

Proof: Correctness is easy to see. To prove security of Slr, let Alr be an adversary
algorithm for Slr running in time τ . We construct an adversary A for S:

• A is given the public key MPK of scheme S . A gives MPK to Alr.

• When Alr requests the secret key UKt, A runs SKt ← Corrupt(t) and gives SKt to
Alr.

• When Alr makes a query M to the signing oracle for interval t + 1, A runs σ ←
Sign(t + 1,M) and returns σ to Alr.

• Finally,Alr outputs a message M and a signature σ for time interval t+1. Then, A
outputs (t + 1,M, σ).

It is immediate that the probability of success of A is the same as the probability of
success of Alr. The running time of A is τ + T · TimeCorrupt. The conclusion of the
theorem follows immediately.

Implementation. Generic constructions of identity-based schemes from a certain class
of standard identification schemes, called convertible, are given by Bellare et al.( Bellare
et al. [2004]). The most efficient construction of an IBS scheme is the Guillou-Quisquater
scheme (Guillou and Quisquater [1988]) that needs two exponentiations modulo an RSA
modulus N for both generating and verifying a signature. The size of a signature is two
elements of Z∗

N .

Relation to key-insulated signature schemes. A signature scheme with lazy revoca-
tion that has T time intervals can be used to construct a perfect (T − 1, T ) key-insulated
signature scheme, as defined by Dodis et al. (Dodis et al. [2003b]). However, the two
notions are not equivalent since the attack model for key-insulated signatures is stronger.
An adversary for a (T − 1, T ) key-insulated signature scheme is allowed to compromise
the signing keys for any T − 1 intervals out of the total T intervals. Further differences
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between key-insulated signatures and SS-LR are that both the trusted entity and the user
update their internal state at the beginning of every interval and that both parties jointly
generate the signing keys for each interval.

4.7.4 Applications to Cryptographic File Systems

In this section, we show how our cryptographic algorithms with lazy revocation can be ap-
plied to distributed cryptographic file systems, using the Plutus file system as an example.
This also leads to an efficiency improvement for the revocation mechanism in Plutus.

Plutus (Kallahalla et al. [2003]) is a secure file system that uses an innovative decen-
tralized key management scheme. In Plutus, files are divided into filegroups, each of them
managed by the owner of its files. Blocks in a file are each encrypted with a different
symmetric file-block key. The encryptions of the file-block keys for all blocks in a file
are stored in a lockbox, which is encrypted with a file-lockbox key. The hash of the file is
signed with a file-signing key for integrity protection and the signature can be verified with
a file-verification key. The file-lockbox, file-signing and file-verification keys are the same
for all files in a filegroup. Differentiation of readers and writers is done by distributing the
appropriate keys to the users. In particular, the group owner distributes the file-lockbox
and file-verification keys only to readers, and the file-lockbox and file-signing keys only
to writers.

Plutus uses lazy revocation and a mechanism called key rotation for efficient key man-
agement. The file-lockbox and file-verification keys for previous time intervals can be
derived from the most recent keys. Our cryptographic primitives with lazy revocation gen-
eralize the key rotation mechanism because we allow previous keys to be derived from
our user key, which may be different from the actual key used for cryptographic opera-
tions at the current time interval. This allows more flexibility in constructing key-updating
schemes.

We now recall the Plutus key rotation mechanisms for encryption and signing keys and
demonstrate in both cases how our cryptographic primitives with lazy revocation lead to
more efficient solutions.

For encryption, the group manager as the trusted entity uses the inverse of the RSA
trapdoor permutation to update the file-lockbox encryption key after every user revocation.
Users derive file-lockbox keys of previous time intervals using the public RSA trapdoor
permutation. The construction does not have a cryptographic security proof and cannot be
generalized to arbitrary trapdoor permutations because the output of the trapdoor permu-
tation is not necessarily uniformly distributed. But it could be fixed by applying a hash
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function to the output of the trapdoor permutation for deriving the key, which makes the
construction provably secure in the random oracle model. Indeed, this is our trapdoor
permutation key-updating scheme from Section 4.4.

However, the binary-tree key-updating scheme is more efficient because it uses only
symmetric-key operations (e.g., a block cipher). Used in a symmetric encryption scheme
with lazy revocation according to Section 4.7.1, it improves the time for updating and
deriving file-lockbox keys by several orders of magnitude.

For signatures, Plutus uses RSA in a slightly different method than for encryption. A
different public-key/secret-key pair is generated by the group owner after every revoca-
tion, and hence the RSA moduli differ for all time intervals and need to be stored with
the file meta-data. The public verification exponent can be derived from the file-lockbox
key by readers. An alternative solution based on our signature schemes with lazy revo-
cation according to Section 4.7.3 uses only one verification key and achieves two distinct
advantages: first, the storage space for the public keys is reduced to a constant from lin-
ear in the number of revocations and, secondly, the expensive operation of deriving the
public verification exponent in Plutus does not need to be performed. For example, us-
ing the Guillou-Quisquater IBS scheme, deriving the public key of a time interval during
verification takes only a few hash function applications.

4.8 Related Work

Time-evolving cryptography. The notion of secure key-updating schemes is closely
related to forward- and backward-secure cryptographic primitives. Indeed, a secure key-
updating scheme is forward-secure as defined originally by Anderson (Anderson [2002]),
in the sense that it maintains security in the time intervals following a key exposure.
However, this is the opposite of the forward security notion formalized by Bellare and
Miner (Bellare and Miner [1999]) and used in subsequent work. Here we use the term
forward security to refer to the latter notion.

Time-evolving cryptography protects a cryptographic primitive against key exposure
by dividing the time into intervals and using a different secret key for every time inter-
val. Forward-secure primitives protect past uses of the secret key: if a device holding
all keys is compromised, the attacker cannot have access to past keys. In the case of
forward-secure signatures, the attacker cannot generate past signatures on behalf of the
user, and in the case of forward-secure encryption, the attacker cannot decrypt old cipher-
texts. There exist many efficient constructions of forward-secure signatures (Bellare and
Miner [1999], Abdalla and Reyzin [2000], Itkis and Reyzin [2001]) and several generic
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constructions (Krawczyk [2000], Malkin et al. [2002]). Bellare and Yee (Bellare and
Yee [2003]) analyze forward-secure private-key cryptographic primitives (forward-secure
pseudorandom generators, message authentication codes and symmetric encryption) and
Canetti et al. (Canetti et al. [2003]) construct the first forward-secure public-key encryp-
tion scheme.

Forward security has been combined with backward security in models that protect
both the past and future time intervals, called key-insulated (Dodis et al. [2002, 2003b])
and intrusion-resilient models (Itkis and Reyzin [2002], Dodis et al. [2003a]). In both
models, there is a center that interacts with the user in the key update protocol. The basic
key insulation model assumes that the center is trusted and the user is compromised in at
most t time intervals and guarantees that the adversary does not gain information about the
keys for the intervals the user is not compromised. A variant of this model, called strong
key insulation, allows the compromise of the center as well. Intrusion-resilience tolerates
arbitrarily many break-ins into both the center and the user, as long as the break-ins do not
occur in the same time interval. The relation between forward-secure, key-insulated and
intrusion-resilient signatures has been analyzed by Malkin et al. (Malkin et al. [2004]). A
survey of forward-secure cryptography is given by Itkis (Itkis).

Re-keying, i.e., deriving new secret keys periodically from a master secret key, is a
standard method used by many applications. It has been formalized by Abdalla and Bel-
lare (Abdalla and Bellare [2000]). The notion of key-updating schemes that we define is
closely related to re-keying schemes, with the difference that in our model, we have the
additional requirement of being able to derive past keys efficiently.

Multicast key distribution. In key distribution schemes for multicast, a group controller
distributes a group encryption key to all users in a multicast group. The group of users is
dynamic and each join or leave event requires the change of the encryption key. The goal is
to achieve both forward and backward security. In contrast, in our model of key-updating
schemes users should be able to derive past encryption keys efficiently.

A common key distribution model for multicast is that of key graphs, introduced by
Wong et al. (Wong et al. [2000]) and used subsequently in many constructions (Sher-
man and McGrew [2003], Rodeh et al. [2001], Goshi and Ladner [2003],Goodrich et al.
[2004]). In these schemes, each user knows its own secret key and, in addition, a sub-
set of secret keys used to generate the group encryption key and to perform fast update
operations. The relation between users and keys is modeled in a directed acyclic graphs,
in which the source nodes are the users, intermediary nodes are keys and the unique sink
node is the group encryption key. A path from a user node to the group key contains all the
keys known to that user. The complexity and communication cost of key update operations
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is optimal for tree structures (Tamassia and Triandopoulos [2005]), and in this case it is
logarithmic in the number of users in the multicast group. We also use trees for generating
keys, but our approach is different in considering the nodes of the tree to be only keys,
and not users. We obtain logarithmic update cost in the number of revocations, not in the
number of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file sys-
tems (Blaze [1993], Cattaneo et al. [2001]) did not address key management. Cepheus (Fu
[1999]) is the first cryptographic file system that considers sharing of files and introduces
the idea of lazy revocation for improving performance. However, key management in
Cepheus is centralized by using a trusted key server for key distribution. More recent cryp-
tographic file systems, such as Oceanstore (Kubiatowicz et al. [2000]) and Plutus (Kalla-
halla et al. [2003]), acknowledge the benefit of decentralized key distribution and propose
that key management is handled by file owners themselves. For efficient operation, Plu-
tus adopts a lazy revocation model and uses a key-updating scheme based on RSA, as
described in Section 4.4.2.

Farsite (Adya et al. [2002]), SNAD (Miller et al. [2002]), SiRiUS (Goh et al. [2003])
and Windows EFS (Russinovich [1999]) use public-key cryptography for key manage-
ment. The file encryption key is encrypted by the file owner with the public keys of all
the users that are authorized to access the file. This approach simplifies key management,
but the key storage per group is proportional to the number of users in the group. Our
key-updating schemes for lazy revocation can be incorporated in such systems to provide
efficient user revocation. In addition, they can be used in conjunction with the recently
proposed collusion resistant broadcast encryption system by Boneh et al. (Boneh et al.
[2005]) in order to reduce the storage space needed for the encryption keys to an amount
independent of the number of users accessing the file. In more detail, the file owner could
initialize a state that is updated after each revocation using for instance the binary tree
key-updating scheme. From the state at a certain interval, a user key can be derived. The
setup algorithm of the broadcast encryption scheme is run to generate a public key and se-
cret keys for all authorized users. The user key of each interval could be stored encrypted
under the public key of the broadcast encryption scheme of Boneh et al. (Boneh et al.
[2005]) in the file header. The encrypted user key could be retrieved by an authorized user
on demand and it could be decrypted by only knowing the appropriate secret key and the
set of authorized users at a certain interval. An authorized user could efficiently extract
the file encryption key from the decrypted user key. To add a new user in the system, the
encrypted user key could be updated by performing a single exponentiation. To revoke a
user’s access, the state of the key-updating scheme needs to be updated and the new user

111



key has to be encrypted with the broadcast encryption scheme for the new set of users that
have access to the file.

Independently and concurrently to our work Fu et al. (Fu et al. [2006]) have pro-
posed a cryptographic definition for key-updating schemes, which they call key regression
schemes. Key regression schemes are, in principle, equivalent to key-updating schemes.
Their work formalizes three key regression schemes: two constructions, one using a hash
function and one using a pseudo-random permutation, are essentially equivalent to our
chaining construction, and an RSA-based construction originating in Plutus, which is
equivalent to our trapdoor-permutation construction. Our composition methods and the
tree-based construction are novel contributions that go beyond their work.
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Chapter 5

On Consistency of Encrypted Files

In this chapter we address the problem of consistency for cryptographic file systems in
which encrypted files are shared by clients. The consistency of the encrypted file objects
that implement a cryptographic file system relies on the consistency of the two compo-
nents used to implement them: the file storage protocol and the key distribution protocol.
Our goal is to find necessary and sufficient conditions for the consistency of an encrypted
file object, knowing the consistency of the file access protocol and the key distribution
protocol. To our knowledge, our work (Oprea and Reiter [2006a,b]) is the first to pro-
vide a framework for analyzing the consistency of encrypted files for generic consistency
conditions.

We define in Section 5.2 two generic classes of consistency conditions that extend and
generalize existing consistency conditions, after introducing some preliminary material in
Section 5.1. We then formally define consistency for encrypted file objects in a generic
way in Section 5.3: for any consistency conditions for the key and file objects belonging
to one of the two classes of consistency conditions considered, we define a correspond-
ing consistency condition for encrypted file objects. We provide, in our main result in
Section 5.4, necessary and sufficient conditions for the consistency of the key distribution
and file storage protocols under which the encrypted storage is consistent. Our framework
allows the composition of existing key distribution and file storage protocols to build con-
sistent encrypted file objects and simplifies complex proofs for showing the consistency of
encrypted storage. We describe in Section 5.5 a consistent encrypted file built from from
a sequentially consistent key object and a fork consistent file object using the protocol
by (Mazieres and Shasha [2002]). A related work description is given in Section 5.6.
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5.1 Preliminaries

5.1.1 Basic Definitions and System Model

Most of our definitions are taken from Herlihy and Wing (Herlihy and Wing [1990]). We
consider a system to be a set of processes p1, . . . , pn that invoke operations on a collection
of shared objects. Each operation o consists of an invocation inv(o) and a response res(o).
We only consider read and write operations on single objects. A write of value v to object
X is denoted X.write(v) and a read of value v from object X is denoted v ← X.read().

A history H is a sequence of invocations and responses of read and write operations
on the shared objects. We consider only well-formed histories, in which every invocation
of an operation in a history has a matching response. We say that an operation belongs to a
history H if its invocation and response are in H . A sequential history is a history in which
every invocation of an operation is immediately followed by the corresponding response.
A serialization S of a history H is a sequential history containing all the operations of H
and no others. An important concept for consistency is the notion of a legal sequential
history, defined as a sequential history in which read operations return the values of the
most recent write operations.

Notation For a history H and a process pi, we denote by H|pi the operations in H done
by process pi (this is a sequential history). For a history H and objects X, X1, . . . , Xn,
we denote by H|X the restriction of H to operations on object X and by H|(X1, . . . , Xn)
the restriction of H to operations on objects X1, . . . , Xn. We denote H|w all the write
operations in history H and H|pi + w the operations done by process pi and all the write
operations done by all processes in history H .

5.1.2 Eventual Propagation

A history satisfies eventual propagation (Friedman et al. [2002]) if, intuitively, all the write
operations done by the processes in the system are eventually seen by all processes. How-
ever, the order in which processes see the operations might be different. More formally,
eventual propagation is defined below:

Definition 18 (Eventual Propagation and Serialization Set) A history H satisfies even-
tual propagation if for every process pi, there exists a legal serialization Spi

of H|pi +
w. The set of legal serializations for all processes S = {Spi

}i is called a serialization
set (Friedman et al. [2002]) for history H .
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If a history H admits a legal serialization S, then a serialization set {Spi
}i with Spi

=
S|pi + w can be constructed and it follows immediately that H satisfies eventual propaga-
tion.

5.1.3 Ordering Relations on Operations

There are several natural partial ordering relations that can be defined on the operations in
a history H . Here we describe three of them: the local (or process order), the causal order
and the real-time order.

Definition 19 (Ordering Relations) Two operations o1 and o2 in a history H are ordered
by local order (denoted o1

lo−→ o2) if there exists a process pi that executes o1 before o2.

The causal order extends the local order relation. We say that an operation o1 directly
precedes o2 in history H if either o1

lo−→ o2, or o1 is a write operation, o2 is a read
operation and o2 reads the result written by o1. The causal order (denoted ∗−→ ) is the
transitive closure of the direct precedence relation.

Two operations o1 and o2 in a history H are ordered by the real-time order (denoted
o1 <H o2) if res(o1) precedes inv(o2) in history H .

A serialization S of a history H induces a total order relation on the operations of H ,
denoted S−→ . Two operations o1 and o2 in H are ordered by S−→ if o1 precedes o2 in the
serialization S.

On the other hand, a serialization set S = {Spi
}i of a history H induces a partial

order relation on the operations of H , denoted S−→ . For two operations o1 and o2 in H ,
o1

S−→ o2 if and only if (i) o1 and o2 both appear in at least one serialization Spi
and (ii)

o1 precedes o2 in all the serializations Spi
in which both o1 and o2 appear. If o1 precedes

o2 in one serialization, but o2 precedes o1 in a different serialization, then the operations
are concurrent with respect to S−→ .

5.2 Classes of Consistency Conditions

Our goal is to analyze the consistency of encrypted file systems generically and give nec-
essary and sufficient conditions for its realization. A consistency condition is a set of
histories. We say that a history H is C-consistent if H ∈ C (this is also denoted by C(H)).
Given consistency conditions C and C′, C is stronger than C′ if C ⊆ C′.
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As the space of consistency conditions is very large, we need to restrict ourselves to
certain particular and meaningful classes for our analysis. One of the challenges we faced
was to define interesting classes of consistency conditions that include some of the well
known conditions defined in previous work (i.e., linearizability, causal consistency, PRAM
consistency). Generic consistency conditions have been analyzed previously (e.g., Fried-
man et al. [2002]), but the class of consistency conditions considered was restricted to
conditions with histories that satisfy eventual propagation. Given our system model with
a potentially faulty shared storage, we cannot impose this restriction on all the consistency
conditions we consider in this work.

We define two classes of consistency conditions, differentiated mainly by the eventual
propagation property. The histories that belong to conditions from the first class satisfy
eventual propagation and are orderable, a property we define below. The histories that
belong to conditions from the second class do not necessarily satisfy eventual propagation,
but the legal serializations of all processes can be arranged into a tree (denoted forking
tree). This class includes fork consistency (Mazieres and Shasha [2002]), and extends that
definition to other new, unexplored consistency conditions. The two classes do not cover
all the existing (or possible) consistency conditions.

5.2.1 Orderable Conditions

Intuitively, a consistency condition C is orderable if it contains only histories for which
there exists a serialization set that respects a certain partial order relation. Consider the
example of causal consistency (Ahamad et al. [1995]) defined as follows: a history H is
causally consistent if and only if there exists a serialization set S of H that respects the
causal order relation, i.e., ∗−→⊆ S−→ . We generalize the requirement that the serialization
set respects the causal order to more general partial order relations. A subtle point in this
definition is the specification of the partial order relation. First, it is clear that the partial
order needs to be different for every condition C. But, analyzing carefully the definition
of the causal order relation, we notice that it depends on the history H . We can thus
view the causal order relation as a family of relations, one for each possible history H .
Generalizing, in the definition of an orderable consistency condition C, we require the
existence of a family of partial order relations, indexed by the set of all possible histories,
denoted by { C,H−→ }H . Additionally, we require that each relation C,H−→ respects the local
order of operations in H .

Definition 20 (Orderable Consistency Conditions) A consistency condition C is order-
able if there exists a family of partial order relations { C,H−→ }H , indexed by the set of all
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possible histories, with lo−→⊆ C,H−→ for all histories H such that:

H ∈ C ⇔ there exists a serialization set S of H with C,H−→⊆ S−→ .

Given a history H from class C, a serialization set S of H that respects the order relation
C,H−→ is called a C-consistent serialization set of H .

We define class CO to be the set of all orderable consistency conditions. A subclass of
interest is formed by those consistency conditions in CO that contain only histories for
which there exists a legal serialization of their operations. We denote C+

O this subclass of
CO. For a consistency condition C from class C+

O , a serialization S of a history H that
respects the order relation C,H−→ , i.e., C,H−→⊆ S−→ , is called a C-consistent serialization of
H .

Linearizability (Herlihy and Wing [1990]) and sequential consistency (Lamport [1979])
belong to C+

O , and PRAM (Lipton and Sandberg [1988]) and causal consistency (Ahamad
et al. [1995]) to CO \ C+

O . The partial ordering relations corresponding to each of these
conditions, as well as other examples of consistency conditions and consistent histories,
are given in Section 5.2.3.

5.2.2 Forking Conditions

To model encrypted file systems over untrusted storage, we need to consider consistency
conditions that might not satisfy the eventual propagation property. In a model with po-
tentially faulty storage, it might be the case that a process views only a subset of the writes
of the other processes, besides the operations it performs. For this purpose, we need to
extend the notion of serialization set.

Definition 21 (Extended and Forking Serialization Sets) An extended serialization set
of a history H is a set S = {Spi

}i with Spi
a legal serialization of a subset of operations

from H , that includes (at least) all the operations done by process pi.

A forking serialization set of a history H is an extended serialization set S = {Spi
}i

such that for all i, j, (i 6= j), any o ∈ Spi
∩ Spj

, and any o′ ∈ Spi
:

o′
Spi−→ o ⇒ (o′ ∈ Spj

∧ o′
Spj−→ o).

A forking serialization set is an extended serialization set with the property that its se-
rializations can be arranged into a “forking tree”. Intuitively, arranging the serializations
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in a tree means that any two serializations might have a common prefix of identical oper-
ations, but once they diverge, they do not contain any of the same operations. Thus, the
operations that belong to a subset of serializations must be ordered the same in all those
serializations. A forking consistency condition includes only histories for which a forking
serialization set can be constructed. Moreover, each serialization Spi

in the forking tree
is a C-consistent serialization of the operations seen by pi, for C a consistency condition
from C+

O .

Definition 22 (Forking Consistency Conditions) A consistency condition FORK-C is fork-
ing if:

1. C is a consistency condition from C+
O;

2. H ∈ FORK-C if and only if there exists a forking serialization set S = {Spi
}i for

history H with the property that each Spi
is C-consistent.

We define class CF to be the set of all forking consistency conditions FORK-C. It
is immediate that for consistency conditions C, C1 and C2 in C+

O , (i) C is stronger than
FORK-C, and (ii) if C1 is stronger than C2, then FORK-C1 is stronger than FORK-C2.

Remark. Fork consistency, as defined by Mazieres and Shasha (Mazieres and Shasha
[2002]), belongs to class CF and is equivalent to FORK-Linearizability.

5.2.3 Examples

A table summarizing the type of serialization required for histories of each class of con-
sistency conditions defined, as well as several examples of existing and new consistency
conditions from each class and their partial order relations is given in Figure 5.1.

Examples of a linearizable and a causally consistent history are given in Figures 5.2
and 5.3, respectively. The history from Figure 5.2 admits the total ordering X.write(1);
X.write(2); X.write(3); 3 ← X.read(), which respects the real-time ordering, and is thus
linearizable. The history from Figure 5.3 does not admit a legal sequential ordering of its
operations, but it admits a serialization for each process that respects the causal order. The
serialization for process p1 is X.write(1); X.write(2); 2 ← X.read() and that for process
p2 is X.write(2); X.write(1); 1 ← X.read().
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Class Type of Serialization Example of Condition Partial Order
C+
O Serialization Linearizability (Herlihy and Wing [1990]) <H

Sequential Consistency (Lamport [1979]) lo−→
CO \ C+

O Serialization set Causal Consistency (Ahamad et al. [1995]) ∗−→
PRAM Consistency (Lipton and Sandberg [1988]) lo−→

CF Forking Serialization Set FORK-Linearizability <H

FORK-Sequential Consistency lo−→

Figure 5.1: Classes of consistency conditions.

p1 : X.write(1) 3←X.read()

p2 : X.write(2) X.write(3)

Figure 5.2: Linearizable history.

p1 : X.write(1) 2←X.read()

p2 : X.write(2) 1←X.read()

Figure 5.3: Causal consistent history.

We give an example of a history in Figure 5.4 that is not linearizable, but that accepts a
forking tree shown in Figure 5.5 with each branch in the tree linearizable. Processes p1

and p2 do not see any operations performed by process p3. Process p3 sees only the writes
on object X done by p1 and p2, respectively, but no other operations done by p1 or p2.
Each path in the forking tree from the root to a leaf corresponds to a serialization for a
process. Each branch in the tree respects the real-time ordering relation, and as such the
history is FORK-Linearizable.

p1 : X.write(1) 2←X.read()Y.write(1) 1←Y.read()

p2 : X.write(2) Y.write(2) 2←Y.read()

p3 : X.write(3) 3←X.read()

Figure 5.4: FORK-Linearizable history.
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X.write(1)

X.write(2)

2← X.read() X.write(3)

3← X.read()

Y.write(1) Y.write(2)

1← Y.read()

p1
p2

p3

2← Y.read()

Figure 5.5: A forking tree for the history.

5.3 Definition of Consistency for Encrypted Files

We can construct an encrypted file object using two components, the file object and the
key object whose values are used to encrypt file contents. File and key objects might be
implemented via different protocols and infrastructures. For the purpose of this chapter, we
consider each file to be associated with a distinct encryption key. We could easily extend
this model to accommodate different granularity levels for the encryption keys (e.g., a key
for a group of files).

Users perform operations on an encrypted file object that involve operations on both
the file and the key objects. For example, a read of an encrypted file might require a read
of the encryption key first, then a read of the file and finally a decryption of the file with
the key read. We refer to the operations exported by the storage interface (i.e., operations
on encrypted file objects) to its users as “high-level” operations and the operations on the
file and key objects as “low-level” operations.

We model a cryptographic file system as a collection of encrypted files. Different cryp-
tographic file systems export different interfaces of high-level operations to their users. We
can define consistency for encrypted file objects offering a wide range of high-level op-
eration interfaces, as long as the high-level operations consist of low-level write and read
operations on key and file objects. We do assume that a process that creates an encryption
key writes this to the relevant key object before writing any files encrypted with that key.

The encryption key for a file is changed most probably when some users are revoked
access to the file, and thus, for security reasons, we require that clients use the most recent
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key they have seen to write new file contents. However, it is possible to use older versions
of the encryption key to decrypt a file read. For example, in a lazy revocation model (Fu
[1999], Kallahalla et al. [2003], Backes et al. [2006]), the re-encryption of a file is not
performed immediately when a user is revoked access to the file and the encryption key
for that file is changed, but it is delayed until the next write to that file. Thus, in the lazy
revocation model older versions of the key might be used to decrypt files, but new file
contents are encrypted with the most recent key. In our model, we can accommodate both
the lazy revocation method and the active revocation method in which a file is immediately
re-encrypted with the most recent encryption key at the moment of revocation.

For completeness, here we give an example of a high-level operation interface for an
encrypted file object ENCF, which will be used in the example implementation given in
Section 5.5:

1. Create a file, denoted as ENCF.create file(F ). This operation generates a new en-
cryption key k for the file, writes k to the key object and writes the file content F
encrypted with key k to the file object.

2. Encrypt and write a file, denoted as ENCF.write encfile(F ). This operation writes
an encryption of file contents F to the file object, using the most recent encryption
key that the client read.

3. Read and decrypt a file, denoted as F ← ENCF.read encfile(). This operation reads
an encrypted file from the file object and then decrypts it to F .

4. Write an encryption key, denoted as ENCF.write key(k). This operation changes
the encryption key for the file to a new value k. Optionally, it re-encrypts the file
contents with the newly generated encryption key if active revocation is used.

Consider a fixed implementation of high-level operations from low-level read and write
operations. Each execution of a history H of high-level operations naturally induces a his-
tory Hl of low-level operations by replacing each completed high-level operation with the
corresponding sequence of invocations and responses of the low-level operations. In the
following, we define consistency (C1, C2)

enc for encrypted file objects, for any consistency
properties C1 and C2 of the key distribution and file access protocols that belong to classes
CO or CF .

Definition 23 (Consistency of Encrypted File Objects) Let H be a history of completed
high-level operations on an encrypted file object ENCF and C1 and C2 two consistency
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properties from CO. Let Hl be the corresponding history of low-level operations on key
object KEY and file object FILE induced by an execution of high-level operations. We say
that H is (C1, C2)

enc-consistent if there exists a serialization set S = {Spi
}i of Hl such

that:

1. S is enc-legal, i.e.: For every file write operation o = FILE.write(C), there is an
operation KEY.write(k) such that: C was generated through encryption with key

k, KEY.write(k)
Spi−→ o and there is no KEY.write(k′) with KEY.write(k)

Spi−→
KEY.write(k′)

Spi−→ o for all i;

2. S|KEY = {Spi
|KEY}i is a C1-consistent serialization set of Hl|KEY;

3. S|FILE = {Spi
|FILE}i is a C2-consistent serialization set of Hl|FILE;

4. S respects the local ordering of each process.

Intuitively, our definition requires that there is an arrangement (i.e., serialization set) of
key and file operations such that the most recent key write operation before each file write
operation seen by each client is the write of the key used to encrypt that file. In addition,
the serialization set should respect the desired consistency of the key distribution and file
access protocols.

If both C1 and C2 belong to C+
O , then the definition should be changed to require the

existence of a serialization S of Hl instead of a serialization set. Similarly, if C2 belongs
to CF , we change the definition to require the existence of an extended serialization set
{Spi

}i of Hl. In the latter case, the serialization Spi
for each process might not contain all

the key write operations, but it has to include all the key operations that write key values
used in subsequent file operations in the same serialization. Conditions (1), (2), (3) and
(4) remain unchanged.

Generalization to multiple encrypted file objects. Our definition can be generalized to
encrypted file systems that consist of multiple encrypted file objects ENCF1, . . . , ENCFn.
We assume that there is a different key object KEYi for each file object FILEi, for i =
1, . . . , n.

Definition 24 (Consistency of Encrypted File Systems) Let H be a history of completed
high-level operations on encrypted file objects ENCF1, . . . , ENCFn and C1 and C2 two
consistency properties from CO. Let Hl be the corresponding history of low-level oper-
ations on key objects KEY1, . . . , KEYn and file objects FILE1, . . . , FILEn induced by an
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execution of high-level operations. We say that H is (C1, C2)
enc-consistent if there exists

a serialization set S = {Spi
}i of Hl such that:

1. S is enc-legal, i.e.: For every file write operation o = FILEj.write(C), there is an op-

eration KEYj.write(k) such that: C is encrypted with key value k, KEYj.write(k)
Spi−→

o and there is no KEYj.write(k′) with KEYj.write(k)
Spi−→ KEYj.write(k′)

Spi−→ o
for all i;

2. For all j, S|KEYj is a C1-consistent serialization set of Hl|KEYj;

3. S|(FILE1, . . . , FILEn) is a C2-consistent serialization set of Hl|(FILE1, . . . , FILEn);

4. S respects the local ordering of each process.

The reason for condition 3 in the above definition is that a consistency property for a
file system (as defined in the literature) refers to the consistency of operations on all file
objects. In contrast, we are not interested in the consistency of all the operations on the
key objects, as different key objects are used to encrypt values of different files, and are
thus independent. We only require in condition (2) consistency for individual key objects.

5.4 A Necessary and Sufficient Condition for the Consis-
tency of Encrypted File Objects

After defining consistency for encrypted file objects, here we give necessary and sufficient
conditions for the realization of the definition. We first outline the dependency among
encryption keys and file objects, and then define a property of histories that ensures that file
write operations are executed in increasing order of their encryption keys. Histories that
satisfy this property are called key-monotonic. Our main result, Theorem 15, states that,
provided that the key distribution and the file access protocols satisfy some consistency
properties C1 and C2 with some restrictions, the key-monotonicity property of the history
of low-level operations is necessary and sufficient to implement (C1, C2)

enc consistency
for the encrypted file object.

5.4.1 Dependency among Values of Key and File Objects

Each write and read low-level operation is associated with a value. The value of a write
operation is its input argument and that of a read operation its returned value. For o a file
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operation with value F done by process pi, k the value of the key that encrypts F and
w = KEY.write(k) the operation that writes the key value k, we denote the dependency
among operations w and o by R(w, o) and say that file operation o is associated with key
operation w.

The relation R(w, o) implies a causal order relation in the history of low-level opera-
tions between operations w and o. Since process pi uses the key value k to encrypt the file
content F , then either: (1) in process pi there is a read operation r = (k ← KEY.read())

such that w
∗−→ r

lo−→ o, which implies w
∗−→ o; or (2) w is done by process pi,

in which case w
lo−→ o, which implies w

∗−→ o. In either case, the file operation o is
causally dependent on the key operation w that writes the value of the key used in o.

5.4.2 Key-Monotonic Histories

A history of key and file operations is key-monotonic if, intuitively, it admits a consistent
serialization for each process in which the file write operations use monotonically increas-
ing versions of keys for encryption of their values. Intuitively, if a client uses a key version
to perform a write operation on a file, then all the future write operations on the file object
by all the clients will use this or later versions of the key.

We give an example in Figure 5.6 of a history that is not key-monotonic for sequentially
consistent keys and linearizable files. Here C1 and C2 are file values encrypted with key
values k1 and k2, respectively. k1 is ordered before k2 with respect to the local order.
FILE.write(C1) is after FILE.write(C2) with respect to the real-time ordering, and, thus, in
any linearizable serialization of file operations, c2 is written before C1.

p1 : KEY.write(k1) KEY.write(k2)

p2 : k1←KEY.read() FILE.write(C1)

p3 : k2←KEY.read() FILE.write(C2)

Figure 5.6: A history that is not key-monotonic.

To define key-monotonicity for a low-level history formally, we would like to find the
minimal conditions for its realization, given that the key operations in the history satisfy
consistency condition C1 and the file operations satisfy consistency condition C2. We
assume that the consistency C1 of the key operations is orderable. Two conditions have
to hold in order for a history to be key-monotonic: (1) the key write operations cannot be
ordered in opposite order of the file write operations that use them; (2) file write operations
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that use the same keys are not interleaved with file write operations using a different key.

Definition 25 (Key-Monotonic History) Consider a history H with two objects, key KEY
and file FILE, such that C1(H|KEY) and C2(H|FILE), where C1 is an orderable consis-
tency condition and C2 belongs to either CO or CF . H is a key-monotonic history with
respect to C1 and C2, denoted KMC1,C2(H), if there exists a C2-consistent serialization (or
serialization set or forking serialization set) S of H|FILE such that the following condi-
tions holds:

• (KM1) for any two file write operations F1
S−→ F2 with associated key write oper-

ations k1 and k2 (i.e., R(k1, F1), R(k2, F2)), it cannot happen that k2
C1,H|KEY−→ k1;

• (KM2) for any three file write operations F1
S−→ F2

S−→ F3, and key write
operation k with R(k, F1) and R(k, F3), it follows that R(k, F2).

The example we gave in Figure 5.6 violates the first condition. If we consider F2 =
FILE.write(C2), F1 = FILE.write(C1), then F2 is ordered before F1 in any linearizable
serialization and k1 is ordered before k2 with respect to the local order. But condition
(KM1) states that it is not possible to order key write k1 before key write k2.

The first condition (KM1) is enough to guarantee key-monotonicity for a history H

when the key write operations are uniquely ordered by the ordering relation
C1,H|KEY−→ . To

handle concurrent key writes with respect to
C1,H|KEY−→ , we need to enforce the second con-

dition (KM2) for key-monotonicity. Condition (KM2) rules out the case in which uses of
the values written by two concurrent key writes are interleaved in file operations in a con-
sistent serialization. Consider the example from Figure 5.7 that is not key-monotonic for
sequentially consistent key operations and linearizable file operations. In this example C1

and C ′
1 are encrypted with key value k1, and C2 is encrypted with key value k2. A lineariz-

able serialization of the file operations is: FILE.write(C1); FILE.write(C2); FILE.read(C2);
FILE.write(C ′

1), and this is not key-monotonic. k1 and k2 are not ordered with respect to
the local order, and as such the history does not violate condition (KM1). However, condi-
tion (KM2) is not satisfied by this history.

5.4.3 Simpler Conditions for Single-Writer Key Object

In cryptographic file system implementations, keys are usually changed only by one pro-
cess, who might be the owner of the file or a trusted entity. For single-writer objects, it
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p1 : KEY.write(k1) FILE.write(C′1)

p2 : KEY.write(k2) C2←FILE.read()

p3 : k1←KEY.read() FILE.write(C1) k2←KEY.read() FILE.write(C2)

Figure 5.7: A history that does not satisfy condition (KM2).

can be proved that sequential consistency, causal consistency and PRAM consistency are
equivalent. Since we require the consistency of key objects to be orderable and all order-
able conditions are at least PRAM consistent (i.e., admit serialization sets that respect the
local order), the weakest consistency condition in the class of orderable conditions for sin-
gle writer objects is equivalent to sequential consistency. If the key distribution protocol
is sequentially consistent, the key-monotonicity conditions given in Definition 25 can be
simplified. We present below the simplified condition.

Proposition 14 Let H be a history of operations on the single-writer key object KEY and
file object FILE such that H|KEY is sequentially consistent. H is key-monotonic if and
only if the following condition is true:

(SW-KM) There exists a C2-consistent serialization S (or serialization set or forking
serialization set) of H|FILE such that for any two file write operations F1

S−→ F2 with
associated key write operations k1 and k2 (i.e., R(k1, F1), R(k2, F2)), it follows that k1

lo−→
k2 or k1 = k2.

Proof: Suppose first that the conditions from Definition 25 are true. For a single-writer
key object, all the key write operations are performed by a single process, and are thus
ordered by local order. Then, for any two file write operations F1 and F2 with associated
key write operations k1 and k2, it is true that either k1

lo−→ k2 or k2
lo−→ k1 or k1 = k2.

Condition (KM1) from Definition 25 implies that k1
lo−→ k2 or k1 = k2, which proves

condition (SW-KM).

In the reverse direction, suppose that condition (SW-KM) is true. This immediately
implies condition (KM1) from Definition 25. To prove condition (KM2), consider three
file write operations F1

S−→ F2
S−→ F3 and key write operation k such that R(k, F1)

and R(k, F3). Let k2 be the key write operation associated with file operation F2, i.e.,
R(k2, F2). By condition (SW-KM), it follows that k

lo−→ k2
lo−→ k, which implies k = k2

and R(k, F2).

If all the key writes are performed by a single process, key write operations are to-
tally ordered and they can be given increasing sequence numbers. Intuitively, condition
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(SW-KM) requires that the file write operations are ordered in increasing order of the en-
cryption key sequence numbers.

5.4.4 Obtaining Consistency for Encrypted File Objects

We give here the main result of our chapter, a necessary and sufficient condition for im-
plementing consistent encrypted file objects, as defined in Section 5.3. Given a key dis-
tribution protocol with orderable consistency C1 and a file access protocol that satisfies
consistency C2 from classes CO or CF , the theorem states that key-monotonicity is a neces-
sary and sufficient condition to obtain consistency (C1, C2)

enc for the encrypted file object.
Some additional restrictions need to be satisfied.

In order for the encrypted file object to be (C1, C2)
enc-consistent, we need to construct

an (extended) serialization set S that is enc-legal (see Definition 23). In the proof of the
theorem, we need to separate the case when C2 belongs to CO from the case when C2

belongs to CF . For C2 in CO we need to construct an enc-legal serialization set of the
history of low-level operations, whereas for C2 in CF an enc-legal extended serialization
set is required.

Furthermore, we need to distinguish the case of file access protocols with consistency
in class C+

O , when there exists a legal serialization of the file operations. From Defini-
tion 23, in order to prove enc-consistency of Hl, we need to construct an enc-legal serial-
ization with all the key and write operations. This implies that there must be a serialization
for the key operations, as well. Thus, if the consistency of the file access protocol is in
class C+

O , we require that the consistency of the key distribution protocol belongs to C+
O , as

well.

Theorem 15 Consider a fixed implementation of high-level operations from low-level op-
erations. Let H be a history of operations on an encrypted file object ENCF and Hl the
induced history of low-level operations on key object KEY and file object FILE by a given
execution of high-level operations. Suppose that the following conditions are satisfied:

1. C1(Hl|KEY);

2. C2(Hl|FILE);

3. C1 is orderable;

4. if C2 belongs to C+
O , then C1 belongs to C+

O .
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Then H is (C1, C2)
enc-consistent if and only if Hl is a key-monotonic history, i.e.,

KMC1,C2(H).

Proof: First we assume that H is (C1, C2)
enc-consistent. From Definition 23, it follows that

there exists an enc-legal serialization (or serialization set or extended serialization set) S of
Hl such that S|KEY is C1-consistent and S|FILE is C2-consistent. Consider SF = S|FILE,
which is a C2-consistent serialization (or serialization set or extended serialization set) of
Hl|FILE. We prove that conditions (KM1) and (KM2) are satisfied for SF .

1. Let F1 and F2 be two file write operations such that F1
SF−→ F2, and let k1 and k2 be

their associated key write operations. As S is enc-legal, it follows that k1
S−→ k2.

S|KEY is C1-consistent, and the fact that k1
S|KEY−→ k2 implies that it is not possible

to have k2
C1,Hl|KEY−→ k1. This proves condition (KM1).

2. Let F1, F2 and F3 be three file write operations and k a key write operation such
that F1

S−→ F2
S−→ F3, R(k, F1) and R(k, F3). It follows that key write k is the

closest key write operation before F2 in S. The fact that S is enc-legal implies that
the value of operation k is used to encrypt the file content written in F2, and thus
R(k, F2). This proves condition (KM2).

In the reverse direction, we distinguish three cases, depending on the class the consis-
tency C2 belongs to:

1. Both C1, C2 belong to C+
O . We construct an enc-legal serialization of Hl that respects

the four conditions from Definition 23 in four steps. We construct first a serialization S of
Hl that contains all the file operations and that respects C2-consistency. Then, we include
the key writes into this serialization in an order consistent with C1. Thirdly, we include the
key read operations into S to preserve the legality of key operations and the local ordering
with the file operations. Finally, we also need to prove that S is enc-legal.

First step. As Hl is a key-monotonic history, it follows from Definition 25 that there ex-
ists a C2-consistent serialization SF of Hl|FILE that respects conditions (KM1) and (KM2).
We include into serialization S all the file operations ordered in the same order as in SF .
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Second step. From condition (KM2) in the definition of KMC1,C2 , the file write opera-
tions in serialization SF that are dependent on different keys are not interleaved. We can
thus insert a key write operation in serialization S before the first file write operation that
is associated with that key write (if such a file operation exists).

From the first condition in KMC1,C2 , we can prove that S|KEY (that contains only key
writes used in the file operations from S) is C1-consistent. Assume, by contradiction, that
S|KEY is not C1-consistent. Since C1 is orderable, there exist two key write operations, k1

and k2, such that k1
S−→ k2 and k2

C1,Hl|KEY−→ k1. From the way we included the key writes
into S, there exists two file write operations F1 and F2 such that k1

S−→ F1
S−→ k2

S−→ F2.
But F1

S−→ F2 and (KM1) imply that it is not possible to have k2
C1,Hl|KEY−→ k1, which is a

contradiction.

We have omitted from S all the key writes that are not used in file operations from S,
but we need to insert those key write operations in S. We include the key writes that are
not used in any file operations in S to preserve the

C1,Hl|KEY−→ order of key operations. If
an unused key write operation needs to be added between key writes k1 and k2, then it is
included immediately before k2, so that it does not break the enc-legality of serialization
S. This is possible as the key writes that we insert are not related by any constraints to the
file operations in S.

Third step. We need to insert the key read operations to preserve the legality of key
operations and the local ordering with the file operations in S. Let k1, . . . , ks be all the
key write operations in the order they appear in the serialization S constructed in the first
two steps. We include a key read that returns the value written by key write operation kl

between kl and kl+1 (if kl = ks is the last key write operation, then we include the key read
after ks in S). For key read operations and file operations that are in the same interval with
respect to key writes, we preserve local ordering of operations. Assume, by contradiction,
that this arrangement violates local ordering between operations in different key intervals.
Only two cases are possible:

S

k1 r1 k2 f2

Figure 5.8: First case in which read r1

cannot be inserted into S.

S

k0 f0 k1 r1

Figure 5.9: Second case in which read r1

cannot be inserted into S.

• There exists a key read r1 such that: the value returned by r1 is written by key write
operation k1, r1 is after file operation F2 in local order, and F2 belongs to a later key
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write interval than r1, i.e., k1
S−→ r1

S−→ k2
S−→ F2 (see Figure 5.8). If F2 is a

file read operation, then from the legality of file operations and the way we inserted
the key write operations into S, it follows that there exists a file write operation F ′

2

such that k1
S−→ r1

S−→ k2
S−→ F ′

2
S−→ F2 and R(k2, F

′
2).

We can thus assume, w.l.o.g., that F2 is a file write operation and R(k2, F2). From
R(k2, F2) it follows that either k2

lo−→ F2 or there exists a key read operation r2 that
returns the value written by k2 and r2

lo−→ F2.

In the first case, k2
lo−→ F2 and F2

lo−→ r1 imply k2
lo−→ r1. We inserted the

key read operations into S to preserve the local order of key operations. Then, in
serialization S, k2 should be ordered before r1. But k1

S−→ r1
S−→ k2 and this

represents a contradiction.

In the second case, r2
lo−→ F2 and F2

lo−→ r1 imply r2
lo−→ r1. For the same reason

as above, r2 should be ordered before r1 in S. But k1
S−→ r1

S−→ k2
S−→ r2 and

this represents a contradiction.

• A file operation F0 that belongs to an earlier key write interval than key read r1

follows r1 in the local order, i.e., k0
S−→ F0

S−→ k1
S−→ r1 (see Figure 5.9).

If F0 is a file read operation, then from the legality of file operations and the way
we inserted the key write operations into S, it follows that there exists a file write
operation F ′

0 such that k0
S−→ F ′

0
S−→ F0

S−→ k1
S−→ r1 and R(k0, F

′
0).

We can thus assume, w.l.o.g., that F0 is a file write operation and R(k0, F0). From
R(k0, F0) it follows that either k0

lo−→ F0 or there exists a key read operation r0 that
returns the value written by k0 and r0

lo−→ F0.

In the first case, k0
lo−→ F0, r1

lo−→ F0 and R(k0, F0) imply that r1
lo−→ k0

lo−→ F0

(operation F0 uses the latest key value read or written to encrypt the file value).
Because S preserves the local order among key operations, r1 should be ordered
before k0 in S. But this contradicts k0

S−→ k1
S−→ r1.

In the second case, r0
lo−→ F0, r1

lo−→ F0 and R(k0, F0) imply that r1
lo−→ r0

lo−→ F0.
Because S preserves the local order among key operations, r1 should be ordered
before r0 in S. On the other hand, the legality of S implies that k0

S−→ r0
S−→

k1
S−→ r1, but this contradicts the fact that r1 should be ordered before r0.

Fourth step. We need to prove that serialization S is enc-legal. From the way we in-
cluded the key write operations into S in the second step, it follows that for any file write
operation Fw, there exists a key write operation k(Fw) such that k(Fw)

S−→ Fw and there
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does not exist another file operation k′ with k(Fw)
S−→ k′

S−→ Fw. Moreover the
key value written by k(Fw) is used to encrypt the value written by Fw. This proves the
enc-legality of S.

Summary. The serialization S respects the conditions from Definition 23 for Cenc
2 -con-

sistency:

1. S is enc-legal as proved in the fourth step;

2. S|KEY is C1-consistent as proved in the second and third step;

3. S|FILE = SF is C2-consistent.

4. S respects local ordering between operations on the same object, as S|KEY and
S|FILE respect local ordering. S respects local ordering between key writes and file
operations from the construction of S. Additionally, the key reads are inserted to
respect local ordering with file operations.

2. C2 belongs to CO, but not to C+
O . The proof for this case proceeds similarly to the

proof of the previous case with the difference that a serialization set S = {Spi
}i needs to

be constructed. We do not give here the full proof, but we only highlight the differences
from the previous proof:

1. In the first step, from Definition 25, there exists a serialization set SF = {SF
pi
}i that

respects conditions (KM1) and (KM2). File operations from each SF
pi

are included in
the same order in Spi

.

2. In the second step, we need to insert the key write operations in all serializations
Spi

. We can similarly prove that Spi
|KEY is C1-consistent for all i.

3. In the third step, we only need to insert in serialization Spi
the key reads done by

process pi.

4. In the fourth step, we can prove that in each serialization Spi
the closest key write

before a file write is writing the key value used to encrypt the file value written by
the file write operation.
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3. C2 belongs to CF . The proof for the third case is similar to the proofs of the previous
two cases, with the difference that an extended serialization set S = {Spi

}i including the
key and file operations needs to be constructed from a forking serialization set SF = {SF

pi
}i

of the file operations.

Discussion. Our theorem recommends two main conditions to file system developers
in order to guarantee (C1, C2)

enc-consistency of encrypted file objects. First, the consis-
tency of the key distribution protocol needs to satisfy eventual propagation (as it belongs
to class CO) to apply our theorem. This suggests that using the untrusted storage server
for the distribution of the keys, as implemented in several cryptographic file systems, e.g.,
SNAD (Miller et al. [2002]) and SiRiUS (Goh et al. [2003]), might not meet our con-
sistency definitions. For eventual propagation, the encryption keys have to be distributed
either directly by file owners or by using a trusted key server. It is an interesting open
problem to analyze the enc-consistency of the history of high-level operations if both the
key distribution and file-access protocols have consistency in class CF . Secondly, the key-
monotonicity property requires, intuitively, that file writes are ordered not to conflict with
the consistency of the key operations. To implement this condition, one solution is to mod-
ify the file access protocol to take into account the version of the encryption key used in
a file operation when ordering that file operation. We give an example of modifying the
fork consistent protocol given by Mazieres and Shasha (Mazieres and Shasha [2002]) in
Section 5.5.

Moreover, the framework offered by Theorem 15 simplifies complex proofs for show-
ing consistency of encrypted files. In order to apply Definition 23 directly for such proofs,
we need to construct a serialization of the history of low-level operations on both the file
and key objects and prove that the file and key operations are correctly interleaved in this
serialization and respect the appropriate consistency conditions. By Theorem 15, given a
key distribution and file access protocol that is each known to be consistent, verifying the
consistency of the encrypted file object is equivalent to verifying key monotonicity. To
prove that a history of key and file operations is key monotonic, it is enough to construct a
serialization of the file operations and prove that it does not violate the ordering of the key
operations. The simple proof of consistency of the example encrypted file object presented
in Section 5.5 demonstrates the usability of our framework.
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5.5 A Fork-Consistent Encrypted File Object

In this section, we apply our techniques to give an example of an encrypted file system
that is fork consistent. It has been shown (Mazieres and Shasha [2002]) that it is possible
to construct a fork consistent file system even when the file server is potentially Byzan-
tine. We use the SUNDR protocol (Mazieres and Shasha [2002]) together with our main
result, Theorem 15, to construct a fork consistent encrypted file system. For simplicity,
we present the protocol for only one encrypted file object, but our protocols can be easily
adapted to encrypted file systems.

System model. Users interact with the storage server to perform read and write opera-
tions on file objects. A file owner performs write operations on the key object associated
with the file it owns, and users that have access permissions to the file can read the key
object to obtain the cryptographic key for the file. There is, thus, a single writer to any key
object, but multiple readers. Each key write operation can be assigned a unique sequence
number, which is the total number of writes performed to that key object.

In our model, we store in a key object the key value and the key sequence number. For
a file object, we also store the sequence number of the key used to encrypt the file value.
We modify the write operation for both the FILE and KEY objects to take as an additional
input the key sequence number. Similarly, the read operation for both the FILE and KEY
objects returns the key sequence number (in addition to the object content).

In our example application, a symmetric encryption scheme E is used to encrypt files
(consisting of three algorithms Gen, E and D as defined in Section 4.1.3) and a signature
scheme (consisting of three algorithms Gen, Sign and Ver as defined in Section 4.1.4)
is used to protect the integrity of files. We assume that each user u of the file system
has its own signing and verification keys, SKu and PKu, and there exists a public-key
infrastructure that enables users to find the public keys for all other users of the file system.

In the description of our protocol, we distinguish three separate components: the im-
plementation of high-level operations provided by the storage interface, the file access
protocol and the key distribution protocol. We give the details about the implementa-
tion of the high-level operations and the file access protocol. For key distribution, any
single-writer protocol that implements a sequentially consistent shared object can be used
(e.g., Attiya and Welch [1994]), and we leave here the protocol unspecified. Finally, we
prove the consistency of the protocol using our main result.
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5.5.1 Implementation of High-Level Operations

The storage interface consists of four high-level operations similar to those presented in
Section 5.3. Their implementation is detailed in Figure 5.10.

1. In create file(F ), an encryption key for the file is generated using the Gen algorithm
of the encryption scheme. At the same time, the key sequence number stored locally
by the file owner in variable seq is incremented (the variable seq needs to be initial-
ized to 0). The user encrypts the file content F with the newly generated key and,
finally, writes both the KEY and FILE objects.

2. In write encfile(F ), the encryption key k and its sequence number seq are read first.
Then the user encrypts the file content F with the key value read and writes the
encrypted file and the key sequence number to the file object.

3. In F ← read encfile(), the values of the key and file objects and their sequence
numbers are read in variables (k, seq) and (C, seq′), respectively. The user checks
that C is encrypted with the key that has the same sequence number to the key read,
and retries if it did not read the correct key value. Finally, ciphertext C is decrypted
with key k, resulting in file content F .

4. In write key, the file object is read and decrypted using read encfile. Then, the file
is re-encrypted with a newly generated key using create file. In order to guarantee
that the latest version of a file is encrypted with the latest encryption key and that
the repeat loop in the implementation of the procedure read encfile terminates, this
procedure needs to be executed atomically (i.e., in isolation from all other clients’
operations).

The create file and write key procedures can only be executed by file owners upon
file creation and the change of the file encryption key, respectively. The write encfile and
read encfile procedures are executed by writers and readers of the file when they perform
a write or read operation, respectively.

5.5.2 The File Access Protocol

We first describe the original SUNDR protocol (Mazieres and Shasha [2002]) that con-
structs a fork consistent file system. We then present our modifications to the protocol
for guaranteeing consistency of an encrypted file object implemented with the high-level
operations given in the previous subsection.
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1. procedure create file(F ):
2. k ← Gen()
3. seq ← seq + 1
4. C ← Ek(F )
5. KEY.write(k, seq)
6. FILE.write(C, seq)

7. procedure write encfile(F ):
8. (k, seq) ← KEY.read()
9. C ← Ek(F )
10. FILE.write(C, seq)

11. procedure read encfile():
12. repeat
13. (k, seq) ← KEY.read()
14. (C, seq′) ← FILE.read()
15. until seq = seq′

16. F ← Dk(C)
17. return F

18. procedure write key():
19. F ← read encfile()
20. create file(F )

/* generate a new key */
/* increment the key sequence number stored locally */
/* encrypt the file with the new key */
/* invoke write operation on key object */
/* invoke write operation on file object */

/* invoke read operation on key object*/
/* encrypt the file with the key read */
/* invoke write operation on file object */

/* invoke read operation on file object */
/* invoke read operation on key object */
/* check that the key read matches the key used to encrypt the file */
/* decrypt the file with the key read */

/* read and decrypt file content */
/* generate a new key and encrypt the file with it */

Figure 5.10: The encrypted file protocol for client u.

The SUNDR protocol. In the SUNDR protocol, the storage server can be split into
two components: a block store (denoted SBS) on which clients can invoke read and write
operations on blocks and a consistency server SCONS that is responsible for ordering the
read and write operations to the block store in order to maintain fork consistency.

Both the client and the consistency server in the SUNDR protocol need to keep state.
SCONS keeps a version structure for each client, signed by the client, and each client keeps
a local copy of its own version structure. In more detail, the consistency server’s state
includes a version structure list or VSL consisting of one signed version structure per user,
denoted v[u], u = 1, . . . , U (U is the total number of users). Each version structure v[u]
is an array of version numbers for each client in the system: v[u][j] is the version number
of user j, as seen by user u. Version numbers for a user are defined as the total number of
read and write operations performed by that user. There is a natural ordering relation on
version structures: v ≤ w if and only if v[i] ≤ w[i] for all i = 1, . . . , U .
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Each version structure v also contains some integrity information denoted v.int. In
the SUNDR protocol, the integrity information is the root of a Merkle hash tree Merkle
[1989] of all the files the user owns and has access to. The integrity information is updated
by every client that writes a file. At every read operation, the integrity information in
the most recent version structure is checked against the file read from SBS. We assume
that there exists two functions for checking and updating the integrity information for a
file: check int(C, v) that given an encrypted file C and a version structure v checks the
integrity of C using the integrity information in v, and update int(C, v) that updates the
integrity information v.int using the new encrypted file C. We do not give here the details
of implementing these two functions.

A user u has to keep locally the latest version structure vs that it signed. The code for
user u is in Figure 5.11. At each read or write operation, u first performs the check cons
protocol (lines 5 and 9) with the consistency server, followed by the corresponding read or
write operation to the block store. SUNDR uses a mechanism to ensure that the check cons
protocol is executed atomically, but we skipped this for clarity of presentation. The code
for the block store and the consistency server for the “bare-bones” SUNDR protocol is in
Figures 5.12 and 5.13, respectively.

In the check cons protocol, the client first performs the vs request RPC with the con-
sistency server to receive the list of version structures of all users. The client first checks
the signatures on the version structures and checks that its own version structure matches
the one stored locally (lines 15-16). Then, the client creates a new version structure x that
contains the latest version number for each user (lines 17-20). In the new version structure,
the client’s version number is incremented by 1, and the integrity information is updated
only for write operations. Finally, the client checks that the version structures are totally
ordered and the new version structure created is the maximum of all (lines 21-22). This last
check guarantees that the version structures for successive operations seen by each client
are strictly increasing (with respect to the ordering relation defined for version structures).
If any of the checks performed by the client fails, then the client detected misbehavior of
SCONS and it aborts the protocol. The client sends the newly created signed version struc-
ture to the consistency server through the vs update RPC. SCONS checks that this version
structure is the maximum of all existing version structures (line 5 in Figure 5.13) to protect
against faulty clients.

We refer the reader to the paper of Mazieres and Shasha (Mazieres and Shasha [2002])
for more details and a proof of fork consistency of this protocol.

Modifications to the SUNDR protocol. We include in the version structure v of user u
a key sequence number v.seq, which is the most recent version of the key used by user u
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1. FILE.write(C, seq):
2. last op ← write
3. last seq ← seq
4. last file ← C
5. vmax ← check cons()
6. SBS.write(C)

7. FILE.read():
8. last op ← read
9. vmax ← check cons()
10. C ← SBS.read()
11. if not check int(C, vmax)
12. abort
13. return (C, vmax.seq)

14. check cons():
15. (v[1], . . . , v[U ]) ← SCONS.vs request()
16. verify the signatures on all v[i]
17. if v[u] 6= vs
18. abort
19. x[u] ← vs[u] + 1; x[j] ← v[j][j],∀j 6= u
20. x.int ← vs.int
21. if last op = write
22. update int(last file, x)
23. x.seq ← last seq
24. if (v[1], . . . , v[U ]) are not totally ordered or

∃i = 1, . . . , U : x ≤ v[i]
25. abort
26. vs ← x
27. SCONS.vs update(SignKu

(x))
28. return vmax = max(v[1], . . . , v[U ])

/* store locally the type of the operation */
/* store locally the key sequence number */
/* store locally the encrypted file C */
/* execute the version update protocol with SCONS */
/* write the encrypted file to the block store */

/* store locally the type of the operation */
/* execute the version update protocol with SCONS*/
/* read the encrypted file from the block store */

/* check the integrity of the encrypted file */

/* receive version structures of all users from SCONS */
/* abort if any of the signatures does not verify */
/* check its own version structure */

/* create a new version structure and initialize it */

/* for a write operation: */
/* update the integrity information in x */
/* update the key sequence number in x */
/* ensures that VSL is totally ordered and x is
greater than all the version structures from VSL */

/* store x locally */
/* send version structure to SCONS */
/* return the maximum version structure of all users */

Figure 5.11: The file access protocol for client u.

in a file operation. We extend the total order relation on version structures so that v ≤ w
if v[i] ≤ w[i] for all i = 1, . . . , U and v.seq ≤ w.seq. For each write operation, we
need to update the key sequence number in the newly created version structure (line 23 in
Figure 5.11). The key sequence numbers in the version structures guarantee that the file
operations are serialized according to increasing key sequence numbers.
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1. SBS.write(C) from u:
2. FILE ← C

3. SBS.read() from u:
4. return FILE to u

/* store C to the file object FILE*/

/* return content of file object FILE to u */

Figure 5.12: The code for the block store SBS.

1. SCONS.vs request() from u:
2. return (msg vsl, v[1], . . . , v[U ]) to u

3. SCONS.vs update(SignKu
(x)) from u:

4. verify the signature on x
5. if ∃i = 1, . . . , U : x ≤ v[i]
6. abort
7. else v[u] ← x

/* send the signed VSL to u */

/* abort if the signature does not verify */
/* check that x is greater than all version structures */

/* update the version structure for u */

Figure 5.13: The code for the consistency server SCONS.

5.5.3 Consistency Analysis

The file access protocol guarantees a forking serialization set for the file operations. Intu-
itively, the operations in a serialization for a process (which form a branch in the forking
tree) have totally ordered version structures (by line 24 in Figure 5.11 and line 5 in Fig-
ure 5.13). We extend the version structures to include the key sequence numbers. The
total order of the version structures implies that the file operations in a serialization for a
process have increasing key sequence numbers. This will allow us to prove that a history
of low-level operations resulting from an execution of the protocol is key-monotonic.

Proposition 16 Let Hl be a history of low-level read and write operations on the key
object KEY and file object FILE that is obtained from an execution of the protocol in Fig-
ure 5.10. If Hl|KEY is sequentially consistent and the file access protocol is implemented
with the protocol in Figure 5.11, then the execution of the protocol is enc-consistent.

Proof: Conditions (1), (2), (3) and (4) from Theorem 15 are satisfied. To apply the theo-
rem, we only need to prove that Hl is key-monotonic with respect to sequential consistency
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and fork consistency. In particular, it is enough to prove condition (SW-KM).

Let S be any fork consistent forking serialization set of Hl|FILE and F1 and F2 two file
write operations such that F1

S−→ F2. Let v1
max and v2

max be the two version structures
returned by the check cons protocol when F1 and F2 are executed. These are the version
structures denoted by x created in lines 19-23 of the protocol in Figure 5.11.

The protocol guarantees that v1
max ≤ v2

max, which implies that v1
max.seq ≤ v2

max.seq.
Line 23 in the protocol from Figure 5.11 guarantees that v1

max.seq contains the sequence
number of the key with which the encrypted file content written in operation F1 is en-
crypted. Similarly, v2

max.seq contains the sequence number of the key with which the
value written in operation F2 is encrypted.

Let k1 and k2 be the key write operations such that R(k1, F1) and R(k2, F2). v1
max.seq ≤

v2
max.seq implies that k1

lo−→ k2 or k1 = k2, which is exactly what condition (SW-KM)
demands. From Theorem 15, it follows that the execution of the protocol is (C1, C2)

enc-
consistent, where C1 is sequential consistency and C2 is fork consistency.

5.6 Related Work

SUNDR (Li et al. [2004]) is the first file system that provides consistency guarantees (i.e.,
fork consistency (Mazieres and Shasha [2002])) in a model with a Byzantine storage server
and benign clients. A misbehaving server might conceal users’ operations from each other
and break the total order among version structures, with the effect that users get divided
into groups that will never see the same system state again. SUNDR only provides data
integrity, but not data confidentiality. In contrast, we are interested in providing consis-
tency guarantees in encrypted storage systems in which keys may change, and so we must
consider distribution of the encryption keys, as well. We use the SUNDR protocol in
our example implementation from Section 5.5 and show how to obtain a fork consistent
encrypted file object with sequentially consistent key distribution.

For obtaining consistency conditions stronger than fork consistency (e.g., linearizabil-
ity) in the face of Byzantine servers, one solution is to distribute the file server across n
replicas, and use this replication to mask the behavior of faulty servers. Modern examples
include BFT (Castro and Liskov [1999]), SINTRA (Cachin and Poritz [2002]) and PA-
SIS (Abd-El-Malek et al. [2005]). An example of a distributed encrypting file system that
provides strong consistency guarantees for both file data and meta-data is FARSITE (Adya
et al. [2002]). File meta-data in FARSITE (that also includes the encryption key for the
file) is collectively managed by all users that have access to the file, using a Byzantine fault
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tolerant protocol. There exist distributed implementations of storage servers that guaran-
tee weaker semantics than linearizability. Lakshmanan et al. (Lakshmanan et al. [2001])
provide causal consistent implementations for a distributed storage system. While they
discuss encrypted data, they do not treat the impact of encryption on the consistency of the
system.

Several network encrypting file systems, such as SiRiUS (Goh et al. [2003]) and Plu-
tus (Kallahalla et al. [2003]), develop interesting ideas for access control and user revo-
cation, but they both leave the key distribution problem to be handled by clients through
out-of-band communication. Since the key distribution protocol is not specified, neither
of the systems makes any claims about consistency. Other file systems address key man-
agement: e.g., SFS (Mazieres et al. [1999]) separates key management from file system
security and gives multiple schemes for key management; Cepheus (Fu [1999]) relies on a
trusted server for key distribution; and SNAD (Miller et al. [2002]) uses separate key and
file objects to secure network attached storage. However, none of these systems addresses
consistency.

Another area related to our work is that of consistency semantics. Different applica-
tions have different consistency and performance requirements. For this reason, many dif-
ferent consistency conditions for shared objects have been defined and implemented, rang-
ing from strong conditions such as linearizability (Herlihy and Wing [1990]), sequential
consistency (Lamport [1979]), and timed consistency (Torres-Rojas et al. [1999]) to loose
consistency guarantees such as causal consistency (Ahamad et al. [1995]), PRAM con-
sistency (Lipton and Sandberg [1988]), coherence (Goodman [1989], Gharachorloo et al.
[1990]), processor consistency (Goodman [1989], Gharachorloo et al. [1990], Ahamad
et al. [1992]), weak consistency (Dubois et al. [1988]), entry consistency (Bershad et al.
[1993]), and release consistency (Lenoski et al. [1992]). A generic, continuous consis-
tency model for wide-area replication that generalizes the notion of serializability (Bern-
stein et al. [1987]) for transactions on replicated objects has been introduced by Yu and
Vahdat (Yu and Vahdat [2002]). We construct two generic classes of consistency condi-
tions that include and extend some of the existing conditions for shared objects.

Different properties of generic consistency conditions for shared objects have been
analyzed in previous work, such as locality (Vitenberg and Friedman [2003]) and com-
posability (Friedman et al. [2002]). Locality analyzes for which consistency conditions a
history of operations is consistent, given that the restriction of the history to each individ-
ual object satisfies the same consistency property. Composability refers to the combination
of two consistency conditions for a history into a stronger, more restrictive condition. In
contrast, we are interested in the consistency of the combined history of key and file op-
erations, given that the individual operations on keys and files satisfy possibly different
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consistency properties. We also define generic models of consistency for histories of op-
erations on encrypted file objects that consist of operations on key and file objects.

Generic consistency conditions for shared objects have been restricted previously only
to conditions that satisfy the eventual propagation property (Friedman et al. [2002]). In-
tuitively, eventual propagation guarantees that all the write operations are eventually seen
by all processes. This assumption is no longer true when the storage server is potentially
faulty and we relax this requirement for the class of forking consistency conditions we
define.
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Chapter 6

Conclusions

In this thesis, we have proposed three different mechanisms that could be used in securing
networked storage architectures. The new proposed algorithms could be implemented at
different layers (e.g., the object layer in object-based storage or the file layer in crypto-
graphic file systems) when securing a storage systems.

This dissertation has presented as a first contribution novel algorithms for integrity
checking in both block-level storage systems and cryptographic file systems. The algo-
rithms are efficient by exploiting the low entropy of a large majority of block contents in
real workloads. Several observations regarding the distribution of block and file accesses
give further opportunities for optimization in the algorithms. The distribution of the block
accesses in the disk traces we collected follow a power-law curve, with the majority of
blocks (around 65%) being written only once. The NFS file traces collected at Harvard
University exhibit a high sequentiality in file write accesses. A central idea in designing
the new integrity algorithms is to use block write counters to protect against replay attacks.
The particular observed distributions of block and file accesses allows a large reduction in
the amount of trusted storage needed to represent these counters. While the performance
and storage costs of the integrity algorithms for block-level storage are evaluated through
simulation, the integrity algorithms for file integrity are integrated in the EncFS crypto-
graphic file systems. A thorough evaluation on their performance relative to the Merkle
tree standard is given, showing the impact of both the file contents and the file access
patterns on the performance and storage costs of the new integrity algorithms.

A second contribution of this dissertation is to define a model of key management
schemes for cryptographic file systems using lazy revocation, called key-updating schemes.
Key-updating schemes can be used with any symmetric-key cryptographic algorithm to
evolve the cryptographic keys of a group after each user revocation. They have the prop-
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erty that older versions of the cryptographic keys of the group can be efficiently derived
from some current user-key distributed to all users having access right to the group at the
current time. The key-updating scheme based on a binary tree for deriving keys has loga-
rithmic trusted storage and user key size in the total number of revocations, and worst-case
logarithmic cost to update the keys after every revocation, and to extract any previous key.
Our simulation results show that it improves several orders of magnitude upon previously
proposed key-rotation schemes. Three characteristics make the new integrity and key man-
agement algorithms very practical: first, they do not require a modification of the storage
interface; secondly, they minimize the amount of trusted storage; and, thirdly, they add a
reasonable performance overhead.

Finally, this dissertation analyzes theoretically the consistency of an encrypted file
object, for some generic classes of consistency conditions that generalize and extend well-
known conditions for shared objects. In a model in which the encryption key for a file is
viewed as a shared object, the consistency of both the file and the key object that encrypts
the file contribute to the consistency of the encrypted file. The thesis presents necessary
and sufficient conditions for the file access and key distribution protocols that guarantee the
consistency of an encrypted file object, assuming some initial conditions are met. General
conditions are given for the case in which the encryption key for a file could be written
by all processes. In typical cryptographic file systems, the encryption key for a file is
modified by a single user (e.g., the file owner or a trusted key distribution server), and we
give simpler conditions for this particular case. The framework simplifies complex proofs
for showing the consistency of encrypted file objects, as demonstrated by our example
implementation of a fork consistent encrypted file object.

There are a number of open problems and future work directions suggested by this
dissertation. In the area of integrity checking (not necessarily in file systems), are there
any algorithms more efficient than Merkle trees independent of the data characteristics that
reduce the amount of storage for integrity and the integrity bandwidth? Is there some prov-
able lower bound on the amount of storage for integrity used by any integrity algorithm
and an algorithm that meets this bound? Our new integrity algorithms for data encrypted
with a tweakable cipher distinguish the blocks written to disks from uniformly random
blocks by computing their entropy and comparing it with a given threshold. We have also
experimented with a randomness test based on compression levels of block contents (i.e.,
a block is considered random if it cannot be compressed enough), but it was extremely
inefficient and we did not include the results here. Another interesting question raised by
our work is if there exists other efficient randomness tests with a provable bound on the
false negative rate.

In the area of consistency for encrypted objects, we make an initial contribution in
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defining consistency for two generic classes of consistency conditions and giving some
conditions under which they can be realized. An important question is what are the right
notions of consistency for file systems (encrypted and not encrypted). In particular, if the
storage servers are Byzantine, what is the highest level of consistency that can be achieved?
Is that fork consistency? Are there any more efficient implementations of forking condi-
tions (i.e., fork consistency and weaker conditions from class CF ) than the existing ones?
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