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Abstract—The target localization primitive is used for detecting
and locating an adverse event called a target in a geographic area.
This versatile primitive is applicable in the physical security
domain (e.g., detecting intruders in an area) or for disaster
preemption, such as detecting ignition events of forest fires.
Prior systems implemented this primitive over large areas by
deploying a network of sensor devices, which detect changes in a
specific physical parameter like pressure or temperature induced
by a target. However, these systems are not designed for use in
adverse environments where one or more sensors can behave in a
faulty manner. While many algorithms in the distributed systems
literature can be naively used to implement target localization
in a fault-tolerant manner, these approaches are energy-intensive
as they use computationally expensive cryptographic operations
not appropriate for resource-constrained sensors.

We present SENSORBFT, an energy-efficient, fault-tolerant
approach for target localization. SENSORBFT uses a novel asyn-
chronous approximate agreement protocol that enables correct
sensors to achieve an approximate consensus in the presence
of faulty sensors. Sensors fulfill their energy budgets by tuning
the precision and accuracy of localization, where precision is
the difference between honest sensors’ outputs and accuracy
is the difference between an honest sensor’s output and the
target’s true location. In optimal scenarios, this protocol reduces
communication from O(n3) to O(n2) messages per round, where
n is the number of sensors sharing coverage over a piece of area.
In a sensor testbed with n = 19 sensors, SENSORBFT consumes
2
5

th the energy consumed by existing solutions for a minor 2%
loss in accuracy, significantly enhancing efficiency and coverage.

I. INTRODUCTION

Recent progress in autonomous sensor systems has opened
up new possibilities for use in precision agriculture [44],
[46] and battlefield surveillance [7], [8], [15], [18]. Sensor-
equipped CPS (Cyber-Physical Systems) are useful in detect-
ing and neutralizing threats like pests on a farm, fire events
in dry fields, or adversarial objects on a battlefield. In such
applications, sensors deployed over an area must collectively
sense and locate such adverse events called targets, to quickly
and efficiently respond to them. The target localization prim-
itive allows sensors to estimate and agree on the target’s
location [48].

In such applications, sensors are typically resource-
constrained and often deployed in adverse environments such
as war zones, natural disasters, or with motivated human
actors, which can make them behave in an arbitrary manner.
Thus, tolerating a subset of faulty sensors is essential for
operating under these conditions.
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Figure 1: A pictorial description of localization precision and
accuracy. The four cases describe a set of N = 4 sensors’
outputs on where the car (target) is centered. Case 4 is with
high precision and high accuracy (low ρ and α) is desired for
target localization.

More formally, we assume a system consists of N sensors,
with at most T faulty sensors, deployed across an area A.
In a target localization protocol, each sensor inputs a reading
vi and outputs a target location li ∈ A ∪ {⊥}. Along with
the standard termination guarantee that requires each honest
sensor to output a location, the protocol must also be sound
such that if there is no target in the area, then the output of
each honest sensor must be ⊥. Moreover, when the target is
present in the area, the protocol should detect it with precision
ρ, and accuracy α.1 In particular, if a target is at location
L ∈ A, then every honest sensor’s output must be at most
a distance α from the target’s location L, and the outputs of
any two honest sensors must be at most ρ distance from each
other. See Fig. 1 towards understanding the difference between
location precision and accuracy.

The conventional solution in sensor networks [14], [32],
[35], [43] is to employ a central node called a Fusion Center
(FC) or Gateway, a central decision maker and a trusted source
of computing, to collect readings from sensors, estimate the
target’s location, and send the output to all the nodes in the
network. However, in our target autonomous sensor system
applications, a single trusted party for the area may not be

1We define the terms Precision ρ and Accuracy α based on literature from
instrumentation, where the terms quantify the observational error.



Figure 2: The graphic represents a strawman protocol in the
boolean coverage model, where each sensor has a fixed sensing
range and holds the coverage responsibility for a given area
(marked by dotted lines here). The orange sensor detects the
car in its sensed area and sends value 1 through gossip to the
network, and every other sensor sends 0. Each sensor outputs
the orange sensor’s location as the target’s location.

available or acceptable, because of which we assume there is
no FC available.

Early non-fault tolerant distributed approaches [16], [38]
operated in the boolean coverage model, in which each sensor
has a fixed circular sensing range with radius r [38], [47],
where the sensor measures 1 if the target is within distance
r from its location, and measures 0 otherwise. These systems
deployed sensors such that each point in the area is within
the sensing range of at least one sensor. This sensor is
responsible to cover the area within its range. If the target
is within this range, the responsible sensor sends the value
1 to every sensor in the network and gossips 0 otherwise.
Upon receiving a message from every sensor, each sensor
computes the average of the sensors’ locations that sent 1
and outputs it as the target’s location. This protocol achieves
perfect precision (ρ = 0) and accuracy α ≤ r under the
assumption that all sensors are honest. We describe an example
in Fig. 2.

Subsequent works identified that aggregating raw readings
from sensors (rather than 1s and 0s, as in the boolean model)
preserves more information about the sensors’ relative proxim-
ity to the target and leads to higher localization accuracy [4],
[27], [48]. Xing et al. [48] requires each sensor to gossip its
raw sensor reading. Each node then sorts the received readings
and outputs the location of the sensor with the highest mea-
sured reading as the target’s location. This approach achieves
higher localization accuracy than the boolean coverage model.

However, in the presence of a single malicious faulty sensor,
both these approaches do not work. The faulty sensor i can
crash and not report a target in its area, which forces other
sensors to wait for i’s response forever. Moreover, i can send
different values to sensors j and k, which forces j and k
to output different locations thus affecting precision. Further,
i can also send an incorrect reading to every other sensor,
which makes other sensors output a location far away from the
target’s original location. Thus, each behavior described above
violates the Termination, Precision, Accuracy, and Soundness

properties of target localization, respectively.
Some prior works [23], [28] solve localization in the pres-

ence of Byzantine faults using Byzantine Agreement (BA)
protocols. Some works explored Byzantine Agreement (BA)
protocols in resource-restricted CPS devices [9], [28], [34].
However, these protocols rely on bounded synchronous or
partially synchronous network assumptions. However, any
form of synchrony assumption is untenable in low-powered
sensor networks due to potential security issues like net-
work jamming [33], which is easier to conduct in open
areas with unrestricted access. Asynchronous BA protocols
are not vulnerable to these issues, but the FLP impossibility
result [22] states that it is impossible to achieve deterministic
asynchronous BA even with a single faulty node.

Prior works circumvent this impossibility using randomized
protocols that use distributed randomness in the form of
common coins. However, common coins are expensive, with
the most energy-efficient implementation using threshold BLS
signatures [11] requiring computationally expensive cryptog-
raphy like bilinear pairings [10]. For instance, each pairing
operation consumes 1000× more energy than a cryptographic
hash computation (such as SHA2, SHA3), which is a burden
on energy-constrained sensors. Moreover, threshold BLS sig-
natures require an Asynchronous Distributed Key Generation
(ADKG) [31] setup, which is infeasible in sensor networks
because of its high communication and cryptographic costs.

A. Our Approach

We build SENSORBFT, a distributed sensor system for
target localization. We describe SENSORBFT in two parts:
(a) We shard the area into disjoint pieces (or cells) and
assign coverage responsibility of each cell Ai to a set of
n sensors denoted by Ni. We do this to ensure that faulty
sensors do not have a monopoly over any subarea. (b) We run
an Asynchronous Approximate Agreement (AAA) protocol
among the n sensors of each such shard to enable them to
agree on a representative value for their subarea, which is used
in an aggregation as in Xing et al. [48]. Our approach ensures
that each shard behaves as a single cohesive unit equivalent
to a single honest sensor covering cell Ai like in Fig. 2. We
show a pictorial overview in Fig. 3.
Voronoi sharding. Our first building block is a location-based
sharding approach called Voronoi sharding, based on higher-
order Voronoi diagrams. A n-order Voronoi diagram divides
the entire area into smaller disjoint pieces or cells, where each
cell is assigned to its n closest sensors. Using this approach,
we divide the entire sensed region into shards, each composed
of n sensors responsible for covering their cell. We set the
value n such that every shard has a supermajority, i.e., > 2/3,
of honest sensors.
Approximate Agreement. Our second building block is an
AAA protocol. The AAA primitive enables sensor nodes
to output values within a ρ distance of each other within
the initial range of honest sensor inputs (called Convex-Hull
Validity). In contrast with asynchronous BA, AAA does not
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Figure 3: The three parts of SENSORBFT include (a) Dividing the area into cells based on a n-order Voronoi diagram (n = 4
in the figure) and assigning them to sensors, (b) Performing Asynchronous Approximate Agreement (AAA) in each cell, and
(c) Aggregating representative values from all cells. This approach ensures that each set of sensors behaves like a single honest
sensor covering cell Ai like in Fig. 2.

require energy-expensive public-key or threshold cryptogra-
phy, which makes it friendly for resource-constrained devices
like sensors. In exchange for this computational efficiency
and corresponding energy savings, SENSORBFT achieves a
relaxed form of localization called approximate localization,
where sensors’ estimates of the target’s location are at most ρ
meters away from each other.

The main challenge with using prior AAA protocols like
Abraham et al. [1] is their high message complexity. Abraham
et al.’s protocol requires O(n3) messages per round over

log(
d · polylog(N )

ρN
) rounds giving a total message complex-

ity of O(n3 log(
d · polylog(N )

ρN
)), where d is the maximum

distance between two points in an area (called the diameter).
In circular or square-shaped areas, d = O(

√
A). This high

message complexity also results in high energy consumption,
which quickly drains the sensors’ energy reserves.

We address this issue using a novel AAA protocol with
a reduced message complexity. We achieve this efficiency
in exchange for a small loss in localization accuracy by
using a novel relaxed form of Validity for AAA called δ-
relaxed Validity, where honest sensors output values within
the range [min(M) − δ,max(M) + δ]. M is the set of
honest sensors’ input values and δ is a configurable pa-
rameter governing the relaxation in Validity. The accuracy
α is inversely related to δ, where a higher δ and corre-
sponding information loss in consensus implies less accu-
rate localization. Overall, for a localization precision and
accuracy of ρ and α meters, our AAA protocol requires

O(n3 log(
d · polylog(N)

αN
)+n2 log(

α

ρ
)) messages. For an ac-

curacy loss characterized by α = O(
dpolylog(N)

N
) (which we

show is practically affordable for reasonable localization), the
protocol’s message complexity is O(n3 + n2 log( rρ )), which
removes the dependence of the n3 term from the precision ρ.

Overall, SENSORBFT provides two tuning knobs for tuning
localization precision ρ and accuracy α, which sensors can
use to conduct energy-efficient localization while meeting their
energy budgets.

Evaluation. We implement SENSORBFT in Rust and evaluate
it on a testbed of embedded nodes with acoustic sensors where
each sensor can detect the sound emitted by a target. We
measure and compare the energy consumed by SENSORBFT
to other localization protocols. With n = 19 sensors, SEN-
SORBFT achieves a practically insignificant loss in precision
ρ = 0.5m and consumes half the energy of a localization
approach using Abraham et al. as the agreement protocol, and
2
5 th the energy consumed by a precise (ρ = 0) localization
approach with the state-of-the-art Asynchronous convex BA
protocol FIN [21] as the agreement protocol, with only a 2%
increase in accuracy parameter α.

In summary, we make the following contributions:
1) We devise an effective spatial sharding approach lever-

aging higher-order Voronoi diagrams, which guarantees
comprehensive coverage of the sensed region even in the
presence of malicious nodes.

2) We present an energy-efficient approximate agreement
protocol, using precision and accuracy as tuning knobs
to control the communication complexity and related
energy consumption. In specific scenarios, our protocol
also improves the asymptotic communication complexity
of asynchronous optimally-resilient AAA by O(n) factor.

3) Using the above two contributions, we design the first
computationally efficient, distributed, and approximate
sensor localization scheme that can tolerate Byzantine
faults in an asynchronous network.

II. DEFINITIONS AND PRELIMINARIES

A. Target Localization Problem

We assume the structure of the 2D area A that needs to be
covered and the positions of the N sensors are given as input
parameters to the system. We assume the network between
sensors is asynchronous. This is because issues like network
jamming and flooding can violate all forms of synchrony for
message delivery in low-powered wireless networks.
Target. A target is an object of interest that needs to be
detected and localized by the sensor network. A target is
defined by its location (x, y) in the area and its innate signal
strength S, which is a real number greater than or equal to a
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minimum Smin. This strength characterizes the disturbance or
change induced by the target in a specific physical parameter
like the sound level or temperature, where a higher S implies
a stronger disturbance. Examples of targets include intruders
or vehicles in an area that produce a sound disturbance or a
forest fire that induces a temperature change. The disturbance
induced by a target attenuates with increasing distance d,
according to the function fDIST(d) = 1

1+d2 specified in Xing
et al. [48]. Here, fDIST : R≥0 → [0, 1] and fDIST(0) = 1.

We formally define the target localization problem.

Definition II.1. Target Localization: Given N sensors, out of
which at most T are faulty, deployed across an area A, the set
of sensors and their locations denoted by N , and at most one
target present in the area, a protocol ΠTL where each sensor
i ∈ N inputs a reading vi and outputs li ∈ A ∪ {⊥} is a
valid target localization protocol if it satisfies the following
properties.
• Termination: Every honest sensor i ∈ N must output a

value li.
• ρ-Precision: If a target object is present in the area, the

outputs of any two honest sensors i, j ∈ N must be at most
ρ distance from each other; i.e., ||li − lj ||2 ≤ ρ.

• α-Accuracy: If a target object is present at location L ∈
A, the output of every honest sensor i ∈ N must be at
most a distance α from the target’s original location L;
i.e., ||li − L||2 ≤ α.

• Soundness: The output of each honest sensor i ∈ N must
be ⊥ if there is no target in the area.

We consider two different sensor models based on which
sensors measure their input values vi: (a) Boolean coverage
model, and (b) Annular disk coverage model. We describe
more details about these sensor models in Section III and Sec-
tion IV, respectively.

B. Preliminaries

Asynchronous Approximate Agreement. We describe the
asynchronous approximate agreement primitive as defined in
Dolev et al. [20]. We consider a relaxed Validity condition
characterized by the parameter δ.

Definition II.2. A protocol ΠAA to which sensors input values
Vi and output values wi is a valid approximate agreement
protocol if it guarantees the following properties.

1) Termination: All honest sensors must eventually decide
and output a value.

2) ϵ-agreement: For a given ϵ > 0, the decision values of
any pair of honest sensors i and j are within ϵ of each
other; i.e., |wi − wj | ≤ ϵ.

3) δ-relaxed Validity: The decision value of every honest
sensor i must be within the δ-relaxed range of initial
inputs of honest sensors M; i.e., minM − δ ≤ wi ≤
maxM+ δ.

Voronoi diagrams. We formally define Voronoi diagrams, as
a key component of our solution. A n-order Voronoi Diagram
is a geometric construct that divides the area into closed

polygonal regions or cells. All points within a cell have the
same closest n sensors, which characterize the cell. For a given
subset of n sensors Ni, the Voronoi cell Ai = fVORO(A,Ni,N )
is defined as the locus of all points in the area whose first n
closest sensors are the set Ni.

Ai = fVORO(A,Ni,N )

= {p ∈ A|∀s ∈ Ni,∀t ∈ N \ Ni : ||p− s||2 < ||p− t||2}
(1)

A is the area over which targets can appear and N is the
set of all deployed sensors. The Voronoi Diagram is the set
of all non-empty Voronoi cells Ai ̸= ∅, where each Ai is the
Voronoi cell for a different subset of sensors Ni. For example,
Fig. 4 shows Voronoi cells of order 4.

fVD(A,N )

= {A1, . . . , Am} : Ai ̸= ∅ and ∪i∈{1,...,m} Ai = A

For a polygonal area A defined by points and edges, each
Voronoi cell will also be a polygon.

III. LOCALIZATION IN THE BOOLEAN COVERAGE MODEL

For ease of understanding, we describe our solution in two
stages: (a) We first solve the problem in the simpler boolean
coverage model, and (b) Use this solution as a stepping stone
to our solution in the annular disk model using an efficient
approximate agreement protocol.
Boolean coverage model. In this model, a sensor measures 1
if a target is within distance r from the sensor and measures
0 otherwise. r is the sensing range of the sensor. In practice,
this model is used only when the signal strength of the target
is fixed and known to every sensor [48]. However, for ease
of understanding, we first present a solution for this simpler
problem where the target is assumed to be of known signal
strength S = Smin. We then discuss a method to extend this
solution to the annular disk model where targets of unknown
signal strengths are supported.

A. Voronoi Diagrams

Prior localization protocols [16], [38], [48] gave faulty
sensors a monopoly in decision-making over multiple cells in
the area, which allowed them to unilaterally create an alternate
view of the state of these cells. We remedy this by assigning
coverage responsibility of cells to subsets of n sensors.

We divide the entire area into disjoint pieces using a n-
order Voronoi diagram (VD). As defined in Section II-B, the
VD divides the area into subareas called Voronoi cells (VCs).
A given cell is a collection of all points with the same n
closest sensors. For each VC Ai and its corresponding set of
n closest sensors Ni, we create a shard si = (Ai,Ni), where
we assign the responsibility of covering the area Ai to the set
Ni. We note that the VD generation and shard creation is done
just once at the beginning by a trusted party like a network
designer who knows the location of every sensor.

Each set Ni of n sensors must behave as a single cohesive
unit equivalent to a single honest sensor covering area Ai.
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Figure 4: 4-Order VD: Graphic for an area divided into cells
Ai via a 4-order VD where every shard si = (Ai,Ni) contains
n = 4 sensors. The blue circle denotes the sensing range of the
sensor 1. The red sensors are Byzantine. A Voronoi order of
n = 4 ensures a supermajority of honest sensors in all shards.

This requires the following two properties to be satisfied: (a)
Non-equivocation: Any two external sensors accepting a value
from shard si regarding area Ai must accept the same value,
and (b) Validity: If there is a target within Ai, then shard si
covering Ai must output 1. Further, if the target is not within
the sensing range of any sensor in si, then si must output 0.
Protocol description. We achieve these conditions by first
ensuring each shard has a supermajority of honest sensors. We
utilize this supermajority to enable sensors to run an intra-
shard Binary Byzantine Agreement protocol [2], with the n
sensors in set Ni as participants. Each sensor inputs 1 to the
BA protocol if it detects a target in its range and 0 otherwise.
Upon termination, each honest sensor in Ni multicasts its
output. Every other sensor in the network waits until accepting
⌊n
3 ⌋ + 1 equal outputs from sensors in Ni, and accepts this

value as a representative of the area Ai. Further, as part of the
final aggregation phase, each sensor also collects outputs from
all shards and filters shards with output 1. It then calculates
the average of the centroids of these shards and outputs this
value as the target’s location.

We describe why the area Ai covered by sensors in shard
si must be within the sensing range r of all sensors in si. We
show that even if one sensor does not cover the entire area Ai,
then the adversary can force the BA instance among sensors
in si to always output 0.

Theorem III.1. Consider a point p in A. Let nr denote the
number of sensors within distance r from p. Let Nx be the
first x closest sensors to point p. If honest sensors do not
have a supermajority in any Nx : x ∈ {4, . . . , nr}, then
an asynchronous BA instance involving Nx always terminates
with output 0.

Proof. We know that each set Nx : x ∈ {4, . . . , nr} com-
prising of the x closest sensors to the target does not have a
supermajority of honest sensors. Let NSM be the first set of y
closest sensors in which honest sensors have a supermajority.
We know that at least one honest sensor in NSM cannot
detect the target and measures 0 as its input. Summarizing the

scenario, NSM is a set of sensors with an honest supermajority
running a BA protocol. One honest sensor i in NSM inputs
Vi = 0 to the protocol and remaining honest nodes input 1. The
adversary controls < 1

3 fraction of nodes in NSM and also the
message delivery between honest nodes. Further, the adversary
also knows the location of the target L and by extension, the
measured input of each honest node Vi.

In this scenario, we prove that it is impossible for any
asynchronous agreement protocol (either exact or approximate
agreement protocols) running among NSM to terminate with
output > 0. By way of proving this statement, we show that
The f faulty nodes in NSM set their inputs to be 0. Together
with honest node i, f + 1 nodes in NSM input 0 to the
BA protocol. We denote this set of nodes by NSM,0. While
executing the protocol, the adversary picks f remaining honest
nodes which input 1, denoted by set NSM,1. The combined set
NSM,0 ∪NSM,1 is of size n− f = 2f +1. The adversary first
delivers the messages between these n−f nodes and delays all
other messages. As the protocol is asynchronous, each honest
node can only expect messages from n − f nodes. Hence,
the adversary forces the protocol to terminate with the input
values from the n−f nodes in set NSM,0∪NSM,1. In this set,
the value 0 is the only valid value that drives consensus while
keeping the output within the range of honest inputs. Hence,
the protocol must converge at value 0 and all honest nodes
must agree on 0 as the representative value of the cell/area.

Therefore, from this theorem, we show that the sensors in
each shard si must fully cover their assigned area Ai (i.e. the
entire area Ai must be within distance r from sensors in si).
Estimating Voronoi order n. For the described protocol to
work, each shard must have a supermajority of honest sensors.
As we do not know which sensors the adversary has compro-
mised, we empirically estimate n for a static adversary who
can corrupt at most f sensors in the entire network. In a given
sensor deployment with N sensors, a n-order Voronoi Diagram
contains O(n(N − n)) VCs [3]. Using this information, we
derive the probability that all VCs have a supermajority of
non-faulty sensors. We perform asymptotic analysis for large
values of N using the approach suggested in Kogias et al. [30]
and Algorand [24], where the random variables for committee
selection approach the binomial distribution. Given that shard
si is composed of n sensors and the overall fraction of faulty
sensors is c = T

N , the probability that more than 1
3

rd sensors
are faulty is given by Chernoff’s bound.

Pr
[
Ȳi

]
≤ e

−(1−3c)2n
3(1+3c)

Using this information, we derive the probability that all VCs
have a supermajority of non-faulty sensors.

Pr

[
m∧
i=1

Yi

]
≥ 1−N2e

−(1−3c)2n
3(1+3c)

For a Voronoi order of n = O(η + log(N)), this probability
is p = 1 − 1

2η . For a constant T < N
3 , a Voronoi order

n = O(polylog(N )) is enough to guarantee with a high
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probability that all VCs in the n-order deployment will contain
a supermajority of non-faulty sensors. For achieving this
n = polylog(N ), SENSORBFT tolerates suboptimal number
of faults of T < N

3 − γ, where γ > 0 is a small constant.
Coverage. We note that all cells assigned to a given sen-
sor must be within the sensing range r of the sensor for
SENSORBFT to conduct localization. Finding the optimal
deployment with the least number of sensors for this condition
to be true reduces to the set-cover problem, which is NP-Hard.
Hence, we assume that the created cells are within the sensing
range of the sensors covering them.
Example deployment. A regular tessellation is the covering
or tiling of an area without gaps or overlaps, using a regular
geometric shape or tile. We choose a square tessellation of side
length a. We draw a n-order Voronoi diagram and calculate
the side length a of the tessellation to ensure all the n sensors
in si detect the target if it is located in area Ai. This condition
ensures the Validity of the output of BA from each shard si.
We achieve this condition by ensuring that the entire subarea
Ai is within the sensing range r of each sensor in Ni. We
choose lowest a where this condition is true for all shards.

B. Localization using Approximate Agreement

The described localization protocol uses Asynchronous
Byzantine Agreement as a building block, which is com-
putationally expensive because of using common coins. We
overcome this bottleneck by utilizing the Approximate Agree-
ment primitive, which does not use any energy-intensive
cryptographic primitives. We employ the Binary Approximate
Agreement or BINAA in [5], where honest sensors’ inputs
form a set of size at most two. This protocol achieves AAA
in O( 1ϵ ) rounds, with only O(n2) communication complexity
per round.

Algorithm 1 SENSORBFT localization protocol
1: INPUT:
2: Sensor input Vi, Precision ρ
3: Set of all shards C = {s1, . . . , sv}
4: OUTPUT: Target’s location L

5: ∀y : {1, . . . , |C|}, cli,y ← {}
// Run BINAA for all shards in which sensor i is a member.

6: Run BINAA with input Vi ∀j : i ∈ Nj

// Outputs of BINAA in {s1, . . . , sv}, of which i is a member
7: Yi = {w1,i, w2,i, . . . , wv,i}
8: SendAll(Yi, N) // Send Yi to all sensors in N
9: upon receiving Yj from sensor j:

10: cli,y ← cli,y ∪ {wy,j}, ∀wy,j ∈ Yj

11: upon ∀sy ∈ C, if |cli,y| ≥ ⌈ 2n3 ⌉:
12: cy ← Centroid(Ay); // Shard Centroid
13: wi,y ← Median(cli,y)
14: if

∑
y:sy

wy,i ̸= 0 then

15: OUTPUT: L ←
∑

y:sy
wy,icy∑

y:sy
wy,i

16: else
17: OUTPUT: L ← ⊥

The prior method of aggregating outputs from shards, where
nodes filter shards with output 1 and calculate the average of

their centroids, will not work when Approximate Agreement
is used for intra-shard consensus. This is because a specific
sensor i might accept 1 as an output from a specific shard sj
and another sensor might accept 1 − ϵ from sj . In this case,
i will include si, and j will not include si, which violates
the precision property of localization. Further, agreeing on a
specific order of shards by their weight with a deterministic
protocol like BINAA violates the FLP impossibility result.
Weighted average. We address this limitation by proposing
an aggregation method based on weighted averaging. This
technique allows us to extend the approximate consensus
on the sensor input readings to localization, resulting in
approximate localization with a precision parameter ρ. In this
protocol described in Algorithm 1, each shard member in set
Ni multicasts its output from BINAA and every other sensor
in the network waits until receiving ⌈ 2n

3 ⌉ messages from the
shard. Then, each sensor j calculates the median of received
values and assigns it as the representative value of the shard
si, denoted by wi,j . Each sensor then calculates the weighted
average of shard centroids where the weight of the centroid
of shard si is the value wi,j , and outputs it as the target’s
location.

We prove the precision and accuracy properties of the
protocol in Algorithm 1. We first show that shards far away
from the target have zero weight in localization.

Lemma III.2. Every shard sy with area Ay such that every
point in Ay is at a distance d > 2r from the target, where r
is the sensing range of each sensor, will have a representative
weight wy,i = 0, for all honest sensors i in the network.

Proof. Each sensor covering Ay must be at a distance > r
from the target, which implies each such sensor will input 0
to all corresponding BINAA instances. From the Validity of
BINAA, we say that the output wy,j = 0 for all honest sensors
j in the network.

Lemma III.3. Given the sensor network is deployed over an
area A with each sensor’s sensing range r, the target local-
ization scheme in Algorithm 1 with ϵ in BINAA, ϵ = O( ρA

nr3 ),
achieves a localization precision of ρ meters.

Proof. Every sensor in the network received at least ⌈ 2k
3 ⌉

responses from every shard si in the network. We consider
the weighted average calculated by sensor i.

Li =

∑
y:sy∈C wy,icy∑
y:sy∈C wy,i

From the ϵ-agreement property of approximate agreement
primitive, we have |wy,j − wy,i| ≤ ϵ∀i, j ∈ N, sy ∈ C where
N is the set of all sensors and C is the set of all shards. For
every pair of sensors i and j, the difference between outputs
can be upper bounded by the following expression.

Lj − Li ≤
∑

y:sy∈C wy,jcy∑
y:sy∈C wy,j

−
∑

y:sy∈C wy,icy∑
y:sy∈C wy,i
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Without loss of generality, we write wy,j = wy,i + ϵy , where
|ϵy| ≤ ϵ. We simplify the expression to the following.

Lj − Li ≤
∑

y:sy∈C ϵy(Lj − cy)∑
y:sy∈C wy,i

From Lemma III.2, we know that the quantity Lj − cy ≤
2r. Moreover, as there exists at least one shard sy that will
always output wy,i = 1, the quantity

∑
y:sy∈C wy,i ≥ 1 for

all honest sensors i. Therefore, we simplify the expression to
the following.

Lj − Li ≤ r
∑

y:sy∈C

ϵy

The sum of ϵy values depends on the number of Voronoi cells
within an area formed by a circle of radius 2r. We denote this
quantity using n′ = O(nr

2

A ). Therefore, for ϵ = O( ρA
nr3 ), the

protocol achieves a localization precision of ρ meters.

We also show that the protocol in Algorithm 1 achieves an
accuracy of α ≤ 3r

2 meters.

Lemma III.4. Given the sensor network is deployed over
an area A with each sensor’s sensing range r, the target
localization scheme in Algorithm 1 achieves a localization

precision of α ≤ 3r

2
meters.

Proof. From Lemma III.2, we know that no point at a distance
greater than 2r can have a positive weight in localization.
Consider one such point cx with weight wx,i = 1. We also
know that the shard containing the target, sy , must have a
weight wy,j = 1, whose centroid cy is at most at a distance
r from the target. Therefore, the difference between output
location of an honest sensor i and the target’s original location

|Li−L| ≤ cx+cy
2 , which implies |Li−L| ≤ cx+cy

2 ≤ 3r

2
.

Complexity Analysis. The BINAA protocol consumes O(n2)
(n is the Voronoi order) per round per shard. Each BI-
NAA instance runs for O(log(Nr3

ρA )) rounds and there exist
O(n(N−n)) Voronoi cells. Further, multicasting the decisions
of BINAA instances of shards is O(Nn) bits, as opposed
to O(N2n) bits. This is because each shard can summarize
the weight of its neighboring shards with a single message,
which is possible because of the supermajority of honest
sensors within each shard. This gives us O(Nn3 log(Nr3

ρA ))

bits of communication overall, and O(n3 log(Nr3

ρA )) bits per
sensor. For large N and n = polylog(N ), the complexity is
O(Npolylog(N )) bits and O(polylog(N )) bits of communi-
cation per sensor.

IV. LOCALIZATION IN ANNULAR DISK MODEL

Sensor model. A sensor i deployed at a location i.l = (xi, yi)
measures the target’s signal footprint at its location along with
some ambient noise characterized by the random variable η.
For our analysis, we utilize acoustic sensors for conducting

localization. The variable η in acoustic sensors is characterized
as a lognormal distribution, which is a thin-tailed distribution.

vi = S × fDIST(||i.l − L||2) + η

Sensing range. A sensor’s ability to distinguish a target’s
signal from the noise decreases with increasing distance
between them. For a given target of signal S, we assume
each sensor has a sensing range r = fSR(S) beyond which
the target’s signal is indistinguishable from noise. We denote
rmin = fSR(S) as the sensing range for a target with S = Smin.

Under this model, a target’s signal strength is unknown, but
≥ Smin. A sensor can detect a target from varying distances
ranging from rmin (when S = Smin). We start with a sensor
network deployed with sensing range r = rmin, using BINAA
for an agreement where a sensor inputs 1 if it detects the
target. This system can localize any target with S ≥ Smin

with high precision. However, when S is high, this network
and the protocol localize the target with very low accuracy.

The core problem causing this low accuracy is the shards
at greater distances, which measure a much lower signal
footprint from the target, are contributing to localization with
the same weight as a shard that is much closer to the target.
This is mainly because the BINAA protocol requires the
inputs to be binary, which causes information loss about
measured signal strengths. Other protocols like Abraham et
al. [1] achieve approximate agreement with convex-hull Va-
lidity (Definition II.2 with δ = 0) over real-valued inputs.
However, this protocol is highly energy-intensive because of
its high message complexity of O(n3 log(∆ϵ )) over log(∆ϵ )
rounds. ∆ is the initial range of honest inputs.

A. Approximate Agreement with Relaxed Validity

We remedy this problem by proposing a hybrid protocol
between Abraham et al. ’s [1] ϵ-agreement protocol and
the BINAA protocol. The protocol offers a tradeoff between
communication cost (and effectively, energy consumption)
and the relaxation in Validity (and effectively, accuracy loss)
from discretization, characterized by δ. We incorporate a new
technique based on value rounding to effectively trade energy
consumption for localization accuracy, which sensors can use
as a tuning knob to meet their energy budgets. We describe
the protocol in Algorithm 2.

Algorithm 2 SENSORBFT-hybrid: (ϵ, δ)-agreement protocol

1: INPUT: Vi,ϵ,δ

2: Run Abraham et al. [1] with Vi and ϵab = 2δ
3: Round off the output wab,i to the closest multiple of 2δ,

obtaining Vbin,i

4: Run BINAA with inputs Vab,i, ϵbin = ϵ,∆ = δ
5: OUTPUT: wbin,i, the output of BINAA

In this protocol, sensors run Abraham et al. with ϵab = 2δ.
Upon terminating this protocol, sensors round off the output
wab,i to the closest checkpoint, which is an integer multiple of
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Figure 5: Description of the Validity relaxation because of rounding.
The range of values before rounding and after rounding are denoted
by the top and bottom intervals respectively. This rounding results in
a relaxation of Validity by δ.

2δ. Then, sensors run the BINAA protocol with ϵbin = ϵ and
∆ = 2δ, and output the corresponding result wbin,i. As the
range of honest outputs wab,i from Abraham et al. is always
≤ 2δ, the rounding operation ensures that the inputs to BINAA
are binary, and are at most at a distance δ from the interval
formed by wab,. values. As a result, the hybrid protocol
satisfies Termination, ϵ-agreement, and δ-relaxed Validity.
Validity and Complexity analysis. The round operation
results in a Validity relaxation of δ. We illustrate this tradeoff
in Fig. 5. This hybrid protocol has a message complexity of
O(n3 log(∆δ )+n2 log( δϵ )) messages per shard. For a constant
percentage fraction δ = O(∆), protocol has a complexity of
O(n3+n2 log(∆ϵ )), and has only O(n2) dependence on ϵ. We
show in Section V that for ∆

δ = 6, the localization accuracy
parameter α increases by at most 12%, which suggests that
O(n2) dependence on ϵ is true for practical situations.

B. Localization protocol

We use the same protocol as in Algorithm 1 for aggregating
weights of cells. Say a target appears inside a cell Ai. The
honest sensors composing the shard record signal strength
from the target, and input it to the hybrid agreement instance.
The Validity property in Definition II.2 ensures that the
representative value wi,. of shard si has a higher weight in
the weighted average than any other shard that is farther away
from the target. For example, in Fig. 4, if a target appears
in A1, the non-faulty sensors composing s1 will measure a
higher signal than a farther away shard sj : {1, 3, 7} /∈ Nj ,
which implies that min(M1) > max(M4). As long as
δ ≤ min(M1)−max(Mj)

2 , s1 will have a higher weight than
s4 in the weighted average. Hence, this configurable accuracy
introduced by a non-zero δ in (ϵ, δ)-agreement transforms into
an increased α. By using δ as a tuning knob, the sensors can
control α and the corresponding energy spent.

We can also normalize the wi,. values and amplify the differ-
ence between weights of shards by using weight w′

i,. = ewi,. in
the average to give more weight to shards that are closer to the
target. This normalization ensures that the weighted average
is centered around the cell Ai with the largest representative
value wi,..

V. EVALUATION

Evaluation setup. We evaluate SENSORBFT by setting up an
embedded testbed consisting of 19 Raspberry Pi 4-B devices
connected with the help of a network switch functioning as
a router. We configure each device only to turn on its high-
power CPU and networking module when they want to run
the localization protocol. At all other times, the device only
uses a low-power sensor module to collect signal readings.
For comparison, the sensor module only consumes 0.3 W of
power, whereas the CPU and the networking module consume
an average of 4 W while running the AAA protocol. We power
the devices using a power supply and measure the energy
consumption of a device by integrating the power drawn by
the device over the time it takes to run the protocol. We
measure the power consumption of each device by multiplying
the current drawn from the power supply measured using
an ammeter and the supply voltage. We measure the energy
consumption in Joules (J), the standard unit of energy. As a
benchmark, a conventional fully charged AA battery powering
a sensor device at 3V has an energy capacity of 30000 Joules.

We implement SENSORBFT in Rust2, touted to be one of
the most energy-efficient languages [42]. Our protocol uses
MACs based on shared symmetric keys and the SHA256
Hash function to authenticate messages between every pair
of sensors.
Noise distribution and targets. We use acoustic sensors that
measure the intensity of the sound signal at their location
for localizing targets of various signal strengths in an indoor
environment. First, we estimated the ambient noise distribution
η by collecting data from an acoustic sensor in an outdoor
environment without any targets. We find that it follows a
lognormal distribution [26], with the specific parameters being
ln(η) = Normal(µ, σ2) with µ = 52.5dB and σ = 1.

We also calculated the ground truth strength of the signal
emitted by a sample target by recording the sound intensity
at a sensor at a distance of d0 = 1m from the target. We
chose the sample target as an internal combustion engine in a
car, whose ground truth signal strength is 84 dB. We set this
quantity as Smin = 84dB and the maximum possible signal
strength of a target as Smax = 120dB, which is the upper
bound on the signal strength caused by an accident like an
explosion or fire hazard. The sound intensity falls by 6 dB
when the distance from the target doubles, with intensity at
distance d being Sd = S−20 log10(d), where S is the ground
truth signal strength at d0 = 1m.
Comparison with prior work. We evaluate SENSORBFT
against a localization approach where sensors in each shard
use: (a) An asynchronous BA protocol outputting an Asyn-
chronous Common Subset (ACS), with ϵ = 0 and relaxation
δ = 0, (b) Abraham et al.’s [1] protocol with ϵ > 0, δ = 0. For
the first approach, we choose FIN [21] as the ACS protocol.

Our choice of FIN is due to its low computational expense
among all ACS protocols. FIN does not use any public
key signatures and only uses O(log(n)) common coins per

2Available at https://github.com/akhilsb/sensorbft-rs/
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instance. For comparison, BKR-style ACS protocols such as
PACE [49], and HoneyBadgerBFT [39] need O(n) bits of
randomness to terminate, whereas MVBA-style ACS protocols
like Speeding Dumbo [25] use O(n2) public key signature
verification operations.

A. Energy consumption of approximate agreement

We benchmark our approximate agreement protocol for
different values of ϵ and δ as defined in Definition II.2. We
define relative measures of Agreement and Validity ϵREL =
∆−ϵ
∆ , which is the measure of the relative improvement in

the agreement precision, and the accuracy δREL = ∆
∆+δ as

a measure of the relative deviation of the output from the
honest nodes’ input interval. ∆ = max(M)−min(M) is the
range or the initial level of difference between honest inputs.
Higher values of ϵREL and δREL are better. We first show the
variation in energy consumption for different ϵ and δ values
(and corresponding ϵREL and δREL) in a heatmap for n = 37
sensors participating in the protocol.

In our testbed, comprising of 19 physical devices, we
devised a method for emulating larger networks when the
number of sensors participating in agreement, n, exceeds 19.
To measure the energy consumption of a process, we run
multiple processes on 18 devices, while dedicating one device
to a single process. Given that each device communicates
through a router, this method enables us to accurately estimate
energy usage in the approximate agreement protocol for larger
values of n. The dedicated device executes the same number of
message exchanges, cryptographic operations, and CPU cycles
as it would in a genuine multi-machine setup. This emulation
technique, previously utilized in Narwhal [17], allows us to
effectively evaluate SENSORBFT’s scalability.

The heatmap in Fig. 6 shows that the energy consumption
can be reduced without sacrificing agreement precision.
Previously, energy savings in an agreement protocol implied
compromising (moving down the y-axis with minimum
Validity relaxation). In contrast, our method allows energy
conservation by relaxing Validity (moving left on the x-axis),
keeping the agreement precision intact. Notably, based on the
color gradient in the y-axis, our protocol yields a higher level
of agreement at a given level of Validity relaxation, more
affordably than Abraham et al.. Whenever a minor Validity
relaxation is permissible, our protocol emerges as the most
energy-efficient solution to achieve high agreement precision
among sensors. For instance, our protocol, at δREL = 60%
and ϵREL = 99.99%, consumes 4x less energy than Abraham
et al. and 9x less energy than FIN.

Scalability results. In Fig. 7a, we plot the energy consumed
by our protocol to achieve ϵREL = 99.93%, with increasing
number of sensors n participating in an agreement instance.
At n = 163, our protocol with δREL = 60% requires just
510 Joules, compared to 925 Joules for Abraham et al. and
1100 Joules for FIN. This demonstrates our protocol’s ability
to deliver high precision with significantly reduced energy
expenditure, by permitting a trade-off with accuracy.
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Figure 6: Energy map of Approximate Agreement: Heatmap of
our agreement protocol illustrating the interplay between precision,
ϵREL = ∆−ϵ

∆
, and accuracy, δREL = ∆

∆+δ
, for n = 37 processes.

Each cell in the heatmap corresponds to a specific configuration
of error tolerance and accuracy, colored according to the energy
consumed as per the scale on the right. The column with maximum
accuracy is Abraham et al. [1] protocol. Notably, the FIN protocol
consumes 40.6 Joules of energy for n = 37 processes. The colormap
ranges from blue (lower energy consumption) to red (higher energy
consumption), indicating how energy efficiency varies with different
protocol configurations.

Using a 30,000 J battery, a sensor device using our protocol
can execute 3200 instances of approximate agreement with
n = 55 sensors at δREL = 60% and ϵREL = 99.93%. This
contrasts with 1170 instances of ϵ-agreement for Abraham et
al., and only 340 instances of FIN.

We note that the relative share of energy consumed by
computation is much higher than communication because of
the geographic proximity of participant nodes. We observe
a higher energy share is consumed by computation than
communication, attributed to the close geographic proximity
of participant nodes. In contrast, geo-distributed SMR applica-
tions witness higher energy consumption for communication,
due to increased transmission distances. Given the low energy
consumed for communication in our setup, our results also
provide a practical lower bound on energy consumption of any
agreement protocol offering a similar precision and accuracy
from a distributed systems perspective.

B. Localization evaluation

We evaluate SENSORBFT’s localization protocol and show
the tradeoffs concerning the precision ρ and accuracy α with
energy consumed by the protocol with the help of data from
real acoustic sensors. We also compare our protocol to local-
ization protocols using FIN and Abraham et al.’s protocols as
agreement protocols in Algorithm 1.

We consider a rectangular area A and sensors deployed in
a square tessellation with side length a. For a pre-estimated
Voronoi order n, we estimate the lowest side length of the
tessellation a for localizing targets of signal strengths between
Smin = 85dB and Smax = 120dB. We set a signal threshold
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varying values of δREL = ∆

∆+δ
. Our ap-
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(b) Energy vs Precision ρ: We plot the
precision ρ and the corresponding energy
consumption for systems with n = 19, 37
sensors per shard. SENSORBFT’s energy us-
age remains stable even with lower ρ due
to our more energy-efficient precision im-
provement. In return for this efficiency, SEN-
SORBFT has a 2% higher α than Abraham
et al. FIN, in contrast, consumes 140 J and
1500 J for n = 19, 37, respectively.
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(c) Energy vs Accuracy α: The increase
in localization accuracy parameter α vs. en-
ergy consumed for ρ = 0.17m, in com-
parison with Abraham et al. and FIN. A
higher energy investment improves accuracy
and reduces α. This improvement diminishes
with increasing expenditure. Abraham et al.’s
method consumes 115 J and FIN consumes
140 J for ρ = 0.17m. The minimum value is
αmin = 20m.

Figure 7: Evaluating SENSORBFT’s Primitives

P such that the probability of only the noise generating a
signal of P is highly improbable. Based on η’s parameters of
µ = 52.5 and σ = 1, we set P = 58dB. With a Voronoi order
n = 19, we calculate the side length using this P value. The
value for κc for Voronoi order n = 19 is κc ≤ 5 [45], which
gives us a side length of a = 4.46m, which implies sensors
need to be placed at a distance of a = 4.4m to be able to
localize targets of Smin = 90dB.
Energy consumption vs Precision ρ. We study the variation
in consumed energy with changing localization precision ρ
in Fig. 7b. We plot the maximum energy spent by any sensor
on the map with ρ, for localizing a target of signal strength
S = 120dB. For a precision of ρ = 0.17m, our approach
consumes 49.3% lesser energy than Abraham et al. for n = 19
and 44.3% lesser energy at n = 37, for a modest 2% loss
in localization accuracy α. Our approach also can achieve a
lower ρ at a practically insignificant energy cost because of
our design choice to make agreement precision cheaper at the
expense of a minor increase in α. FIN consumes 2.5× and
5× more energy than SENSORBFT to achieve ρ = 0.
Accuracy α vs Energy consumption. Using the relationship
between δ and α (with constants adjusted for measurements
in decibels), we plot the proportional increase in α (relative to
the minimum αmin) against the maximum energy consumed
by any sensor on the map, when localizing a target with
S = 120dB. Recall that αmin is the lower bound on α achieved
when an agreement protocol with maximum accuracy is used.
We plotted Fig. 7c by varying the δ parameter in approximate
agreement and then calculating the resultant increase in α
based on the target’s signal strength and signal attenuation
rate. For instance, at n = 19, when setting δ = 1dB, we
observe a nominal 2% increase in α, coupled with an energy
reduction surpassing 50% relative to Abraham et al. and
over 70% against FIN. The minimum αmin in this case is
αmin = κs ∗ a = 22.63m. This can be reduced by deploying

the sensors closer together, while simultaneously increasing
the threshold P .
Energy consumption map. In Fig. 8, we analyze the trend of
energy consumption throughout the system in the presence of
the target. The graphic shows the energy consumed by each
sensor running the localization protocol with a 2% increase in
α compared to Abraham et al. and FIN, which have perfect
accuracy. As the distance from the target increases, sensors
consume lesser energy for localization because of the reduced
difference in their measured readings. Sensors closer to the
target measure a much higher difference in their readings. Our
approach consumes at least 50% less energy than Abraham et
al., for only a 2% increase in α. The localization approach
using FIN has a uniform energy consumption of 140 J per
sensor throughout the area.

The advantage and energy-efficiency of SENSORBFT stem
from its approximate agreement protocol, which capitalizes on
the variation between sensor reading intervals from different
shards. The wide difference between the value intervals of
adjacent shards allows SENSORBFT to perform an agreement
with low accuracy (equivalently, high δ), yet maintain a
reasonably low α. In contrast, Abraham et al.’s ϵ-agreement
protocol solely optimizes energy using intra-shard differences
between sensor readings. FIN does not exploit any contextual
information from sensor readings.

VI. RELATED WORK

Works on reliable aggregation focus on connecting the
sensors to the FC for reliable message transmission [12], [23].
These works propose different routing protocols to connect to
the FC in the presence of faulty sensors. However, these works
also assume a synchronous network between sensors and the
FC, which makes them vulnerable to intermittent network
failures and other malicious behavior like network jamming.
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Figure 8: SENSORBFT’s Energy Consumption: This map displays
the energy expenditure for each sensor operating SENSORBFT, as
they localize a target located at (65, 65). Energy use decreases with
the distance from the target due to a reduction in the variance of
sensor readings. α is marginally higher by 2% compared to the
baseline using Abraham et al., maintaining ρ = 0.5m, illustrating the
trade-offs between precision, accuracy, and energy efficiency inherent
in SENSORBFT’s design.

Sensor Fault Tolerance. Works in sensor fault tolerance rely
on an FC (Fusion Center) to either detect faulty sensors [14],
[43] or to run fault-tolerant aggregations on received data.
For example, specific approaches based on hypothesis test-
ing assume non-faulty sensor inputs are from a probability
distribution and utilize the FC to compute scores of honest
behavior [43]. Other works use specific metrics from the
sensor device, which enables the FC to identify faults [14].
Distributed Sensor Networks. Some works moved away
from a centralized FC by implementing distributed consensus
algorithms [28], [34], [37]. For example, SENATE [28] uses
a Proof of Location algorithm to authenticate sensors and a
consensus protocol to eliminate faulty sensor values. However,
all works in this category assume network synchrony, making
them infeasible for low-power embedded systems.
Target Localization. Many works proposed target localization
protocols with information fusion from various sensors [7],
[8], [29], [36], [40], [48] and specific fault-tolerant fusion
methods [32]. While the first set of works cannot tolerate
faults, the second set use an FC and a synchronous network.
Although there exist recent advanced localization techniques
that utilize time difference between signal arrival [40], fre-
quency of the target signal, and 2D azimuth change maps [29],
[36], it is not clear how these works perform amidst a
single faulty sensor. Further, these works are feasible for use
only in indoor controlled environments where the network is
synchronous and faulty behavior is improbable.
Consensus in sensors. Prior works explored distributed con-
sensus in resource-restricted devices with paltry infrastructure,
where any form of network synchrony is a strong assump-
tion [1], [9], [20], [41]. Bhat et al. [9] show that public key
primitives like signatures are energy-intensive and inefficient

in embedded devices, and propose EESMR, an energy-efficient
synchronous SMR protocol. However, asynchronous consen-
sus requires common coins, whose most efficient implementa-
tion is threshold unique signatures [10], [13]. On top of being
energy intensive, threshold signatures also require a threshold
setup, which is very expensive to deploy in sensors [19], [31].
Although a concurrent coin protocol titled HashRand [6] over-
comes this computational bottleneck using Hash functions, it
has a high O(n3) communication complexity in a one-time
execution. These factors motivated multiple new asynchronous
consensus primitives that do not require common coins.

Asynchronous Approximate Agreement (AAA) is a prim-
itive where nodes sacrifice agreement precision in exchange
for coin-free termination [1], [20]. However, even this prim-
itive has a high communication cost [1]. A concurrent work
Delphi [5] achieves AAA with Õ(n2) complexity but has a
minimum Validity relaxation of δ = ∆, which is too high
for localization. Moniz et al. [41] also proposed a different
primitive called k-consensus, which requires only k honest
nodes to terminate the protocol. This primitive is orthogonal
to the approximate agreement primitive.

VII. CONCLUSION

We presented SENSORBFT, the first asynchronous energy-
efficient distributed target localization protocol that can tol-
erate Byzantine-faulty nodes. It has two tuning knobs, con-
trolling precision and accuracy of localization, which en-
able sensors to meet their energy budgets. We introduced
two building blocks: (i) Voronoi sharding, which distributes
coverage responsibility amongst sensors using higher-order
Voronoi diagrams to cover a larger area in the presence
of Byzantine faulty nodes; (ii) approximate (ϵ, δ)-agreement,
which allows the sensors to achieve high localization precision
at a fractional energy expense for a practically insignificant
decrease in accuracy. For only a 2% increase in localization
error at n = 19 sensors, SENSORBFT consumes only 2

5 th of
the energy consumed by the FIN protocol, while incurring only
a minor 2% loss in localization accuracy, thus significantly
enhancing operational efficiency.
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