
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

Near-Optimal Constrained Padding for 
Object Retrievals with Dependencies

Pranay Jain, Duke University; Andrew C. Reed, United States Military Academy; 
Michael K. Reiter, Duke University

https://www.usenix.org/conference/usenixsecurity24/presentation/jain



Near-Optimal Constrained Padding for Object Retrievals with Dependencies

Pranay Jain
Duke University

Andrew C. Reed
United States Military Academy

Michael K. Reiter
Duke University

Abstract
The sizes of objects retrieved over the network are power-
ful indicators of the objects retrieved and are ingredients in
numerous types of traffic analysis, such as webpage finger-
printing. We present an algorithm by which a benevolent
object store computes a memoryless padding scheme to pad
objects before sending them, in a way that bounds the in-
formation gain that the padded sizes provide to the network
observer about the objects being retrieved. Moreover, our al-
gorithm innovates over previous works in two critical ways.
First, the computed padding scheme satisfies constraints on
the padding overhead: no object is padded to more than c× its
original size, for a tunable factor c > 1. Second, the privacy
guarantees of the padding scheme allow for object retrievals
that are not independent, as could be caused by hyperlinking.
We show in empirical tests that our padding schemes improve
dramatically over previous schemes for padding dependent ob-
ject retrievals, providing better privacy at substantially lower
padding overhead, and over known techniques for padding
independent object retrievals subject to padding overhead
constraints.

1 Introduction

Extracting information about the contents of encrypted traffic
from other features of the traffic, or so-called traffic analy-
sis, is a topic with a long history and that remains relevant
today in the context of, e.g., webpage fingerprinting (see
Sec. 2). Among the most difficult network-visible features
to obscure is the size of objects transmitted over the network,
since thoroughly doing so incurs substantial cost. For this
reason, even many systems designed to support private or
anonymous communication do not attempt to address this
side channel [16, 32, 45, 52] or assume it away by stipulating
that messages be small and fixed-size (e.g., [1, 14]).

The premise of this paper is that the research community
can facilitate the adoption of pretty good defenses against
traffic analysis by benevolent—but perhaps not generous—
service providers, by first constraining the costs that will be

incurred by the service provider for providing privacy and then
enabling the service provider to implement the best privacy
protections possible subject to those cost constraints. To that
end, in this paper we consider a specific but broadly relevant
instance of this problem: an object store that serves objects in
response to client requests. We seek to equip the object store
with a scheme for padding objects before returning them to
clients (encrypted) so as to best hide from a network observer
which objects are returned to clients, while adhering to the
constraint that the padding can increase each object to at most
c× its original size for a specified constant c > 1. Since we
allow the network observer to be a client of the object store,
as well, we presume the observer knows all of the original
object sizes, before padding.

Reed and Reiter [43] recently addressed exactly this prob-
lem in the case of independent object retrievals, as will be
detailed in Sec. 2. However, there are few, if any, practical
circumstances in which object retrievals are truly independent.
Perhaps the most prominent reason is hyperlinking between
objects, as between web objects, which can result in one ob-
ject being retrieved after another (either automatically or by
user action) in a causal fashion. Even when not causally re-
lated, retrievals in most applications will exhibit correlations,
e.g., based on the topic to which the objects pertain. Unfor-
tunately, achieving an optimal padding scheme (to achieve
some well-defined notion of privacy) for dependent object
retrievals is a challenging problem, as demonstrated by a lim-
ited literature rife with heuristic solutions only (again, see
Sec. 2).

In this paper we take a significant step forward for the case
of dependent object retrievals, by providing and evaluating
an efficient algorithm to generate a padding scheme for an
object store. This padding scheme prescribes how to pad ob-
jects before serving them, to hide the object identities from
a network observer able to see their padded sizes. The mea-
sure of leakage that we use in this work is the Sibson mutual
information of order infinity, denoted I∞(S;Y) and defined
in Sec. 4, where S is a random variable representing the se-
cret (i.e., the object(s) retrieved) and Y is a random variable
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representing what the adversary observes (i.e., the padded
object size(s)). Issa, et al. [26] advocate for this measure of
leakage because it bounds the information gain I(S;Y) that Y
provides to the adversary (i.e., I(S;Y)≤ I∞(S;Y)) regardless
of the distribution of S and because it has a natural operational
interpretation [26]. We reiterate that our efforts to minimize
I∞(S;Y) are provided subject to a constraint that no object
be padded to more than c× its original size, for a tunable
constant c > 1. As such, the object store’s bandwidth use—
per retrieval, per client, and overall—will grow by at most a
factor of c. Moreover, the padding scheme produced by our
algorithm is memoryless, and so the object store need not
track a client’s retrievals to know how to pad objects for it.

We demonstrate the practicality of our algorithm by apply-
ing it to three real-world datasets and comparing the padding
scheme it produces to other padding schemes in the literature
for protecting the identities of objects retrieved from being
leaked by their padded sizes [5, 34, 35]. While these other
schemes were designed to achieve different privacy measures,
we nevertheless show that the scheme produced by our al-
gorithm, measured using their measures of privacy, provides
competitive results with far less padding overhead. We also
show that for our measure of privacy, the schemes in previous
works fare poorly compared to ours, even while incurring or-
ders of magnitude greater padding overhead. The datasets on
which we demonstrate these improvements were chosen to be
representative of ones in which dependent object retrievals are
commonplace, namely a dataset of autocomplete lists sent in
response to increasingly long sequence of characters (which
is typical in search engines), and two datasets of hyperlinked
web objects.

To reiterate, our contributions are as follows:

• We devise an efficient algorithm to generate a padding
scheme that prescribes how to pad objects before serv-
ing them in response to requests. The resulting padding
scheme approximately minimizes (specifically, mini-
mizes an upper bound on) I∞(S;Y), for object retrievals
S padded to sizes Y, subject to constraints that it be mem-
oryless and that no object be padded to more than c× its
original size for a specified constant c≥ 1.

• We introduce three object datasets with dependencies
among object retrievals: a Google Autocomplete dataset
that models suggestions for search queries; a Wikipedia
dataset that models a dense graph of interconnected
pages; and a Linode documentation dataset that models
a tree-like browsing pattern, where a user navigates to a
particular page on a website by starting at the index. On
these datasets, we show empirically that our algorithm
produces padding schemes that substantially outperform
previous work. Even in comparisons to previous algo-
rithms on different privacy measures they were designed
to optimize, our algorithm achieves comparable privacy
with dramatically lower (and bounded) padding over-

head. In comparisons that test an adversary’s precision
and recall in identifying sequences of object retrievals,
our algorithm provides better security in most cases, with
the same or lower padding overhead.

2 Related Work

The study of padding schemes that minimize information
leakage about the objects being retrieved is a topic that has
received considerable attention in the literature. There are two
camps of closely related work, one focused on privacy for
dependent object retrievals (as we consider here) but without
constraints on padding overhead, and another that allows for
constraints on padding overhead (as we do here) but assum-
ing independent object retrievals. We introduce these areas
of related work below, and then elaborate on several more
distantly related areas of research.

2.1 Dependent object retrievals
Padding schemes that attempt to reduce leakage about the
objects retrieved when retrievals are dependent have been
studied for about the past decade, to our knowledge. Backes,
et al. [5] proposed one design that assumes that object re-
trievals satisfy a Markov assumption, i.e., that the client’s
next object retrieval is only dependent on the object it most
recently retrieved. The measure of leakage that they seek to
minimize is I(S;Y), though they do so only heuristically. Liu,
et al. proposed methods to render sequences of retrieved ob-
ject sizes either k-anonymous [44, 48], meaning that at least
k objects are padded to every possible padded size [35], or
`-diverse [37], meaning that no object accounts for more than
1
` of any padded size’s probability [34]. None of these algo-
rithms, however, accommodate the specification of padding
overhead constraints. Indeed, the Liu, et al. algorithms [34,35]
are generally not consistent with a padding constraint c if, e.g.,
there is an object for which the allowed padding range does
not intersect the allowed padding ranges of k−1 other objects.
We show in our experiments that the overhead they therefore
impose is dramatic on the datasets we consider.

2.2 Padding overhead constraints
To our knowledge, object padding schemes subject to padding
overhead constraints as we consider here have received atten-
tion primarily within the last several years (e.g., [12, 40, 43]).
The latest work in this area [43] proposes algorithms to gen-
erate padding schemes that optimally hide objects from a
network observer in several cases of interest: for an object
store that pads its objects once but serves them repeatedly, a
padding scheme that is deterministic and that minimizes infor-
mation gain I(S;Y) among all deterministic schemes; for an
object store that can re-pad objects each time it serves them,
a padding scheme that is probabilistic and that minimizes
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I(S;Y); and for an object store that cannot trust (or does not
wish to track) the distribution of object retrievals, a padding
scheme that minimizes I∞(S;Y). This last algorithm, called
PwoD, provides a close comparison point for our work, since
it targets the same leakage measure (i.e., I∞(S;Y)) and adopts
the same form of padding overhead constraint. However, the
guarantees of these algorithms hinge on object retrievals be-
ing independent, which is exactly the assumption we intend
to relax in this paper.

2.3 Webpage fingerprinting

More distantly related work includes research in webpage
fingerprinting, by which a network adversary attempts to dis-
cern the webpage or website that a client is visiting, based on
traffic features the attacker can observe. Some works have ex-
plored padding of web objects as a defense against such traffic
analysis (e.g., [12, 47]) but, to our knowledge, no such work
has shown how to maximize privacy (by a precise measure)
subject to a bandwidth overhead constraint, as we do here.
The vast majority of the research in webpage fingerprinting is
specific to the networking context via which the web objects
are transferred to the client, leveraging features—for attack
or defense—of TCP and/or HTTP (e.g., [36, 47]), HTTPS
(e.g., [2, 11, 15, 19, 39]); web proxies (e.g., [24, 47]); SSH
proxies (e.g., [6,33]); or Tor (e.g., [7,12,22,23,27,41,49,50]).
We stress that our research focuses specifically on object sizes,
allowing this feature to be discernible to the network attacker,
whatever the network context. Our study therefore addresses
a central challenge in defending against webpage fingerprint-
ing [17], though by no means the only one [51].

2.4 Untrusted object store

In our threat model (see Sec. 3), the object store is trusted. A
substantial body of literature, in contrast, addresses a threat
model wherein the object store is itself the adversary from
which the secret should be hidden (e.g., [8, 21, 25, 30, 31]).
For example, in private information retrieval [13], this secret
is the object retrieved, whereas in searchable encryption [46],
the secret is the search term resulting in the retrieval of a set
of objects. This threat model is more permissive than ours
and so typically requires tools to address it that are different
in nature, and that are more expensive, than we consider here,
including introducing fake queries (e.g., [20,38,42]); breaking
retrievals into multiple fixed-size queries of total size larger
than the original object and so that themselves are padded
(e.g., [28, 29]); or using oblivious RAMs (e.g., [4, 9, 10, 18]).
In contrast, our approach does not alter the communication
pattern between the client and object store, aside from padding
each object to within a factor of c of its original size.

3 Problem Statement

We consider a trusted object store that stores n fixed-size ob-
jects {objs}s∈S where #S = n (and #S denotes the cardinality
of S), and serves them to clients over encrypted channels.
Each client request contains the identifier s of the object to
return, which we presume to be of constant size. Objects
themselves, however, can be of different sizes; in symbols,
if |objs| denotes the size of object objs, then for s 6= s′, it
can be the case that |objs| 6= |objs′ |. Even though objects are
returned on encrypted channels, the size of each object (as
transmitted, after padding) will be revealed to our adversary,
a network observer. This network observer seeks to identify
which objects were retrieved by a client, given their sequence
of padded sizes. Since we allow the network observer to also
be a client of the object store and so to retrieve objects itself,
the adversary knows the unpadded size |objs| of each objs.

3.1 Padding scheme

Our goal is to provide an algorithm to compute a padding
scheme d·e for {objs}s∈S. Formally, d·e takes as input an ob-
ject identifier s and an object size |objs| and produces a padded
object size (a positive integer) with properties defined below.
To emphasize that padding will be applied to this object be-
fore transmission, we denote this invocation of d·e by simply
dobjse, and when convenient, we will also use dobjse to de-
note the padded object or its size. The padding scheme d·e is
itself randomized, and so repeated invocations of it with the
same object (i.e., same object identifier and size) can return
different results. Moreover, since s is an input to d·e, dobjse
can behave differently from dobjs′e even if objs and objs′ are
of the same size.

The padding scheme d·e that our algorithm will solve for
should be memoryless in the sense that the object store does
not need to track each user’s retrieval history in order to im-
plement the padding scheme. We believe that this ensures that
our technique is as broadly implementable as possible. First,
there is the obvious cost saving for not having to store every
user’s retrieval history. Second, our technique is “privacy-
friendly,” i.e., it will work if an object store cannot store the
retrieval history of its users, whether that is due to (i) gov-
ernment regulation, (ii) privacy-aware tools employed by the
user, or (iii) as a feature of the object store itself.

Let S be a random variable denoting the identifier of the
object a client retrieved from the object store, and let Y be
a random variable denoting the size to which it was padded
when retrieved; i.e., Y takes the value dobjse when S= s. Our
first requirement, discussed in Sec. 1, is that padding never
grow an object by a factor of more than c, for a padding factor
c≥ 1.

P
(
Y > c×|objs|

∣∣ S= s
)
= 0 (1)

In addition, we assume that objects cannot be compressed

USENIX Association 33rd USENIX Security Symposium    4089



before their transmission over the network, and so

P
(
Y < |objs|

∣∣ S= s
)
= 0 (2)

While numerous networking technologies do compress data
before transmitting it, we presume that the same network-
stack layer that pads the object then encrypts it, rendering the
object incompressible by network layers underneath it.

Before we present the privacy goals for the padding scheme
d·e in Sec. 3.2, note that due to (1)–(2), it might not be possi-
ble for the padding scheme to protect the privacy of all object
retrievals. That is, if one object objs is of a size such that
[|objs|,c×|objs|]∩ [|objs′ |,c×|objs′ |] = /0 for each other ob-
ject objs′ , then (1)–(2) leave no option but for objs to be the
only possible object being retrieved when a retrieval of size
dobjse is observed on the network. This observation informs
the privacy goal we adopt in Sec. 3.2.

In the remainder of this paper, we treat mathematical ex-
pressions in which c or c− 1 is a factor to be integers. In
particular, for notational simplicity, we omit the floor function
when writing c×|objs|, (c−1)×|objs|, etc., and simply treat
them as integers.

3.2 Privacy measure

We would like to produce a padding scheme so that sequential
invocations of d·e leak as little about the identities of the
requested objects as possible, subject to the constraints on the
padding scheme discussed in Sec. 3.1. Issa, et al. [26] argue
that the leakage about the value of a discrete random variable
S with support S by observing the value of another random
variable Y is best captured by

I∞(S;Y) = log2 ∑
y

max
s∈S

P
(
Y = y

∣∣ S= s
)

(3)

Both Issa, et al. [26] and Alvim, et al. [3] advocate for the
use of I∞(S;Y) as a measure of leakage as it upper-bounds
an adversary’s multiplicative gain in correctly guessing any
function of S after observing Y, over all distributions of S.

To highlight that we are concerned here with sequences
of possibly dependent object retrievals, we extend (3) to se-
quences. Specifically, let ~S⊆ S∗ be a set of sequences of ob-
ject retrievals, let~s ∈~S denote a sequence of object retrievals,
and let~S be a random variable with support ~S. (We assume
P
(
~S=~s

)
> 0 for all~s ∈~S.) We denote the i-th element of a

sequence~s by~si, and the length of~s by len(~s).
For each s ∈ S, let

Ys ⊆ [|objs|,c×|objs|] (4)

be the padded object sizes that we allow for dobjse. While Ys
might be all of [|objs|,c×|objs|], it need not be, and indeed

we will leverage this flexibility in Sec. 4. We define

~Y~s = Y~s1 ×·· ·×Y~slen(~s)
(5)

~Y =
⋃
~s∈~S

~Y~s (6)

In words, ~Y~s is the set of all possible sequences to which
~s could be padded, and ~Y is the set of all possible padded
sequences. Finally, let ~Y be a random variable taking on a
sequence of padded sizes. Given this notation, we interpret
(3) in our context as

I∞

(
~S;~Y

)
= log2 ∑

~y∈~Y
max
~s∈~S

P
(
~Y =~y

∣∣~S=~s
)

(7)

Our goal, then, is to produce a padding scheme d·e that mini-
mizes (7).

4 Design

In this section we present a linear program that minimizes
an upper-bound on I∞

(
~S;~Y

)
. We then describe a technique

that allows us to reduce the number of variables in the linear
program, thereby enabling it to run more efficiently on large
datasets.

4.1 Linear program
Below, we denote the i-th element of a sequence~y by~yi, and
the i-th element of a sequence taken on by random variables~S
and ~Y by~Si and ~Yi, respectively. For any~y and~s of the same
length, and any i′ ∈ [len(~y)] = {1, . . . , len(~y)},

len(~y)

∏
i=1

P
(
~Yi =~yi

∣∣~Si =~si
)
≤ P

(
~Yi′ =~yi′

∣∣~Si′ =~si′
)

(8)

since each probability is ≤ 1. By summing (8) over i′ ∈
[len(~y)], we can conclude

len(~y)
len(~y)

∏
i=1

P
(
~Yi =~yi

∣∣~Si =~si
)
≤

len(~y)

∑
i′=1

P
(
~Yi′ =~yi′

∣∣~Si′ =~si′
)

(9)

As a result, we can upper-bound (7) as

I∞

(
~S;~Y

)
= log2 ∑

~y∈~Y
max
~s∈~S

len(~y)

∏
i=1

P
(
~Yi =~yi

∣∣~Si =~si
)

(10)

≤ log2 ∑
~y∈~Y

max
~s∈~S

1
len(~y)

len(~y)

∑
i′=1

P
(
~Yi′ =~yi′

∣∣~Si′ =~si′
)

(11)

where (10) follows from (7) because our padding scheme is
memoryless and (11) follows from (10) by substituting (9).
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minimize ∑
~y∈~Y

Π
~y subject to (12)

∑
y∈Ys

π
y
s = 1 ∀s ∈ S (13)

π
y
s ≥ 0 ∀s ∈ S,y ∈ Ys (14)

π
y
s ≤ 1 ∀s ∈ S,y ∈ Ys (15)

Π
~y ≥ 1

len(~y)

len(~y)

∑
i=1

π
~yi
~si

∀~s ∈~S,~y ∈~Y~s (16)

Figure 1: LP to minimize (11).

We formulate a linear program (LP) to min-
imize (11). It uses a variable π

y
s to represent

P
(
Y = y

∣∣ S= s
)
, and a variable Π~y to represent

max~s∈~S
1

len(~y) ∑
len(~y)
i′=1 P

(
~Yi′ =~yi′

∣∣ ~Si′ =~si′
)
. This LP is

shown in Fig. 1. Constraints (13)–(15) ensure that π
y
s forms

a probability distribution for each s ∈ S. Constraint (16),
together with the minimization objective (12), ensure that a
solution to the LP sets Π~y to its intended value. Once solved,
the object store can instantiate a padding scheme d·e by
padding objs to size y (i.e., dobjse = y) with probability π

y
s ;

i.e., P
(
Y = y

∣∣ S= s
)
← π

y
s .

Note that any two distinct sequences~s,~s ′ ∈~S, even if of the
same length (len(~s) = len(~s ′)) and consisting of the same ob-
jects ({~si}i∈[len(~s)] = {~s ′i}i∈[len(~s ′)]), will result in a constraint
of the form (16) for every ~y ∈~Y~s ∩~Y~s ′ . That is, our LP opti-
mizes the probabilities of padded sequences based on both
length and the order of object sequences that can pad to them.

4.2 Efficiency
The LP presented in Sec. 4.1 has #Ys variables π

y
s for each

s ∈ S. The LP also includes one variable Π~y for each~y ∈~Y ;
recall that #~Y also depends on #Ys for s ∈ S (see (5)–(6)). As
such, reducing #Ys for each s is central to scaling this LP. At
the same time, the values in Ys must be chosen to maximize
the intersection with other Ys′ sets, subject to each of these
sets being small (and subject to (1)–(2)), so that the LP has
the opportunity to pad objects to the same size.

To accomplish these contradictory goals, we consider the
anchor sizes of the object set, defined as follows. Let X rep-
resent the set of all unpadded sizes; i.e., x ∈ X implies that
there exists an object for which |objs| = x. For any X ′ ⊆ X ,
define the anchor sizes A(X ′) inductively as follows:

A
(
X ′
)
= {a

(
X ′
)
}∪A

(
X ′ \B

(
X ′
))

where (17)

a
(
X ′
)
= minX ′ and (18)

B
(
X ′
)
= {x′ ∈ X ′ : x′ ≤ c×a

(
X ′
)
} (19)

In words, the anchor sizes of X ′ include the smallest unpadded
object size of X ′ (see (18)) and the anchor sizes of the set

remaining after removing all sizes at most c times this anchor
size (see (17), (19)). Note that for any two a,a′ ∈ A(X), it will
be the case that [a,c×a]∩ [a′,c×a′] = /0.

For a fixed parameter k ≥ 1, we select up to k candidate
padding sizes Ŷa from [a,c×a] of approximately equal dis-
tance apart. Specifically, we select

Ŷa = {a+ zq+min{z,r}}z∈[k] (20)

where (c−1)a = qk+ r and 0≤ r < k. Then, we set

Ys = [|objs|,c×|objs|]∩
⋃
a∈A

Ŷa (21)

No Ys is empty, since at least c× a ∈ Ys for the largest an-
chor size a ∈ A(X) such that a ≤ |objs|. Moreover, for any
s ∈ S, there are at most two anchor sizes a,a′ ∈ A(X) such
that [|objs|,c×|objs|] ⊆ [a,c×a]∪ [a′,c×a′]. So, #Ys ≤ 2k,
ensuring that #Ys is small. Finally, by limiting each Ys to ele-
ments of

⋃
a∈A Ŷa, we encourage common padding sizes for

objects.
For the remainder of this paper we refer to our LP as

Padding for Sequences (PFS).

5 Evaluation

In this section we begin by describing the datasets that we
created for our assessments and then present three algorithms
for padding objects to which we compare. We compare PFS
to each of them according to their intended privacy metric
and others. We conclude the section with an assessment of the
padding overhead that results from each algorithm’s padding
scheme for each dataset.

5.1 Datasets
For our experiments, we constructed three datasets. We con-
structed these datasets to be representative of datasets used to
evaluate previous padding schemes and to provide significant
variations in object sizes and numbers of sequences.

Each dataset consists of (i) a selection of objects
from a given object store, which we denote {objs}s∈S;
(ii) the set of possible sequences of object retrievals
~S; and (iii) distributions P(S= s), P

(
~S1...i =~s1...i

)
, and

P
(
~Si+1 = s′ |~Si = s

)
, since some algorithms to which we

compare require these distributions. Below, we let E de-
note the set of directed edges in the sequences ~S, i.e., E ={
(s,s′)

∣∣∣ ∃~s ∈~S, i ∈ [len(~s)−1] :~si = s∧~si+1 = s′
}

.

For each dataset, in order to create ~S, we first created a set
of maximal length sequences which we denote as~SΩ. We then
created ~S as

~S =
⋃

~s∈~SΩ

⋃
i∈[len(~s)]

{~s1...i} (22)
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where ~s1...i represents the subsequence of ~s up to, and in-
cluding, the i-th object. In words, ~S is the prefix closure
of ~SΩ. Finally, for each i ∈ [max~s∈~SΩ len(~s)] we calculate

P
(
~S1...i =~s1...i

)
as

P
(
~S1...i =~s1...i

)
=

∑~s ′∈~SΩ:~s ′1...i=~s1...i
count(~s ′)

∑~s ′′∈~SΩ:len(~s ′′)≥i count(~s
′′)

(23)

In (23), for each~s∈~SΩ we use count(~s) to represent a dataset-
specific statistic from which we can calculate a distribution.

Google Autocomplete dataset This dataset was created in
January 2023 and models the distribution of responses from
Google search autocomplete suggestions. For a given search
string, Google responds with a list of autocomplete sugges-
tions for each prefix of the string. To obtain these autocom-
plete responses, we wrote a script that takes a list of words
as input and queries the Google autocomplete API for each
successive prefix of each word. The dictionary of words was
obtained from xkcd Simple Writer1, a dataset containing the
1,000 most common English words. In this dataset, each s∈ S
is a prefix of a word, and objs is Google’s autocomplete re-
sponse for that prefix. Each (s,s′) ∈ E, then, represents two
consecutive queries of word prefixes in which s′ extends s by
one character and in which s′ is a prefix of some word in the
dataset. We define ~SΩ to contain each sequence~s of prefixes
of increasing length (i.e.,~si is a word prefix of i characters)
such that~slen(~s) is a word in the dataset. In total, after omit-
ting plurals of words that are formed by simply adding the
letter ‘s’, for this dataset #~SΩ = 899 words, #S = 3,870 word
prefixes, and #E = 3,846 word prefix extensions. Moreover,
#~S = #S since each s ∈ S is a prefix of a word and since ~S is
the prefix closure of ~SΩ.

In addition to S and E, the method of Backes, et al. [5]
also requires the transition probabilities between word pre-
fixes, i.e., an actual value for P

(
~Si+1 = s′

∣∣~Si = s
)

for each
(s,s′) ∈ E. We model this using the technique they proposed,
which uses the number of search results returned by Google
for a given word ~slen(~s) as the value for count(~s), and then
P
(
~Si+1 = s′

∣∣~Si = s
)

is estimated as

P
(
~Si+1 = s′

∣∣~Si = s
)
=

∑~s ′∈~SΩ:~s ′i+1=s′∧~s ′i=s count(~s
′)

∑~s∈~SΩ:~si=s count(~s)
(24)

Wikipedia dataset This dataset was created in June 2023
and models pages retrieved during web surfing. It was created
by selecting s = https://en.wikipedia.org/wiki/Cat
to obtain the HTML of the web page as objs. We then selected
the first 50 hyperlinks (to articles) on this page and included
those in S, retrieving the HTML of the web page for each.
We repeated this step once more for these added pages, but

1https://xkcd.com/simplewriter/words.js

increased the number of hyperlinks that we added from those
pages to the first 100. We increased from 50 to 100 hyperlinks
to help increase the reach of this dataset, as we observed that
the articles had many common hyperlinks.

This initial step yielded a set of #S = 2,804 articles. To then
create the set of sequences ~SΩ, for each s ∈ S, we generated
two random walks of length six that both begin at s as the
start vertex. This resulted in #~SΩ = 5,606 unique sequences
of webpages that a user might explore while browsing among
the articles included in S with an associated #E = 10,182
hyperlinks. Taking the prefix closure of these sequences then
yielded #~S = 32,683.

For this dataset, we used the Wikipedia Page Views API to
instantiate count(~s) for each~s ∈ ~SΩ. To do so, we retrieved
the total number of page views for each s ∈ S for January
2016, which we denote as pv(s). For each~s ∈~SΩ we then set
count(~s) equal to its average page views, i.e.,

count(~s) =
∑

len(~s)
i=1 pv(~si)

len(~s)
(25)

Finally, we instantiated P
(
~Si+1 = s′

∣∣~Si = s
)

for each (s,s′)∈
E as

P
(
~Si+1 = s′

∣∣~Si = s
)
=

1
#{ŝ : (s, ŝ) ∈ E}

(26)

We reiterate that this dataset only captures the size of each
article’s HTML file. We address this limitation with our next
dataset, though we stress that our goal for all of our datasets
is to enable a meaningful comparison of candidate padding al-
gorithms (described below) based on the privacy they achieve
and padding overhead they induce. Our goal is not to make
specific claims about privacy in the context of Wikipedia
retrievals, for example.

Linode dataset As with the Wikipedia dataset, this dataset
models pages retrieved during web surfing where S represents
webpages and E represents hyperlinks between webpages.
It was created by crawling the Linode documentation web-
site2 in April 2020. A difference from the Wikipedia dataset,
though, is that in the Linode dataset |objs| represents the total
sum of data for the given page’s HTML file and all the hyper-
linked objects that would be retrieved automatically (images,
scripts, etc.).

Another difference between our Wikipedia and Linode
datasets is the way in which we generated maximal length
sequences. Let shome = https://www.linode.com/docs.
Then, for each s ∈ S \{shome} we include in ~SΩ all shortest
paths from shome to s. In other words,~s∈~SΩ iff: (i)~s1 = shome,
(ii)~slen(~s) 6= shome, and (iii)~s is a shortest path. This dataset
therefore models a user that begins at the Linode documen-
tation homepage and then navigates to a destination page

2The crawl included every webpage and linked-to file where the URL
began with https://www.linode.com/docs.
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Table 1: Dataset statistics.

Statistic Autocomplete Wikipedia Linode

mins∈S |objs| 11B 36,425B 438B
medians∈S |objs| 330B 203,310B 101,325B

maxs∈S |objs| 480B 1,745,780B 15,406,625B
#S 3,870 2,804 1,569

#~SΩ 899 5,606 2,095
#~S 3,870 32,683 2,096
#E 3,846 10,182 2,029

by clicking as few links as possible. The dataset contains
#S = 1,569 webpages, #~SΩ = 2,095 unique sequences of web-
pages, and #E = 2,029 links between webpages. Since the
sequences in this dataset are all shortest paths, taking the pre-
fix closure of ~SΩ only yields one additional sequence: the
sequence of length one that consists of shome.

As this dataset does not have an accompanying Page Views
API, for each~s ∈~SΩ we set count(~s) = 1 and we instantiated
P
(
~Si+1 = s′

∣∣~Si = s
)

for each (s,s′) ∈ E as

P
(
~Si+1 = s′

∣∣~Si = s
)
=

1
#{ŝ : (s, ŝ) ∈ E}

(27)

Dataset statistics In Table 1 we list various statistics for
each of our datasets. The Linode dataset presents the widest
variation of object sizes, ranging across five orders of mag-
nitude, despite it having the fewest number of objects (#S)
of any of the datasets. The Wikipedia dataset stands out as
having both the largest #~SΩ and #~S since our strategy for cre-
ating this dataset ensured that it consisted of a large number
of maximal length sequences which do not share prefixes.

5.2 Comparison algorithms
Here we detail the three algorithms to which we compare.
We selected these algorithms as they each target a different
privacy metric, and so comparing to all three provides a robust
assessment of PFS.

BDK Backes, et al. [5] propose an algorithm to create a de-
terministic (i.e., per-object) padding scheme d·e such that,
for any padded sizes y,y′ ∈ Y and any s,s′ ∈ S such that
dobjse= dobjs′e= y,

∑
ŝ∈S:

dobjŝe=y′

P
(
~Si+1 = ŝ

∣∣~Si = s
)
= ∑

ŝ∈S:
dobjŝe=y′

P
(
~Si+1 = ŝ

∣∣~Si = s′
)

(28)

In other words, for any two objects objs and objs′ that pad to
size y, it must be equally likely for each that its retrieval will be
followed by a retrieval padded to size y′. In the remainder of
this paper, we refer to the Backes, et al. algorithm as “BDK”.

BDK assumes that the generation of object retrieval se-
quences can be modeled as a Markov chain (i.e., that the
distribution over the next object retrieved depends only on
the previous). Subject to this assumption, it efficiently cal-
culates entropy H

(
~Y
)

for any arbitrary sequence length. It
therefore works by randomly producing many candidate per-
object padding schemes d·e and then selecting the scheme d·e
that produces the lowest H

(
~Y
)

for a target average padding

overhead. H
(
~Y
)

, then, serves as an upper-bound for I
(
~S;~Y

)
,

i.e., the mutual information between~S and ~Y.

MVMD and MVMD-D Whereas BDK seeks to control
H
(
~Y
)

—and thereby I
(
~S;~Y

)
—Liu, et al. [34, 35] propose

techniques that strive to ensure different metrics, namely k-
anonymity and `-diversity. In the summary of these algo-
rithms below, recall that we use the subscript 1 . . . i to indicate
the subsequence of a sequence from the first through the i-th
element, inclusive; e.g.,~s1...i represents the subsequence of
~s up to, and including, the i-th object. Similarly, ~S1...i repre-
sents the set of all such subsequences, and~S1...i represents the
random variable over this set. Note that this notation will also
be applied to~y,~Y , and ~Y with the same interpretation.

Now, for the k-anonymity setting, a per-object padding
scheme d·e is said to provide k-anonymity for sequences if,
∀~y ∈ ~Y such that P

(
~Y =~y

)
> 0, and ∀i ∈ [len(~y)], it holds

that #{s ∈ S : P
(
~Si = s

∣∣~Y1...i =~y1...i
)
> 0} ≥ k. That is, if an

adversary were to observe the first i padded object sizes,
there must be ≥ k possible objects that could be ~si. For the
`-diversity setting, a padding scheme d·e is said to provide
`-diversity for sequences if, ∀~y ∈~Y such that P

(
~Y =~y

)
> 0,

∀i ∈ [len(~y)], and ∀s ∈ S such that P
(
~Si = s

∣∣~Y1...i =~y1...i
)
>

0, it holds that P
(
~Si = s

∣∣~Y1...i =~y1...i
)
≤ 1

` . That is, if an ad-
versary were to observe the first i padded objects sizes, the
conditional probability of each object that could be~si must
be ≤ 1

` .
For both settings, Liu, et al. present greedy algorithms that

attempt to create per-object padding schemes d·e that ensure
either k-anonymity or `-diversity, and that also attempt to
minimize the sum of padding overhead applied to objects. We
refer to these algorithms as MVMD and MVMD-D, respec-
tively, and when parameterizing MVMD-D with a target `,
we refer to the algorithm as MVMD-`. So, for example, when
parameterized with a target `= 3, we refer to the algorithm as
MVMD-3. Roughly, the MVMD and MVMD-D algorithms
iterate through each i ∈ [max~s∈~S len(~s)] and—for each ~S′ ⊆~S
where for every ~s ∈ ~S′ it is the case that ~s1...i−1 is padded
to the same ~y1...i−1—construct d·e so that ~S′i =

⋃
~s∈~S′{~si} is

split into two subsets that remain either k-anonymous or `-
diverse, and that do so with minimal total overhead. Since
the algorithms are greedy, they are not guaranteed to create
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Table 2: Inputs required per algorithm.

Algorithm Sets Distributions

S ~S E P(S= s) P
(
~S1...i =~s1...i

)
P
(
~Si+1 = s′|

~Si = s

)
BDK [5] X X X X3

MVMD-D [34] X X X
PwoD [43] X

PFS X X

the padding scheme d·e that minimizes the padding overhead
for a given k or `. Furthermore, there are instances where
k-anonymity or `-diversity cannot be achieved, either due to
their algorithms making a greedy choice at i that prevents up-
holding k or ` at i′ > i, or simply because the distribution~S1...i
is not distributed in a way that supports the chosen metric.
In such cases, these algorithms will construct d·e so that all
s ∈ ~S′i (which cannot be split further) will be padded to the
same y.

Note that `-diversity subsumes k-anonymity, in that an `-
diverse padding scheme is also `-anonymous. In our security
evaluations we compare only to the MVMD-D algorithm, as
the more challenging (i.e., more secure) competitor.

Finally, for both MVMD and MVMD-D, d·e is a func-
tion of both obj~si

and {objs′}s′∈~s1...i−1 ; i.e., the resulting
padding schemes are not memoryless, as are the other al-
gorithms we consider (including our LP). Thus, an object
store that uses either of these algorithms must be capable
of (i) tracking a client’s previous object retrievals and (ii)
storing a value for dobjse for each~s1...i−1 ∈~S1...i−1 such that
P
(
~Si = s

∣∣~S1...i−1 =~s1...i−1
)
> 0.

PwoD Reed and Reiter [43] present an algorithm, called
Padding without a Distribution (PwoD), that produces a
per-object padding scheme d·e minimizing I∞(S;Y) for the
case of independent object retrievals. Also, unlike BDK and
MVMD-D, PwoD enforces constraint (1). We therefore in-
clude PwoD as an algorithm to which we compare.

Summary of algorithm inputs To summarize, Table 2
shows the inputs taken by each of the algorithms to which
we compare, and the inputs taken by our own. BDK and
MVMD-D require more detailed information than PFS, in
that they require probability distributions. Still, below we will
show that PFS outperforms them, in terms of both privacy and
padding overhead. PwoD requires less information be input
than PFS, but as we will show, PFS puts its knowledge of the
sequences ~S to good use.

3Backes, et al. assume P
(
~Si+1 = s′

∣∣~Si = s
)

is the same for all i.

5.3 BDK and MVMD-D comparisons
Since both BDK and MVMD-D were designed to address a
different metric, in this section we compare PFS against these
two algorithms in “head-to-head” tests using the competitor’s
metric.4 For each test, we calculated the competitor’s metric
over increasing sequence lengths for each of our three datasets.
Specifically, for each i ∈ [max~s∈~SΩ len(~s)], the metric was cal-
culated over all~s ∈ ~SΩ such that len(~s)≥ i. Additionally, at
each i, those sequences that are longer than i were truncated
to i and then the metrics were calculated over these truncated
sequences. This method is consistent with our calculation of
P
(
~S1...i =~s1...i

)
in (23).

We calculated the various metrics in this way in order to
model the adversary’s knowledge as the adversary observed
sequential object retrievals. For example, if the adversary
observed i retrievals, then the adversary knew that ~s could
not be any sequence where len(~s)< i, and so those sequences
were no longer included when calculating the given metric.
However, it could be the case that~s was longer than i, and so
those sequences were included when calculating the metric.

As mentioned in Sec. 1, the premise of our work is to en-
able an object store to provide privacy for its clients while
simultaneously constraining the amount of padding overhead
applied to each object that it serves. Therefore, in addition to
comparing PFS against each algorithm using the algorithm’s
intended privacy metric, we also calculated the maximum
pad factor c resulting from the competitor’s padding scheme
d·e. We will leverage cmax when referring to this resultant c
produced by a padding scheme d·e and ctgt when referring to
the target c that is provided as an input parameter to PFS. We
do this to enable a comparison between the cost (in terms of
overhead) of PFS to that of each competitor when “competing”
on each of their privacy metrics.

Finally, note that for all tests in Sec. 5, we set our efficiency
parameter k = 2. We describe the effect of varying k in Sec. 6.

BDK For our comparison to BDK [5], we measured against
I
(
~S;~Y

)
, as this is the metric it is designed to reduce. As

mentioned in Sec. 5.2, BDK is designed to be run multiple
times to produce candidate solutions for d·e, from which an
object store would then select the most suitable d·e in terms of
privacy and padding overhead. To model this intended usage,
for each dataset we ran BDK 1,000 times and, for each i ∈
[max~s∈~SΩ len(~s)], we plot the minimum and maximum values
(the bar and whisker extending above the bar, respectively)
for I

(
~S;~Y

)
across all 1,000 candidate padding schemes d·e.

For each padding scheme we also computed its cmax and plot
these values as a box plot, to the right of the I

(
~S;~Y

)
plot.

4We save the comparison to PwoD for Sec. 5.4. We do this because our
chosen metric I∞

(
~S;~Y

)
is the extension of I∞(S;Y)—the privacy metric

that PwoD minimizes—to our setting.
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Figure 2: Comparing PFS to BDK using I
(
~S;~Y

)
as the privacy metric.

As shown in Fig. 2, BDK was outperformed by PFS with
ctgt = 1.05 for both the Autocomplete and Linode dataset, and
for ctgt = 1.15 for Wikipedia. This is despite BDK yielding
ranges for cmax much higher than PFS. We attribute BDK’s
under-performance to the fact that the algorithm will not allow
two objects to be padded to the same size if doing so would
violate the strict equality in (28).

We draw attention to two trends in these plots. The first
is that for both the Autocomplete and Linode datasets, the
values for I

(
~S;~Y

)
rise and then fall as the sequence length

increases. This is attributable to the fact that the number of
sequences of a given length begins to decrease at length 7 for
Autocomplete and at length 4 for Linode. The second trend is
that the results for I

(
~S;~Y

)
for Wikipedia are non-decreasing.

This is attributable to the fact that, since all sequences are of
length 7, the information leaked about~S cannot decrease as
the sequence is extended.

MVMD-D For our comparison to MVMD-D [34], we as-
sessed each algorithm’s ability to ensure that `-diversity is
achieved. In this section, we use `tgt when referring to the
target ` that was provided as an input parameter to MVMD-D.
For these tests, we compared MVMD-D with `tgt = 3 (i.e.,
MVMD-3) against PFS with ctgt = 2.0. Additionally, in Fig. 3
we depict the results of our tests using (i) `min, which we de-
fine for a given i as

min
~y1...i∈~Y1...i

1

maxs∈SP
(
~Si = s

∣∣~Y1...i =~y1...i
) (29)

and which is equivalent to Liu, et al.’s [34] definition of ` (see
Sec. 5.2), and (ii) `avg, which we define for a given i as

∑~y1...i∈~Y1...i
1

maxs∈S P
(
~Si=s

∣∣~Y1...i=~y1...i

)
#~Y1...i

(30)

We define `avg in this way as it enables us to describe how
privacy-preserving an algorithm’s resultant padding scheme

d·e was across all~y1...i ∈~Y1...i, even if the algorithm failed to
achieve `-diversity in the strict sense. This is helpful even
when assessing MVMD-D, as it is not guaranteed to yield a
padding scheme that respects its `tgt.

In Fig. 3, we see that, for ctgt = 2, PFS was generally unable
to achieve `min > 1. When we broaden our analysis to gauge
how well PFS achieved `avg, we see that PFS provided roughly
the same, and in some cases much better, `avg than MVMD-3
for the objects in our datasets. Moreover, PFS offered this pro-
tection for cmax that was far less than MVMD-3’s. Indeed, the
cmax for each of MVMD-3’s padding schemes d·e was simi-
lar to that of BDK across each of the three datasets. Finally,
we see that even MVMD-3 yielded `min = 1 for each of the
three datasets, starting at lengths 8, 5, and 3 for Autocomplete,
Linode, and Wikipedia, respectively.

5.4 I∞

(
~S;~Y

)
comparisons

In this section we compare each algorithm against our cho-
sen metric I∞

(
~S;~Y

)
. Since both PwoD and PFS take c

as input, for this test we ran both algorithms with ctgt ∈
{1.05,1.25,1.5,2.0} for each of our three datasets. For
BDK we compare to a single run of the algorithm, and for
MVMD-D we compare to MVMD-3. The results are shown
in Fig. 4.

In both Fig. 4a and Fig. 4b we observe that, as ctgt in-
creased, there was a trend that PFS performed increasingly
better than PwoD until ctgt = 2.0, at which point PFS and
PwoD performed similarly. Indeed, for ctgt = 1.5, in Fig. 4b,

PFS yielded I∞

(
~S;~Y

)
that is 7.4% lower than PwoD for

length 4, and in Fig. 4a, PFS yielded I∞

(
~S;~Y

)
that is 24.2%

lower than PwoD for length 8. Also, we see that BDK was not
competitive in either Fig. 4a or Fig. 4b, and that MVMD-3
was not competitive in Fig. 4a but was competitive in Fig. 4b
for only the longest sequences. This is despite both BDK and
MVMD-3 yielding values for cmax that were much larger than
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Figure 3: Comparing PFS to MVMD-3 using `-diversity as the privacy metric.

PFS (see Fig. 2 and Fig. 3).
In Fig. 4c we observe that PwoD performed slightly better

than PFS for short sequences. However, by length 5, the dif-
ference is only noticeable for ctgt = 2.0, and by length 7, PFS

yielded lower values for I∞

(
~S;~Y

)
for ctgt = {1.05,1.25,2.0}

(though in all cases PFS and PwoD differed by ≤ 0.01bits).
We also see that both BDK and MVMD-3 were competitive
for longer sequence lengths, though we reiterate that their
solutions for d·e yielded large values for cmax.

Although PwoD performed well on our three datasets—
and indeed comparable to PFS on the Wikipedia dataset—
it is possible for PwoD to perform arbitrarily worse than
PFS as the length of sequences increase. To demonstrate
this point, we created a synthetic dataset as follows. We first
created 256 sequences, each of len(~s) = 8, i.e., each sequence
represents eight successive object retrievals. For these first
256 sequences, the sizes of the objects were assigned one
of {1B,2B} so that the resultant sequences yield all of the
binary combinations from [0,255]. In addition to these 256
sequences, we added a single sequence where each object in
the sequence is 3B. We then created another 256 sequences as
before, but whose objects were assigned one of {20B,21B}.
Finally, we added a single sequence where each object in the
sequence is 10B. Thus, for our synthetic dataset #~SΩ = 514.

Given this synthetic dataset, we set ctgt = 2.0. In this case,

I∞

(
~S;~Y

)
is minimized when d·e pads all objects of size

{1B,2B} to 2B and all objects of size {20B,21B} to 21B.
This causes the smallest 256 sequences to be indistinguishable
from each other, as well as the largest 256 sequences, leav-
ing only the 3B-sequence and 10B-sequence isolated. Indeed,
PFS yielded this solution for d·e. The d·e given by PwoD,
however, padded all objects of size {2B,3B} to 3B, thereby
leaving the smallest 256 sequences identifiable. As shown in
Fig. 5, this caused I∞

(
~S;~Y

)
for PwoD to increase linearly as

the sequence length increased, whereas the I∞

(
~S;~Y

)
for PFS

remained constant at 2 bits.
PwoD struggled against this dataset since, by default, it

iterates through object sizes from largest-to-smallest, thereby

assigning objects that are 20B to be padded to 21B, and ob-
jects that are 2B to be padded to 3B. However, simply run-
ning PwoD from smallest-to-largest would yield a similarly
suboptimal d·e, as then PwoD would pad all objects of size
{10B,20B} to 20B, thus leaving the largest 256 sequences
identifiable.

5.5 Attacker’s recall and precision

One challenge of minimizing I∞

(
~S;~Y

)
in our algorithm is

that this measure might be less familiar and understandable
than others. To put the benefits of our algorithm into a form
that might be more understandable, in this section we report
the results of a study that demonstrates the privacy that our
algorithm and others’ achieve, in terms of the precision and
recall with which a network adversary can identify sequences
of interest when retrieved.

For this study, we assumed that the adversary had a set
of target sequences ~S� ⊂~SΩ that it aimed to identify by ob-
serving the padded (and encrypted) traffic. The adversary
observed a sequence of padded objects up to a given length
m—to include the m-length prefixes of those sequences in ~S
that are longer than m—and afterwards determined whether
this sequence corresponded to a sequence from its target set
~S�. More specifically, upon observing a sequence ~s of ob-
ject retrievals padded to sizes ~y, the attacker can calculate
P
(
~S ∈~S�

∣∣~Y =~y
)

for any ~S� of interest. For any threshold
τ, the adversary returned true iff P

(
~S ∈~S�

∣∣~Y =~y
)
≥ τ. For

a given τ, the adversary’s recall is the fraction of sequences
from ~S� for which the adversary returned true, and the adver-
sary’s precision is the fraction of its true detections for which
the sequence was in ~S�.

We conducted the precision-recall tests as follows. For
a given dataset and sequence length m, an individual trial
consisted of randomly selecting 5% of the elements of ~SΩ

of length m to constitute ~S�. We ran 100 such trials and
we present the precision-recall curves as the average over
these 100 trials. In the context of this study, lower values of
the adversary’s precision and recall indicate a more secure
padding algorithm.
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Figure 4: Comparing all algorithms using I∞

(
~S;~Y

)
as the privacy metric.
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Figure 5: Comparing PFS to PwoD on the synthetic dataset.

Results for Autocomplete are depicted in Fig. 6. For this
dataset, we tested at sequence lengths of 7, 8, and 9. For
each of these lengths, the dataset consisted of a sufficiently
large number of words to model an adversary’s target set. As
shown in Fig. 6, at all three lengths, PFS yielded the low-
est precision and recall values. The only exception is with
sequences of length 7, where MVMD-3 achieved better pre-
cision and recall values for two values of τ. Furthermore, it
is evident from the plots that as the sequences grow longer,
the performance of PFS increased relative to that of the other
algorithms. Indeed, for sequences of length 8 and 9, PFS per-
formed significantly better than the competitors. Moreover, an
apparent trend in this dataset is that, whereas the adversary’s
performance against PFS was fairly consistent, the adversary
improved against the other algorithms as the sequence length
increased.

Fig. 7 shows the results of the precision-recall study on the
Linode dataset. For this experiment, we chose sequences of
length 3, as a majority of the sequences in the dataset were
of length 3. In this experiment, we see that PFS achieved
the lowest values of adversarial precision and recall, again
beating out the competitors, though PwoD produced results
that were competitive with PFS.

Fig. 8 shows the results of the precision-recall study on the
Wikipedia dataset. This dataset was constructed such that all
sequences have length 7. For this experiment, we found that
higher values for ctgt were needed to significantly reduce the

adversary’s performance, and so we set ctgt = 2.0 for both
PFS and PwoD. Still, despite this large value for ctgt, we
show in Sec. 5.6 that even this choice of ctgt resulted in much
lower padding overhead than BDK and MVMD-3. Overall, as
shown in Fig. 8, PFS and PwoD yielded similar results, both
offering better security than MVMD-3 and BDK.

5.6 Padding overhead

Fig. 9 depicts the padding factors produced by each algorithm,
where the x-axis shows cmax, the maximum padding factor
across all objects in the dataset, and the y-axis shows cavg,
the mean value of the padding factors across the dataset. We
calculated cavg as

∑s∈S ∑y∈Y P
(
dobjse= y

∣∣ S= s
)
× y
|objs|

#S
(31)

Unsurprisingly, both BDK and MVMD-D produced sig-
nificantly higher values for cmax across all three datasets, as
neither place any constraints on the padding size. On the other
hand, cmax for both PFS and PwoD are constrained by ctgt, and
thus were close to the chosen value of this parameter. Regard-
ing cavg, on the Autocomplete dataset, BDK and MVMD-D
yielded comparable results to PFS and PwoD since the dis-
tribution of object sizes in this dataset varies less than the
others; most of the objects are in the range of 200B to 480B.
For the Linode and Wikipedia datasets, though, using either
BDK or MVMD-D would cause the object store’s objects to
grow substantially in size, and would likely be impractical to
implement.

6 Execution Cost

In this section, we evaluate the execution cost of PFS on the
datasets described in Sec. 5. We begin with a description of
our experiments and their results in Sec. 6.1 and then describe
a much faster, and nearly as good, alternative in Sec. 6.2.
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(c) Sequence length = 9

Figure 6: Adversary’s recall and precision for detecting words from the Autocomplete dataset.
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Figure 7: Adversary’s recall and precision for detecting se-
quences of length 3 from the Linode dataset.

6.1 Runtime of PFS
We implemented PFS with the Gurobi Optimizer5 and ran
tests on a server with a 24-core CPU and 128GB of memory.
For each dataset, for ctgt ∈ {1.01,1.05,1.1,1.25,1.5,2.0},
and for k ∈ {2,3}, we ran PFS and measured the time it took
for PFS to (i) create the model, (ii) run the optimization, and
(iii) return d·e. For k = 2 we ran each test 10 times and report
the average runtimes; for k = 3 we ran each test a single time.
Our results are shown in Fig. 10.

Our runtime results demonstrate that on some datasets PFS
(with k = 2) was able to quickly produce d·e, e.g., under 2
seconds for Linode (Fig. 10b), and so could be run as objects
are added to the object store or their sizes are modified. On
those datasets where PFS takes longer to produce d·e, PFS
could be run on a scheduled basis and applied as batch updates
to the object store.

Our results also depict the challenge of increasing k. For
instance, in Fig. 10a and Fig. 10c, k = 3 resulted in runtimes

5https://www.gurobi.com
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Figure 8: Adversary’s recall and precision for detecting se-
quences of length 7 from the Wikipedia dataset.

that were orders of magnitude longer than k = 2. Additionally,
for Autocomplete (Fig. 10a), the results for PFS with ctgt =
2.0 are not plotted as the memory requirements exceeded the
capacity of our test setup.

6.2 Alternative Approach: PFG
As just described, PFS is costly for large datasets. Moreover,
not all object stores may be able to produce ~S, e.g., if it is not
possible to enumerate all~s ∈ ~S or if #~S is too large to work
with. For those object stores, so long as they can produce both
S and E,6 an alternative approach is to create the set S∪E, i.e.,
treat each s ∈ S as a sequence of length 1 and each (s,s′) ∈ E
as a sequence of length 2, and then give this set in place of ~S
to the LP from Fig. 1 without any further modifications. The
rationale for this approach is that S and E together form a
directed graph, from which ~S can be seen as a subset of the
walks possible in this graph. Thus, this approach targets the

6An example of such an object store might be a web server that can easily
enumerate S, the pages that it serves, and E, the hyperlinks between pages.
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Figure 9: Padding overhead factors for each padding algorithm.
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Figure 10: Model runtime for PFS and PFG as a function of ctgt.

graph of objects and their dependencies in an effort to reduce
I∞

(
~S;~Y

)
. We refer to this alternative method as Padding for

Graphs (PFG).
We additionally executed PFG and show its performance

results in Fig. 10, alongside those for PFS. Our results show
that PFG is quite efficient overall. For all three datasets, PFG
(with k = 2) yielded fast runtimes, with most tests finishing
in under 10 seconds. Furthermore, our results show that, for
the same k, PFG tended to beat PFS by a wide margin in our
runtime evaluations, with the only exception being for Linode
(Fig. 10b) with k = 3.

We also evaluated PFG to compare its privacy results to
those of PFS, i.e., using the same tests as in Fig. 4. We present
the results of this test in Fig. 11. (We do not present the results
for the Linode dataset, as PFG yielded values for I∞

(
~S;~Y

)
that were almost indistinguishable from PFS.)

In Fig. 11, we see that for both Autocomplete and
Wikipedia, for ctgt ∈ {1.25,1.5}, PFG outperformed PFS for
shorter sequences (up to length 5 for Autocomplete and length
4 for Wikipedia). This is particularly noteworthy for the Au-
tocomplete dataset, given that PFS outperformed PwoD by

quite a large margin for these same values of ctgt. We attribute
these results to the fact that PFG optimizes for short sequences
(specifically, single-object and two-object sequences).

As sequence lengths increased, though, Fig. 11 shows that
PFS began to outperform PFG. This is most apparent on
the Autocomplete dataset for lengths ≥ 9. Still, these results
demonstrate that if an object store is unable to use PFS (due
to an inability to produce ~S or due to runtime concerns), it
can still use PFG and leverage its knowledge of S and E to
effectively reduce I∞

(
~S;~Y

)
.

7 Conclusion

In this paper, we provided an algorithm, PFS, that is able to ef-
ficiently produce a padding scheme d·e that an object store can
use to conceal from a network observer the objects it serves
to clients, despite the network observer leveraging object de-
pendencies in its inferences. We compared PFS’s security
against prior algorithms, including on the security metrics
that those algorithms themselves aim to optimize. We showed
that PFS outperformed prior work while maintaining reason-
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Figure 11: Comparing PFG to PFS with k = 2.

able constraints on the padding overhead. Compared to BDK,
PFS achieved lower values for I

(
~S;~Y

)
with little padding

overhead; against PwoD, PFS achieved either comparable or
lower values of I∞

(
~S;~Y

)
; and compared to MVMD-D, PFS

achieved better diversity across all objects in each dataset, for
less padding overhead. We also compared each algorithm by
assessing an adversary’s precision and recall as it predicted
sequences of objects by observing their padded sizes. Our
results showed that PFS was highly effective in such a setting,
as it was consistently either among the top performers or beat
the other algorithms by a wide margin. Most importantly, in
all cases, PFS was constrained by the tunable padding factor
c. By providing a configurable limit on the padding overhead,
PFS is able to provide an object store with a means to pad
sequences of objects that is both effective against a network
observer and that is practical to implement. Finally, we pro-
vided a competitive alternative to PFS named PFG that is
based on the same underlying LP, and which is suitable in
settings where an object store is unable to generate ~S or doing
so is too costly.

Availability

Our datasets and implementations are available at
https://github.com/pranay-jain/constrained-
padding-sequences.
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