
Formally Verifying a Rollback-Prevention
Protocol for TEEs

Weili Wang1, Jianyu Niu1, Michael K. Reiter2, and Yinqian Zhang1(B)

1 Research Institute of Trustworthy Autonomous Systems and Department
of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen, China
12032870@mail.sustech.edu.cn, niujy@sustech.edu.cn, yinqianz@acm.org

2 Duke University, Durham, NC, USA
michael.reiter@duke.edu

Abstract. Formal verification of distributed protocols is challenging
and usually requires great human effort. Ivy, a state-of-the-art formal
verification tool for modeling and verifying distributed protocols, auto-
mates this tedious process by leveraging a decidable fragment of first-
order logic. Observing the successful adoption of Ivy for verifying consen-
sus protocols, we examine its practicality in verifying rollback-prevention
protocols for Trusted Execution Environments (TEEs). TEEs suffer from
rollback attacks, which can revert confidential applications’ states to stale
ones to compromise security. Recently, designing distributed protocols
to prevent rollback attacks has attracted significant attention. However,
the lack of formal verification of these protocols leaves them potentially
vulnerable to security breaches. In this paper, we leverage Ivy to for-
mally verify a rollback-prevention protocol, namely the TIKS protocol in
ENGRAFT (Wang et al., CCS 2022). We select TIKS because it is similar
to other rollback-prevention protocols and is self-contained. We detail the
verification process of using Ivy to prove a rollback-prevention protocol,
present lessons learned from this exploration, and release the proof code
to facilitate future research (https://github.com/wwl020/TIKS-Proof-
in-Ivy). To the best of our knowledge, this is the first endeavor to explain
the formal verification of a rollback-prevention protocol in detail.

Keywords: Formal verification · Rollback attacks · Trusted execution
environments (TEEs)

1 Introduction

The intricate nature of distributed systems makes it challenging to prove their
correctness. Errors in manual proofs [2] of well-known consensus protocols have
already demonstrated the difficulty of this reasoning. Given this challenge,
researchers tend to leverage formal verification tools such as Coq [1], TLAPS [3],
and Dafny [23], to develop more reliable machine-checked proofs. Unfortunately,
applying these tools to distributed protocols usually requires tremendous human
c© IFIP International Federation for Information Processing 2024
Published by Springer Nature Switzerland AG 2024
V. Castiglioni and A. Francalanza (Eds.): FORTE 2024, LNCS 14678, pp. 155–173, 2024.
https://doi.org/10.1007/978-3-031-62645-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62645-6_9&domain=pdf
https://github.com/wwl020/TIKS-Proof-in-Ivy
https://github.com/wwl020/TIKS-Proof-in-Ivy
https://doi.org/10.1007/978-3-031-62645-6_9


156 W. Wang et al.

effort. For instance, the Raft proof [38] written in Coq contains approximately
50,000 lines of code (a proof-to-code ratio of 10), and the development of a state
machine replication library (IronFleet [13]) in Dafny took 3.7 person-years. This
daunting proof effort greatly limits the practicality of these verification tools.

Padon et al. [28] Ivy, a new verification tool that uses decidable logic. Pro-
tocol designers need to express their protocols in a decidable fragment and
figure out inductive invariants to prove the safety of the protocols. To ease this
tedious, error-prone process, Ivy will showcase counterexamples to decidability
and invariance. Once the protocol is well expressed, Ivy can highly automate
the verification process by generating verification conditions and leveraging the
SMT solver to check their satisfiability. In this way, Ivy sacrifices the proto-
col description’s expressiveness to reduce the verification process’s complexity.
Witnessing the success of Ivy in verifying distributed protocols [8,27,35] with
much less human effort, we were curious whether Ivy could be used to verify
rollback-prevention protocols that ensure state continuity in Trusted Execution
Environments (TEEs).

TEEs such as Intel SGX [14], AMD SEV [5] and ARM CCA [7], have revolu-
tionized the field of confidential computing, enabling the execution of sensitive
operations within secure and isolated environments called enclaves. TEEs pro-
vide a hardware-based foundation for confidential computation, safeguarding the
confidentiality and integrity of sensitive data. However, the presence of rollback
vulnerabilities can compromise the security of TEEs and render them susceptible
to unauthorized access or manipulation. In a rollback attack, an adversary rolls
back the application’s state to a previous one, thereby potentially bypassing
security measures or gaining unauthorized control. The impact of a success-
ful rollback attack can be severe in real-world scenarios. For example, rollback
attacks can break the safety of a TEE-guarded consensus protocol [36].

To address this issue, various rollback-prevention systems have recently been
proposed. Prominent examples include ROTE [25], TIKS [36], Narrator [26]
TEEMS [11], and Narrator-Pro [29], which, despite their innovative approaches
to rollback prevention, have not undergone rigorous formal verification for their
security claims. Although the core protocol of Nimble [6], a recently proposed
rollback-prevention system, has been claimed to be formally verified, there are
few explanations of the verification process, which leaves a gap in understanding
the verification.

In this paper, we present the formal verification of TIKS (Trustworthy dis-
tributed In-memory Key-value Storage), a rollback-prevention protocol by Wang
et al. [36], using Ivy. We provide comprehensive details and insights into the
specific techniques and methodologies employed in formally verifying TIKS. We
study the formal verification of TIKS for several reasons. A series of rollback-
prevention protocols, including ROTE [25], Narrator [26] and TIKS [36], share
a common core, i.e., a customized echo broadcast protocol [30]. Both TIKS and
Narrator improve ROTE by directly storing states instead of monotonic coun-
ters. However, TIKS is self-contained and does not rely on external components,
whereas Narrator relies on a blockchain. Therefore, TIKS is a more suitable



Formally Verifying a Rollback-Prevention Protocol for TEEs 157

candidate to represent these rollback-prevention protocols, and its verification
can serve as a foundation for verifying other protocols. In verifying TIKS, we
specifically aim to address the following research questions.

• R1: Is there a difference between the verification of rollback-prevention pro-
tocols and other distributed protocols?

• R2: What type of simplification is necessary to facilitate the verification of
rollback-prevention protocols?

• R3: What is the user experience of using Ivy to verify rollback-prevention
protocols?

We expressed TIKS in Ivy and attempted to verify it directly. There are
two highly correlated challenges in this process. First, Ivy’s decidability restric-
tion limits the expressiveness of the protocol description. Second, finding proper
invariants to eliminate spurious counterexamples becomes more difficult under
the decidability restriction. To address these challenges, we developed reasonable
simplifications to the TIKS protocol. First, we simplified the state retrieval by
making the recovering node directly read other node’s states. Second, we reversed
the recovery steps to defer the recovering node’s state reconstruction. With these
simplifications, we obtained a proof that does not lie inside the decidable frag-
ment but generates solvable verification conditions and thus we can verify it
in Ivy. As TIKS shares similar core components with other rollback-prevention
protocols [25,26], we believe that our proof strategy can be generalized to other
rollback-prevention protocols to facilitate their formal verification.

Contributions. Our contributions are summarized below:

• We present a step-by-step verification of the TIKS protocol in Ivy. As far as
we know, this is the first endeavor to formally verify a rollback protocol in
Ivy, with detailed explanation of such procedure.

• We showcase the essential protocol simplifications that make the protocol
verifiable in Ivy, without affecting the core workflow of the protocol. This
strategy can be generalized to other rollback-prevention protocols.

• We demonstrate the practicality of Ivy in verifying rollback-prevention pro-
tocols, paving the way for the formal verification of other similar systems.

2 Background

2.1 Rollback Attacks on TEEs

A rollback attack occurs when an adversary reverts the execution of an applica-
tion by rolling back its state to a previous version. For instance, the enclave first
persists state s1 (at time t1), followed by the state s2 (at time t2). At a later
time t3, the enclave needs to retrieve the newest state, possibly due to a crash.
However, since the adversary controls the external storage, it can manipulate the
system and provide the enclave with a stale state s1, without being detected. As



158 W. Wang et al.

a result, the victim enclave will load s1 and revert its execution to s1 instead of
continuing from s2.

In reality, rollback attacks pose a significant threat to many confidential
applications. Consider the case of password guessing. To prevent brute-force
attacks, an application will record the number of failed login attempts and lock
the account when the number exceeds a threshold. However, if the adversary can
roll back the state of the application, it can bypass the protection mechanism by
reverting the number of failed login attempts to a previous value, thus conducting
brute-force attacks without being detected.

2.2 Formal Verification Tools

Coq [1] is an interactive theorem prover that allows users to use higher-order logic
reasoning to build proofs. TLAPS [3] is a theorem prover designed for TLA+ [20],
a formal specification language for modeling and validating programs. Dafny [23]
is a verification-aware imperative language allowing users to write Hoare-style
protocol invariants and verify the correctness with Z3 solver [4].

The aforementioned verification tools generally require great human effort.
To deal with this issue, Padon et al. [28] leverage a decidable fragment of first-
order logic to build Ivy, a verification framework that highly automates the
verification process. Ivy users first express their protocols in pure first-logic and
then restrict protocol descriptions to a decidable fragment. In this process, Ivy
will constantly showcase counterexamples to decidability, helping users to refine
protocol descriptions. After that, Ivy will generate verification conditions and
leverage its SMT solver (Z3) to check the correctness. Since the generated veri-
fication conditions are in the decidable fragment, they can be discharged by the
solver in finite time and thus provide timely feedback to the designers. In con-
trast, other tools leveraging SMT solvers (e.g., Dafny) may generate undecidable
verification conditions and may take an infinite amount of time to solve.

2.3 Preliminary Knowledge of Ivy

Decidable Logic. Ivy adopts Effectively Propositional Logic (EPR), a decid-
able fragment of first-order logic, to represent distributed protocols. A logic
formula is an EPR fragment if it has a prenex normal form of ∃X1,X2, ...,XN ,
∀Y1, Y2, ..., YM . P (X1, ...,XN , Y1, ..., YM ), where the predicate P does not contain
function symbols except the acyclic (stratified) ones. Acyclic function symbols
are functions that do not have cycles in their definition. For instance, a function
that maps from sort s1 to sort s2 and a function that maps from sort s2 to sort
s1 are considered cyclic, and therefore not permitted in EPR.

Ivy requires users to express their protocols in EPR fragment and then Ivy
will generate decidable verification conditions and leverage its SMT solver (Z3)
to check their satisfiability. However, successful proofs in Ivy do not necessarily
lie in the decidable fragment. Ivy supports undecidable logic fragments to express
complex protocols that are not easy to represent in EPR, although undecidable



Formally Verifying a Rollback-Prevention Protocol for TEEs 159

verification conditions burden the SMT solver and may take an infinite amount
of time to solve.

Actions. Ivy models protocol procedures as isolated actions that operate on
protocol states. Similar to functions in conventional programming languages,
Ivy actions also have input arguments. Actions can be invoked by other actions
or the environment. Ivy uses the “export” keyword to mark an action exported,
which then can be called by the environment. Although an action can be invoked
inside another action, Ivy does not support recursive action calls. To simplify
the concurrency reasoning, actions execute atomically without any interruption.
In other words, Ivy uses the interleaving model to model concurrency—the envi-
ronment can call actions in an arbitrary order and thus sequentially executed
actions actually model arbitrary interleaving of protocol procedures.

Inductive Invariants. To specify the safety property of a protocol, users have
the option to write assertions in the form of preconditions (using the “require”
keyword) and postconditions (using the “ensure” keyword) within an action.
However, in a more general sense, users should construct inductive invariants
that imply the safety of the protocol being verified. These invariants must hold
after the initialization phase. Moreover, Ivy checks whether the invariants hold
at the beginning of an action and whether they are preserved after the execution.

3 TIKS Recap

TIKS establishes a distributed in-memory key-value (KV) storage abstraction
that provides rollback protection. Each TIKS node maintains one in-memory
KV store and a TIKS cluster consists of 2f +1 nodes, where f is the maximum
number of nodes hosted on malicious hosts. Malicious nodes can drop, dupli-
cate, and reorder network messages, as well as crash. States requiring freshness
guarantees (i.e., crucial states that cannot be rolled back) are stored in TIKS
as key-value items. For a KV item 〈key , value〉, key uniquely identifies the state,
whereas value contains the state and a monotonic index indicating the version.
As such, value is represented as a 2-tuple: 〈index , state〉. The key of a state usu-
ally begins with the ID of the node that owns the state and ends with the state
name. For example, when node A stores its states named s1 and s2 in TIKS, the
keys of these states are A_s1 and A_s2, respectively.

To offer rollback protection, i.e., ensuring successfully stored KV items will
not be overwritten by older versions, TIKS involves a storage update sub-
protocol and a storage recovery sub-protocol. We briefly introduce these two
sub-protocols below and refer the readers to its original description [36] for more
details.

3.1 Storage Update

TIKS use a two-round communication process to enable a node to persist states
with freshness in the cluster. Whenever a node wants to update a KV item,



160 W. Wang et al.

it first updates its own KV store and then issues Store and ConfirmStore
remote procedure calls (RPCs) to other nodes to update their KV stores. Figure 1
illustrates this workflow. In this three-node cluster, Node A successfully updates
its KV store after collecting f Store responses and f ConfirmStore responses
from other nodes.

Fig. 1. Workflow of storage update in TIKS.

The First Round. The updating node first updates the KV item in its KV
store, and then broadcasts Store RPCs. A Store request encapsulates the key of
the to-be-updated state and its value. A benign node receiving such request will
update its KV store accordingly if the index of the received state is larger than
the index of the one in its own KV store, and then reply with a boolean value
to indicate the update status. With at least f responses, there is a majority of
nodes (including the updating node itself) that have successfully updated their
KV stores, and thus the updating node passes the first round. Otherwise, the
updating node continues to broadcast Store RPCs until it collects at least f
responses from other nodes.

The Second Round. After passing the first round, the updating node then
issues ConfirmStore requests with the same content as the Store requests,
to the nodes having responded to the first-round requests. When receiving
a ConfirmStore request, a benign node will reply with a success value if it
meets two conditions. First, it must have responded to the corresponding Store
request. Second, its KV store must contain an item that is identical to the one
in the ConfirmStore request. If these conditions are not met, the benign node
will simply ignore the request. If the updating node collects at least f responses
in the second round, it can ensure that the state has been securely stored in
TIKS. Otherwise, the updating node fails to update the state and must retry.



Formally Verifying a Rollback-Prevention Protocol for TEEs 161

3.2 Storage Recovery

A TIKS node maintains an in-memory KV store, and thus it needs to recover
its KV store from others after crashes, following steps below.

Inquiry. The crashed node broadcasts RetrieveStorage requests until it has
successfully collected at least f + 1 responses from other nodes. A benign node
receiving such a request will reply with all KV items in its KV store.

Reconstruction. By collecting f+1 KV stores from the alive nodes, the crashed
node can recover the newest KV items. Specifically, the crashed node first recon-
structs its own KV store. As TIKS uses a monotonic index to indicate the ver-
sion of a state, the crashed node picks the one with the largest index among the
received KV stores for each KV item. Then, the crashed node writes its own
states back to the cluster using Store and ConfirmStore RPCs.

The use of a monotonic index in an alive node’s aborted storage update
requests may cause trouble in its later recovery as one index may be used by
multiple states, which is termed as an index conflict. For instance, a node that
has successfully stored state6 at index 6 may crash during the process of storing
the newer version (denoted as state7) at index 7. In the recovery, the node may
not observe state7 and restore state6 as state7 has not been successfully stored.
Later, the node may crash again when storing a different version (denoted as
state′

7) at index 7. In this case, during recovery, the node may observe state7 and
state′

7 with the same index 7 and cannot decide which one to keep. By design,
TIKS does not handle index conflicts and defers the resolution to the application
layer. The application layer can randomly choose the state with the largest index
or adopt other strategies to resolve conflicts. For example, ENGRAFT [36] uses
the Raft leader to decide which state to keep.

4 Proof

A TIKS KV item has a structure of 〈key , 〈index , state〉〉. Inside the value tuple,
index tracks the version of state, and the state with the largest index is the
latest. As explained in Sect. 3.2, standalone TIKS protocol does not handle
index conflicts and leaves it to the application layer. Consequently, the state
field is irrelevant to rollback reasoning and we remove it in the proof. Moreover,
storing nodes’ multiple states (these states have different keys) in one KV store
is equivalent to storing their states in multiple separate KV stores, each of which
contains states with the same key. As such, we assume that each node only has
one state and uses its node ID as the key. A KV item in the proof has this
structure: 〈nodeID , index 〉.

TIKS nodes hosted on malicious hosts cannot deviate from the protocol, but
they still can drop, duplicate, and reorder network messages, as well as crash at
any time. These threats are modeled in the proof.

Next, we report the attempt of using Ivy to formally prove the safety property
of TIKS, i.e., a TIKS node can obtain its own state (〈index 〉) maintained in the
TIKS cluster when recovering from crashes.



162 W. Wang et al.

4.1 Types and Functions

Uninterpreted Types. We do not need to represent the exact meaning of
different types. For instance, we just need a type declaration of nodes when
reasoning protocol participants. We use node, quorum, index, and nonce types.

The node type is used to represent a single TIKS node, while the quo-
rum type is used to represent a majority of nodes (i.e., at least f + 1 nodes).
As Ivy does not support the mix of arithmetic reasoning and EPR, we can-
not directly define the quorum type by checking the cardinality of node sets.
Instead, the quorum concept in Ivy is modeled using an axiom that indicates
quorum intersection [27]. First, we use a relation to reason whether a node is
in a quorum: relation member (N:node, Q:quorum) (identifiers beginning
with capital letters like “N” and “Q” are placeholders in Ivy). When member
(n1, q1) is true, node n1 is in the quorum q1. Second, we define an axiom to
reason quorum intersection: axiom forall Q1:quorum, Q2:quorum. exists
N:node. member (N, Q1) & member(N, Q2). With this reasoning, the quo-
rum type can be used to represent a majority of nodes.

The index type is used to represent the index of a KV item 〈nodeID , index 〉.
In the implementation, indexes should be interpreted as integers. However, we
do not need this integer interpretation and related arithmetic operations in
the proof—we just need to ensure that we can compare two indexes (i.e., the
total order property). Ivy’s built-in order library provides a module that defines
unbounded sequence (0 is the minimum value), which basically establishes a
total order on the type. As such, we define the index type as an instantiation of
this module: instance index: unbounded_sequence.

Similar to the index type, the nonce type is also an instantiation of the
unbounded sequence module. In our implementation, a node recovered from a
crash will re-establish TLS connections with other nodes in the cluster, which
enables the recovered node to distinguish its own messages sent from previous
incarnations. To model this in the proof, we assign each node a nonce that is
incremented after each recovery and make each sent message contain the sender’s
nonce.

Defined Functions. Ivy functions can be evaluated on arguments to produce
deterministic results, and we use them to model partial states of a node. We
define three functions to represent states that only have one value per node:
n_committed_index records the largest index that a node has successfully writ-
ten; n_recovered_index records the largest index that a node has successfully
retrieved from the cluster in recovery; and n_nonce records the nonce of a node.

4.2 Relations

In the proof, we use relations to model KV stores, network messages, and crashes.

KV-Store Representation. To represent a node’s KV store, we define:
relation n_tiks_states (N0:node, N:node, I:index). For example, when



Formally Verifying a Rollback-Prevention Protocol for TEEs 163

node n0 stores the KV item 〈n1 , i1 〉 for node n1, n_tiks_states(n0,n1,i1) should
be true.

Network Messages. As listed in Listing 1.1, m_store_req and m_store_resp
relations denote the requests and responses of Store RPC. For exam-
ple, when node n0 with nonce no0 wants to update its index to i1
and broadcasts Store requests, m_store_req(n0,no0,i1) will be set to
true; when node n1 with nonce no1 receives the request and replies to
node n0, m_store_resp(n1,no1,n0,no0,i1) will be set to true. Similarly,
the m_confirm_store_req and m_confirm_store_resp relations represent
the requests and responses of ConfirmStore RPC. The RetrieveStorage
RPC is modeled using m_recover_req and m_recover_resp relations.
m_recover_req(n0,no0) is set to true when the recovering node n0 with nonce
no0 broadcasts RetrieveStorage requests. An alive node n1 with nonce no1
replying to the request will set m_recover_resp(n1,no1,n0,no0,n,i) to true if it
contains an item 〈n, i〉 in its KV store (i.e., n_tiks_states(n1,n,i) is true).

The above relation-based network reasoning follows the approach of the
Paxos proof written in Ivy [27] and models an abstracted network layer that
allows message dropping, duplication, and reordering.

Listing 1.1. Relation-based network messages representation
1 # Sender, sender’s nonce, index
2 relation m_store_req(S:node, NO:nonce, I:index)
3 # Sender, sender’s nonce, dest, dest’s nonce, index
4 relation m_store_resp(S:node, SNO:nonce, D:node, DNO:nonce, I:index)
5 # Sender, sender’s nonce, index
6 relation m_confirm_store_req(S:node, NO:nonce, I:index)
7 # Sender, sender’s nonce, dest, dest’s nonce, index
8 relation m_confirm_store_resp(S:node, SNO:nonce, D:node, DNO:nonce, I:index)
9 # Sender, sender’s nonce

10 relation m_recover_req(S:node, NO:nonce)
11 # Sender, sender’s nonce, dest, dest’s nonce, (N, I) means n_tiks_states(S, N, I)

↪→ holds
12 relation m_recover_resp(S:node, SNO:nonce, D:node, DNO:nonce, N:node, I:index)

Crash Representation. We use a relation to record node crashes: relation
crash(N:node). If node n0 is crashed, crash(n0) is set to true. To ensure
the presence of a majority of alive nodes, we then define an inductive
invariant: invariant ~(exists Q:quorum. forall N:node. member(N, Q)
-> crash(N)). Similarly, we use relation recovering(N:node) to record
whether a node is recovering. A recovering node must be crashed, and thus
we have: invariant forall N:node. recovering(N) -> crash(N).

4.3 Actions

Initialization. In the verification, Ivy first checks whether a program’s initial-
ization satisfies the inductive invariants. This initialization is defined using the
after init keyword. The initialization action mainly sets relations to false as
there are no messages and crashed nodes in the beginning.



164 W. Wang et al.

Two-Round Communication. The first round involves the send_store action
(Listing 1.2) that broadcasts Store requests, and the reply_store action
(Listing 1.3) that processes a Store request. The second round involves the
send_confirm_store action (Listing 1.4) broadcasting ConfirmStore requests,
the reply_confirm_store action (Listing 1.5) handling a ConfirmStore request,
and the store_success action (Listing 1.6) that updates a node’s written index.
The common precondition of these actions is that the node is not crashed.

send_store action. The preconditions require the to-be-written index
is larger than the node’s largest successfully written index appearing in
written_index. The node first updates its KV store (Line 4 in Listing 1.2),
broadcasts Store requests (Line 5) and finally replies to itself (Line 6).

Listing 1.2. The send_store action
1 action send_store(n:node, i:index) = {
2 require ~crash(n);
3 require i > n_committed_index(n);
4 n_tiks_states(n, n, i) := true;
5 m_store_req(n, n_nonce(n), i) := true;
6 m_store_resp(n, n_nonce(n), n, n_nonce(n), i) := true;
7 }

reply_store action. The preconditions require the requesting node has broad-
casted Store requests. The responder updates its KV store per the request
(Line 5 in Listing 1.3, recall that the capital letter “I” means a placeholder).
In this update, the responder only updates the KV store if the index is larger
than the current index (if I <= i); otherwise, it keeps the current state (else
n_tiks_states(n0, n, I)). After updating the KV store, the responder sends
replies to the requester (Line 6).

Listing 1.3. The reply_store action
1 action reply_store(n0:node, n:node, i:index) = {
2 require ~crash(n0);
3 require exists NO:nonce. m_store_req(n, NO, i);
4 require n0 ~= n;
5 n_tiks_states(n0, n, I) := true if I <= i else n_tiks_states(n0, n, I);
6 m_store_resp(n0, n_nonce(n0), n, n_nonce(n), i):= true;
7 }

send_confirm_store action. Before broadcasting ConfirmStore
requests, the node in this action first ensures that it has received a majority
of Store responses. We enforce this requirement via a precondition (Line 8 in
Listing 1.4).

Listing 1.4. The send_confirm_store action
1 action send_confirm_store(n:node, i:index, q:quorum) = {
2 require ~crash(n);
3 require n_tiks_states(n, n, i);
4 require i > n_committed_index(n);
5 require m_store_req(n, n_nonce(n), i);
6 require m_store_resp(n, n_nonce(n), n, n_nonce(n), i);
7 # Pass the first round
8 require forall N:node. member(N, q) -> m_store_resp(N, n_nonce(N), n, n_nonce(n), i

↪→ );
9 m_confirm_store_req(n, n_nonce(n), i) := true;

10 m_confirm_store_resp(n, n_nonce(n), n, n_nonce(n), i) := true;
11 }



Formally Verifying a Rollback-Prevention Protocol for TEEs 165

reply_confirm_store action. The preconditions not only require the
requesting node has broadcasted ConfirmStore requests but also ensure that
the receiving node has stored the to-be-written index and responded to the Store
RPC (Line 4 in Listing 1.5). The receiving node then replies to the requester
(Line 6).

Listing 1.5. The reply_confirm_store action
1 action reply_confirm_store(n0:node, n:node, i:index) = {
2 require ~crash(n);
3 require exists NO:nonce. m_store_req(n, NO, i) & m_confirm_store_req(n,NO,i);
4 require m_store_resp(n0, n_nonce(n0), n, n_nonce(n),i);
5 require n0 ~= n;
6 m_confirm_store_resp(n0, n_nonce(n0), n, n_nonce(n), i) := true if n_tiks_states(n0

↪→ , n, i) else m_confirm_store_resp(n0, n_nonce(n0), n, n_nonce(n), i);
7 }

store_success action. The preconditions require the node has received a
majority of ConfirmStore responses. The node then updates its written index.

Listing 1.6. The store_success action
1 action store_success(n:node, i:index, q:quorum) = {
2 require ~crash(n);
3 require i > n_committed_index(n);
4 require n_tiks_states(n, n, i);
5 require m_store_req(n, n_nonce(n), i) & m_confirm_store_req(n, n_nonce(n), i);
6 # Pass the first and second round
7 require forall N:node. member(N, q) -> m_confirm_store_resp(N, n_nonce(N), n,

↪→ n_nonce(n), i) & m_store_resp(N, n_nonce(N), n, n_nonce(n), i);
8 n_committed_index(n) := i;
9 n_recovered_index(n) := i;

10 }

Crash Modeling. We model the crash and recovery using eight actions.
These actions include one action for crashing the node (node_crash) and
seven actions for the recovery process (nonce_increase, send_recover_req,
send_recover_resp, node_recover, rec_send_store, rec_send_confirm_store,
and rec_store_success). The nonce_increase action and the rec_send_store
action are only invoked in recovery actions and thus are not exported.

The nonce_increase action increases the recovering node’s nonce. It first
updates the nonce, and then clears all messages corresponding to the new nonce.

In the crash action shown in Listing 1.7, the precondition requires that only
alive nodes can be crashed. A node is marked as crashed (crash(n) := true)
if its crash does not result in a quorum with all crashed nodes. Recall that we
model a set of at least f+1 nodes as a quorum type, and thus a quorum with all
crashed nodes means there are at least f + 1 crashed nodes, which contradicts
the threat model that at most f nodes can crash.

Listing 1.7. The node_crash action
1 action node_crash(n:node) = {
2 require ~crash(n);
3 crash(n) := true;
4 if exists Q:quorum. forall N:node. member(N, Q) -> crash(N) {
5 crash(n) := false;
6 } else { }
7 }



166 W. Wang et al.

The recovery begins with the send_recover_req action (Listing 1.8) where
the recovering node increases its nonce and broadcasts RetrieveStorage
requests. Alive nodes receiving such requests will reply with their KV stores
as shown in the send_recover_resp action (Listing 1.9).

Listing 1.8. The send_recover_req action and
1 action send_recover_req(n:node) = {
2 require crash(n);
3 call nonce_increase(n);
4 recovering(n) := true;
5 m_recover_req(n, n_nonce(n)) := true;
6 }

Listing 1.9. The send_recover_resp action
1 action send_recover_resp(n0:node, n:node) = {
2 require ~crash(n0);
3 require m_recover_req(n, n_nonce(n));
4 require n0 ~= n;
5 m_recover_resp(n0, n_nonce(n0), n, n_nonce(n), N, I) := true if n_tiks_states(n0, N

↪→ , I) else n_tiks_states(n0, N, I);
6 }

Listing 1.10 displays the node_recover action. A recovering node that has
collected a majority of RetrieveStorage RPC responses will reconstruct its
KV store and start writing back its index by invoking the rec_send_store
action. The rollback-prevention is represented as a postcondition stating that
a recovered node will retrieve an index not smaller than its written index right
before the crash. We omit the rec_send_store, rec_send_confirm_store, and
rec_store_success actions as they are similar to actions used to write an index
via the two-round communication. In the rec_store_success action, the recov-
ering node finishes the write-back operation and finally finishes the recovery.

Listing 1.10. The node_recover action
1 action node_recover(n:node, q:quorum, retrieved_i:index)={
2 require crash(n) & recovering(n);
3 require m_recover_req(n, n_nonce(n));
4 require forall N:node. ~member(n, q) & member(N, q) -> ~crash(N);
5 # Receive responses from the quorum
6 require forall N:node. member(N, q) -> exists I:index. m_recover_resp(N,n_nonce(N),

↪→ n,n_nonce(n),N,I);
7 require forall S:node, I:index. m_recover_resp(S, n_nonce(S), n, n_nonce(n), n, I)

↪→ -> I <= retrieved_i;
8 require exists N:node. member(N, q) & m_recover_resp(N, n_nonce(N), n, n_nonce(n),

↪→ n, retrieved_i);
9 # Check rollback prevention

10 ensure n_committed_index(n) <= retrieved_i;
11 n_recovered_index(n) := retrieved_i;
12 # KV-store reconstruction
13 n_tiks_states(n, N, I) := false;
14 n_tiks_states(n, N, I) := true if (exists N0:node. member(N0, q) & m_recover_resp(

↪→ N0, n_nonce(N0), n, n_nonce(n), N, I)) else n_tiks_states(n,N,I);
15 n_tiks_states(n, n, I) := true if I <= retrieved_i else n_tiks_states(n,n,I);
16 call rec_send_store(n);
17 }



Formally Verifying a Rollback-Prevention Protocol for TEEs 167

4.4 Inductive Invariants

Listing 1.11 lists all used invariants in the proof. Most of them are described
before or self-explanatory and thus we only explain the invariant with “safety”
notation. Recall that we aim to prove that a TIKS node can obtain its own
state (〈index 〉) maintained in the TIKS cluster when recovering from crashes.
The safety invariant depicts this property: if an updating node N successfully
writes its index I to the cluster and there is a quorum Q that does not consist
of crashed nodes, then in quorum Q, there exists a node N0 storing the index
I for node N. Note that a recovering node can retrieve states from a quorum
containing alive nodes only, and thus the safety invariant actually states that
the recovering node can obtain its own state from the quorum.

Listing 1.11. Inductive invariants
1 invariant ~(exists Q:quorum. forall N:node. member(N, Q) -> crash(N))
2 invariant [safety] forall N:node, Q:quorum. exists N1:node. ~(exists N0:node. member(N0

↪→ , Q) & crash(N0)) -> member(N1, Q) & n_tiks_states(N1, N, n_committed_index(N
↪→ ))

3 invariant m_confirm_store_resp(S, n_nonce(S), D, n_nonce(D), I) -> m_store_resp(S,
↪→ n_nonce(S),D,n_nonce(D),I)

4 invariant m_store_resp(S, n_nonce(S), D, n_nonce(D), I) -> n_tiks_states(S, D, I)
5 invariant n_recovered_index(N) >= n_committed_index(N)
6 invariant forall I:index, N:node. I = n_committed_index(N) -> n_tiks_states(N,N,I)
7 invariant recovering(N) -> crash(N)
8 invariant recovering(N) & D ~= N -> ~m_store_resp(N, n_nonce(N), D, n_nonce(D), I)
9 invariant recovering(N) & I ~= n_recovered_index(N) -> ~m_store_resp(N, n_nonce(N), N,

↪→ n_nonce(N), I)
10 invariant recovering(N) & D ~= N -> ~m_confirm_store_resp(N, n_nonce(N), D, n_nonce(D),

↪→ I)

5 Protocol Simplifications

A successful Ivy proof mandates solvable verification conditions that can be
solved by an SMT solver in finite time, and inductive invariants that imply the
safety property. Without correct inductive invariants restricting the reachable
states, Ivy will report spuriously unsafe states as counterexamples and fail the
proof. In verification practice, finding inductive invariants for distributed pro-
tocols is a tedious and error-prone process [10,12,39]. We also encounter this
challenge in the verification of the TIKS protocol, and Ivy’s use of decidable
logic fragment makes it even harder to represent the invariants—writing com-
plex invariants usually leads to undecidable verification conditions.

Actually, making the proof decidable is the most challenging task throughout
the verification. Protocol description and invariants easily introduce quantifier
alternations [28] that result in undecidable verification conditions. Although Ivy
developers propose approaches such as “derived relation” [27] and “relational
abstraction” [34] to mitigate this issue, we find that their adoption in TIKS
protocol is not straightforward and we cannot find a way to make the proof
decidable. Fortunately, undecidable verification conditions are not necessarily
unsolvable. We then turn to seek proper simplifications on the protocol to make
the verification conditions solvable while preserving the core workflow of TIKS.



168 W. Wang et al.

5.1 Simplified State Retrieval

Modeling the RetrieveStorage using m_recover_req and m_recover_resp
relations fails the proof as the RetrieveStorage responses represented by
m_recover_resp may not capture the KV store of the responding node at the
time when it receives the RetrieveStorage request. We introduce the coun-
terexample reported by Ivy below. Node 0 with the committed index 1 and
nonce 1 is recovering (i.e., m_recover_req(0,1) is true), and an alive node 1
with nonce 0 receives the RetrieveStorage request from node 0. Although
node 1 has stored index 1 for node 0 (i.e., n_tiks_states(1,0,1) is true), it does
not reply to node 0 with this information (i.e., m_recover_resp(1,0,0,1,0,1) is
false). As such, in the node_recover action, node 0 cannot retrieve its latest
index 1 and the proof fails. Using an invariant establishing the correspondence
between m_recover_resp and n_tiks_states relations may help to eliminate this
spurious counterexample. Ideally, this invariant should state that the KV store
in a RetrieveStorage response is the same as the KV store of the responding
node at the time when it receives the request. However, this reasoning involves
storing KV-store histories of nodes, which makes the proof more complex and
unverifiable in Ivy.

To facilitate the proof, we then simplify the recovery process by remov-
ing the RetrieveStorage RPC—a recovering node directly reads a major-
ity of nodes’ KV stores and then reconstructs its own KV store without
broadcasting RetrieveStorage RPCs. As such, relations (m_recover_req and
m_recover_resp) and actions (send_recover_resp and node_recover) related
to the RetrieveStorage RPC are removed, and the node_recover_resp action
is modified to directly read the KV stores of the responding nodes.

5.2 Reversed Recover Steps

In TIKS recovery, KV-store reconstruction and write-back operation are two sep-
arate steps and the finish of the latter step marks the end of recovery. A faithful
modeling of this “reconstruct then write back” process yields a bogus counterex-
ample. The counterexample shows that a recovering node having reconstructed
its KV store can “forget” the reconstruction result at the time when it finishes the
write-back operation, resulting a recovered node with stale KV store. Finding
an invariant stating the “reconstruct then write back” order helps to eliminate
this bogus counterexample but doing this in an undecidable logic fragment is
more challenging, as the underlying SMT solver may be stuck for a long time.
In practice, we simplify this process by reversing the order of the reconstruction
and write-back steps.

As the write-back operation involves separate actions that conduct two-round
communication, it is impossible to model the “reconstruct then write back” pro-
cess in a single action. Instead, we reverse the order of these two steps, i.e.,
following the “write back then reconstruct” order. When a recovering node suc-
cessfully writes its retrieved index back, it then reconstructs its KV store from
a majority of nodes. As such, the finish of the write-back operation and store



Formally Verifying a Rollback-Prevention Protocol for TEEs 169

reconstruction can occur atomically and the invariant stating the order of these
two steps is no longer necessary.

This reversed order does not deviate from the original TIKS protocol much,
as putting reconstruction at the end of recovery also ensures that the recovered
node has the latest KV store.

5.3 Proof Result

The above simplifications eases the invariant finding task while still preserving
the core workflow of the TIKS protocol. Although the resulted proof does not fit
in the decidable fragment of Ivy, its verification conditions can be discharged by
Z3 in a reasonable time. It is important to note that in Ivy, a proof is considered
successful regardless of whether it lies within the decidable fragment. Undecid-
able proofs can be established as long as the SMT solver is able to solve the
verification conditions within a finite amount of time.

On a machine with Intel Core i7-10700 CPU and 32GB RAM, Ivy takes 30 s
to verify the protocol. In comparison, Ivy takes 2.8 s to verify the Multi-Paxos
protocol [35]. The increased verification time is expected. First, the TIKS proof
involves crash and recovery modeling that is not present in the Multi-Paxos
proof and thus is more complex. Second, the TIKS proof involves undecidable
verification conditions that bring more workload to the SMT solver.

6 Lessons Learned

In the verification, we obtain the following answers to our research questions:

• R1 Answer: Verification techniques from other distributed protocols can be
applied to verify TIKS, such as relation-based message modeling and quo-
rum reasoning. However, the verification of TIKS introduces new challenges,
including modeling the recovery algorithm and representing the rollback-
prevention property. These complexities make the proof construction lie out-
side the decidable fragment of Ivy. Our proof provides insights into the differ-
ences between verifying rollback-prevention protocols and other distributed
protocols in Ivy.

• R2 Answer: We simplify the recovery process of TIKS to facilitate the veri-
fication, by making the recovering node directly read other node’s states and
deferring the recovering node’s state reconstruction. Our exploration demon-
strates that careful simplifications will not affect the core workflow of the
protocol and can facilitate the verification greatly.

• R3 Answer: In verifying TIKS, we find that writing a proof in Ivy is straight-
forward, but making the proof decidable and establishing proper invariants
are challenging. Although Ivy offers an interactive way (i.e., reporting coun-
terexamples) for users to find invariants, it is not easy to use in practice.
First, expressing the protocol in a decidable fragment not only results in much
human effort but also makes the proof less intuitive, which is not user-friendly.



170 W. Wang et al.

Second, a user that turns to undecidable logic to express protocol actions and
invariants cannot receive timely feedback from Ivy to refine their invariants,
and thus may spend a great amount of time in finding proper invariants.
From our experience, using Ivy does not necessarily make the proof easier
than previous approaches. Although users write much less code in Ivy, they
have to spend much more time in making the proof decidable with proper
invariants.

7 Related Work

Formal Verification of Distributed Systems. Numerous works leverage
formal verification tools introduced in Sect. 2.2 to verify distributed systems.
Verdi [37] is a Coq-based framework for implementing and verifying state
machine replication algorithms like Raft [37,38]. Disel is another Coq-based
framework that allows the implementation and safety verification of distributed
systems in a modular way [32]. TLAPS has been widely used to prove the safety
of distributed protocols including Paxos protocol [9,22], Raft reconfiguration
protocol [31] and Byzantine protocols [16,21]. IronFleet [13] is a Dafny-based
verification framework that divides a distributed system into three verification
layers and constructs proofs in a bottom-up manner using refinement. Ivy has
been used to prove multiple Paxos variants and verify their implementation
[27,35].

Parameterized model checking, a technique to check a system with arbi-
trary system size, can also be used in distributed system verification [17,19]. For
instance, ByMC [19] models threshold-guarded distributed protocols as thresh-
old automata and verifies their correctness in a counter system [18], which depicts
a set of identical protocol participants.

Despite these efforts to formally verify distributed protocols, there has been
a lack of focus on rollback-prevention protocols. Our work fills this gap and
provides a detailed formal verification of a rollback-prevention protocol.

Formal Methods Used in TEEs. Jangid et al. [15] leverage Tamarin
prover [33], a symbolic verification tool, to verify the rollback-prevention prop-
erty of TEE applications by approximating the application in the execution logic
of Tamarin. Wang et al. [36] use model checking to find vulnerabilities in an in-
enclave crash fault-tolerant consensus protocol. They enumerate attack vectors
in the TLC model checker [40] and use it to detect error traces. Li et al. [24] verify
the firmware of ARM CCA in Coq. They build a layered verification framework
and prove that the firmware implementation refines the top-level specification.
The above works do not explore the formal verification of rollback-prevention
protocols for TEEs, which is the focus of our work.

8 Conclusion and Future Work

This paper presents the formal verification for a rollback-prevention protocol,
TIKS. We report the step-by-step verification process and showcase the user



Formally Verifying a Rollback-Prevention Protocol for TEEs 171

experience of using Ivy in verifying rollback-prevention protocols, providing valu-
able insights for researchers and developers interested in verifying such protocols.

In future work, we plan to explore the possibility of eliminating the protocol
simplifications by finding necessary invariants manually or automatically [12,39],
and making the proof decidable by decomposing the proof [35]. Furthermore, it
will be interesting to verify the liveness property of the TIKS protocol using Ivy.

Acknowledgments. Michael Reiter was supported in part by NIFA Award 2021-
67021-34252. Yinqian Zhang was in part supported by National Key R&D Program of
China (No. 2023YFB4503900). Jianyu Niu was supported in part by the NSFC under
Grant 62302204.

References

1. The Coq proof assistant. https://coq.inria.fr. Accessed 03 May 2022
2. Errors found in distributed protocols. https://github.com/dranov/protocol-bugs-

list. Accessed 03 May 2022
3. TLA+ proof system (TLAPS). http://tla.msr-inria.inria.fr/tlaps/content/Home.

html. Accessed 03 May 2022
4. Z3 SMT solver. https://github.com/Z3Prover/z3. Accessed 03 May 2022
5. AMD secure encrypted virtualization. https://www.amd.com/en/processors/amd-

secure-encrypted-virtualization
6. Angel, S., et al.: Nimble: rollback protection for confidential cloud services. In: 17th

USENIX Symposium on Operating Systems Design and Implementation (OSDI
2023), pp. 193–208 (2023)

7. ARM confidential compute architecture. https://www.arm.com/architecture/
security-features/arm-confidential-compute-architecture

8. Berkovits, I., Lazić, M., Losa, G., Padon, O., Shoham, S.: Verification of threshold-
based distributed algorithms by decomposition to decidable logics. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019, Part II. LNCS, vol. 11562, pp. 245–266. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_15

9. Chand, S., Liu, Y.A., Stoller, S.D.: Formal verification of multi-paxos for dis-
tributed consensus. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 119–136. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6_8

10. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Form. Methods Syst. Des. 49, 190–218 (2016)

11. Dinis, B., Druschel, P., Rodrigues, R.: RR: a fault model for efficient tee replication.
In: The Network and Distributed System Security Symposium. Internet Society
(2023)

12. Hance, T., Heule, M., Martins, R., Parno, B.: Finding invariants of distributed
systems: it’s a small (enough) world after all. In: 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2021), pp. 115–131 (2021)

13. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, pp. 1–17
(2015)

14. Intel software guard extensions. https://www.intel.com/content/www/us/en/
architecture-and-technology/software-guard-extensions.html

https://coq.inria.fr
https://github.com/dranov/protocol-bugs-list
https://github.com/dranov/protocol-bugs-list
http://tla.msr-inria.inria.fr/tlaps/content/Home.html
http://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://github.com/Z3Prover/z3
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://doi.org/10.1007/978-3-030-25543-5_15
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-48989-6_8
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html


172 W. Wang et al.

15. Jangid, M.K., Chen, G., Zhang, Y., Lin, Z.: Towards formal verification of state
continuity for enclave programs. In: 30th USENIX Security Symposium (USENIX
Security 2021), pp. 573–590 (2021)

16. Jehl, L.: Formal verification of HotStuff. In: Peters, K., Willemse, T.A.C. (eds.)
FORTE 2021. LNCS, vol. 12719, pp. 197–204. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-78089-0_13

17. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: 2013 Formal
Methods in Computer-Aided Design, pp. 201–209. IEEE (2013)

18. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–109
(2017)

19. Konnov, I., Widder, J.: ByMC: byzantine model checker. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 327–342. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5_22

20. Lamport, L.: Specifying Systems, vol. 388. Addison-Wesley, Boston (2002)
21. Lamport, L.: Byzantizing Paxos by refinement. In: Peleg, D. (ed.) DISC 2011.

LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24100-0_22

22. Lamport, L., Merz, S., Doligez, D.: TLAPS proof of basic PAXOS. https://github.
com/tlaplus/tlapm/blob/main/examples/paxos/Paxos.tla. Accessed 03 May 2022

23. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

24. Li, X., et al.: Design and verification of the arm confidential compute architecture.
In: 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2022), pp. 465–484 (2022)

25. Matetic, S., et al.: ROTE: rollback protection for trusted execution. In: 26th
USENIX Security Symposium (USENIX Security 2017), pp. 1289–1306 (2017)

26. Niu, J., Peng, W., Zhang, X., Zhang, Y.: Narrator: secure and practical state
continuity for trusted execution in the cloud. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2385–2399
(2022)

27. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reason-
ing about distributed protocols. Proc. ACM Programm. Lang. 1(OOPSLA), 1–31
(2017)

28. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 614–630
(2016)

29. Peng, W., Li, X., Niu, J., Zhang, X., Zhang, Y.: Ensuring state continuity for
confidential computing: a blockchain-based approach. IEEE Trans. Depend. Secure
Comput., 1–14 (2024). https://doi.org/10.1109/TDSC.2024.3381973

30. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in
rampart. In: Proceedings of the 2nd ACM Conference on Computer and Commu-
nications Security, CCS 1994, pp. 68–80. Association for Computing Machinery,
New York (1994). https://doi.org/10.1145/191177.191194

31. Schultz, W., Dardik, I., Tripakis, S.: Formal verification of a distributed dynamic
reconfiguration protocol. In: Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pp. 143–152 (2022)

https://doi.org/10.1007/978-3-030-78089-0_13
https://doi.org/10.1007/978-3-030-78089-0_13
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://github.com/tlaplus/tlapm/blob/main/examples/paxos/Paxos.tla
https://github.com/tlaplus/tlapm/blob/main/examples/paxos/Paxos.tla
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/TDSC.2024.3381973
https://doi.org/10.1145/191177.191194


Formally Verifying a Rollback-Prevention Protocol for TEEs 173

32. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Programm. Lang. 2(POPL), 1–30 (2017)

33. Tamarin prover. https://tamarin-prover.com/
34. Tamir, O., et al.: Counterexample driven quantifier instantiations with applications

to distributed protocols. Proc. ACM Programm. Lang. 7(OOPSLA2), 1878–1904
(2023)

35. Taube, M., et al.: Modularity for decidability of deductive verification with applica-
tions to distributed systems. In: Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 662–677 (2018)

36. Wang, W., Deng, S., Niu, J., Reiter, M.K., Zhang, Y.: ENGRAFT: enclave-guarded
raft on byzantine faulty nodes. In: Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 2841–2855 (2022)

37. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2015, New York, NY,
USA, pp. 357–368 (2015). https://doi.org/10.1145/2737924.2737958

38. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the raft consensus protocol. In: Proceedings
of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pp.
154–165 (2016)

39. Yao, J., Tao, R., Gu, R., Nieh, J.: DuoAI: fast, automated inference of inductive
invariants for verifying distributed protocols. In: 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2022), pp. 485–501 (2022)

40. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48153-2_6

https://tamarin-prover.com/
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1007/3-540-48153-2_6

	Formally Verifying a Rollback-Prevention Protocol for TEEs
	1 Introduction
	2 Background
	2.1 Rollback Attacks on TEEs
	2.2 Formal Verification Tools
	2.3 Preliminary Knowledge of Ivy

	3 TIKS Recap
	3.1 Storage Update
	3.2 Storage Recovery

	4 Proof
	4.1 Types and Functions
	4.2 Relations
	4.3 Actions
	4.4 Inductive Invariants

	5 Protocol Simplifications
	5.1 Simplified State Retrieval
	5.2 Reversed Recover Steps
	5.3 Proof Result

	6 Lessons Learned
	7 Related Work
	8 Conclusion and Future Work
	References


