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Abstract—Decoy passwords, or “honeywords,” planted in a
credential database can alert a site to its breach if ever sub-
mitted in a login attempt. To be effective, some honeywords
must appear at least as likely to be user-chosen passwords
as the real ones, and honeywords must be very difficult to
guess without having breached the database, to prevent false
breach alarms. These goals have proved elusive, however, for
heuristic honeyword generation algorithms. In this paper we
explore an alternative strategy in which the defender treats
honeyword selection as a Bernoulli process in which each possible
password (except the user-chosen one) is selected as a honeyword
independently with a fixed probability. We show how Bernoulli
honeywords can be integrated into two existing system designs
for leveraging honeywords: one based on a honeychecker that
stores the secret index of the user-chosen password in the list
of account passwords, and another that does not leverage secret
state at all. We show that Bernoulli honeywords enable analytic
derivation of false breach-detection probabilities irrespective of
what information the attacker gathers about the sites’ users; that
their true and false breach-detection probabilities demonstrate
compelling efficacy; and that they can even enable performance
improvements in modern honeyword system designs.

I. Introduction

In the Colonial Pipeline ransomware attack in May 2021,
unauthorized access to the company network was gained via an
employee’s VPN account with a (complicated) password that
was found in a password database breached from a different
site [24], [12]. After gaining access, the attackers went on to
disable part of the company’s network and demanded a $5
million ransom to recover it, leading to fuel shortages across
the U.S. and emergency declarations in a number of states.

This example was not an isolated incident. Breached cre-
dential databases are the source of most passwords leveraged in
credential stuffing campaigns [35], which are themselves the
cause of the vast majority of account takeovers [33], owing
to the tendency of users to reuse passwords across sites [13],
[30], [37]. Password managers (PMs) can mitigate password
reuse, but they are not a panacea: A recent survey [27] at
a U.S. university found that though respondents using third-
party PMs were less likely to reuse passwords, 47% still did so.
Moreover, third-party PMs were less prevalent than password-
management strategies more prone to password reuse—e.g.,
77% and 84% of OS- or browser-built-in PM users reported
reusing passwords—yielding an overall password-reuse rate

of 77%. Attackers often use leaked credentials to harvest
vast numbers of accounts from sites, e.g., [31]. Discovering
a credential database breach takes an average of between
seven [23] and fifteen months [33], during which time the
attacker can access accounts with little accountability.

To discover credential database breaches more quickly,
Juels and Rivest [25] proposed that (hashes of) decoy pass-
words, or honeywords, be included alongside the user-chosen
password for each account in the credential database. In this
way, the attacker attempting to access an account at a site
where it breached the credential database risks alerting the site
to its breach, since only the attacker (and not the user) has any
chance of knowing the honeywords. To be effective, however,
honeyword generation faces at least two requirements. The
first is flatness, namely that an attacker cannot reliably guess
which password in the set of passwords stored for the account
is the user-chosen one. The second, and arguably more critical,
requirement (see Sec. II) is a quantifiable and low false-alarm
rate; i.e., it must be quantifiably difficult for an attacker
who has not breached a site’s database to guess honeywords
for an account at that site. The discovery of a credential
database breach is an urgent, disruptive, and costly event,
generally requiring that all passwords be reset and that a breach
investigation commence. IBM put the average cost of a breach
detection and escalation at $1.24 million [23, p. 16]. Without
quantifying the risk of a false alarm and minimizing it, breach
detections will be disregarded by operators.

Meeting these requirements has proved difficult. Prevail-
ing honeyword generation techniques, which are based on
heuristic methods for explicitly generating these honeywords,
seem unlikely to succeed. For example, to render honeywords
seemingly as likely as the user-chosen passwords to an attacker
who gathers information about users (perhaps from the same
database it breached to obtain the passwords), recent advice
is that honeywords should include personal information [41].
However, state-of-the-art heuristics to do so come with signifi-
cant risk of false breach alarms (see Sec. II). Moreover, against
an attacker who knows more personal information about users
represented in the breached database than the defender—e.g., if
it identifies the same users in another breached dataset—there
seems to be little hope for achieving flatness on a per-account
basis. Even if the defender knows the same user information
as the attacker, it may be reluctant to increase the exposure of
its users’ information by leveraging it to create honeywords.

Here we explore an alternative strategy that implements
honeyword selection as a Bernoulli process in which each
password in the password space (aside from the user-chosen
one) is selected independently with a fixed probability to be
a honeyword for this account. Intuitively, provided that these
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honeywords sufficiently often intersect the passwords that the
attacker finds at least as likely as the user-chosen password, the
breach will be detected with significant probability, particularly
as the number of accounts the attacker accesses grows. Of
course, explicitly selecting and storing so many honeywords
would be intractable, and so we instead select them implicitly,
by randomly configuring a data structure that stores them.

We adapt two existing systems to use this idea: the design
of Juels & Rivest [25] and a design called Amnesia [42]. A
central feature of Bernoulli honeywords is that, unlike honey-
word generation heuristics, they enable analytic estimation of
the false and true breach-detection rates, which we provide.
Critically, the false breach-detection rate is independent of
the attacker’s knowledge about users’ passwords, which we
argue is essential for breach detection. Moreover, Bernoulli
honeywords lead to cost improvements in a feature of Amnesia,
namely the ability for one site to monitor for the entry of its
honeywords at other sites, which is important since stuffing
breached credentials at another site enables the attacker to
identify the user-chosen password if it was reused there.

To summarize, our contributions are as follows.

• We explore the use of Bernoulli honeywords that are not
constructed but rather are sampled independently from all
possible passwords. Bernoulli honeywords do not depend
on honeyword-generation heuristics that, we argue, will
continue to struggle against attackers who know as much
or more information about a site’s users than the site does.

• We describe a realization of Bernoulli honeywords in the
original honeyword system design of Juels & Rivest [25].
We analyze the false- and true-detection probabilities for
this construction, showing that it can be highly effective
as a breach-detection mechanism. In particular, the false-
detection probability is independent of the attacker’s knowl-
edge about the site’s users (including even their passwords),
which we argue is essential.

• We describe a second realization of Bernoulli honeywords in
Amnesia [42], a system design that can detect breaches with-
out requiring that any secret state survives the breach. We
analytically estimate the false- and true-detection probabili-
ties of this design, as well; again, the former is independent
of the attacker’s knowledge about the site’s users. We further
show that our design accommodates a site monitoring for
entry of its honeywords at remote sites, at an expense that
is lower than in Amnesia in several important measures.

II. Background and RelatedWork

Honeyword system designs: We are aware of only a handful of
system designs for detecting password database breaches using
honeywords. We separate these proposals into two camps:
asymmetric and symmetric. Asymmetric designs leverage an
information asymmetry between the defender and the attacker,
in the form of a secret datum that the site stores but assumes
will not be captured by the attacker when he breaches the
site. As we will discuss in Sec. IV, in the original proposal
of Juels & Rivest [25] this information is the index of the
user-chosen password within a list of passwords per account,
stored in an unbreachable honeychecker. In Lethe [15], this
secret is the seed to a pseudorandom number generator that is
used to service logins within an interval of time and then later

reused by an unbreachable checking server to detect entry of a
honeyword. A third example is that of Almeshekah et al. [2],
which leverages a machine-dependent function for password
hashing; if the attacker who breaches the site is unaware of this
design, then its attempts to crack the database offline will yield
decoy passwords that the site can detect using its unbreachable
machine-dependent function.

We know of only one symmetric design to date, which
is Amnesia [42]. Amnesia permits the attacker to learn the
entire state of a breached site. In exchange for allowing this,
Amnesia enables the site to detect its breach only as legitimate
users log into accounts that the attacker previously logged into.
Moreover, detection is only probabilistic, though as the number
of accounts the attacker logs into grows, the probability of
breach detection also grows. We defer a detailed introduction
of Amnesia to Sec. V.

Bernoulli honeywords can be used in both asymmetric and
symmetric designs, as we will demonstrate by realizing them
within both the original honeychecker design [25], which is
asymmetric, and Amnesia [42], which is symmetric. In both
cases, the integration reveals the need for careful additional
analysis, which we provide.

Honeyword generation heuristics: A mostly distinct line of
research (e.g., [17], [8], [39], [1], [41]) has developed on
generating honeywords to be flat, so that the attacker cannot
easily select the user-chosen password from the passwords
associated with an account in the breached database. One of the
most difficult aspects of ensuring flatness is that users tend to
incorporate personal information in their passwords (birth year,
favorite team mascot, etc.). An attacker who can mine such
information about users that the site does not take into account
in generating honeywords will generally be able to distinguish
the user-chosen password from the decoys by selecting the one
that includes personal information [39]. Recent progress has
therefore advocated that personal information be incorporated
into honeywords [41].

We contend that trying to match the attacker’s knowledge
about users in order to generate flat honeywords for them might
be difficult, at best. Even a site that knows a considerable
amount of personal information about its users might not wish
to risk further exposure of that information by importing it into
the password (re)setting pipeline or results. As such, here we
explore an approach different from creating a small number
of explicit honeywords via tuned heuristics. Instead, our idea
here (see Sec. III) is to include a fraction of all passwords as
honeywords, in the hopes of there being some that the attacker
finds at least as likely to be user-chosen as the actual ones.

False alarms in breach detection: The importance of a quan-
tifiably low false-alarm rate, particularly for breach detection,
was detailed in stark terms by the Tripwire study [14]. In this
study, researchers worked with an email provider to monitor
for logins to fake email accounts, each used to register a decoy
account with the same password at another site. Any login
to an email account suggested that the site hosting its decoy
account had been breached—assuming the email provider itself
had not been breached—since the only places where that
password (or a hash thereof) existed were the email provider
and the site hosting that decoy account. Despite DeBlasio,
et al. disclosing 18 apparent site breaches (and the Tripwire
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methodology) to the relevant site administrators, only one-
third responded at all, only one indicated that it would force
a password reset, and none notified their users [14, Sec. 6.3].
DeBlasio et al. concluded, “a major open question ... is how
much (probative, but not particularly illustrative) evidence
produced by an external monitoring system like Tripwire is
needed to convince operators to act, such as notifying their
users and forcing a password reset” [14, Sec. 8]. This is
compelling evidence that a quantifiable, tunable false-alarm
rate is the core requirement for breach detection.

Unfortunately, honeyword generation heuristics come with
significant risk of false breach alarms. For example, the best
proposal of Wang et al. [41], even after blocklisting 105

common passwords from being selected as either honeywords
or user-chosen passwords, still enables an attacker who has
not breached a site to guess one of only 20 honeywords
for an account with > 6% chance within only 100 online
guesses [41, Fig. 4]. Wang et al. thus speculated that a thresh-
old of three honeywords entered to raise an alarm might be
more appropriate than only one, as a way to mitigate false-
alarm risk. However, modern estimates of online guessing
attacks (see Sec. IV-F) suggest that resilience to 100 online
guesses is 104× too small, raising doubts as to whether there
is any suitable threshold for honeywords entered that would
permit satisfactory quantification of the resulting false and true
breach-detection probabilities for such heuristic approaches.

Another often overlooked subtlety is that a low false-alarm
rate should be guaranteed even if an attacker learns user-chosen
passwords for some accounts at the target site by other means
(e.g., phishing), or even against legitimate users of the site
themselves. Some compromised user-chosen passwords and
a wholesale breach of the credential database should not be
confused, as the reactions warranted by each are qualitatively
different. Juels and Rivest [25, Sec. 7.5] propose to reduce the
likelihood of false breach alarms by selecting the honeywords
for an account randomly from a pool of honeywords for that
user-chosen password. However, we know of no work that
has demonstrated explicit generation of a honeyword pool
sufficiently large to achieve a suitably low false-detection prob-
ability in the face of realistic threats as we do here, particularly
against an attacker knowing user-chosen passwords. Bernoulli
honeywords resolve this difficulty, ensuring a quantifiable and
tunable false breach-detection probability even in this case.

III. Bernoulli Honeywords

We begin by abstractly describing Bernoulli honeywords
and their properties, in terms of one user at one site. We defer
constructions of systems using them to later sections.

Let pwd[r], r ≥ 1, denote the list of all allowable passwords
ranked in order of non-increasing likelihood for the user to
have chosen at this site from the perspective of the attacker.
Formally, if � is a random variable with value the rank of
the password chosen by the user at this site, then for r̂ < ř,
P (� = r̂) ≥ P (� = ř). If the attacker knows little about the
user, then the pwd[·] list might be simply a list of passwords
ranked in order of popularity. However, if the attacker knows
personal information about the user, then this order might
reflect that personal information. We stress that the defender
(the site) will generally not know the distribution of �.

At its core, our key idea is simple: Suppose that during
password (re)set, each possible password other than the one
the user chose is selected independently with probability ph
as a honeyword for the user at this site. Per account, let �[r]
be an indicator random variable such that �[r] = 1 if and
only if either � = r or pwd[r] is chosen as a honeyword
(with probability ph), and �[r] = 0 otherwise. We explore the
implications of this idea to two attackers.

A. Raising alarm attacker (raat)

We first consider an attacker that does not breach the site
but that wishes to enter a honeyword to induce a (false) alarm
at it. In this threat model, we permit the raat to know the user-
chosen password and so its rank. While this permits the raat
to access the account as the intended user could—indeed, the
raat might be the intended user—that is not our concern here.
Rather, our concern is the raat’s ability to input a honeyword
despite no breach having occurred.

Let hwinraat (ph, ℓ) denote the probability with which at
least one honeyword is input by a raat when it attempts ℓ
distinct logins on one account. Since any password other than
the user-chosen one that the raat enters in a login attempt is
a honeyword with probability ph, we immediately have

hwinraat (ph, ℓ) = 1 − (1 − ph)ℓ

Note, hwinraat (ph, ℓ) is independent of the distribution of �.

B. Breaching attacker (brat)

The next attacker we consider is one who breaches the
credential database for the site, thereby obtaining the per-
account values s[r] taken on by �[r] for all r ≥ 1, and then
attempts to access accounts at that site. For each account,

P
(
� = r̂

∣∣∣ ∧r �[r] = s[r]
)
=
P (� = r̂ ∧ (

∧
r �[r] = s[r]))

P (
∧

r �[r] = s[r])

with the numerator being

P (� = r̂ ∧ (
∧

r �[r] = s[r]))
= P (� = r̂) × P

(∧
r,r̂ �[r] = s[r]

∣∣∣ � = r̂
)

Now consider distinct ranks r̂ and ř for which
s[r̂] = s[ř] = 1. Since P

(∧
r,r̂ �[r] = s[r]

∣∣∣ � = r̂
)
=

P
(∧

r,ř �[r] = s[r]
∣∣∣ � = ř

)
, we see

P
(
� = r̂

∣∣∣ ∧r �[r] = s[r]
)

P
(
� = ř

∣∣∣ ∧r �[r] = s[r]
) = P (� = r̂)
P (� = ř)

In other words, observing {s[r]}r≥1 helps the brat only in
limiting his attention to those ranks r for which s[r] = 1.
Among those for which s[r] = 1, their relative likelihoods are
unchanged by {s[r]}r≥1 from the brat’s perspective.

Thus, the best the brat can do is to try to access the account
using the password with lowest rank r (i.e., the most likely
password) for which s[r] = 1. More specifically, let

�θ
def
= min

{
r ≥ 1

∣∣∣∣ ∑r
r′=1 �[r

′] = θ
}

be a random variable denoting the minimum rank r for which
there are θ passwords of at most rank r that remain possible
as the user-chosen password from the brat’s perspective. Then,
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the best move for the brat attempting to access this account
without entering a honeyword is to login using pwd[r1] where
r1 is the value taken on by �1. When the brat does so, the
probability of it entering the user-chosen password is

P
(
�=r1

∣∣∣∣ ∧θj=1� j=r j

)
=

P (� = r1)∑θ
j′=1 P

(
� = r j′

)
+ P (� > rθ) ph

which is computed as the ratio of

P
(
� = r1 ∧

∧θ
j=1� j = r j

)
= P (� = r1) pθ−1

h (1−ph)rθ−θ

and

P
(∧θ

j=1� j=r j

)
=

∑θ
j′=1 P

(
� = r j′

)
P
(∧θ

j=1� j = r j

∣∣∣∣ � = r j′
)

+ P (� > rθ)P
(∧θ

j=1� j = r j

∣∣∣∣ � > rθ
)

=
∑θ

j′=1P
(
� = r j′

)
pθ−1

h (1−ph)rθ−θ

+ P (� > rθ) pθh(1−ph)rθ−θ
(1)

Then, for R = {r j}
θ
j=1, the probability of entering a honeyword

is

hwinbrat (ph,R) def
= P

(
� , r1

∣∣∣∣ ∧θj=1� j = r j

)
=

∑θ
j′=2 P

(
� = r j′

)
+ P (� > rθ) ph∑θ

j′=1 P
(
� = r j′

)
+ P (� > rθ) ph

(2)

Below, we refer to an account for which
∧θ

j=1� j = r j as an
R-account for R = {r j}

θ
j=1.

While in general the defender will not know the distribution
of �, in the next section we will incorporate known results
from previous research to estimate that distribution when
evaluating the true-detection probabilities for specific system
realizations based on the insights in this section.

IV. Integration with a Honeychecker

In this section we present a practical realization of the
insights presented in Sec. III, which we obtain by modifying
the original design of Juels & Rivest [25]. One challenge in
such adaptations is finding a way to represent the honeyword
status (i.e., honeyword or not) for every possible password
in a compact way. As we will show, this representation can
come with other consequences to the properties offered by the
designs into which they are integrated.

A. Bloom filters

An ingredient of our realization below is a Bloom filter [5],
which is a data structure for compactly storing a set of ele-
ments. A Bloom filter supports two operations, namely element
insertion and membership testing. In brief, a Bloom filter is
defined by a set F = { fi}ki=1 of k uniform hash functions where
each fi : {0, 1}v → {1, . . . , b}, and a set B ⊆ {1, . . . , b}, initially
empty. To insert an element e into a Bloom filter ⟨F ,B⟩, the
set B is updated as B ← B ∪ F (e) where F (e) = { fi(e)}ki=1.

A membership test for e, denoted e
?
∈b ⟨F ,B⟩, returns true

if and only if F (e) ⊆ B. For simplicity, we write e ∈b ⟨F ,B⟩
when this test returns true, and e <b ⟨F ,B⟩ when it returns
false. As such,

P
(
e ∈b ⟨F ,B⟩

∣∣∣∣ e
$
← {0, 1}v

)
=

(
|B|

b

)k

(3)

where |B| is the cardinality of B and
$
← denotes uniform

sampling.

Note that |F (e)| < k if fi(e) = fi′ (e) for some i , i′. Below,
we will leverage the facts that for e, e′

$
← {0, 1}v,

E (|F (e)|) = b − b
(
1 −

1
b

)k

(4)

E
(∣∣∣F (e) ∪ F (e′)

∣∣∣) = b − b
(
1 −

1
b

)2k

(5)

and, more importantly, the distributions of |F (e)| and
|F (e) ∪ F (e′)| are tightly concentrated around these ex-
pected values (e.g., [29, Sec. 12.5.3]). The distribution of
|F (e) \ F (e′)|, then, is tightly concentrated around

E
(∣∣∣F (e) \ F (e′)

∣∣∣) = b

(1 − 1
b

)k

−

(
1 −

1
b

)2k (6)

by subtracting (4) from (5).

B. Background on honeycheckers

Juels and Rivest [25] introduced honeywords in the context
of a design that detected the entry of a honeyword using a
trusted component called a honeychecker. For each account,
the site holds in its credential database a list of (hashes of)
passwords, one user-chosen and the others honeywords. The
index of the user-chosen password in the list is stored in the
honeychecker. In a login attempt to the account using password
π, the attempt fails if π (i.e., its hash) is not in the list. If π
is in the list, its index in the list is sent to the honeychecker.
If this index matches the index stored for this account in the
honeychecker, then the login succeeds; otherwise, a breach
alarm is raised.

Because the index of the user-chosen password is what
enables detection of a login by a brat, it is necessary that
the brat not learn the contents of the honeychecker despite
breaching the site. In other words, the honeychecker must not
be breachable, even if the site is.

C. Adapting a system using a honeychecker

To adapt a system leveraging a honeychecker to leverage
Bernoulli honeywords, the site will store a Bloom filter per
account to hold elements in {0, 1}v. The elements stored in the
Bloom filter will be outputs of a password hashing function
H : {0, 1}∗ → {0, 1}v modeled as a random oracle [4]. This
hash function can be salted, as is standard in good password
management [20]. Specifically, for an account with user-
chosen password π̂, the Bloom filter ⟨F ,B⟩ is selected first
by choosing the uniform hash functions F randomly, and then
by choosing B randomly subject to (i) H(π̂) ∈b ⟨F ,B⟩, and
(ii) |B| = (ph)1/kb, so that (3) equals ph. This Bloom filter is
stored for the account at the (potentially breachable) server.

The (unbreachable) honeychecker stores the indices
F (H(π̂)) for the account. A login attempt with password π
is evaluated as follows:

login(π) =


failure if H(π) <b ⟨F ,B⟩
success if F (H(π)) = F (H(π̂))
alarm otherwise
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Note that only the honeychecker can decide between success
or alarm, since only the honeychecker holds F (H(π̂)). That
is, the server first checks for failure and, if its condition does
not hold, the server invokes the honeychecker with F (H(π))
to decide between success or alarm.

D. Security against a raat

Since a raat does not breach the site, the raat learns
nothing about the Bloom filter ⟨F ,B⟩ for an account except by
submitting passwords in login attempts to the account. Note
that the Bloom filter is configured to hold each password with
probability ph (except for the user-chosen one, which it holds
with probability 1.0). If the raat has ℓ login attempts per
account to enter a honeyword, and performs these attempts
on n accounts, then the false-detection probability is

fdp(ℓ, n) ≤ 1 −
(
1 − hwinraat (ph, ℓ)

)n
(7)

E. Security against a brat

Since a brat breaches the site, it knows the Bloom filter
⟨F ,B⟩ for each account. As proved in Sec. III-B, the best
the brat can do to login to an account is to attempt the
most likely password π for which H(π) ∈b ⟨F ,B⟩; i.e., the
password π = pwd[r] for the lowest r for which H(pwd[r])
∈b ⟨F ,B⟩. If π is a honeyword (which happens with proba-
bility hwinbrat (ph, r)), then the probability of the breach going
undetected is the probability that F (H(π)) = F (H(π̂)) for the
user-chosen password π̂. Note that

P
(
F (H(π)) = F (H(π̂))

∣∣∣∣ H(π) , H(π̂)
)

≤ P
(
F (H(π)) ⊆ F (H(π̂))

∣∣∣∣ H(π) , H(π̂)
)
≈

(
E (|F (H(π̂))|)

|B|

)k

Disregarding the possibility that H(π) = H(π̂) even though
π , π̂ (which happens with probability 2−v), we thus estimate
the true-detection probability for a brat attempting to login to
an R-account to be:

tdpR ≈ hwin
brat (ph,R) ×

P
(
F (H(π)) , F (H(π̂))

∣∣∣∣ H(π) , H(π̂)
)

⪆ hwinbrat (ph,R) ×

1 − (
E (|F (H(π̂))|)

|B|

)k (8)

with the expected value instantiated as in (4). Let Ra be
the rank set such that account a is an Ra-account. The true-
detection probability for a brat who attacks accounts A′ ⊆ A,
where A is the set of accounts at the breached site, is

tdp(A′) = 1 −
∏
a∈A′

(1 − tdpRa ) (9)

and the minimum true-detection probability for brat who
attacks n accounts is

tdp(n) = min
A′⊆A:|A′ |=n

tdp(A′) (10)

F. Security evaluation

Having provided closed-form estimates for the false- and
true-detection probabilities in Secs. IV-D–IV-E for our design
in Sec. IV-C, we now illustrate the efficacy of this design
using empirical data. To do so, there are two more types of
information we need.

1) Bounding fdp(ℓ, n): The first information we need is an
estimate of how fdp(ℓ, n) should be bounded in practice, as
this will permit us to select other parameters of our system to
best meet that bound. To find such an estimate, we turned to
Florêncio et al. [20], who categorize online guessing attacks
into “depth-first” ones that submit many login attempts to few
accounts over time and “breadth-first” ones that submit login
attempts to many accounts over time (but necessarily fewer per
account). Assuming a guessing campaign over a four-month
period, they estimate that an account targeted in a depth-first
attack should withstand ℓ = 106 guesses, while an account
included in a breadth-first attack should withstand ℓ = 104

guesses [20, Table 5]. While a raat in our context is not trying
to guess the user-chosen password for an account (which it
might already know), it is instead trying to guess a honeyword;
nevertheless, we take the characterization of online guessing
campaigns by Florêncio et al. as suitable for raats, as well.
Unfortunately, Florêncio et al. did not attempt to precisely
characterize with what probability an account subjected to ℓ
login attempts should remain uncompromised, nor did they
specify the number n of attacked accounts that distinguish
breadth-first from depth-first attacks. As such, noticing that
fdp(106, 10) ≈ fdp(104, 1000), it is convenient to require

fdp(106, 10) ≤ ϵ and fdp(104, 1000) ≤ ϵ (11)

for a fixed ϵ ≤ 10−1 as consistent with the analysis of
Florêncio et al. We stress that this requirement is not per
login attempt or per account, but per online-guessing cam-
paign. If the campaigns envisioned by these authors (each
four months long) were mounted consecutively, ϵ ≤ 10−1

would imply less than one false detection every 3 years
(= four months per campaign × 9 campaigns) in expectation.

2) Estimating the distribution of �: The second type of
information we need is the distribution of �, i.e., the random
variable that records the rank of the user-chosen password
for an account in the list pwd[·] of passwords ranked in
order of the user’s likelihood of choosing them, from a brat’s
perspective. We need this distribution to calculate (2). We use
three sources for distributions of � below.

Wang et al. [40] studied algorithms to guess user pass-
words from personal information about users. For a breached
Chinese train-ticketing dataset of 129,303 passwords with
accompanying personal information (name, username, national
identification number, phone number, birth date, and email
address), they reported the fraction y of accounts they cracked
in half the dataset (N = 64,651 accounts) after training with
the other half, as a function the (log10 of the) number x of
guesses by the attacker up to x ≤ 1000 [40, Fig. 8]. Due to
the unavailability of Wang et al.’s source data or algorithm
implementations, we extracted the source data underlying this
plot using WebPlotDigitizer [32] for the following algorithms
listed there: TarGuess-I (TG-I), which utilizes all of the
personal data; TarGuess-I′′ (TG-I′′), which uses only name
and birth date; TarGuess-I′′′ (TG-I′′′), which uses only name;
and PCFG, which leverages no personal information. We fit
lines1 to each dataset, obtaining estimates for P (�TG-I ≤ r),

1Password frequencies are sometimes modeled using a Zipf distribution
(e.g., [6], [26], [38]). However, we know of no studies on the effects of attacker
knowledge (as we consider here) on this modeling. Moreover, our fitting CDFs
achieve better R2 and RMSE measures on both datasets than our attempts using
a Zipf distribution or power regression did.
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Data source Best fit
R2 RMSE

P (� ≤ r) = α + β log10(r)

TG-I [40, Fig. 8] α = 0.0419 β = 0.0771 0.99 0.004 (12)
TG-I′′ [40, Fig. 8] α = 0.0118 β = 0.0601 0.99 0.004 (13)

TG-I′′′ [40, Fig. 8] α = 0.0013 β = 0.0310 0.97 0.005 (14)
PCFG [40, Fig. 8] α = −0.0047 β = 0.0172 0.96 0.003 (15)
CMU [28, Fig. 7] α = −0.4119 β = 0.0602 0.98 0.022 (16)

CKL-PCFG [43, Fig. 5] α = −0.6938 β = 0.1240 0.97 0.053 (17)

(a) Data sources and best-fit CDFs
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(b) Original (thicker) CDFs
and best-fit (thinner) CDFs for
data sources in Fig. 1a

(c) CDF (12) and CDF
(18) with various indicated
blocklisting algorithms

Fig. 1: Data sources used in our evaluations

P (�TG-I′′ ≤ r), P (�TG-I′′′ ≤ r), and P (�PCFG ≤ r) (Figs. 1a–b).

As discussed in Sec. I, a motivation for Bernoulli hon-
eywords is detecting a brat who knows more about users
than the defending site does. To show this benefit with these
distributions, we allow the brat to attack using TG-I (the most
user information), but the defending site to blocklist passwords
guessable in 106 guesses using TG-I′′, TG-I′′′, or PCFG (i.e.,
less user information), preventing the user from setting such
a password. We select a per-user blocklist of size 106 in
accordance with blocklist size recommendations (e.g., [34])
and since passwords guessable in 106 guesses are typically
categorized as weak by password strength meters (e.g., [22],
[43]). To estimate the effects of this blocklisting, we formulate
P (� ≤ r) using two line segments, one for r ≤ 106 in which
P (� ≤ r) is suppressed by the blocklist, and one for r > 106

in which the ground lost when r ≤ 106 is recovered. That
is, for blocklisting algorithm A ∈ {TG-I′′,TG-I′′′,PCFG}, we
evaluate tdp(n) using

P (� ≤ r)=


P (�TG-I ≤ r) − P (�A ≤ r) if 1≤r≤106(

1−P(�≤106)
log10(r∗)−6

)
(log10(r) − 6)

+ P
(
� ≤ 106

) if 106<r≤r∗
(18)

where r∗ is the minimum r satisfying P (�TG-I ≤ r) = 1 (see
Fig. 1c). We concede that this estimate is likely very rough, but
we know of no better way to estimate the effects of blocklisting
on subsequent password choices, i.e., once one’s initial choice
has been declined and the user has been told to avoid including
personal information in her password.

The second source from which we estimate P (� ≤ r) is
Mazurek et al. [28], who studied > 25,000 passwords in use
at Carnegie Mellon University (CMU). They analyzed these
passwords’ guessing resistance up to 3.8 × 1014 guesses by
an “extensive knowledge” attacker trained on a subset of the
passwords in use. This attacker was thus partially trained on
passwords that presumably reflected an affiliation at CMU,
which constitutes a type of personal information. Fitting a
line to points extracted by WebPlotDigitizer from the CDF
for the guessing success of this attacker against N = 5,459
accounts [28, Fig. 7], we obtained an estimate for P (� ≤ r),
also shown in Figs. 1a–b.

We get a third estimate for P (� ≤ r) from Xu et al. [43],
who propose password guessing models based on “chunk-
level” password characteristics and show that their mod-
els’ guessing accuracies outperform counterparts working at
character-level granularity. For example, their “CKL-PCFG”
model guessed on average 51.2% more passwords than state-
of-the-art PCFG models, including the PCFG model used by
Wang et al. [40]. Their evaluation included a “Neopets” dataset
of N = 67,672,205 account-password pairs breached from a
virtual pets website. Since they trained their password-guessing
algorithm using some of the passwords in the Neopets dataset,
it implicitly incorporates some private information (e.g., inter-
est in virtual pets) about the site’s users. Again, we estimate
P (� ≤ r) by fitting a line to data points extracted by Web-
PlotDigitizer from their subfigure labeled “CKL-PCFG” [43,
Fig. 5] (Figs. 1a–b). We did not explore blocklisting in tests
using the CMU or CKL-PCFG estimates, though since these
passwords were much stronger than the passwords studied by
Wang et al. [40], we will see that they nevertheless yield far
higher estimates for tdp(n).

3) Results: Note that tdp(n) is itself a random variable,
since it depends on the rank sets Ra selected per account a.
Computing statistics of the distribution of tdp(n) is costly,
however, since it involves summing over values for the set
R = {r j}

θ
j=1 and accumulating their probabilities per (1),

with each r j ranging beyond 1030 for some of our datasets
in Sec. IV-F2. For this reason, here we simulate results by
sampling Ra for each account a, for θ = 1000. We do this for
each of the datasets described in Sec. IV-F2—i.e., sampling
Ra for each of N = 64,651, N = 5,459, and N = 67,672,205
accounts in the three datasets—and then simulate the brat
attacking these accounts in increasing order of (2) (and so (8)).
We repeat this sample-then-attack experiment for 10,000 trials
and report the fraction in which detection occurred within the
first n accounts attempted as tdp(n).

We show the results in Fig. 2. These curves were plotted
by setting the Bloom-filter dimensions to k = 20 and b = 128
and then setting ph so to ensure (11). We chose k and b to get
adequate granularity of datapoints for plotting these curves. In
practice, smaller values b and k, e.g., b = 64 or/and k = 10,
could ensure roughly the same accuracy.

Fig. 2a shows true-detection probabilities using the distri-
butions shown in Fig. 1, as a function of the fraction n/N
of accounts accessed by the brat, when ϵ = 10−1. This
figure shows that using (12) for P (� ≤ r), the true-detection
probability reaches 0.5 when the brat accesses ≈ 20.4% of
the accounts, and it reaches 1.0 when that fraction reaches
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(16) (17) (18) with TG-I′′

(18) with TG-I′′′ (18) with PCFG (12)
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(a) ϵ = 10−1 (b) tdp(n) ≥ 0.5

Fig. 2: True detection probability for honeychecker integration
(Sec. IV-C). Fig. 2a shows tdp(n) per fraction n/N of accounts
accessed by the brat. Fig. 2b shows the fraction n/N of
accounts attempted by the brat at which tdp(n) ≥ 0.5, per
bound ϵ in (11). TG-I′′, TG-I′′′, and PCFG represent different
blocklists adopted for (18); see Sec. IV-F2.

≈ 26.1%. We reiterate that since the brat accesses accounts
in increasing order of (2), this curve represents the best the
brat can do to evade detection subject to the number of
accounts he accesses. The total number of accessed accounts to
make detection likely, however, is somewhat large, since these
passwords are quite weak and so easily predictable by the brat.
For this reason, blocklisting helps considerably: e.g., when
blocklisting (i.e., using (18)) with TG-I′′′, the true-detection
probability passes 0.5 at only ≈ 13.6%, and with TG-I′′, the
probability surpasses 0.5 at ≈ 6.4%. The results using (16) or
(17) for P (� ≤ r) are stronger still: after the brat accesses only
one account, the true-detection probability is already ≈ 1.0.
That is, due to the strength of these datasets, even the accounts
with the smallest (2) have rank-sets with the lowest-ranked
password being a honeyword with near certainty.

n/N = 0.23
n/N = 0.21
n/N = 0.19

100 101 102 103

0
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0.4
0.6
0.8
1.0
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t
d
p(

n)

Fig. 3: True-detection proba-
bility for honeychecker inte-
gration (Sec. IV-C) as func-
tion of θ for varying frac-
tions n/N of accounts ac-
cessed by the brat, based on
(12); see Sec. IV-F2.

Fig. 2b shows the
impact of constraining the
false-positive probability
even more stringently than
ϵ = 10−1. This graph
shows that driving ϵ lower
decreases the true-detection
probability in some cases.
More specifically, when
ϵ = 10−5 and for the weakest
password distribution we
consider (12), a brat can
access more than 65% of the
accounts before the breach
is detected with probability
≥ 0.5. That said, such a
stringent ϵ implies less
than one false detection
per several millennia, in
expectation (see Sec. IV-F1).
The strongest datasets ((16),

(17)) withstand even such a stringent ϵ with no impact on
true-detection probability.

Our true-detection results in Fig. 2 were computed using
θ = 1000, i.e., assuming the brat had determined the 1000
lowest-ranked passwords present in the Bloom filter for each
account. A natural question is whether setting θ = 1000 in
our analyses is sufficiently conservative. Fig. 3 confirms that
it clearly is. Specifically, this figure demonstrates that true-
detection probabilities decrease noticeably when increasing θ
from θ = 1 to θ = 2, but increasing it further has essentially
no effect on true detections. Intuitively, the absence of an
effect for θ > 2 indicates that while the difference between
the probabilities of the two lowest-ranked passwords in an
account’s Bloom filter—i.e., how “isolated” the first-ranked
password is—provides guidance for which account to attack
first, additional passwords provide the brat little additional
information.

V. Integration with Amnesia

The Amnesia design [42] improves on that of Juels &
Rivest [25] in two ways. First, it eliminates the assumption that
honeychecker state remains secret past the breach of a target
site; indeed, the target site in Amnesia has no honeychecker
at all. Second, it enables a target to request that another site
monitor for the entry of its honeywords, without disclosing
them (or the user-chosen password) to the monitoring site
and without exposing login attempts at the monitoring site
to the target site unless the login attempt actually involves
one of the target’s honeywords. This remote monitoring is
important since a brat can distinguish a user-chosen password
from honeywords by stuffing them at other sites; since users
often reuse a password across sites [13], [30], [37], [27], the
user-chosen password at the target emerges as the one that
works elsewhere.

In this section we describe an adaptation of the Amnesia
framework using the insights of Sec. III. As we will see, this
adaptation does come with some consequences in terms of
security against brats, which we will detail. This section will
also leverage Bloom filters, as presented in Sec. IV-A.

A. Detecting a breach locally

1) Background on local detection in Amnesia: In Amnesia,
the site forgoes a honeychecker and indeed does not have any
ability to distinguish the user-chosen password from honey-
words for an account. So, to detect a breach using honeywords,
the site needs some other way to determine that the account
has been accessed using a honeyword. Amnesia does so by
detecting probabilistically if an account has been successfully
accessed by two distinct passwords—one of which must be a
honeyword. Note, moreover, that Amnesia must do so without
storing any state that would indicate to a brat what password
was previously used to access the account, since that would
reveal the user-chosen password to the brat, enabling it to
avoid using a honeyword.

To achieve this, Amnesia attaches one-bit marks to the
(hashes of) passwords for an account, so that the password
with which the account was last accessed is marked (i.e., its
mark is set to 1) and each other password is marked with a
certain probability. The user-chosen password is the only one
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that the intended user should ever use, and so her accesses
leave this one marked all the time. If a brat accesses the
account using a honeyword, however, then the user-chosen
password becomes unmarked with some probability. In that
case, the legitimate user’s next login triggers a breach alert,
due to using an unmarked password.

Several subtleties in the security of Amnesia against a
brat were explored in its original analysis [42]. The first is
that a brat that continues to watch the persistent storage of
the breached site as its users log in over time—essentially
breaching the site repeatedly across some number L of legit-
imate logins per account—can narrow in on the user-chosen
password as one of those that remain marked across those L
logins. To do so, however, the brat must remain in the system
and exfiltrate this data over time, which presumably leaves the
brat at greater risk of exposure. Amnesia therefore assumes
that L can be reasonably bounded (or that the brat will be
noticed by other means if not).

The second subtlety in the Amnesia analysis is that once the
brat decides to access an account using one of the passwords π
that remained marked through the L logins, it can do so many
times—these logins are indexed L + 1, . . . , L′ below—in an
attempt to ensure that the next most-likely password π̂, from
the brat’s perspective, remains marked after login L′. If the
brat succeeds and if π̂ is in fact the user-chosen password, then
the user entering it will not trigger an alarm. Amnesia therefore
additionally requires accounts to be monitored for an unusually
high frequency of successful logins, e.g., triggering a second-
factor or backup authentication challenge if that frequency
becomes abnormally large.

Characterizing the effects of L and L′ on brat detection is
challenging. In the Amnesia paper [42], the authors resorted
to probabilistic model-checking to analyze these effects and,
indeed, did not quantify a true-detection rate for their design.
In contrast, our design below supports the first closed-form
(albeit approximate) solution for the impact of L and L′ on
its true-detection probability. We use this solution to show the
influence of these parameters on the design.

2) Adapting local detection in Amnesia: In adapting Amne-
sia to leverage the insights of Sec. III, we adapt a Bloom filter
to accommodate marks. Specifically, we subsequently denote
a marked Bloom filter as a triple ⟨F ,B,M⟩ where F and B
are as before and where M ⊆ B includes the indices in B that
are marked. Upon a login attempt with password π, the result
is determined as follows:

login(π) =


failure if H(π) <b ⟨F ,B⟩
success if H(π) ∈b ⟨F ,M⟩
alarm otherwise

If login(π) = success, a remarking occurs with probability
premark. In a remarking, the set M is reset to include F (H(π))
(i.e., F (H(π)) ⊆ M with probability 1.0) and each element of
B \ F (H(π)) independently with probability pmark.

3) Security against a raat: As in Sec. IV, the false-
detection probability is simple to characterize for this design.
By definition, a raat does not breach the system and so
cannot observe ⟨F ,B,M⟩ directly for an account. So, when
attempting to enter any honeyword in ℓ logins per account, for
n accounts, the false-detection probability fdp(ℓ, n) can again
be bounded as in (7).

4) Security against a brat: The threat model envisioned by
Amnesia permits the brat, in our case, to capture snapshots of
the marked Bloom filter ⟨F ,B,M⟩ after multiple logins by
the legitimate user. If the brat breaches the site, capturing the
current marked Bloom filter ⟨F ,B,M0⟩, and then continues
to monitor the site while the user successfully logs in L
times, then the brat observes consecutive marked Bloom filters
{⟨F ,B,Ml⟩}

L
l=0, and a password remains viable only if it is

contained in all of them. That is, in the terminology of Sec. III,
s[r] = 1 iff

∧L
l=0 (H(pwd[r]) ∈b ⟨F ,Ml⟩). Since for e

$
← {0, 1}v,

P
(
e ∈b ⟨F ,M0⟩

∣∣∣∣ e ∈b ⟨F ,B⟩
)
≈ (pmark)E(|F (e)|)

and for any l ≥ 0,

P
(
e ∈b ⟨F ,Ml+1⟩

∣∣∣∣ e ∈b ⟨F ,Ml⟩
)

≈ (1 − premark) + premark(pmark)E(|F (e)|)

it is prudent to measure hwinbrat (·, ·) from Sec. III-B using

p̂h(L) = ph × (pmark)E(|F (e)|) ×(
1 − premark + premark(pmark)E(|F (e)|)

)L
(19)

as its first argument. (E (|F (e)|) can be instantiated using (4).)
As discussed above, this degradation in the probability with
which a brat inputs a honeyword (i.e., reflected in our use of
p̂h(L) in lieu of ph in hwinbrat ( p̂h(L),R)) is not an artifact of
our construction, but rather an analogous degradation is present
in the original Amnesia design [42].

The entry of a honeyword π by a brat is necessary but
not sufficient to detect the brat; in addition, its doing so (after
observing L logins by the legitimate user, and then himself
logging in another L′−L times) must leave H(π̂) <b ⟨F ,ML′⟩,
for the user-chosen password π̂. Recall that by the analysis of
Sec. III-B, the brat can do no better than attempting the most
likely password in its rank ordering pwd[·] that its monitoring
suggests is still viable. To provide a conservative analysis,
suppose that the next most-likely viable password π̂ is indeed
the only other possibility for the user-chosen password, in the
brat’s view. Denote Ŝ = F (H(π̂)) and S = F (H(π)). Then,

P (H(π̂) <b ⟨F ,ML+1⟩) ≈ premark

(
1 − (pmark)E(|Ŝ\S|)

)
(20)

where E
(∣∣∣Ŝ \ S∣∣∣) can be evaluated as in (6), and for l > L,

P
(
H(π̂) <b ⟨F ,Ml+1⟩

∣∣∣∣ H(π̂) <b ⟨F ,Ml⟩
)

≈ (1 − premark) + premark

(
1 − (pmark)E(|Ŝ\S|)

)
(21)

The true-detection probability for a brat who attacks a R-
account, then, is

tdpR(L, L′) ≈ hwinbrat ( p̂h(L),R) × P (H(π̂) <b ⟨F ,ML+1⟩)

×

L′−1∏
l=L+1

P
(
H(π̂) <b ⟨F ,Ml+1⟩

∣∣∣∣ H(π̂) <b ⟨F ,Ml⟩
)

for any L′ ≥ L. The factors can be plugged in from (19), (20),
and (21). Similar to Sec. IV-E, the true-detection probability
for a brat who attacks accounts A′ ⊆ A is

tdp(L, L′,A′) = 1 −
∏
a∈A′

(1 − tdpRa (L, L′)) (22)
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(16) (17) (18) with TG-I′′

(18) with TG-I′′′ (18) with PCFG (12)
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(a) ϵ = 10−1 (b) tdp(10, 31, n) ≥ 0.5

Fig. 4: True detection probability for Amnesia integration
(Sec. V-A2). Fig. 4a shows tdp(10, 31, n) per fraction n/N of
accounts accessed by the brat. Fig. 4b shows the fraction n/N
of accounts attempted by the brat at which tdp(10, 31, n) ≥ 0.5,
per bound ϵ in (11). TG-I′′, TG-I′′′, and PCFG represent
different blocklists adopted for (18); see Sec. IV-F2.

and the minimum true-detection probability for brat who
attacks n accounts is

tdp(L, L′, n) = min
A′⊆A:|A′ |=n

tdp(L, L′,A′) (23)

5) Security evaluation: We now provide results for the
Amnesia integration given in Sec. V-A2, analogous to those of
Sec. IV-F but informed by the analysis in Secs. V-A3–V-A4.
We again take the requirement (11) on fdp and estimate
P (� ≤ r) using (12), (16), (17), or (18) with some blocklisting
algorithm.

Analogous to Fig. 2a, in Fig. 4a we plot tdp(L, L′, n) as
a function of the fraction n/N of accounts accessed by the
brat, produced using 10,000 simulations with θ = 1000 and
ϵ = 10−1. For these plots, we set L = 10 and L′ = 31 (i.e.,
the brat logs in up to 20 additional times after its first); we
will illustrate the effects of varying these parameters below.
We again set k = 20 and b = 128 and chose pmark = 0.95
and premark = 0.065. Fig. 4a again highlights the utility of
blocklisting; e.g., blocklisting using TG-I′′ reduces the fraction
of accounts accessed by the brat at which the true-detection
probability reaches 0.5 from ≈ 32% with no blocklisting to
≈ 8.6%. At the same time, comparing Fig. 4a with Fig. 2a, we
see that the brat can access ≈ 34.4% more accounts than in
the honeychecker design of Sec. IV-C before the true-detection
probability reaches this value (in the case of blocklisting with
TG-I′′), at least for L = 10 and L′ = 31. As such, it is evident
that the feature that makes Amnesia symmetric in the sense
of Sec. II, i.e., that the site has no data for which its secrecy
survives the breach, comes at a cost in detection power. Also,
Fig. 4a again highlights the relative strengths of the CMU and
CKL-PCFC datasets, showing that our Amnesia integration
will detect a brat with certainty after it accesses only about 5%
and 0.0004% of the accounts in these datasets, respectively.

Fig. 4b shows the impact of constraining the false-positive
probability to be ϵ ≤ 10−1. Comparing to Fig. 2b, the cost of

L′ − L
L 1 6 11 16 21
0 .998 .995 .990 .981 .967
5 .997 .995 .989 .980 .967

10 .997 .994 .989 .980 .966
15 .997 .994 .989 .979 .965
20 .997 .994 .988 .977 .965

(a) n/5,459 ≈ 0.03

L′ − L
L 1 6 11 16 21
0 1.00 1.00 1.00 .999 .997
5 1.00 1.00 1.00 .998 .997

10 1.00 1.00 .999 .998 .997
15 1.00 1.00 .999 .998 .997
20 1.00 1.00 .999 .997 .996

(b) n/5,459 ≈ 0.05

TABLE I: tdp(L, L′, n) with varying L and L′ − L based on
estimate (16) for P (� ≤ r)

Amnesia’s weak assumptions is evident, in that when ϵ = 10−5,
there is minimal true-detection power for a dataset as weak as
(12), even with blocklisting. However, datasets (16) and (17)
retain substantial true-detection power even at ϵ = 10−5, in
that the brat will be detected with probability ≥ 0.5 after it
accesses ≈ 30% of the accounts.

The impact of L and L′ are shown in Table I. Recall that
L is the number of logins by the legitimate user across which
the brat monitors the password database before accessing the
account himself, and L′ − L is the number of logins by the
brat to first access the account and then to attempt to return the
system to a state in which the next login by the legitimate user
will not trigger an alarm. Table I suggests the true-detection
probability decays modestly when L and L′ − L increase.

B. Detecting a breach with remote help

1) Background on remote monitoring in Amnesia: An as-
pect of the Amnesia design that requires a bit more adaptation
to accommodate our approach here is a target site’s ability to
solicit help from other sites to monitor for the entry of the
target’s honeywords at those monitoring sites. Critically, Am-
nesia enables this monitoring without the target T disclosing
its honeywords (or the user-chosen password) for accounts to
the monitoring site M; without M being able to induce a breach
alarm at T with any higher probability than a raat could; and
without placing M’s accounts at risk. Remote monitoring is
useful because attempting passwords breached from T at other
sites is an effective way to find the user-chosen password, since
users tend to reuse passwords across sites [13], [30], [37], [27].

Amnesia achieves remote monitoring via a protocol it calls
“private containment retrieval,” denoted PCR. To request that
M monitor for an account at T, T sends to M a data structure
that contains the set of hashes of passwords (one real, and the
others honeywords) for that account at T. This data structure
is encrypted under a public key pk whose private key sk is
known only to T.

Upon receiving a login attempt for the same user’s account
at M for which the submitted password π is incorrect (even
accounting for typos, e.g., [9]), M inputs H(π) as the test
plaintext and a specific value m as the response plaintext to a
local response computation, together with the encrypted data
structure received from T. If the test plaintext H(π) matches
a hash value in the (plaintext of the) encrypted data structure,
then this computation produces a ciphertext of m. Otherwise,
it produces a ciphertext of a random plaintext. Even though M
knows the ciphertext produced is either of m or of a uniformly
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random plaintext, M nevertheless cannot tell which type of
ciphertext it produced (see [42]).

M returns this ciphertext to T, who decrypts it using sk.
T can then test whether the resulting plaintext is the response
plaintext m corresponding to any π in its set of passwords for
this account. If so, T acts (for the purposes of breach detection)
as if π had been input in a local login attempt to this account.

2) Adapting remote monitoring in Amnesia: We describe a
way in App. A to use the PCR protocol summarized above to
enable remote monitoring for entry of Bernoulli honeywords in
the Amnesia integration of Sec. V-A. However, this adaptation
costs k PCR responses per incorrect login attempt at the
monitoring site M, yielding substantially greater costs. Here
we instead provide a more efficient protocol to convey π
to T iff H(π) ∈b ⟨F ,B⟩. Our design improves on that of
App. A by roughly an order of magnitude for the common
operations, namely the response generation by M and the
response processing by T, as we will show.

Cryptographic primitives: Our protocol builds on an encryption
scheme E with algorithms Gen, Enc, Dec, and ×[·].

• Gen is a randomized algorithm that outputs a public-
key/private-key pair ⟨pk, sk⟩ ← Gen(). The value of pk
determines a plaintext space that is a cyclic group (G, ◦)
of prime order q, with generator g and identity element 1.
We assume below that a password π can be encoded as
a plaintext in G. For any m ∈ G, we use m−1 to denote
the inverse of m and mz = m1 ◦ . . . ◦ mz where each
m j = m. The value of pk also determines a ciphertext space
Cpk =

⋃
m∈GCpk(m), where Cpk(m) denotes the ciphertexts

for plaintext m. Below our discussion implicitly assumes that∣∣∣Cpk(m)
∣∣∣ = ∣∣∣Cpk(m′)

∣∣∣ for any m,m′ ∈ G; this is not necessary,
but simplifies the discussion below and holds true in our
implementation.

• Enc is a randomized algorithm that on input public key pk
and a plaintext m ∈ G, outputs a ciphertext c ← Encpk(m)
chosen uniformly at random from Cpk(m).

• Dec is a deterministic algorithm that on input a private key
sk and ciphertext c ∈ Cpk for the pk corresponding to sk,
outputs the plaintext m← Decsk(c) such that c ∈ Cpk(m). If
c < Cpk, then Decsk(c) returns ⊥.

• ×[·] is a randomized algorithm that, on input a public key
pk and ciphertexts c1 ∈ Cpk(m1) and c2 ∈ Cpk(m2), outputs a
ciphertext c ← c1 ×pk c2 chosen uniformly at random from
Cpk(m1 ◦ m2).

Given this functionality, it will be convenient to define two
additional operators. Below, “� d

= �′” denotes that random
variables � and �′ are distributed identically.

• The
∏

pk operator denotes repetition of ×pk, i.e.,

z∏
pk

j=1
c j

d
= c1 ×pk c2 ×pk . . . ×pk cz

• The $pk operator produces a random ciphertext of 1 if its
argument is a ciphertext of 1, and otherwise produces a
ciphertext of a random element of G \ {1}. Specifically,

$pk(c) d
=

z∏
pk

j=1
c where z

$
← Z∗q

T(⟨F ,B⟩) M(·)

t1. ⟨pk, sk⟩ ← Gen()
t2. b′ ← |B|
t3. ∀ j ∈ {1, . . . , b} :

c j ←

{
Encpk(g−1) if j < B
Encpk(g) if j ∈ B

t4. Ψ← zkpGen(⟨pk, {c j}
b
j=1⟩)

t5. save ⟨pk, sk⟩

r1.
pk,F , b′, {c j}

b
j=1, Ψ

−−−−−−−−−−−−−−−−−−−−−−−→

m1. abort if ¬zkpVerify(⟨pk, {c j}
b
j=1⟩,Ψ)

m2. c←
b∏

pk
j=1

c j

m3. d0 ← c ×pk Encpk(gb−2b′ )
m4. save ⟨pk,F , {c j}

b
j=1, d0⟩

Fig. 5: Monitor deployment

Protocol description: The protocol for T to deploy a monitor
for a selected account to site M is shown in Fig. 5, and
the protocol for M to send a monitoring response (upon an
attempted login to that account) to T is shown in Fig. 6.
Deployment begins by T creating a public/private key pair
⟨pk, sk⟩ (line t1) that it will save for processing monitoring
responses later (t5). The monitoring request itself includes
b ciphertexts {c j}

b
j=1 that encode which indices j are in the

account’s Bloom filter indices B (encoded as c j ∈ Cpk(g))
and which are not (encoded as c j ∈ Cpk(g−1)); see line t3. In
addition, the monitoring request (message r1) includes pk; the
uniform hash functions F for the account’s Bloom filter; the
number b′ of indices in B (line t2); and a noninteractive zero-
knowledge proof Ψ that {c j}

b
j=1 ⊆ Cpk(g)∪Cpk(g−1) (generated

using zkpGen in line t4).2

Upon receiving a well-formed monitoring request r1 (in
particular, where pk is a valid public key), M checks the zero-
knowledge proof Ψ using zkpVerify (line m1) and aborts if the
check returns false. If this check returns true and so {c j}

b
j=1 ⊆

Cpk(g)∪Cpk(g−1) (except with probability the soundness error
of Ψ), then M calculates d0 to be a ciphertext of 1 if and only
if the claimed number b′ is accurate (lines m2–m3). That is,∣∣∣{c j}

b
j=1 ∩Cpk(g)

∣∣∣ = b′ ⇔ c ∈ Cpk(gb′g−(b−b′)) in line m2

⇔ d0 ∈ Cpk(1) in line m3

Finally, M saves pk, F , {c j}
b
j=1, and d0 in line m4.

As we will see, d0 < Cpk(1) ensures that T learns nothing
from M; i.e., T cannot gain any information about logins at
M if it reports an incorrect value of b′. b′ is reported in r1
primarily to permit M to refuse the monitoring request if b′
is larger than M deems appropriate. That is, using b′, M can

2As in Amnesia, if the password-hashing function H in use at T is salted,
then the salt can be sent in r1 to M. Or, H could be implemented as an
oblivious pseudorandom function (e.g., [21]) keyed with the salt, which M
would evaluate on π with an extra interaction with T in Fig. 6.
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T(⟨F ,B⟩, ⟨pk, sk⟩) M(⟨pk,F , {c j}
b
j=1, d0⟩)

Upon login attempt with incor-
rect password π:
m5. S ← F (H(π))
m6. d1 ←

∏
pk

j∈S

(
c j ×pk Encpk(g−1)

)
m7. ĉ0 ← $pk(d0) ×pk $pk(d1)
m8. ĉ1 ← $pk(ĉ0) ×pk Encpk(π)

r2.
ĉ0, ĉ1

←−−−−−−−−−−−−−−−−−−−−−−−

t6. abort if Decsk(ĉ0) , 1
t7. π← Decsk(ĉ1)
t8. abort if π = ⊥ or H(π) <b ⟨F ,B⟩
t9. return π

Fig. 6: Monitor response

calculate ph using (3) with |B| = b′ and accept the monitoring
request only if ph is acceptably small. If not, M can just drop
this request (not shown in Fig. 5).

The monitor site M generates a response using the protocol
shown in Fig. 6. The provided (incorrect) password π in a login
attempt to the monitored account is used to generate its set
S ← F (H(π)) of Bloom-filter indices, in line m5. For each
such index j, the ciphertext c j ×pk Encpk(g−1) is calculated
in line m6, yielding a ciphertext of 1 if c j ∈ Cpk(g) and a
ciphertext of g−2 otherwise. These ciphertexts are combined
using ×pk, ensuring that d1 is a ciphertext of 1 if and only if
all of them are. The ciphertext ĉ0 is then set to be a ciphertext
of 1 if and only if both d0 and d1 are (with overwhelming
probability; line m7), and then ĉ1 is set to be a ciphertext of
π in that case (and only that case; line m8).

Upon receiving ĉ0, ĉ1 in message r2, T tests whether ĉ0 ∈

Cpk(1) and aborts if not (line t6); aborting here indicates that
H(π) <b ⟨F ,B⟩. As such, if the protocol does not abort in
line t6 but H(π) <b ⟨F ,B⟩ in line t8, then this reveals that M
has misbehaved (and so the protocol again aborts). Otherwise,
π is returned and T treats it as if it were entered in a local login
attempt for this account, for the purposes of breach detection.

We prove the cryptographic security of this protocol in
App. B. Below we sketch the cryptographic arguments and
additionally discuss other factors that bear on its security for
our purposes.

3) Security against a malicious M: The first threat that we
address relative to a malicious M is the possibility that M learns
information about the honeywords or user-chosen password
for an account at T for which it is asked to monitor. Of the
values M receives in the protocol (see message r1), pk and
F are chosen independently from these passwords; {c j}

b
j=1 are

ciphertexts encrypted using pk; and Ψ is a zero-knowledge
proof that {c j}

b
j=1 are well-formed. This protocol does disclose

|B| = b′ to M, though b′ is a tunable parameter chosen by T
even prior to user password registration and, combined with
k = |F |, merely reveals to M the value of ph (i.e., ph = (b′/b)k)
in use at T. It does not, however, provide the adversary any

ability to distinguish T(⟨F ,B⟩) from T(⟨F ,B′⟩) for distinct B
and B′, provided that |B| = |B′| = b′. Thus, if a malicious
M has a non-negligible advantage in distinguishing between
T(⟨F ,B⟩) and T(⟨F ,B′⟩) on the basis of message r1, even for
B and B′ of M’s own choosing (satisfying |B| = |B′| = b′),
then there is an IND-CPA [3] adversary with non-negligible
advantage against E. This claim is in the random oracle
model [4]—in particular, the non-interactive proof Ψ built
using the Fiat-Shamir heuristic [19] implies random oracles.
Below we will instantiate the encryption scheme E and zero-
knowledge proof Ψ in our implementation.

Given that the protocol does not leak information about the
honeywords to M, we now consider the threat of M using its
vantage point to induce a false breach alarm at T. Interestingly,
because M learns F and might know the user-chosen password
π̂ at T (e.g., if it was reused at M), M does gain an advantage
in inducing a false alarm at T. Specifically, while M does not
know M or B at T, it knows that |B| = b′ and F (H(π̂)) ⊆ M.
So, to attempt to induce a false alarm at T, it can select a
password π to maximize

P

(
F (H(π)) ⊆ B ∧
F (H(π)) ∩ (B \M) , ∅

∣∣∣∣∣∣ |B| = b′ ∧
F (H(π̂)) ⊆ M

)
where the probability is with respect to choice of B andM by
T. Returning ĉ0 ∈ Cpk(1) and ĉ1 ∈ Cpk(π) will then induce
a false alarm with higher probability than our calculations
in previous sections would suggest. Since we model H as a
random oracle, M must search for such a π in a brute-force
manner, but it can do so offline, whereas a raat as discussed
previously can attempt to induce a false alarm only as an
online attack. Note that this attack is equally relevant for our
adaptation of the Amnesia protocol discussed in App. A, since
M obtains F there, as well.

To defend against this added risk of false alarms, T can use
two distinct Bloom filters per account for (both local and re-
mote) breach detection: one private Bloom filter ⟨Fpr,Bpr,Mpr⟩

with marks and one “public” one ⟨Fpu,Bpu⟩ without marks.
The detection rule in Sec. V-A2 can be modified to be

login(π)=


failure if H(π)<b⟨Fpr,Bpr⟩ ∨ H(π)<b⟨Fpu,Bpu⟩

success if H(π)∈b⟨Fpr,Mpr⟩ ∧ H(π)∈b⟨Fpu,Bpu⟩

alarm otherwise

Here, Fpr and Fpu are independently chosen. Then, T can
use ⟨Fpu,Bpu⟩ in the protocol of Sec. V-B2 while keeping
⟨Fpr,Bpr,Mpr⟩ private. To limit the false detection probability
against M to at most that provided in Sec. V-A3 against a
local raat without knowledge of ⟨F ,B,M⟩, T can configure
⟨Fpr,Bpr,Mpr⟩ as prescribed previously. In this case, even with
knowledge of Fpu and π̂, M can do no better in triggering a
false alarm than a local raat could have, due to the privacy of
⟨Fpr,Bpr,Mpr⟩ at the unbreached T.

In this design, increasing
∣∣∣Fpu

∣∣∣ reduces the true detection
probability. Decreasing

∣∣∣Fpu

∣∣∣, on the other hand, increases the
number of failed login passwords at M that are transmitted to
T via the protocol of Sec. V-B2; as such, M might refuse a
monitoring request for which

∣∣∣Fpu

∣∣∣ is too small. Such impacts
can be quantified using the principles we developed previously.
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4) Security against a malicious T: The security risk that
a malicious T poses to a monitor M is that T will learn
more about the passwords entered in login attempts at M
than it should. The login passwords π on which M executes
the response protocol (Fig. 6) are at M’s discretion. The key
property that we show about this protocol is that if M executes
the response protocol on a password π, then no information
about π is conveyed to T unless the monitoring request is well-
formed and H(π) ∈b ⟨F ,B′⟩ for the B′ represented by the
monitoring request, no matter how T misbehaves. This security
argument follows from three facts.

• If a monitor M accepts a monitor request from T (line m4),
then {c j}

b
j=1 ⊆ Cpk(g) ∪Cpk(g−1) except with probability the

soundness error of Ψ.
• Let B′ = { j : c j ∈ Cpk(g)}. If {c j}

b
j=1 ⊆ Cpk(g) ∪Cpk(g−1) but

|B′| , b′, then d0 ∈ Cpk \Cpk(1) in line m4. Therefore, ĉ0 ∈

Cpk(1) with probability at most 1/(q − 1) and otherwise is
uniformly distributed in Cpk \Cpk(1). When ĉ0 ∈ Cpk \Cpk(1),
ĉ1 is uniformly distributed in Cpk \Cpk(π) (line m8).

• If {c j}
b
j=1 ⊆ Cpk(g)∪Cpk(g−1) and |B′| = b′ but in a run of the

response protocol (Fig. 6) on π, it is the case that H(π) <b
⟨F ,B′⟩, then the value ĉ0 returned from M is uniformly
distributed in Cpk \Cpk(1), and so ĉ1 is uniformly distributed
in Cpk\Cpk(π). This is immediate since in line m6, d1 will be
generated in Cpk(g−2|F (H(π))\B′ |). Therefore, ĉ0 is uniformly
distributed in Cpk \Cpk(1) (m7).

Given these facts, M conveys information to T in a run
of the response protocol (Fig. 6) only if {c j}

b
j=1 ⊆ Cpk(g) ∪

Cpk(g−1), |B′| = b′, and H(π) ∈b ⟨F ,B′⟩.

5) Performance: We implemented the protocol of
Sec. V-B2 and compared its performance to Amnesia’s PCR
protocol, retrieved from https://github.com/k3coby/pcr-go.
To facilitate comparison between PCR and ours, we
implemented ours in Go (as PCR is) and used the same
encryption scheme E, namely ElGamal encryption [16]
with G being the elliptic-curve group secp256r1 [7]. The
construction of the zero-knowledge proof Ψ is discussed
in App. B-A2. Our implementation can be retrieved from
https: / /github.com /k3coby /bhwmonitoring- go. In our
experiments, T and M executed on separate AWS EC2
instances having a single 2.50GHz vCPU running Ubuntu
20.04.4. All datapoints are the means of 50 runs; we report
relative standard deviations (χ) in each caption.

Fig. 7 provides a comparison of costs. Note that some
vertical axes are log-scale. In Fig. 7, we denote by h the
number of explicit honeywords with which PCR’s monitoring
request is configured, up to h = 212; this value is not
excessive, but rather even larger numbers are suggested in
the Amnesia design to offset certain threats [42, Sec. 5.4].
“Request generation by T” (Fig. 7a) refers to execution at T
preceding the request message (i.e., lines t1–t5 in Fig. 5, and
the analogous instructions for PCR); “Request validation by
M” (Fig. 7b) refers to execution at M following receipt of a
well-formed request message (m1–m4); “Response generation
by M” (Fig. 7d) refers to execution at M preceding the response
message (m5–m8 in Fig. 6); and “Response processing by T”
(Fig. 7e) refers to execution at T following receipt of a well-
formed response message (t6–t9). In the last case, “Negative”
refers to the case H(π) <b ⟨F ,B⟩, and “Positive” refers to the

Our protocol PCR [42]
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Fig. 7: Costs for our protocol (Sec. V-B2) and PCR [42]. One-
time costs for T to deploy a monitoring request to M are shown
in (a)–(c), and costs for M to return a response to T, once per
incorrect login attempt, are shown in (d)–(f). In (e), “negative”
and “positive” refer to the cases in our protocol when H(π) <b
⟨F ,B⟩ and H(π) ∈b ⟨F ,B⟩, respectively; PCR has analogous
cases. Numbers shown are for b = 128 and k = 20 for our
protocol. h is the number of explicit honeywords with which
PCR’s monitoring request was configured.

case H(π) ∈b ⟨F ,B⟩.

As shown in Fig. 7, in all measures except for response
computation by M (Fig. 7d), our protocol eventually outper-
forms the original PCR protocol for Amnesia as the number
of honeywords is increased. Response generation by M is more
expensive by a mere 5ms, which could be eliminated by reduc-
ing k from k = 20 to k = 10. We have used k = 20 throughout
this paper primarily to produce true-detection curves contain-
ing more points and so that are smoother. Reducing to k = 10
would have little practical effect.

Though we arrived at our remote-monitoring protocol
through its support for Bernoulli honeywords, it will work with
any Bloom filter provided by T. So, it presents an alternative
for remote monitoring in an adaptation of Amnesia using a
Bloom filter (vs. a Cuckoo filter [18]), even one populated
with explicit honeywords.

VI. Discussion

Online password guessing: Our primary threat models consid-
ered in this paper, namely raats and brats, leave one additional
threat model to consider: The risk that an attacker not knowing
the user-chosen password succeeds in an online password
guessing attack to access an account—versus to induce a false
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breach alarm, as a raat does with knowledge of the user-
chosen password. Denote by gp(ℓ) the probability with which
an online attacker would succeed in guessing the password for
a particular account within ℓ tries. Then, Bernoulli honeywords
increase his probability of accessing this account to no more
than gp(ℓ) + fdp(ℓ, 1), since entry of either the user-chosen
password or a honeyword is necessary (though not sufficient
in our specific designs3) to access the account. As discussed
in Sec. IV-F, Florêncio et al. [20] recommend resisting up to
ℓ = 106 online guesses in a prolonged depth-first campaign,
which we interpreted to require fdp(106, 10) ≤ 10−1 (and
so fdp(106, 1) < 10−2). Still, if the user-chosen password
satisfies gp(106) ≪ 10−2, then it is conceivable that Bernoulli
honeywords could theoretically weaken the account to access
by an online guessing attack. That said, any such weakening
is of little practical importance, for online guessing attacks
or others. Florêncio et al. put it this way: “... consider two
passwords which withstand 106 and 1012 guesses respectively
... there is no apparent scenario in which the extra guess-
resistance of the second password helps. ... both will survive
online guessing, but neither will survive offline attack” [20,
p. 43]. We therefore conclude that the advantages brought
by Bernoulli honeywords far outweigh any additional risk of
account access by an online guessing attack. In those rare cases
of a user-chosen password capable of withstanding even an
offline attack, a site can simply exempt this account from using
Bernoulli honeywords.

Space efficiency: Though not our primary motivation for using
them, Bloom filters are very space-efficient data structures,
which has additional benefits for our designs. For example,
Wang et al. [41, Sec. V.B] estimates the honeyword storage
for 107 accounts costs 12.8GB for 40 honeywords per user. In
our design, storing Bloom filters with b = 128 (the parameter
we chose for our security evaluations) for the same number of
users would cost 160MB only.

This space efficiency also has benefits for remote moni-
toring. For example, with b = 128 our protocol in Sec. V-B2
would require M to store < 1GB for 105 monitoring requests.
In contrast, the authors of Amnesia show that if 4096 explicit
honeywords are deployed for each account, it requires 32GB
to store the same number of monitoring requests.

A direction for future research is more space-efficient
methods for implementing Bernoulli honeywords. Certain nat-
ural candidates, e.g., simply storing H(π̂) mod w for the user-
chosen password π̂, would implement ph = 1/w. However, a
similarly efficient construction is possible using Bloom filters,
by setting b = w, k = 1, and |B| = 1.

VII. Conclusion

In this paper we have made the case for choosing honey-
words from all possible passwords as a Bernoulli process, in
contrast to previous proposals to generate a small number of
honeywords per account using heuristics. We have shown how
to realize this idea within existing honeyword system designs,
namely the original honeychecker-based design of Juels &
Rivest and the more recent Amnesia proposal. Moreover, we
have shown that our design enables even greater efficiency than

3Our honeychecker design (Sec. IV-C) also requires F (H(π)) = F (H(π̂))
and our Amnesia adaptation (Sec. V-A2) also requires H(π) ∈b ⟨F ,M⟩.

the previous Amnesia proposal for remotely monitoring for the
entry of a site’s honeywords elsewhere. Most critically, though,
we have shown that Bernoulli honeywords permit analytic
estimation of true and false breach-detection rates, which we
provide for our realizations. In particular, when evaluated
against realistic threats, Bernoulli honeywords enable detection
of credential database breaches with a risk of false alarms
that is quantifiable, tunable, and independent of the adversary’s
knowledge of the site’s users.
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Appendix A
A Remote-Monitoring Alternative

A fairly direct method to adapt the PCR protocol of Am-
nesia to accommodate the local-detection design in Sec. V-A
using Bloom filter ⟨F ,B⟩ is for T to include the elements
of B in the encrypted data structure it sends to M, instead
of the (hashes of the) account passwords themselves. Upon
receiving a login attempt with password π, M can then execute
the response computation k times, once using fi(H(π)) as the
test plaintext for i = 1 . . . k. As long as the response plaintexts
in these executions were chosen to combine to produce π (say,
by a k-out-of-k secret sharing), T would obtain π if and only if
H(π) ∈b ⟨F ,B⟩. We refer to this adaptation using k executions
of the PCR protocol as PCRk.

We implemented PCRk as a simple modification to the
Go implementation of the original Amnesia remote-monitoring
protocol. The comparison between our protocol of Sec. V-B
and PCRk is given in Fig. 8; note that all vertical axes are
log-scale. As before, all datapoints are the means of 50 runs;
we report relative standard deviations (χ) in each caption.

Monitor deployment is a rare cost compared to monitor re-
sponses, as one monitor deployment could produce thousands
of monitor responses during its lifetime at M. So, while the
monitor request is larger in our design than in PCRk (Fig. 8c)
and the monitor request is an order-of-magnitude more costly
for T to create (Fig. 8a) and M to validate (Fig. 8b), these
costs are still modest (≤ 200ms in all cases shown) and
concern us little. Moreover, ≈ 79% of the monitor request
size is consumed by the proof Ψ, which is not saved once
it is checked (line t5); as such, the storage consumed by the
saved monitor request at M is similar to that in PCRk. The far
more important costs are response generation by M (Fig. 8d),
response processing by T (Fig. 8e), and the response message
size (Fig. 8f), since these are incurred per unsuccessful login
at M. As we can see, our protocol outperforms PCRk by an
order of magnitude in all of these measures.

Appendix B
Security Analysis of RemoteMonitoring Protocol

In this appendix, we prove security for the protocol de-
scribed in Sec. V-B2. We start by defining the primitives on
which security relies, in Sec. B-A. We then prove security
against a malicious target site T in Sec. B-B, and against a
malicious monitor site M in Sec. B-C.
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Our protocol PCRk, adapted from Amnesia [42]
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Fig. 8: Performance comparison between our protocol
(Sec. V-B2) and PCRk. One-time costs for T to deploy a
monitoring request to M are shown in (a)–(c), and costs
for M to return a response to T, once per incorrect login
attempt, are shown in (d)–(f). In (e), “negative” refers to
the case H(π) <b ⟨F ,B⟩, and “positive” refers to the case
H(π) ∈b ⟨F ,B⟩. In PCRk, the “positive” cost depends on k.
Request generation, validation, and size in PCRk also depends
on b′ = |B|; numbers shown are for b′ = b/2 in (a)–(c).

A. Primitives

In this section we provide definitions for the primitives
used in our cryptographic protocol described in Sec. V-B.

1) IND-CPA secure encryption: Our protocol relies on a
partially homomorphic encryption scheme E achieving in-
distinguishability under chosen plaintext attack (IND-CPA)
security [3]. We define the IND-CPA experiment Exptcpa,b

′

E
as:

Experiment Exptcpa,b
′

E
(Dcpa)

⟨pk, sk⟩ ← Gen()
b̂′ ← DEncpk(LR(·,·,b′))

cpa (pk)
return b̂′

The IND-CPA adversary Dcpa is given access to a “left-or-
right” oracle Encpk(LR(·, ·, b′)) that takes two plaintexts m0,m1

as inputs and returns Encpk(mb′ ). Finally, Dcpa returns a bit b̂′,
which the experiment returns. We define

Advcpa
E

(Dcpa) = P
(
Exptcpa,0

E
(Dcpa) = 0

)
− P

(
Exptcpa,1

E
(Dcpa) = 0

)
Advcpa

E
(tcpa, qcpa) = max

Dcpa

Advcpa
E

(Dcpa)

where the maximum is taken over all IND-CPA adversaries
Dcpa running in time tcpa and making up to qcpa oracle queries.

ElGamal encryption [16] can be used to instantiate the
homomorphic encryption scheme E in Sec. V-B2. Given are
a cyclic group G of prime order q and a generator g of G.

• Gen() returns a key pair ⟨pk, sk⟩, including a private key
sk = ⟨u⟩ and a public key pk = ⟨G, g,U⟩, where u

$
← Zq and

U ← gu.
• Enc⟨G,g,U⟩(m) returns ⟨V,W⟩ where V ← gv , v

$
← Zq, and

W ← mUv for a plaintext m ∈ G.
• Dec⟨u⟩(⟨V,W⟩) returns m← WV−u.
• ⟨V1,W1⟩×⟨G,g,U⟩ ⟨V2,W2⟩ returns ⟨V1V2gy,W1W2Uy⟩ for y

$
←

Zq if {V1,W1,V2,W2} ⊆ G and returns ⊥ otherwise.

The IND-CPA security of ElGamal encryption was proved
by Tsiounis and Yung [36]. Our protocols descriptions leave
implicit the checks needed to determine whether ciphertexts
are well-formed, but Prop. 1 indicates that these are trivial.

Proposition 1. For ElGamal encryption, C⟨G,g,U⟩ = G ×G.

Proof: C⟨G,g,U⟩ ⊆ G ×G follows from the fact that G is a
cyclic group. Also, given that for any ⟨V,W⟩ ∈ G × G, there
exists m ∈ G such that m = WV−u for u ∈ Zq. Therefore
⟨V,W⟩ ∈ C⟨G,g,U⟩(m).

In addition, ElGamal is well-known to be multiplicatively
homomorphic, which is confirmed in Prop. 2.

Proposition 2. For ElGamal encryption, if c1 ∈ C⟨G,g,U⟩(m1)
and c2 ∈ C⟨G,g,U⟩(m2), then c1×⟨G,g,U⟩c2 is uniformly distributed
in C⟨G,g,U⟩(m1m2).

Proof: Let c1 = ⟨V1,W1⟩ and c2 = ⟨V2,W2⟩. For V =
V1V2 = gv1+v2 , W = m1m2Uv1+v2 , and for any y

$
← Zq,

⟨V1,W1⟩ ×⟨G,g,U⟩ ⟨V2,W2⟩ = ⟨Vgy,WUy⟩

which is a re-randomization of ⟨V,W⟩ and is uniformly dis-
tributed in C⟨G,g,U⟩(m1m2).

2) Noninteractive zero-knowledge proofs: Our protocol
in Sec. V-B additionally leverages a noninteractive zero-
knowledge proof of membership for an NP language L,
implemented by scheme Π = (zkpGen, zkpVerify, zkpSim),
in the random oracle model [4]. zkpSim offers two interfaces,
denoted zkpSim.hash and zkpSim.prove, that share state be-
tween them. Let RL be the witness relation for L, and let H
denote the set of all functions from {0, 1}∗ to {0, 1}∞. On input
(x,w) ∈ RL and with access to a random oracle hash

$
← H ,

zkpGenhash
w (x) produces a proof Ψ (using the witness w) that

x ∈ L, so that if Ψ← zkpGenhash
w (x) then zkpVerifyhash(x,Ψ)

returns true. We reduce the security of our protocol to the
following adversary advantages against Π.

a) Soundness advantage: For any ̂zkpGen, the sound-
ness advantage is

AdvSnd
Π ( ̂zkpGen) = max

x<L
P

(
zkpVerifyhash(x, ̂zkpGen

hash
⊥ (x))

)
For any time tsnd, the soundness advantage is

AdvSnd
Π (tsnd) = max̂zkpGen

AdvSnd
Π ( ̂zkpGen)

where the maximum is taken over all algorithms ̂zkpGen
running in time tsnd.

15



b) Distinguishing advantage: We define a distinguish-
ing adversary to be an algorithm Dzkp that can participate in
either of the experiments Exptzkp,b

′′

Π
defined below:

Experiment Exptzkp,0
Π

(Dzkp)
(x,w)

$
← RL

hash
$
← H

Ψ← zkpGenhash
w (x)

b̂′′ ← Dhash
zkp (x,Ψ)

return b̂′′

Experiment Exptzkp,1
Π

(Dzkp)
(x,w)

$
← RL

Ψ← zkpSim.prove(x)
b̂′′ ← DzkpSim.hash

zkp (x,Ψ)
return b̂′′

In words, the adversary Dzkp must distinguish between
a real proof output from zkpGenhash

w (x) and a proof output
from the simulator zkpSim.prove(x) without knowledge of the
witness w but with the ability to implement the hash function
zkpSim.hash. This permits zkpSim to leverage the standard
technique of “backpatching” the random oracle outputs on
inputs that Dzkp has not yet queried. We define

AdvzkpΠ (Dzkp) = P
(
Exptzkp,1

Π
(Dzkp) = 1

)
− P

(
Exptzkp,0

Π
(Dzkp) = 1

)
AdvzkpΠ (tzkp, qro) = max

Dzkp

AdvzkpΠ (Dzkp)

where the maximum is taken over all adversaries Dzkp making
qro random oracle queries and running in time tzkp.

Our implementation leverages a zero-knowledge proof of
the equality of discrete logarithms, due to Chaum and Peder-
sen [10]. More specifically, this technique demonstrates that
an ElGamal ciphertext ⟨V,W⟩ satisfies ⟨V,W⟩ ∈ C⟨G,g,U⟩(g) by
proving logg(V) = logU(Wg−1) in zero knowledge, and simi-
larly for a ciphertext ⟨V,W⟩ satisfying ⟨V,W⟩ ∈ C⟨G,g,U⟩(g−1).
We combine these zero-knowledge proof techniques to demon-
strate only that ⟨V,W⟩ ∈ C⟨G,g,U⟩(g) ∪ C⟨G,g,U⟩(g−1) in zero
knowledge using a technique due to Cramer et al. [11].

B. Security against a Malicious T

In this section we prove that a malicious T learns nothing
about π from the response computed by an honest M unless
T already guessed H(π), in the sense that H(π) ∈b ⟨F ,B′⟩ for
the Bloom filter ⟨F ,B′⟩ encoded in its request. An important
premise here is that pk is a valid public key of the underlying
cryptosystem, which is implicitly assumed to be verified by M
upon receiving message r1, and that the ciphertexts received in
message r1 are valid for the cryptosystem; for the cryptosys-
tem used in our implementation, this can be easily verified
(see Prop. 1). Then, the following propositions show that a
malicious T learns nothing about π if any of the following
three conditions is not satisfied: {c j}

b
j=1 ⊆ Cpk(g) ∪ Cpk(g−1),

|B′| = b′, or H(π) ∈b ⟨F ,B′⟩.

Proposition 3. If ⟨pk,F , b′, {c j}
b
j=1,Ψ⟩, where {c j}

b
j=1 ⊈(

Cpk(g) ∪Cpk(g−1)
)
, is produced by a T-adversary T running

in time tsnd, then M fails to abort in line m1 with probability
at most AdvSnd

Π (tsnd).

Proof: This is immediate from the definition of soundness
advantage.

Proposition 4. Suppose M receives ⟨pk,F , b′, {c j}
b
j=1,Ψ⟩

where {c j}
b
j=1 ⊆ Cpk(g)∪Cpk(g−1), and let B′ = { j : c j ∈ Cpk(g)}.

If |B′| , b′, then for any m,m′ ∈ G,

P

(
ĉ0 ∈ Cpk(m)

∧ ĉ1 ∈ Cpk(m′)

∣∣∣∣∣∣ {c j}
b
j=1 ⊆ Cpk(g) ∪Cpk(g−1)

∧ |B′| , b′

)
≤

1
q − 1

Proof: First note that ĉ0 ∈ Cpk(1) ⇔ ĉ1 ∈ Cpk(π). So, it
suffices to quantify the probability in the proposition for the
cases m = 1 ∧ m′ = π and m , 1 ∧ m′ , π. If {c j}

b
j=1 ⊆

Cpk(g) ∪ Cpk(g−1) but |B′| , b′, then d0 ∈ Cpk \ Cpk(1) in
line m4. We consider two cases.

• First suppose d1 ∈ Cpk \ Cpk(1). For the case m = 1 and
m′ = π,

P

(
ĉ0 ∈ Cpk(1)

∧ ĉ1 ∈ Cpk(π)

∣∣∣∣∣∣ d0 ∈ Cpk \Cpk(1)
∧ d1 ∈ Cpk \Cpk(1)

)
=

∑
m̂∈G\{1}

P

(
$pk(d0) ∈ Cpk(m̂)

∧ $pk(d1) ∈ Cpk(m̂−1)

∣∣∣∣∣∣ d0 ∈ Cpk \Cpk(1)
∧ d1 ∈ Cpk \Cpk(1)

)
= (q − 1)

1
q − 1

1
q − 1

=
1

q − 1

And for any m , 1 and m′ , π,

P

(
ĉ0 ∈ Cpk(m)

∧ ĉ1 ∈ Cpk(m′)

∣∣∣∣∣∣ d0 ∈ Cpk \Cpk(1)
∧ d1 ∈ Cpk \Cpk(1)

)

=
∑

m̂∈G\{1,m}
P


$pk(d0) ∈ Cpk(m̂)

∧ $pk(d1) ∈ Cpk(m ◦ m̂−1)
∧ $pk(ĉ0) ∈ Cpk(m′ ◦ π−1)

∣∣∣∣∣∣∣∣∣ d0 ∈ Cpk \Cpk(1)
∧ d1 ∈ Cpk \Cpk(1)


= (q − 2)

1
q − 1

1
q − 1

1
q − 1

=
q − 2

(q − 1)3

• Now suppose d1 ∈ Cpk(1). In this case m = 1 is not possible,
since $pk(d0) ×pk $pk(d1) ∈ Cpk \ Cpk(1). For any m , 1 and
m′ , π,

P

(
ĉ0 ∈ Cpk(m)

∧ ĉ1 ∈ Cpk(m′)

∣∣∣∣∣∣ d0 ∈ Cpk \Cpk(1)
∧ d1 ∈ Cpk(1)

)
= P

(
$pk(d0) ∈ Cpk(m)

∧ $pk(ĉ0) ∈ Cpk(m′ ◦ π−1)

∣∣∣∣∣∣ d0 ∈ Cpk \Cpk(1)
∧ d1 ∈ Cpk(1)

)
=

1
q − 1

1
q − 1

=
1

(q − 1)2

Proposition 5. Suppose M receives ⟨pk,F , b′, {c j}
b
j=1,Ψ⟩

where {c j}
b
j=1 ⊆ Cpk(g)∪Cpk(g−1), and let B′ = { j : c j ∈ Cpk(g)}.

If |B′| = b′ but H(π) <b ⟨F ,B′⟩, then for any m,m′ ∈ G,

P

(
ĉ0 ∈ Cpk(m)

∧ ĉ1 ∈ Cpk(m′)

∣∣∣∣∣∣ {c j}
b
j=1 ⊆ Cpk(g) ∪Cpk(g−1)

∧ |B′| = b′ ∧ H(π) <b ⟨F ,B′⟩

)
≤

1
(q − 1)2

Proof: First note that ĉ0 ∈ Cpk(1) ⇔ ĉ1 ∈ Cpk(π). So, it
suffices to quantify the probability in the proposition for the
cases m = 1 ∧ m′ = π and m , 1 ∧ m′ , π. If {c j}

b
j=1 ⊆

Cpk(g) ∪ Cpk(g−1) and |B′| = b′ but H(π) <b ⟨F ,B′⟩, then
d0 ∈ Cpk(1) but in line m6, d1 ∈ Cpk(g−2|F (H(π))\B′ |) and so
d1 ∈ Cpk \ Cpk(1). In this case m = 1 is not possible, since
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$pk(d0) ×pk $pk(d1) ∈ Cpk \Cpk(1). For any m , 1 and m′ , π,

P

(
ĉ0 ∈ Cpk(m)

∧ ĉ1 ∈ Cpk(m′)

∣∣∣∣∣∣ d0 ∈ Cpk(1)
∧ d1 ∈ Cpk \Cpk(1)

)
= P

(
$pk(d1) ∈ Cpk(m)

∧ $pk(ĉ0) ∈ Cpk(m′ ◦ π−1)

∣∣∣∣∣∣ d0 ∈ Cpk(1)
∧ d1 ∈ Cpk \Cpk(1)

)
=

1
q − 1

1
q − 1

=
1

(q − 1)2

A malicious T without knowledge of H(π) can increase the
probability of H(π) ∈b ⟨F ,B′⟩ by increasing |B′| (or b′, as the
malicious T must ensure |B′| = b′, by Prop. 4). In practice, M
could determine an acceptable threshold and drop monitoring
requests for which b′ exceeds that threshold.

C. Security against a malicious M

We need to show that message r1 does not leak information
about T’s input B (except its size b′), assuming T is honest.
More precisely, we consider the following experiment to char-
acterize success of a malicious M in distinguishing between
two Bloom filters ⟨F ,B0⟩ and ⟨F ,B1⟩ for B0, B1 of its own
choosing (but of the same size, and each containing F (π̂) for
the user-chosen password π̂), based on message r1.

Experiment ExptT,b(⟨M1,M2⟩)
hash

$
← H

⟨B0,B1, ϕ⟩ ← M
hash
1 (F )

⟨pk,F , b′, {c j}
b
j=1,Ψ⟩ ← Tt1-t4(⟨F ,Bb⟩)

b̂← Mhash
2 (⟨pk,F , b′, {c j}

b
j=1,Ψ⟩, ϕ)

return b̂

Here, Tt1-t4 denotes lines t1–t4 in Fig. 5, and F is assumed
to be sampled according the Bloom filter algorithm’s specifi-
cation. We define the M-adversary advantage as

AdvT(M) = P
(
ExptT,0(M) = 0

)
− P

(
ExptT,1(M) = 0

)
AdvT(t, qro) = max

M
AdvT(M)

where the maximum is taken over all adversaries M that make
at most qro random oracle queries and execute in time t. In
proving time bounds on adversaries, we ignore constant terms.

Proposition 6.

AdvT(t, qro) ≤ b · Advcpa
E

(tcpa, qcpa) + 2 · AdvzkpΠ (tzkp, qzkp) ,

where qcpa = 1, qzkp ≤ qro, tcpa ≤ t + b · tenc + qro · thash, tzkp ≤
t + b · tenc + qro · thash, and tenc and thash are the times for one
invocation of Enc and hash, respectively.

Proof: Since M observes ciphertexts {c j}
b
j=1 and a non-

interactive zero-knowledge proof Ψ, and other components
including pk and F that do not depend on B, we reduce the
advantage of a M-adversary M to the IND-CPA advantage of
the encryption scheme E and the distinguishing advantage of
the noninteractive zero-knowledge proof Ψ.

To do this, let M = ⟨M1,M2⟩ be a M-adversary and define
a sequence of experiments for M

ExptT,00(M), ExptT,01(M), ExptT,11(M), ExptT,10(M)

where we associate each pair α, β of bits to a (α, β) hybrid
experiment as shown in Fig. 9. In words, hybrid experiment
ExptT,αβ(M) produces ciphertexts {c j}

b
j=1 based on ⟨F ,Bα⟩

and, depending on whether β = 0 or β = 1, generates a
real4 Ψ or a simulated Ψ for the statement that {c j}

b
j=1 ⊆

Cpk(g) ∪ Cpk(g−1). So if we let P(α, β) = P
(
ExptT,αβ(M) = 0

)
for bits α, β ∈ {0, 1}, then it will be the case that

P(0, 0) = P
(
ExptT,00(M) = 0

)
= P

(
ExptT,0(M) = 0

)
P(1, 0) = P

(
ExptT,10(M) = 0

)
= P

(
ExptT,1(M) = 0

)
and so we have:

AdvT(M)

= P
(
ExptT,0(M) = 0

)
− P

(
ExptT,1(M) = 0

)
= P(0, 0) − P(1, 0)
= P(0, 0)−P(0, 1)+P(0, 1)−P(1, 1)+P(1, 1)−P(1, 0) (24)

We now show that:

P(0, 1) − P(1, 1) ≤ b · Advcpa
E

(tcpa, qcpa) (25)
P(0, 0) − P(0, 1) ≤ AdvzkpΠ (tzkp, qzkp) (26)
P(1, 1) − P(1, 0) ≤ AdvzkpΠ (tzkp, qzkp) , (27)

where, for all adversaries M that make at most qro random
oracle queries and execute in total time t, we have qcpa = 1,
qzkp ≤ qro, tcpa ≤ t+b·tenc+qro·thash, and tzkp ≤ t+b·tenc+qro·thash.
So, combining (25), (26), and (27) with (24), we have

AdvT(t, qro) ≤ b · Advcpa
E

(tcpa, qcpa) + 2 · AdvzkpΠ (tzkp, qzkp) .

Justification of (25): Given M-adversary M =
⟨M1,M2⟩, we construct an IND-CPA adversary Dcpa attacking
the IND-CPA experiment Exptcpa,b

′

E
defined in Sec. B-A1. Dcpa

first invokes M1 with F , servicing its oracle queries using
zkpSim.hash, and receives B0 and B1 (aborting if they are of
unequal size) from M1. Dcpa then sets m0 j ← g if j ∈ B0
and m0 j ← g−1 otherwise, and m1 j ← g if j ∈ B1 and
m1 j ← g−1 otherwise. Dcpa chooses an index uniformly at
random i

$
← {1, ..., b} and computes {c j}

b
j=1 as follows:

• For j < i, Dcpa computes c j ← Encpk(m0 j)
• For j = i, Dcpa queries its oracle and obtains c j ←

Encpk(LR(m0 j,m1 j, b′))
• For j > i, Dcpa computes c j ← Encpk(m1 j)

Dcpa also executes zkpSim.prove(⟨pk, {c j}
b
j=1⟩) and generates a

simulated noninteractive zero-knowledge proof Ψ for {c j}
b
j=1 ⊆

Cpk(g) ∪ Cpk(g−1). Then Dcpa invokes M2 with ⟨pk, F , b′,
{c j}

b
j=1, Ψ⟩ and services its oracle queries using zkpSim.hash.

Finally Dcpa returns the bit b̂ returned by M2 as its guess b̂′.
Here we use i ∈ {1, ..., b} to index the experiment simulated
by Dcpa for ExptT,b′1

i (M) and we let H
(
b′, i

)
= ExptT,b′1

i (M).
Then, H(0, b) d

= ExptT,01(M), H(1, 1) d
= ExptT,11(M) and,

for 2 ≤ i ≤ b, H(0, i − 1) d
= H(1, i). Given some fixed choice

of i = i∗, the simulation provided by Dcpa to M is perfectly

4zkpGen leverages the witness produced by Tt1-t3 to do so.
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Experiment ExptT,00(⟨M1,M2⟩)
hash

$
← H

⟨B0,B1, ϕ⟩ ← M
hash
1 (F )

if |B0| , |B1| then return 0
⟨pk,F , b′, {c j}

b
j=1⟩ ← Tt1-t3(⟨F ,B0⟩)

Ψ← zkpGenhash(⟨pk, {c j}
b
j=1⟩)

b̂← Mhash
2 (⟨pk,F , b′, {c j}

b
j=1,Ψ⟩, ϕ)

return b̂

Experiment ExptT,01(⟨M1,M2⟩)
⟨B0,B1, ϕ⟩ ← M

zkpSim.hash
1 (F )

if |B0| , |B1| then return 0
⟨pk,F , b′, {c j}

b
j=1⟩ ← Tt1-t3(⟨F ,B0⟩)

Ψ← zkpSim.prove(⟨pk, {c j}
b
j=1⟩)

b̂← MzkpSim.hash
2 (⟨pk,F , b′, {c j}

b
j=1,Ψ⟩, ϕ)

return b̂

Experiment ExptT,10(⟨M1,M2⟩)
hash

$
← H

⟨B0,B1, ϕ⟩ ← M
hash
1 (F )

if |B0| , |B1| then return 0
⟨pk,F , b′, {c j}

b
j=1⟩ ← Tt1-t3(⟨F ,B1⟩)

Ψ← zkpGenhash(⟨pk, {c j}
b
j=1⟩)

b̂← Mhash
2 (⟨pk,F , b′, {c j}

b
j=1,Ψ⟩, ϕ)

return b̂

Experiment ExptT,11(⟨M1,M2⟩)
⟨B0,B1, ϕ⟩ ← M

zkpSim.hash
1 (F )

if |B0| , |B1| then return 0
⟨pk,F , b′, {c j}

b
j=1⟩ ← Tt1-t3(⟨F ,B1⟩)

Ψ← zkpSim.prove(⟨pk, {c j}
b
j=1⟩)

b̂← MzkpSim.hash
2 (⟨pk,F , b′, {c j}

b
j=1,Ψ⟩, ϕ)

return b̂

Fig. 9: Definition of ExptT,αβ(M) for α, β ∈ {0, 1}

indistinguishable from a real execution in H
(
b′, i∗

)
. Since Dcpa

outputs 0 if M outputs 0, we have:

P
(
Exptcpa,b

′

E
(Dcpa) = 0

)
=

b∑
i∗=1

P (i = i∗) · P
(
Exptcpa,b

′

E
(Dcpa) = 0 ∧ i = i∗

)
=

b∑
i∗=1

1
b
· P

(
H
(
b′, i∗

)
= 0

)
.

Combining the above, we have:

Advcpa
E

(Dcpa)

= P
(
Exptcpa,0

E
(Dcpa) = 0

)
− P

(
Exptcpa,1

E
(Dcpa) = 0

)
≥

b∑
i∗=1

1
b
·
(
P (H(0, i∗) = 0) − P (H(1, i∗) = 0)

)
≥

1
b
·
(
P (H(0, b) = 0) − P (H(1, 1) = 0)

)
+

b∑
i∗=2

1
b
·
(
P (H(0, i∗ − 1) = 0) − P (H(1, i∗) = 0)

)
≥

1
b
·
(
P (H(0, b) = 0) − P (H(1, 1) = 0)

)
+ 0

≥
1
b
·

(
P
(
ExptT,01(M) = 0

)
− P

(
ExptT,11(M) = 0

) )
≥

1
b
·
(
P(0, 1) − P(1, 1)

)
.

Here Dcpa makes one “left-or-right” oracle query in construct-
ing {c j}

b
j=1, and runs in time at most t+b · tenc+qro · thash which

is the time for M plus the time to produce b ciphertexts and
answer at most qro random oracle queries from M.

Justification of (26) and (27): Given an M-adversary
M = ⟨M1,M2⟩ for the experiments ExptT,0b′′ , we construct an
adversary Dzkp for noninteractive zero-knowledge experiment

Exptzkp,b
′′

Π
defined in Sec. B-A2b. Dzkp first invokes M1 with

F and receives two distinct Bloom filters ⟨F ,B0⟩ and ⟨F ,B1⟩

(of equal size, b′) from M1. Dzkp receives, from either zkpGen
(if b′′ = 0) or zkpSim.prove (if b′′ = 1), a proof Ψ for the
statement that {c j}

b
j=1 ⊆ Cpk(g) ∪ Cpk(g−1), as well as pk and

{c j}
b
j=1 produced based on B0 as part of the public information

for Ψ. Then Dzkp invokes M2 with ⟨pk,F , b′, {c j}
b
j=1,Ψ⟩ as its

expected input. Also, Dzkp uses its random oracle to reply to
all random oracle queries by M2 to verify Ψ (as in line m1
in Fig. 5). Finally, Dzkp outputs 0 if M2 outputs 0. Since the
simulation provided by Dzkp toM is perfectly indistinguishable
from a real execution in ExptT,0b′′ (M), we have:

AdvzkpΠ (Dzkp)

= P
(
Exptzkp,1

Π
(Dzkp) = 1

)
− P

(
Exptzkp,0

Π
(Dzkp) = 1

)
= P

(
Exptzkp,0

Π
(Dzkp) = 0

)
− P

(
Exptzkp,1

Π
(Dzkp) = 0

)
≥ P

(
ExptT,00(M) = 0

)
− P

(
ExptT,01(M) = 0

)
≥ P(0, 0) − P(0, 1) .

Similarly, we can construct a D̂zkp like Dzkp, except that it
receives from zkpGen (if b′′ = 0) or zkpSim.prove (if b′′ = 1)
a proof Ψ corresponding to B1, instead of B0, and that outputs
1 if M outputs 0. So:

AdvzkpΠ (D̂zkp)

= P
(
Exptzkp,1

Π
(D̂zkp) = 1

)
− P

(
Exptzkp,0

Π
(D̂zkp) = 1

)
≥ P

(
ExptT,11(M) = 0

)
− P

(
ExptT,10(M) = 0

)
≥ P(1, 1) − P(1, 0) .

Here Dzkp and D̂zkp make at most qro random oracle queries
and run in time at most t+b · tenc+qro · thash which is the time-
complexity ofM plus the time costs of producing b ciphertexts
and answering at most qro random oracle queries from M.
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