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ABSTRACT
Wedesign and implement PG, a Byzantine fault-tolerant and privacy-

preserving multi-sensor fusion system. PG is flexible and extensible,

supporting a variety of fusion algorithms and application scenarios.

On the theoretical side, PG develops and unifies techniques from

dependable distributed systems and modern cryptography. PG can

provably protect the privacy of individual sensor inputs and fu-

sion results. In contrast to prior works, PG can provably defend

against pollution attacks and guarantee output delivery, even in

the presence of malicious sensors that may lie about their inputs,

contribute ill-formed inputs, and provide no inputs at all to sway

the final result, and in the presence of malicious servers serving as

aggregators.

On the practical side, we implement PG in the client-server-

sensor setting. Moreover, we deploy PG in a cloud-based system
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with 261 sensors and a cyber-physical system with 19 resource-

constrained sensors. In both settings, we show that PG is efficient

and scalable in both failure-free and failure scenarios.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Dis-
tributed systems security.

KEYWORDS
Garbled Circuit; Fault-Tolerant Algorithms; Sensor Fusion; Guaran-

teed Output Delivery

ACM Reference Format:
Chenglu Jin, Chao Yin, Marten van Dijk, Sisi Duan, Fabio Massacci, Michael

K. Reiter, and Haibin Zhang. 2024. PG: Byzantine Fault-Tolerant and Privacy-

Preserving Sensor Fusion With Guaranteed Output Delivery. In Proceedings
of the 2024 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3670343

1 INTRODUCTION
Numerousmodern systems, spanning industry, agriculture, military,

and beyond, are increasingly relying on distributed data sources

(hereinafter without loss of generality, sensors) to support criti-

cal decisions and actions. As depicted in Fig. 1, the integration of

these data is most often achieved with the help of a server (proxy,

aggregator, or averager), which, upon receiving a client request,

gets inputs from a set of sensors, integrates the inputs, and returns
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the result to the client. Its application scenarios are almost every-

where, including sensor networks, smart metering, GPS devices

and satellites, soldiers on battlefields, smartphones and the cloud,

time-keeping mechanisms [58], and so on.

Privacy and integrity are widely regarded as primary concerns

or even hurdles for many of these applications as studied in myriad

papers across different areas [14, 22–24, 28, 31, 34, 35, 42, 43, 49,

60, 73, 74, 82]. First, we need to protect the privacy of individual

data sources. Ideally, the client should only know the result of the

function it has specified, but nothing more, and the server should

learn nothing (about sensor inputs or the final result). Second, we

require integrity in the sense that the server should faithfully return

the correct, aggregated results to the client.

Applications requiring both privacy of individual sensor input

and server integrity are numerous. Sensor networks deploying

sensors for mission-critical applications (e.g., safety monitoring,

target tracking) are natural examples, especially when sensors are

deployed across multiple organizations [73]. Consider the smart

metering application [70], where meters need to periodically report

user data to a server. Individual meter inputs can easily reveal sensi-

tive household information (e.g., habits). Meanwhile, the server may

report false data to gain benefits. As another example, companies

use the cloud to store and aggregate user data. While this appears

to be a popular approach to modern business, privacy, and integrity

concerns of user data are major hurdles to the broader adoption

of user data collection and analysis. Major IT companies, such as

Google [36], have deployed large-scale privacy-preserving systems

for the collection of user data to compute aggregated statistics.

Correspondingly, an impressive amount of work on secure sensor

fusion or data aggregation protocols have been proposed [1, 22, 23,

28, 31, 34, 35, 38, 42, 43, 49, 60, 73, 76, 82].

Pollution attacks. An equally important but notoriously difficult

goal in multi-sensor fusion is to defend against pollution attacks,
where some malicious sensors lie about their values to sway the

final result. Specifically, motivated attackers can mount this kind

of attack by either corrupting sensors and contributing malicious

inputs or maliciously altering environmental variables.

At first glance, defending against pollution attacks seems to be

at odds with attaining privacy. Indeed, to achieve the strongest

privacy goal mentioned above, the server is not supposed to learn

individual sensor inputs. Thus, the server cannot distinguish an

incorrect malicious sensor input from a correct one.

In spite of the risk of pollution attacks, the vast majority of

existing privacy-preserving systems treat defending against this

attack as out-of-scope. Only a handful of prior work attempts to

mitigate the problem [28, 50]. Their approach is to ask the sensors

to provide a cryptographic proof to show that their inputs are in

a prescribed range (or more generally satisfying some predicate)
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Figure 1: Distributed sensor fusion system architecture.

in the hope that a coalition of malicious sensors would not affect

the final result by much. Take the average function as an example.

Suppose we have ten sensors, each of which can have an input

selected from the range [1, 100]. Also, assume that the "correct"

value is around 20, and the correct sensors will output a value

around this. If three malicious sensors contribute 100 (which is in

the range), they would introduce a significant error in the final

result. Moreover, for many applications, there are no prescribed

limits on sensor inputs. To the best of our knowledge, all existing

privacy-preserving aggregation and fusion schemes are vulnerable

to pollution attacks to a significant degree.

Our approach.We design and implement PG, a privacy-preserving

and Byzantine fault-tolerant sensor fusion system that 1) formally

defends against pollution attacks, 2) performs within the compu-

tation and bandwidth limitations of sensors, 3) covers different

application scenarios and different sensor input types, and 4) is

efficient and scalable in both failure-free and failure scenarios.

To prevent pollution attacks, instead of relying on validity proofs,

our strategy is to "tolerate" so that no matter what inputs malicious

sensors provide, the fused value represents the correct physical

value with good accuracy, still in a privacy-preserving manner.

PG combines and develops techniques from distributed systems

and secure multi-party computation. At the core of PG is (a privacy-

preserving version of) Marzullo’s Byzantine fault-tolerant (BFT)

sensor fusion algorithm that takes as input sensor inputs and out-

puts a fused value. The fused value is guaranteed to contain the

correct fused value, if at most 𝑔 out of 2𝑔 + 1 sensors are malicious.

We also extend the framework of Yao’s garbled circuits (GC) [79],

which guarantees information privacy and computation integrity,

from a two-party setting to a client-server-sensors setting.

As depicted in Fig. 1, we deconstruct GC by explicitly identifying

three roles: clients (garblers), the server (the evaluator), and sensors

(garbled input providers). More specifically, a client is responsi-

ble for generating a garbled circuit for Marzullo’s algorithm; then

sensors contribute garbled inputs; and finally, the server evaluates

the garbled circuit using the garbled inputs and sends the client

the garbled output. Our framework opportunistically leverages the

bandwidth and computation asymmetry property in the sensor

fusion setting, where the bandwidth and computation power at

the client and the server sides are ample, but the bandwidth and

computation power of sensors are usually limited.

In the above-mentioned system, both the server and a fraction

of sensors may be malicious, but the server should not collude with

malicious sensors [44, 45]. We stress that in our system, malicious

sensors can collude, and in fact, we consider a strong adversary

can coordinate malicious sensors to compromise the system. This

assumption has been used in a large number of practical multi-

party computation systems [20, 21, 28, 31, 44, 45, 64]. Our system,

therefore, is suitable for applications where the server and sensors

lack the motivation to collude, or the adversary lacks the means

to corrupt both the server and some sensors simultaneously. For

example, in the GPS system, the adversary may lack the means to

compromise the satellite and some GPS devices together. In the

context of smart metering, another example is that the utility com-

pany, concerned about its business reputation, lacks the motivation

to collude with malicious meters.
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Based on the simple framework, to provably defend against

pollution attacks and achieve guaranteed output delivery, we have

to tackle the following challenges:

• How do we achieve liveness and guaranteed output delivery

when some sensors crash? In the context of garbled circuit

evaluation, even if a single sensor fails to provide its garbled

input, the server cannot evaluate the whole circuit and cannot

deliver an output.

• How do we distinguish ill-formed garbled inputs from well-

formed garbled inputs without compromising privacy? Mali-

cious (Byzantine) sensors may contribute ill-formed garbled

inputs so that the server can still evaluate the circuit, but the

aggregated result will always be a meaningless ⊥.
In PG, we resolve all the above challenges and, in fact, describe

our results following the above challenge pathway.

• How do we still guarantee privacy, correctness, and liveness

when the server does not follow the protocol and acts mali-

ciously? Can a malicious server trick other parties into revealing

additional information?

Our contributions. Our work on PG addresses the following key

challenges:

• We design an efficient and scalable framework for privacy-

preserving and Byzantine fault-tolerant sensor fusion. The frame-

work leverages the bandwidth and computation asymmetry

property in the sensor fusion setting and uses a novel combi-

nation of Byzantine fault-tolerant sensor fusion [56] and Yao’s

garbled circuits [79].

• We develop new techniques to achieve liveness and guaranteed

output delivery in GC when a fraction of sensors are Byzantine

malicious, meaning we cover all the cases where a malicious

sensor can potentially influence the correctness or liveness of

the system. Specifically, the malicious sensors can choose to

provide no input, provide incorrect value with the correct encod-

ing/garbling, or provide incorrectly garbled/ill-formed inputs.

• We also develop a new garbling scheme that allows us to extend

our system to defend against malicious servers while keeping

all the other security properties of the system.

• Wemake a general GC implementation specifically for our client-

server-sensors setting by extending TinyGarble [75], which is

one of the state-of-the-art two-party GC frameworks.

• We present a general methodology for designing optimized

circuits to realize a variety of fault-tolerant algorithms.

• We conduct a large-scale scalability study on the AWS cloud

with up to 261 sensors and another small-scale local evaluation

on cyber-physical system with up to 19 sensors to demonstrate

its performance in a wireless local network. The evaluation

results show that the system is highly efficient and scalable in

both environments and both failure-free and failure scenarios.

Paper organization. Sec. 2 describes the system setting and threat

model. Sec. 3 introduces the preliminaries of our scheme, including

garbled circuits and fault-tolerant algorithms. The protocol includes

four versions which we describe in Sec. 4. Sec. 5 explains how we

optimize the circuit designs of fault-tolerant algorithms. Sec. 6

contains our implementation and evaluation results. Related work

is discussed in Sec. 7. Our paper concludes in Sec. 8.

2 SYSTEM AND THREAT MODEL
The setting. As depicted in Fig. 1, our system, PG, consists of a

client, a server (aggregator), and a set of sensors. Client and server

are denoted 𝑐 and 𝑆 respectively. We denote the number of sensors

by 𝑛, and a bound on the number of faulty sensors by 𝑔. The set

of sensors is denoted as Π = (𝑠1, · · · , 𝑠𝑛). Let 𝑙 be the length of

the sensor input. Let 𝑘 be the security parameter of cryptographic

primitives (AES key size in our implementation).

In PG, a client sends a request to the single server for computing

a function 𝑓 (.), and the server collects readings from some or all

of the sensors. The server then runs a sensor fusion algorithm and

sends the aggregated result to the client. Throughout the entire

protocol, the client and sensors communicate only with the server.

In particular, there is no need for sensors to be aware of each other

or to exchange information.

Threat model. A correct participant is one who faithfully executes

our protocol until completion. It can nevertheless be semi-honest;
namely, it conforms to the protocol but may additionally preserve

the transcript of everything it observes in an effort to glean infor-

mation to which it is not entitled. Malicious participants exhibit

malicious behaviour limited only by the cryptographic assumptions

adopted, also referred to as Byzantine participants. A malicious par-

ticipant conforms to the protocol until some point at which it simply

stops executing (permanently) is said to crash.
Semi-honest participants must be non-colluding (e.g., [44, 45,

68]), meaning they do not share information unless explicitly pre-

scribed by the protocol. Byzantine sensors are allowed to collude

with each other, but they are not permitted to collude with a ma-

licious server, assuming one exists. This is a widely used assump-

tion in a large number of practical multi-party computation sys-

tems [20, 21, 28, 31, 44, 45, 64]. Communication in our protocol

happens in pairwise authenticated confidential channels to prevent

information leakage from eavesdropping. Therefore, we consider

general eavesdropping attackers or any malicious party in the pro-

tocol and eavesdrops on the communication between other parties

out of the scope of the paper.

Two threat models, 𝑇𝑀𝐴 and 𝑇𝑀𝐵 , are considered in this work.

• Threat model 𝑇𝑀𝐴: Up to 𝑔 out of 𝑛 sensors can be malicious.

The relation between 𝑔 and 𝑛 depends on the concrete fault-

tolerant algorithms used. Malicious sensors can collude with

one another. Both the client and the server are assumed to be

semi-honest, and they do not collude with the other parties.

• Threat model 𝑇𝑀𝐵 : In addition to the 𝑔 malicious sensors,

the server itself may also be malicious. Malicious sensors can

still collude with each other, but they do not collude with the

malicious server. The client is still semi-honest.

To achieve meaningful robustness against pollution attacks, the

number of malicious sensors should be bounded (less than 1/2 or

1/3 of the total number, depending on concrete applications and al-

gorithms). This assumption is a standard one in distributed systems

and multi-party computation systems where sensors, ideally, are

independently distributed in different hosts (running diverse soft-

ware and hardware), and the adversary has only limited capacity

to compromise a part of the overall system.

Goals. PG aims to achieve privacy, correctness, and liveness.
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• Privacy: If a semi-honest client does not collude with the server

and does not collude with sensors, then it learns only the ag-

gregated result returned from the server but nothing more. If

the server does not collude with the client and does not collude

with sensors, then it learns nothing about sensor inputs or the

final result.

• Correctness: If no more than 𝑔 sensors are Byzantine, then

the only response a correct client will accept is the correctly

aggregated result that is guaranteed to contain the correct value

(in the sense of Lemma 1 in the next section).

• Liveness: If the server is correct, and if no more than 𝑔 sen-

sors are Byzantine, then every correct client will get a non-⊥
response to its request. Note that liveness implies guaranteed

output delivery, so we do not define it separately.

3 BUILDING BLOCKS
We describe the building blocks for PG—Garbling schemes [17] and

Marzullo’s algorithm [56].

3.1 Garbling Schemes
Garbling schemes allow two-party secure function evaluation by

two mutually untrusted parties. A function must be represented

as a Boolean circuit consisting of 2-input gates in order for the

garbled circuit protocol to work
1
. In a garbled circuit protocol, a

garbler and an evaluator contribute their private inputs for the

function evaluation. The garbler garbles the function circuit while

the evaluator generates the output of the function by evaluating the

circuit based on the private inputs provided by both parties. Note

that the inputs are also in a garbled form and do not reveal any

information about the original private inputs of the two parties.

Bellare, Hoang, and Rogaway (BHR) [17] introduced the notion

of a garbling scheme as a first-class cryptographic primitive. Here,

we mainly adopt this abstraction but tailor it for our purpose; specif-

ically, we require that all the garbling scheme algorithms, but Ev, be
dominated by random coins.

2
The change is only notational. Note

that in the presence of a dominant random coin, oblivious transfer

protocol in traditional garbled circuit evaluation is not needed any-

more. However, we will need to assume the evaluator/server to not

collude with other parties to access the random coin.

A garbling scheme is a tuple of algorithms G = (Gb, En, Ev,De).
Gb takes as input 1

𝑘
, a random coin 𝑟 and a Boolean circuit 𝑓 , and

outputs a garbled circuit F. En takes an input 𝑥 and a random coin

𝑟 and outputs a garbled input 𝑋 . Ev takes a garbled circuit F and

garbled input 𝑋 and outputs a garbled output 𝑌 . De takes a garbled
output 𝑌 and a coin 𝑟 and outputs a plain-circuit output 𝑦 (or ⊥).

More specifically, when the garbler garbles a Boolean circuit,

it assigns two labels for each wire in the circuit, and each label is

actually a 𝑘-bit random string, where 𝑘 is the security parameter of

the scheme. The two labels are used to represent the truth values

of 0 and 1 on the wire, respectively. For each gate in the circuit,

1
We are aware of the existence of the recently introduced arithmetic garbled circuit [7],

but in this paper, we follow the convention and simply refer to Boolean garble circuit

as garbled circuit.

2
In BHR’s original definition, only Gb is probabilistic, while the rest are deterministic.

In their syntax, there are two more notations 𝑒 (encoding information) and𝑑 (decoding

information). For all the efficient garbling schemes known, both 𝑒 and 𝑑 can be

generated by a single random coin together with some associate data.

the garbler generates one ciphertext per row in the truth table of

a two-input gate. Each ciphertext is obtained by encrypting the

output wire label using two input wire labels selected according to

the gate’s functionality. Similarly, when the evaluator evaluates the

garbled circuit, it receives one label per input wire, decrypts the

correct row in the garbled table, and gets the corresponding output

wire label as the garbled output. A concrete example of a garbling

scheme is a double-encryption scheme (E,D).E takes keys𝐴, 𝐵, and
a plaintext 𝑋 , and returns a ciphertext 𝑌 = E(𝐴, 𝐵,𝑋 ), and D takes

keys 𝐴, 𝐵, a ciphertext 𝑌 , and returns a plaintext 𝑋 = D(𝐴, 𝐵,𝑌 ).
We require a correctness condition on garbling schemes: if F←

Gb(1𝑘 , 𝑟 , 𝑓 ), then De(𝑟, Ev(F, En(𝑟, 𝑥))) = 𝑓 (𝑥).
In our work, we require the prv.sim (privacy), obv.sim (oblivi-

ousness), and aut (authenticity) security definitions in BHR, which

we briefly describe here:

• prv.sim (privacy): There is a simulator S that takes as input

(1𝑘 , 𝑓 , 𝑓 (𝑥)) and produces output which is indistinguishable

from (F, 𝑋, 𝑟 ) generated normally.

• obv.sim (obliviousness): There is a simulator S that takes as

input (1𝑘 , 𝑓 ) and produces output which is indistinguishable

from (F, 𝑋 ) generated normally.

• aut (authenticity): Any adversary should not be able to generate

a 𝑌 ′ ≠ Ev(F, 𝑋 ) such that De(𝑟, 𝑌 ′) ≠ ⊥.

3.2 Marzullo’s algorithm
We describe Marzullo’s algorithm [56], a fault-tolerant data averag-

ing algorithm that is well-known in the reliable distributed systems

community.

In the presence of 𝑛 sensor values from 𝑛 replicated sensors, a

fault-tolerant sensor averaging algorithm [56] is used to compute a

correct aggregated value, even if some of the individual sensors are

incorrect (in which case the sensor is said to bemalicious, Byzantine,

or simply faulty). Marzullo [56] considered the case where each

individual sensor value can be represented by an interval 𝐼 = [𝑢, 𝑣]
over the reals. Let (𝑢 − 𝑣), the width of the interval, denote the

accuracy (or inaccuracy) of a sensor. Let (𝑢 + 𝑣)/2 be the midpoint
or center of the interval. Then, a sensor value is correct if the

interval 𝐼 contains the actual value of the measured feature, and the

sensor is faulty otherwise. The goal of Marzullo’s algorithm is to

find the minimum (and correct) interval given 𝑛 different intervals

𝐼 = {𝐼1, · · · , 𝐼𝑛}, with at most 𝑔 < 𝑛 of those being faulty. The fused

interval is at least as accurate as the range of the least accurate
individual non-faulty sensors.

We start by introducing algorithms where the number of failed

sensors 𝑔 is known. The underlying idea is as follows: Since 𝑔 or

less sensors are incorrect, any (𝑛−𝑔) mutually intersecting sensors

(i.e., clique) may contain the correct value. The algorithm computes

the "cover" (not the "union") of all (𝑛 − 𝑔)-cliques.3 Let lo be the

smallest value contained in at least 𝑛 − 𝑔 of the intervals and hi be
the largest value contained in at least 𝑛 − 𝑔 of the intervals. Then,

the correct aggregated result is the interval [lo, hi].
Marzullo [56] describes a general algorithm with𝑂 (𝑛 log𝑛) com-

plexity to compute this result. It uses a sweeping idea: First, sort all

3
Picking the cover, instead of the union, can help preserve the shape of the sensor

value.
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the endpoints of all the intervals. Second, moving from the lowest

value to the highest value, keep track of the number of intervals

containing each value. The final result can then be determined

from these counts. The algorithm cost is dominated by the sorting

procedure.

The above algorithm can be applied to the case of arbitrary

failures with unbounded inaccuracy or to the case of arbitrary

failures with bounded inaccuracy, where the maximum length of

the interval is known. Let M-𝑔-U denote the algorithm that deals

with unbounded inaccuracy failures. M-𝑔-U needs 3𝑔 + 1 sensors
to tolerate 𝑔 Byzantine failures with unbounded inaccuracies. We

quote the theorem in [56] as a lemma below.

Lemma 1. For a system with 𝑛 sensors, if 𝑔 ≤ ⌊𝑛/3⌋, then M-𝑔-U
outputs the smallest interval that is guaranteed to contain the correct
value.

4 PG PROTOCOLS
We describe our system PG and present four increasingly strong

protocols from P0 to P3. P0, P1, and P2 achieve the privacy and

correctness goals in𝑇𝑀𝐴 , meaning that the client and the server are

semi-honest and up to 𝑔 sensors are malicious. However, only P2

can fully achieve the liveness goal when all 𝑔 malicious sensors are

Byzantine. P3, being the strongest version of PG, is secure against

the threat model 𝑇𝑀𝐵 , where the malicious server is allowed to

deviate from our protocol but not collude with malicious sensors.

In PG, a sensor fusion task is represented as a Boolean circuit.

Please refer to Sec. 5 for the details of our circuit design. Here, we

assume circuits that implement a fault-tolerant algorithm are ready.

Consider that there is a garbler (client), an evaluator (server),

and several garbled data providers (sensors). The client specifies the

functional circuit and generates the corresponding garbled circuit.

The protocol starts with the client sending the garbled circuit to

the server. After receiving the garbled circuit from the client, the

server collects data (garbled inputs) from sensors. Garbled inputs

prevent the server from knowing the truth value of the sensor

measurements. The server then evaluates the functional circuit

with these garbled inputs and sends the result of its evaluation

(garbled output) to the client. The client decodes the garbled output

and gets the plain sensor fusion result. In PG, only the client can

decode the garbled output to a plaintext truth value.

4.1 P0: The Basic Protocol
In P0, the client is responsible for running Gb and generating a

garbled circuit; then sensors run En and contribute the garbled

inputs; and finally, the server evaluates (Ev) the circuit using the

garbled inputs and sends the client the garbled output for the client

to decode (De).
Each time the client wants to obtain a fused result of sensor

inputs, the client and the sensors need to agree on a fresh, random
coin 𝑟 that is used to garble the circuit and garble the inputs, re-

spectively, and they should prevent the value 𝑟 from being known

by the server. In the semi-honest model, we can easily achieve this

by allowing the client to dictate the coin. In PG, we assume that the

client shares an independent, symmetric, pairwise key with each

sensor. A client chooses a random coin and wraps the coin using

Setup and inputs: Let fta be any fault-tolerant sensor fusion function. Let G =

(Gb, En, Ev,De) be a garbling scheme. Let ⟨req⟩ be a client request that contains
the function description. Let 𝑥Π = {𝑥1, · · · , 𝑥𝑛 } and 𝑋Π = {𝑋1, · · · , 𝑋𝑛 } be
sensors’ inputs and garbled inputs respectively.

00 Client 𝑐 selects a random coin 𝑟 , runs Gb (using 𝑟 ) to generate a garbled circuit F
for fta, and sends F, ⟨req⟩, encrypted coins to server 𝑆 .

01 𝑆 forwards ⟨req⟩ and the corresponding encrypted coins to sensors.

02 Sensors Π run En (using 𝑟 and 𝑥Π ) and send 𝑆 garbled inputs 𝑋Π .

03 Server 𝑆 runs Ev on 𝑋Π and sends the garbled output 𝑌 to 𝑐 .

04 Client 𝑐 runs De (using 𝑟 and 𝑌 ) to get fta(𝑥Π) .

Figure 2: P0. When the server receives a garbled circuit, the
server collects garbled inputs from the sensors and returns
the garbled output to the client.

an authenticated encryption with the pairwise keys shared. The

ciphertexts will be sent to the server, and they will be distributed

to the respective sensors. Alternatively, we can assume public key

infrastructure and our system can be easily adapted. Also, the client

can send both the wrapped coins and the garbled circuit in the same

round, saving one communication round.

The above approach opportunistically leverages the bandwidth

and computation asymmetry property in the sensor fusion setting,

where the client and server have a much better network connection

and a much stronger computation power than the sensors. It is

common in modern systems to shift part of work to clients to

improve the service throughput and reduce the latency. Moreover,

in our approach, the circuit size (related to the accuracy of the

returned results to clients) can be flexibly decided by clients. In

addition, the client can potentially precompute the garbled circuit

off-line to reduce online latency.

We describe the above system in Fig. 2, using a language of

garbling schemes that is slightly modified from BHR. Without

loss of generality, we make black-box use of a general sensor av-

eraging function fta (instead of using Marzullo’s algorithm de-

scribed in Sec. 3). The difference between P0, Feige, Kilian, and

Naor (FKN) [37], Kamara, Mohassel, and Raykova (KMR) [44], and

Naor, Pinkas, and Sumner (NPS) [65] can be found in Sec 7.

While P0 achieves Privacy, it does not achieve liveness (guaran-

teed output delivery). This means that even if only one sensor fails

to provide its garbled inputs, the server cannot start evaluating the

garbled circuit and would have to wait for the missing input.

4.2 P1: Achieving Liveness in the Crash Failure
Model

In Fig. 3, we describe P1 achieving liveness in the crash failure

model, where sensors can fail by crashing. In P1, the absence of

a reply from a sensor will be treated as an input of [−∞, +∞] (or
the prescribed upper and lower bounds), which means this reply

will not be counted. The reason why we can do this is that our

fault-tolerant algorithms can natively tolerate meaningless inputs

as long as the number of these inputs (and together with malicious

inputs) are 𝑔-bounded. More specifically, if the server does not

receive the garbled input from some sensors in time, it will ask the

client to send corresponding garbled inputs for the missing sensors

for values [−∞, +∞]. The whole protocol is depicted in Fig. 3.

In synchronous environments, if the server is correct and if

all malicious sensors crash, the server will request garbled inputs

from the client after the timer expires. As the client is semi-honest,
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Setup and inputs: Let fta be any fault-tolerant sensor fusion function. Let G =

(Gb, En, Ev,De) be a garbling scheme. Let ⟨req⟩ be a client request that contains
the function description. Let 𝑥Π = {𝑥1, · · · , 𝑥𝑛 } and 𝑋Π = {𝑋1, · · · , 𝑋𝑛 } be
sensors’ inputs and garbled inputs respectively.

10 Client 𝑐 selects a random coin 𝑟 , runs Gb (using 𝑟 ) to generate a garbled circuit F
for fta, and sends F, ⟨req⟩, encrypted coins to server 𝑆 .

11 Server 𝑆 forwards ⟨req⟩ and the corresponding encrypted coins to sensors.

12 Sensors Π run En (using 𝑟 and 𝑥Π ) and send 𝑆 garbled inputs 𝑋Π .

13 If 𝑆 does not receive all the garbled inputs before the timer expires, it requests

from the client the missing garbled inputs that encode [−∞, +∞].
14 Server 𝑆 runs Ev on 𝑋Π and sends the garbled output 𝑌 to 𝑐 .

15 Client 𝑐 runs De (using 𝑟 and 𝑌 ) to get fta(𝑥Π) .

Figure 3: P1. The protocol is completed in one round in the
failure-free scenario and in two rounds if some sensors fail
to provide garbled inputs.

Setup and inputs: Let fta be any fault-tolerant sensor fusion function. Let G =

(Gb, En, Ev,De) be a garbling scheme. Let ⟨req⟩ be a client request that contains
the function description. Let 𝑥Π = {𝑥1, · · · , 𝑥𝑛 } and 𝑋Π = {𝑋1, · · · , 𝑋𝑛 } be
sensors’ inputs and garbled inputs respectively.

20 Client 𝑐 selects a random coin 𝑟 , runs Gb (using 𝑟 ) to generate a garbled circuit F
for fta, and sends F, ⟨req⟩, encrypted coins to server 𝑆 .

21 Server 𝑆 forwards ⟨req⟩ and the corresponding encrypted coins to sensors.

22 Sensors Π run En (using 𝑟 and 𝑥Π ) and send 𝑆 garbled inputs 𝑋Π .

23 If 𝑆 does not receive all the garbled inputs before the timer expires, it marks the

missing sensors as malicious in a list 𝑙𝑖𝑠𝑡𝑚 .

24 Server 𝑆 checks the validity of the received garbled inputs using the checking

gates, and if it finds that any garbled input 𝑋𝑖 of a sensor 𝑖 is ill-formed, it marks

the sensor 𝑖 as malicious in the list 𝑙𝑖𝑠𝑡𝑚 .

25 Server 𝑆 sends 𝑙𝑖𝑠𝑡𝑚 to Client 𝑐 to request well-formed garbled inputs that

encode [−∞, +∞] for the malicious sensors in 𝑙𝑖𝑠𝑡𝑚 .

26 Server 𝑆 runs Ev on 𝑋Π and sends the garbled output 𝑌 to 𝑐 .

27 Client 𝑐 runs De (using 𝑟 and 𝑌 ) to get fta(𝑥Π) .

Figure 4: P2. The protocol checks the validity of received gar-
bled inputs and completes in one round in the failure-free
scenario and in two rounds if some garbled inputs are miss-
ing or ill-formed.

the server will receive these "dummy" garbled inputs and start

evaluating the garbled circuit. The effect of these "dummy" garbled

inputs will be tolerated by the underlying fault-tolerant algorithms.

What if sensors are Byzantine? We have addressed the issue

that sensors do not contribute any garbled inputs; however, the

sensors can be Byzantine malicious and may contribute ill-formed

garbled inputs, i.e., the input is not one of the two valid labels

on the input wire, but it looks indistinguishable from a random

string without running a decoding procedure. Thus, modern GC

frameworks will just treat the ill-formed garbled inputs as valid

ones and finish the evaluation of the whole circuit, but in the end,

the client can only end up getting ⊥ due to a decoding failure.

Although this issue does not violate any correctness or privacy

properties, it does introduce an easy denial-of-service attack, and

the behaviours of the malicious sensors are hidden behind the

privacy guarantee of a garbled circuit, so neither the client nor

the server can catch them. Note that all popular garbled circuit

compilers or implementations [15, 17, 40, 54, 75, 80] do not provide

a way of telling which garbled input is ill-formed.

4.3 P2: Efficient Garbling Schemes for
Detecting Ill-Formed Garbled Inputs

To build a garbling scheme that detects ill-formed garbled inputs,

we extend the conventional double-encryption scheme to realize

false-key awareness. Once the semi-honest evaluator finds some of

the sensor inputs are ill-formed, then it can also request the client

for the corresponding garbled inputs for the malicious sensors for

values [−∞, +∞]. It is just like how P1 treats missing sensor inputs.

In fact, the evaluator in P2 compiles a list of the malicious sensors

that send no or ill-formed inputs and shares this list with the client

to request the missing inputs for starting the circuit evaluation.

This guarantees the liveness of the system in threat model 𝑇𝑀𝐴
and, therefore, achieves guaranteed output delivery as well. The

complete protocol for P2 is presented in Fig. 4.

False-key awareness means that given a double-encryption ci-

phertext, anyone can tell if a given key is false (i.e., ill-formed). We

note that LP [52] defined a symmetric encryption scheme with an

elusive and efficiently verifiable range. The goal of LP is to allow

the evaluator to know which gate entry in a four-entry table corre-

sponds to the given inputs. Not surprisingly, the LP construction

also meets the requirement for false-key awareness. Specifically,

the evaluator can simply check if the decrypted result is within the

pre-defined elusive and efficiently verifiable range. However, to our

knowledge, it has not been implemented for this purpose. All the

popular GC implementations and compilers do not achieve false-

key awareness. These implementations use the point-and-permute

technique to identify the correct entry [11]. Below, we provide two

schemes that efficiently achieve false-key awareness.

• FKA1. Let E𝐴,𝐵 (𝑋 ) = 𝐸𝐴 (𝐸𝐵 (𝑋 )), where 𝐸 is an IND-CPA se-

cure symmetric encryption schemewith "elusive" and "efficiently

verifiable range" as defined by Lindell and Pinkas (LP) [52]. 𝐸 can

be constructed from any IND-CPA secure encryption scheme 𝑆𝐸

so that 𝐸𝐾 (𝑋 ) = 𝑆𝐸𝐾 (𝑋 | |0𝑘 ). The LP construction is originally

designed to find the correct entry in a garbled table to decrypt,

sharing the same goal as the "point-and-permute" technique [11].

FKA1 combines the LP technique and the "point-and-permute"

technique so that the evaluator only needs to try a single gate

according to the point-and-permute bits. If the decrypted result

does not have 0
𝑘
as the second half, the server can conclude that

at least one of the two keys is ill-formed. One can instantiate 𝑆𝐸

using CBC-AES128 and incorporate the point-and-permute tech-

nique by leveraging one bit of the keys as a pointer to identify

the correct entry to decrypt.

• FKA2. Let E𝐴,𝐵 (𝑋 ) = 𝐸𝐴 (𝐸𝐵 (𝑋 )), where 𝐸 is a pseudorandom

injection (PRI, also known as deterministic authenticated en-

cryption) [69]. With a PRI ciphertext, the evaluator knows if a

given key is valid. PRI can be initiated using the SIV mode [69].

PG implements a hybrid construction of FKA1 and the gar-

bling scheme used in TinyGarble [75] (the state-of-the-art garbling

scheme implementation), where FKA1 is used to check whether the

sensor inputs are well-formed and the garbling scheme in TinyGar-

ble is used at the remaining circuit.

Caveat. One may think that FKA1 or FKA2 can be easily applied

to the "first layer" gates in the circuit. However, some "first layer"

gates may only get one input from the sensor, and the other input

is the output of another gate. In this case, for checking 𝑁 input

bits, depending on the actual circuit, one may need to implement

FKA1 or FKA2 on more than
𝑁
2
gates. To optimize this process,

we propose decoupling the two halves in the FKA1 scheme and
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Setup and inputs: Let fta be any fault-tolerant sensor fusion function. Let G =

(Gb, En, Ev,De) be a garbling scheme. Let ⟨req⟩ be a client request that contains
the function description. Let 𝑥Π = {𝑥1, · · · , 𝑥𝑛 } and 𝑋Π = {𝑋1, · · · , 𝑋𝑛 } be
sensors’ inputs and garbled inputs, respectively. Let 𝑋𝑐 be the garbled inputs of

filter gates provided by the client. Let 𝑋𝑓 𝑐 be the garbled inputs (i.e., the output of

the filter gates) for the functional circuit.

30 Client 𝑐 selects a random coin 𝑟 , runs Gb (using 𝑟 ) to generate a garbled circuit F
for fta, and sends F, ⟨req⟩, encrypted coins to server 𝑆 .

31 𝑆 forwards ⟨req⟩ and the corresponding encrypted coins to sensors.

32 Sensors run En (using 𝑟 and 𝑥𝑖 ) and send 𝑆 garbled inputs 𝑋Π .

33 If 𝑆 does not receive all the garbled inputs before the timer expires, it marks the

missing sensors as malicious in a list 𝑙𝑖𝑠𝑡𝑚 .

34 Server 𝑆 checks the validity of the received garbled inputs using the checking

gates, and if it finds that any garbled input 𝑋𝑖 of a sensor 𝑖 is ill-formed, it marks

the sensor 𝑖 as malicious in the list 𝑙𝑖𝑠𝑡𝑚 .

35 Server 𝑆 sends 𝑙𝑖𝑠𝑡𝑚 to Client 𝑐 .

36 Client 𝑐 run En (using 𝑟 and𝑚𝑙𝑖𝑠𝑡 ) and send 𝑆 garbled inputs 𝑋𝑐 .

37 Server 𝑆 evaluates filter gates to obtain the garbled inputs𝑋𝑓 𝑐 for the functional

circuit.

38 Server 𝑆 runs Ev on 𝑋𝑓 𝑐 and sends the garbled output 𝑌 to 𝑐 .

39 Client 𝑐 runs De (using 𝑟 and 𝑌 ) to get fta(𝑥Π) .

Figure 5: P3. The server’s access to the garbled inputs of the
functional circuit is controlled by filter gates. The protocol
is always completed in two rounds.

introducing a special type of gate called checking gates. This means

that instead of 𝐸𝐴,𝐵 (𝑋 ) = 𝑆𝐸𝐴,𝐵 (𝑋 | |0𝑘 ), the checking gates only

encode 𝐸𝐴,𝐵 (0𝑘 ) = 𝑆𝐸𝐴,𝐵 (0𝑘 ). If the decoded output is 0
𝑘
, then we

can conclude that the input labels/keys 𝐴 and 𝐵 are well-formed

and then use these two labels to evaluate the functional circuit

as usual. One checking gate can check two inputs from the same

sensor, so we only need exactly
𝑁
2
additional gates for checking

the validity of 𝑁 garbled inputs if every sensor provides an even

number of inputs. We use FKA1 instead of FKA2 because functional

evaluation and false key detection can be easily decoupled.

4.4 P3: Efficient Garbling Schemes for Security
against a Malicious Server

In P1 and P2, we allow the semi-honest evaluator to request valid

garbled inputs from the client for the missing garbled inputs. Al-

though the value [−∞, +∞] encoded does not reveal any private

information, this feature may be abused by a malicious server.

In the threat model 𝑇𝑀𝐵 , the server can also be malicious. A

malicious server can potentially deceive the client by asking for

another garbled input, even if it has received a well-formed one

from the sensor. Once the server has both labels for a single wire,

it can extract additional information by differential analysis on

the underlying algorithm, or it can extract some secrets of the

garbling scheme if certain optimization techniques are used. For

example, from two valid labels of any wire, the server can derive

the global label offset used in the free XOR optimization [47], which

is one of the de-facto optimizations in all modern GC frameworks.

This knowledge can potentially allow the server to recover the

sensor’s private input (violating the privacy guarantee) or falsify

the garbled output without being detected by the client (violating

the correctness guarantee). Of course, a malicious server can choose

to stop responding to the client to violate the liveness guarantee, but

in practice, such an attack can be easily mitigated by switching to a

different server since the server does not possess any unrecoverable

or secret information. Thus, we exclude the simple denial-of-service

attack by a malicious server from the discussion in this paper.

To prevent a malicious server from obtaining two labels of any

wire in the circuit, we introduce a layer of filter gates. A layer of

filter gates is deployed in front of the functional circuit. The server

can only obtain the input labels for the functional circuit through

the evaluation of these filter gates, as they act as the only entry

point for the server to these input labels.

Filter Gate. Each filter gate takes two input labels: one is from

a sensor, and the other is from the client. To use the filter gate,

the sensors still garble their own inputs as usual. Depending on

the result of the checking gates and the time-out timer, the server

knows which sensors’ garbled inputs are missing or ill-formed.

Then, the server sends the list of malicious sensors to the client.

Based on the list provided by the server, the client replies with a

label of the client’s input on each of the filter gates. For the sensors

that have provided well-formed garbled inputs, the client replies

with a label corresponding to value 1, and for the other sensors,

the client replies with a label corresponding to value 0. The server

subsequently evaluates filter gates using garbled inputs it received

from the client and/or the corresponding sensor. The outputs of the

layer of filter gates are the input labels for the client’s designated

functional circuit. Then, the rest of the protocol is carried out as

usual. The complete protocol of 𝑃3 is in Fig. 5.

We introduce a special garbling scheme for the filter gates. There

are only three, instead of four, entries in the garbled table for a

filter gate. Two entries are 𝐸
𝑋𝑏
𝑆
,𝑋 1

𝐶
(𝑋𝑏
𝑂
) = 𝑆𝐸

𝑋𝑏
𝑆
,𝑋 1

𝐶
(𝑋𝑏
𝑂
), where

𝑋𝑆 , 𝑋𝐶 , 𝑋𝑂 are the labels from the sensor, from the client, and gate

output, the superscript 𝑏 can be 0 or 1, representing the truth value

of the label. Another entry of the table is 𝐸𝑋 0

𝐶
(𝑋∞
𝑂
) = 𝑆𝐸𝑋 0

𝐶
(𝑋∞
𝑂
),

where 𝑋∞
𝑂

is the label corresponding to the infinity value of the

sensor. Note that the first two entries simply pass the value repre-

sented by 𝑋𝑏
𝑆
to 𝑋𝑏

𝑂
when the client gives label 𝑋 1

𝐶
, representing

1. The last entry only takes one input from the client, so it allows

the server to recover the embedded 𝑋∞
𝑂

label when no well-formed

garbled input from the sensor is available. Effectively, the filter gate

implicitly transfers a label that corresponds to −∞ or +∞ to the

server when a well-formed label is missing.

Filter gates ensure that a malicious server can only obtain at

most one valid garbled label of each wire (input or output) of a filter

gate, no matter how the server manipulates the list of malicious

sensors. If the server claims a sensor input is missing, it will only

get𝑋 0

𝐶
from the client and subsequently unlock𝑋∞

𝑂
at the output. If

the server claims a sensor input is well-formed, it can, at best, only

get the corresponding 𝑋𝑏
𝑂
as output because if the server actually

does not have a sensor input, it will not be able to evaluate the

circuit further and be detected by the client as a malicious server.

Remark.When a malicious server colludes with malicious sensors

(i.e., obtain two different sensor labels 𝑋𝑆 on the same wire or get

to know the random coin 𝑟 ), it can derive two different valid labels

𝑋𝑂 for the corresponding gate output wires by evaluating a filter

gate. It can then XOR these two 𝑋𝑂 labels on the same wire to

derive the circuit-global 𝑅 (the global offset used in the FreeXOR

optimization). This allows the server to derive all possible labels in

the whole circuit and tamper with the final output without being

detected by the client, as well as perform differential analysis on

the (intermediate) computation result to reveal extra information

about the honest sensors’ inputs. More garbling-scheme-specific
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Figure 6: The complete circuit design forM-𝑔-U.𝑛 is the num-
ber of sensors, 𝑙 is the length of the endpoint of the input
interval, and 𝑔 is the number of faulty sensors. There are 2𝑛
𝑙-bit inputs for the circuit.

attacks are possible when the attacker knows both labels on the

same wire [16]. To prevent this, we will have to run oblivious

transfer(OT) [8, 53] between the client and the sensors to prevent

the server and the sensors from knowing more labels than they

need.

5 ALGORITHMIC CIRCUIT DESIGN
5.1 Variants of Fault-Tolerant Averaging

Algorithms
We briefly survey the key fault-tolerant sensor fusion/averaging al-

gorithms [25, 56–58, 72]. Before the protocol starts, all participants

should agree on a representation for the intervals. For intervals,

each possible value is given an integer label with 𝑙 bits, and we

assume the lower and upper bounds are 0 and 𝜎 , respectively. There-

fore, 𝑙 = log𝜎 .

M-𝑔-U. Our complete circuit design for M-𝑔-U is depicted in Fig. 6.

To implement Marzullo’s algorithm, we first need to sort all the

input endpoints of sensor inputs, resulting in a sorted array of 2𝑛

values (considering each sensor is providing one interval in the

form of two endpoints). This is achieved using modified sorting
networks. For each point in this sorted array, we need to count

how many input intervals can cover this point. This is handled by

adding 1 to an intersecting interval counter if the point is a left end

of an input interval and subtracting 1 if it is a right end. After that,

we compare the intersecting interval counters for each point with

𝑛 − 𝑔, in order to find the points that are covered by exact 𝑛 − 𝑔
intervals. We do this using index select. As in Fig. 6, the left end

of the resulting interval is the output of the max value min index
module.

Likewise, the circuit for computing the right end of the resulting

interval can be implemented in a symmetric way by again running

the modified sorting networks and index select; however, we will

show in Section 5.2 that we can reuse the modified sorting networks

and the index select module for computing the right endpoint.

M-𝑔.M-𝑔-U applies to the case of arbitrary failures with unbounded

inaccuracy. The same algorithm, in fact, applies to the case of arbi-

trary failures with bounded inaccuracy, where the maximum length

of the interval is known and values that are too inaccurate can be

detected [56]. In this case, the algorithm (M-𝑔) needs 2𝑔 + 1 sensors
to tolerate 𝑔 Byzantine failures with bounded inaccuracies.

1

2
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4

5

6

7 8

9

10

M-op

SS

M-𝑔

Figure 7: A five-sensor system with M-𝑔, M-op and SS. The
sensor input intervals are [1, 5], [2, 6], [3, 7], [4, 9], [8, 10].
The resulting intervals are [3, 6], [4, 5], and [3, 7] for M-𝑔,
M-op, and SS, respectively.

M-𝑔-m. It is not uncommon to require the averaging algorithm to

only return the midpoint of the interval [58]. This may even be

more desirable in a privacy-preserving setting, as providing the lo
and hi values might reveal too much unnecessary information. We

write M-𝑔-m to denote this variant calculating the midpoint of M-𝑔.

M-op. Marzullo [58] also gave a solution to the case where the

system parameter 𝑔 is unknown or unspecified. The goal is to find

the cover for the maximum intersection groups for all the intervals.

Thus, the algorithm is "optimistic", and we write M-op to denote it.

SS.Marzullo’s algorithms may exhibit a somewhat irregular behav-

ior: it is possible that when Marzullo’s algorithms are applied to

two slightly different input sets, the output may be quite different.

This is formalized as violation of the Lipschitz condition regarding a

certain metric [51]. Schmid and Schossmaier [72] offered a solution,

SS, which can satisfy the Lipschitz condition. The algorithm is sim-

ple: Given 𝑛 intervals 𝐼𝑖 = [𝑢𝑖 , 𝑣𝑖 ] (1 ≤ 𝑖 ≤ 𝑛), (at most) 𝑔 of which

may be faulty, SS simply outputs [max
𝑔+1{𝑢1, · · · , 𝑢𝑛}, min

𝑔+1{𝑣1,
· · · , 𝑣𝑛}], where max

𝑔+1{𝑢1, · · · , 𝑢𝑛} denotes the element 𝑢 𝑗𝑔+1 in

the ordering 𝑢 𝑗1 , · · · , 𝑢 𝑗𝑛 of {𝑢1, · · · , 𝑢𝑛} from largest to smallest,

and min
𝑔+1{𝑣1, · · · , 𝑣𝑛} denotes the element 𝑣 𝑗𝑔+1 in the ordering

𝑣 𝑗1 , · · · , 𝑣 𝑗𝑛 of {𝑣1, · · · , 𝑣𝑛} from smallest to largest. While SS shares

the same worst-case performance as Marzullo’s, SS may generate a

larger output interval.

Example. To help understand the algorithms described, we visual-

ize an example in Fig. 7 which shows how three algorithms (M-𝑔,

M-op, and SS) work. All of the three algorithms deal with bounded

accuracy and use 2𝑔 + 1 sensors to tolerate 𝑔 faults.

As in Fig. 7, the input intervals for the sensors are [1, 5], [2, 6], [3,

7], [4, 9] and [8, 10]. For all the algorithms, all input endpoints need

to be sorted. To find the left endpoint of the resulting interval for M-

𝑔, we can imagine that there is a vertical line sweeping from left to

right. The vertical line can stop at the leftmost point that intersects

𝑛 − 𝑔 = 3 intervals. In the example, this point is 3. Similarly, to find

the right endpoint, a vertical line can sweep from right to left and

find the right end (6). Thus, the resulting interval is [3, 6].

Instead of outputting an interval, M-𝑔-mwill output themidpoint

of the resulting interval generated by M-𝑔.

In contrast toM-𝑔, theM-op algorithm does not need to know the

𝑔 value beforehand. A vertical line will sweep over all the endpoints

and find the leftmost and rightmost points that intersect with the

maximum input intervals. In the example, points 4 and 5 are covered
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Table 1: PG characteristics. 𝑛 is the total number of sensors, 𝑔 is the upper bound on the number of malicious sensors, 𝑘
is the security parameter (in this paper, 128-bit), and 𝑙 is the length of the sensor input. The column labeled "complexity"
specifies the time complexity of the algorithm in the plain setting. The columns labeled "server circuit," "sensor time," "sensor
communication," and "#rounds" specify for server circuit complexity, sensor time complexity (measured using the number of
pseudorandom function calls), sensor communication complexity, and the round complexity for PG, respectively.

algorithms #sensors description complexity server circuit sensor time sensor communication #rounds

M-𝑔-U 3𝑔 + 1 unbounded accuracy 𝑂 (𝑛log(𝑛)) 𝑂 (𝑙𝑛log2 (𝑛)) 𝑂 (𝑙) 𝑂 (𝑙𝑘) 1 or 2

M-𝑔 2𝑔 + 1 bounded accuracy 𝑂 (𝑛log(𝑛)) 𝑂 (𝑙𝑛log2 (𝑛)) 𝑂 (𝑙) 𝑂 (𝑙𝑘) 1 or 2

M-𝑔-m 2𝑔 + 1 only reveal midpoint 𝑂 (𝑛log(𝑛)) 𝑂 (𝑙𝑛log2 (𝑛)) 𝑂 (𝑙) 𝑂 (𝑙𝑘) 1 or 2

M-op 2𝑔 + 1 "optimistic" 𝑂 (𝑛log(𝑛)) 𝑂 (𝑙𝑛log2 (𝑛)) 𝑂 (𝑙) 𝑂 (𝑙𝑘) 1 or 2

SS 2𝑔 + 1 Lipschitz condition 𝑂 (𝑛log(𝑛)) 𝑂 (𝑙𝑛log2 (𝑛)) 𝑂 (𝑙) 𝑂 (𝑙𝑘) 1 or 2

by four input intervals, while the rest endpoints are covered by

at most three input intervals. Thus, M-op will output [4, 5] as the

result.

For SS, one needs to find the (𝑛 − 𝑔)-th smallest left endpoint

and the (𝑛 − 𝑔)-th largest right endpoint. In the example, point 3

and point 7 are picked as they are the third smallest left end and

the third largest right end, respectively.

The example would be easily extended to explain M-𝑔-U with

unbounded accuracy. However, it requires at least 3𝑔 + 1 sensors to
tolerate 𝑔 failures.

5.2 Our Circuit Design in Detail
Instead of using (+1, 𝑢) and (−1, 𝑣) to represent an interval [𝑢, 𝑣] (as
in the code version of Marzullo’s algorithm), in our circuit design,

each sensor is just required to provide an interval in the form of

two values 𝑢, 𝑣 to the server, without specifying which one is larger.

This is because sensors may be malicious, and it will result in a

wrong result if the left end provided by amalicious sensor is actually

larger than the right end. Therefore, at the first level of our modified

sorting network, we need to add an array of compare-and-swap

modules to sort the two values from the same sensor. Note that the

above problem is not what the conventional garbled circuit design

would care about.

Before we proceed, let’s recall sorting networks [9, 27, 59], which

are circuits that sort a sequence into a monotonically increasing

sequence. The core building block of a sorting network is a compare-

exchange circuit, which takes as input a pair of values (𝑥,𝑦) and re-
turns a sorted pair (𝑥 ′, 𝑦′) so that 𝑥 ′ =min(𝑥,𝑦) and𝑦′ =max (𝑥,𝑦).
To realize sorting networks, prior constructions [39, 46, 47] used

the idea of compare then conditional-swap: the circuit keeps two
inputs unchanged if and only if the comparator returns 1, i.e., 𝑥 is

less than 𝑦. For our design, the first layer of our modified sorting

network guarantees that the two values from the same sensor will

form an interval with its right end always greater or equal to its left

end. Then we taint these two values with +1 and −1 respectively
to indicate the order of two endpoints. In our implementation, we

use one bit to represent ±1.
From the second layer of our modified sorting networks, it is

essentially sorting networks built from compare-exchange com-

ponents with a modified comparator, as illustrated in Fig. 8. In-

stead of using the less-than comparator, we follow Marzullo’s algo-

rithm [56] to realize a comparator, <𝑚 , as defined below: Given two

inputs 𝑥 and 𝑦, each of which is of the form 𝑠 | |𝑢 where 𝑠 ∈ {1, 0}

[x < y]

[x = y]
1-bit

msb (x)1

lsb (x)l lsb (y)l

1-bit

1-bit 1-bit

Figure 8: The comparator component.

and |𝑢 | = 𝑙 , define 𝑥 <𝑚 𝑦 = (lsb𝑙 (𝑥) < lsb𝑙 (𝑦)) ∨ (lsb𝑙 (𝑥) =
lsb𝑙 (𝑦) ∧msb1 (𝑥) > msb1 (𝑦)), where 𝑙𝑠𝑏𝑙 and𝑚𝑠𝑏𝑙 represent the

least significant 𝑙 bits and the most significant 𝑙 bits, respectively.

In other words, 𝑥 <𝑚 𝑦 if and only if the value part of 𝑥 is less than

that of 𝑦, or the value parts happen to be equal and the sign part of

𝑥 is greater than that of 𝑦. Note that the sign part of a left end is

encoded by 1.

We follow [46] to realize the conventional less-than circuit and

equal-to circuit (which takes advantage of the free-xor technique).

Observing that when lsb𝑙 (𝑥) = lsb𝑙 (𝑦) andmsb1 (𝑥) = 1, it does not

matter whether we swap or not the two inputs. So we can further

simplify the circuit, leading to a circuit exactly as in Fig. 8.

While an asymptotically optimal sorting network exists [3], PG

uses Batcher sorting network [9, 59] which has much better perfor-

mance for practical parameters, as studied in [54].

Now, we describe how to find the position of the minimum value

of the resulting interval by our index select module composed of

a prefix sum circuit and an array of equality checkers, as shown

in Fig. 9. All the sorted one-bit inputs, representing +1 or −1, first
go through a prefix sum circuit to compute their prefix sums. Prefix

sum circuit allows one to compute on input (𝑧1, 𝑧2, · · · , 𝑧𝑛) and
produce as output (𝑚1,𝑚2, · · · ,𝑚𝑛), where𝑚 𝑗 = 𝑧1 + 𝑧2 + · · · + 𝑧 𝑗
for 1 ≤ 𝑗 ≤ 𝑛. Indeed, this circuit fits perfectly for our purpose

as the intersecting interval counter in M-𝑔-U. A straightforward

instantiation of 𝑛-prefix sum circuit requires 𝑛 additions.
4

The next layer is to convert every prefix sum which is equal to

the value 𝑛 −𝑔 to 1 and convert the rest to 0 otherwise. This can be

trivially done by a simple equal-to circuit [46]. Observing that not

every position in the array of prefix sum can possibly equal𝑛−𝑔, we
can apply another optimization that only implements comparators

4
In a system that can evaluate garbled circuits in parallel [62], we recommend imple-

menting a parallel prefix sum circuit as mentioned in (cf. [71, Chapter 2.6]), which has

a depth of𝑂 (log𝑛) and𝑂 (𝑛) additions.
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Prefix Sum

Max Value Min Index

1-bit 1-bit 1-bit 1-bit
......

......

l-bit

=? =? =? =?

log n-bit

1-bit 1-bit 1-bit 1-bit
l-bit l-bit

Figure 9: The index select module and themax valuemin in-
dexmodule. The index selectmodule is composed by a prefix
sum circuit and an array of equality checkers.
for the positions where 𝑛 − 𝑔 can be the possible output. To be

precise, for an array with 2𝑛 values provided by 𝑛 sensors, only

𝑔 + 1 positions can possibly have a prefix sum equal to 𝑛 − 𝑔. This
observation reduces the number of comparators and thewidth of the

max valuemin index by roughly 83.3% of that with a straightforward

implementation because it only compares at 𝑔 + 1 positions instead
of 2𝑛 = 6𝑔 + 2 positions in a straightforward implementation. The

size reduction for the other algorithms, however, is slightly smaller,

with a 75% reduction, since 𝑛 = 2𝑔 + 1 for the other algorithms.

Then these 𝑔+1 values go through a max value min index circuit

which computes the value with the minimum index and the maxi-

mum value (which is 1). Effectively, it outputs the leftmost point,

which covers 𝑛 −𝑔 sensor input intervals. We can easily modify the

circuit from [46] to obtain this circuit.

To compute the maximum value, we find that one can reuse

the result of modified sorting networks and index select modules.

Specifically, we just need to left shift one position of the sorted input

value array (shifting is free in circuits), and apply it to a max value

max index circuit. Then, we will generate the right end of the result

interval. Since the whole circuit complexity is dominated by the

sorting network, this optimization avoids another sorting network

and index select circuit for computing the right end of the resulting

interval, thereby halving the overall computation overhead.

PG for M-𝑔-U. With the above circuit, we can have the following

system tolerating Byzantine sensors. Specifically, if a server receives

no replies or ill-formed sensor inputs, the server will ask the client

to send corresponding garbled inputs for the faulty or missing

sensors explicitly via communication or implicitly via filter gates.

We have the following theorem establishing the security of the

above scheme in the synchronous environment.

Theorem 5.1. The PG (P2 and P3) protocol achieves Privacy, Cor-
rectness, and Liveness for M-𝑔-U in 𝑇𝑀𝐴 and 𝑇𝑀𝐵 , respectively.

6 IMPLEMENTATION AND RESULTS
We evaluate PG

5
in two different environments: one is on the AWS

cloud with up to 261 sensor nodes, which shows the scalability

of PG, and the other is a local cyber-physical system setting with

5
Code and evaluation results available:

https://doi.org/10.6084/m9.figshare.25669026.v2

up to 19 sensor nodes, which shows the performance of PG in

resource-constrained devices.

6.1 GC Compiler
While multiple generic GC compilers or tools that can translate

a program to a circuit exist [15, 40, 41, 48, 54, 75, 80], there is

significant room for improvement for some specific programs. Our

circuit optimization requires non-trivial efforts and analysis for the

correctness of the design.

Among all the existing GC compilers/frameworks, TinyGar-

ble [75] is generally deemed to be (one of) the most efficient one,

especially for large programs, as it incorporates state-of-the-art

optimizations such as free-XOR [47], row reduction [65], fixed-key

AES garbling [15], and half gates [81], and more importantly, uses

logic synthesis to reduce the size of circuits.

We make a general garbled circuit compiler specifically for our

clients-server-sensors setting by modifying and extending TinyGar-

ble [75], a two-party garbled circuit compiler. Specifically, we first

decompose TinyGarble into three parties: clients (garbled circuit

generators), the server (garbled circuit evaluator), and sensors (gar-

bled input providers). We then modify the system to be coin-based:

clients and sensors now take as input shared random coins. Last,

we modify the garbled circuit evaluation function so that garbled

output is hidden from the server and only decodable by the client,

which is essential for achieving privacy.

As TinyGarble does not support efficient sorting networks or

other primitives we need, we directly build optimized circuits de-

scribed in Sec. 5 in Verilog. The resulting circuits go through another

logic synthesis process by Synopsys Design Compiler to obtain

the netlists of the implemented algorithms. Lastly, we applied the

V2SCD tool in TinyGarble to convert netlists into simple circuit

description files, which can be taken as the inputs of the Tiny-

Garble framework. We choose not to build PG based on the latest

TinyGarble2 [41] just because the new features in TinyGarble2

are not needed in our implementation, i.e., we directly implement

algorithmic circuits in Verilog, instead of C++.

6.2 Cloud Implementation and Deployment
To show the practicality of our system, we deploy and evaluate PG

(P1, P2, P3) on AWS EC2 instances (t2.micro, 8 GiB, 1vCPU, 1 GiB

memory). We create an Amazon Virtual Private Cloud (Amazon

VPC) with two subnets (i.e., a public subnet and a private subnet).

Our PG is deployed in the isolated private subnet where the EC2

instances can only communicate with AWS EC2 instances and

cannot access the Internet or receive external access. In this way,

we get rid of unnecessary interference from the Internet. Each

party (i.e., a server, a client, or a sensor) is simulated by an EC2

instance on the private subnet. Notice that each sensor is simulated

independently by one EC2 instance.

All sensor values have a fixed length of eight bits. To garble

an interval, each sensor is required to process a 16-bit input, re-

sulting in a 256-byte garbled input. The computation carried out

on each sensor involves only a small number of pseudo-random
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Figure 10: Latency (in ms) of three versions of PG for 𝑔 = 1
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Figure 11: Latency (in ms) of three versions of PG for 𝑔 = 1

to 70 when using M-g-U.

function evaluations and XOR operations. This makes the compu-

tation a highly efficient process that can be executed on resource-

constrained sensors with minimal memory and processing power,

as we will demonstrate in Sec.6.3.

We evaluate PG with five different algorithms: M-𝑔 (Fig. 10), M-𝑔-

m, M-𝑔-U (Fig. 11), M-op (Fig. 12), SS under different network sizes

(the number of sensors) with up to 261 sensors. More specifically,

we have tested M-𝑔 and SS with up to 261 (𝑔 = 130) sensors, Mop

with up to 241 (𝑔 = 120) sensors, M-𝑔-m with up to 221 (𝑔 = 110)

sensors, and M-𝑔-U with up to 211 (𝑔 = 70) sensors. A more detailed

comparison between these algorithms can be found in Table 1.

Latency. The latency for M-𝑔, M-𝑔-U, M-op with different 𝑔 values

are presented in Figs. 10 to 12. To better understand the perfor-

mance of PG, we measure the time consumed by computation and

communication separately. The computation time only contains the

circuit evaluation time on the server’s side and the circuit garbling

time on the client’s side. We omit the input garbling time on the

sensors since it is negligible compared with the computation on

the server or the client. We can see in Figs. 10 to 12 that both the

computation time and the communication time increase gradually

with the number of sensors as expected, and the computation time

is always about 40% of the whole latency. For example, when run-

ning P3, the computation time and the communication time of M-𝑔

algorithm grow from 0.163ms to 87ms and from 0.404ms to 129ms,

respectively, when the number of sensors 𝑛 increases from 𝑛 = 3
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Figure 12: Latency (in ms) of three versions of PG for 𝑔 = 1

to 120 when using M-op.
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to 𝑛 = 261. This shows the majority of the latency is consumed by

communication, so if we can reduce the communication latency,

and we would be able to boost the performance of PG.

Bandwidth. We use nethogs to measure the bandwidth of each

sensor. In PG, the only communication between the sensor and the

server happenswhen the sensor submits its labels. The size of sensor

input labels is independent of the version and, thus, should always

be the same. When the length of the sensor input size 𝑙 = 16 bits,

the theoretical communication between a sensor and the server is

2048 bits. In our experiments, this communication is measured to be
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4880 bits, where the extra bits come from packet headers, encoding,

encryption IV, etc. The total communication from 𝑛 sensors to the

server is thus 4880𝑛 bits.

Scalability. We evaluate the scalability of PG by using up to 261

sensors. The largest latency we obtained in our evaluation is the

latency of M-op in P3 when 𝑔 = 120, which is only 222ms, as

shown in Fig. 12. This demonstrates that all three versions of PG

are efficient for all algorithms and network sizes we tested.

From Fig. 13, we see that for all the evaluated versions and

algorithms, the computation time and communication time in-

crease gradually as the number of sensors increases. Overall, the

results match the asymptotic analysis of the circuit complexity:

𝑂 (𝑙𝑛log2 (𝑛)), where 𝑙 is the input length from each sensor, and 𝑛

is the number of sensors. Both the computation time and communi-

cation time are dominated by the size of the circuit, as all the gates

in a garbled circuit need to be garbled, evaluated, and transmitted

one by one.

The scalability of PG means the ability to support a large number

of sensors (inputs) or a large input size. This scalability metric was

also used in [40, 63, 77]. However, there are several other interpre-

tations of scalability in the field of secure multiparty computing

(MPC). For example, [19] aims to compile and optimize large pro-

grams in a scalable way; [12] aims to reduce communication costs

when the number of participants increases.

Performance in failure scenarios. Since our system can achieve

liveness, we also evaluate PG when 𝑔 sensors have crashed and

are not responsive. Note that we only report the performance of

PG when 𝑔 sensors crash, but not when 𝑔 sensors are sending

ill-formed garbled inputs or a mix of these two scenarios. This

is because the performance of PG (P2 or P3) is almost identical,

without counting the time-out timer, in all failure scenarios when

𝑔 sensors are Byzantine, and P2 and P3 treat missing sensor inputs

and ill-formed sensor inputs in the exactly same way. The latency of

PG in failure, without counting the time-out timer, and failure-free

scenarios is compared in Fig. 14. Interestingly, we notice that almost

in all of the cases, PG runs faster in the failure scenario than in the

failure-free scenario. This is because the server does not need to

communicate with the 𝑔 crashed sensors anymore.

Benchmarks. In addition to our system, we implement two bench-

marks 𝐵𝑀1 and 𝐵𝑀2 for comparison. 𝐵𝑀1 directly executes the M-𝑔

algorithm in plaintext, so it achieves the liveness and correctness

(fault-tolerance) of our protocol but not privacy. 𝐵𝑀2 executes a

garbled circuit that implements an algorithm for finding the median

of the inputs provided by 𝑛 sensors, so it achieves privacy but not

liveness and correctness. The latency of these two benchmarks with

different numbers of sensors are presented in Fig. 13 and Fig. 14.

We can clearly see that 𝐵𝑀1 runs very fast as no cryptographic

operation is involved. 𝐵𝑀2 exhibits comparable performance to the

SS algorithm because the circuit sizes of these two algorithms are

roughly the same.

6.3 Case study: CPS Implementation and
Deployment

In addition to the large-scale cloud evaluation, where we can scale

up to 261 sensors, we also deploy PG locally in a cyber-physical

system setting and conduct a small-scale case study to show the

practicality of deploying PG in a real sensor network. We build a

sensor fusion system using up to 19 Raspberry Pi Zero W (1GHz,

single core CPU and 512MB RAM) as sensors. Raspberry Pi Zero

W is the cheapest Raspberry Pi device supporting WiFi connection

and is smaller than a credit card. Notice that we selected Rasp-

berry Pi Zero W just because of its built-in WiFi module, not its

computational power. The server runs on an Intel Core i7-4790

processor, and the client runs on another computer with an Intel

Core i7-4702HQ processor. Sensors and the server are connected

using one wireless router. To support concurrent transmissions of

sensor inputs, we implement multi-threading for data collection on

the server side. The client and the server are physically connected

via an Ethernet cable. The length of all sensor values is still the

same as the cloud evaluation, i.e., 𝑙 = 16.

The system deployed as a case study is just P1 because there is

not much difference in the performance of P1, P2, and P3, according

to the large-scale cloud-based evaluation above. We evaluate PG

using up to 19 sensors, with the same five algorithms: M-𝑔, M-𝑔-

m, M-𝑔-U, M-op, SS. We measure the latency in both failure and

failure-free scenarios. For failure-free scenarios, each sensor will

provide a well-formed garbled input, even if the underlying value

is faulty. In contrast, our failure scenario captures crash failures

where some sensors do not provide the server with garbled inputs

in time.

Latency. The latency evaluation for the five algorithms in the

failure-free scenario is depicted in Fig. 15 for 𝑔 = 1 to 9. We find

that in the CPS scenario, the communication between the server and

sensors is two orders of magnitude larger than the cryptographic

operations and the rest of the communication. Combining the pre-

vious large-scale evaluation results, we can see that when 𝑔 is small,

the communication is a more dominant factor in the system, and

when 𝑔 is large, the time consumed by garbling, transmitting, and

evaluating the circuit will be more noticeable.

When comparing the performance of different algorithms, we

notice that for a given 𝑔, M-𝑔, M-𝑔-m, M-op, and SS have roughly

the same latency. This is because the latency is dominated by the

communication time between the server and sensors, and the total

size of garbled inputs transmitted for these algorithms is exactly

the same. If we compare the latency between M-𝑔-U and the other

algorithms for the case where the total number of sensors are equal,

e.g., 𝑔 = 6 for M-𝑔-U and 𝑔 = 9 for M-𝑔-m, the latency difference

is almost not noticeable. This confirms that in the CPS setting, the

latency is dominated by the communication, not the cryptographic

operations.

Performance in failure scenarios. In failure scenarios, we test

the case where 𝑔 out of 𝑛 sensors fail at the same time. The latency

of PG for 𝑔 = 1 to 9 in failure scenarios are also shown in Fig. 15.

Like the cloud evaluation, we do not count the time-out timer in

the reported latency. In the CPS setting, we also notice that PG

is faster in the failure scenario than in the failure-free scenario.

Although what we deploy is P1, which needs one extra round of

communication between the client and the server if any sensor

crashes, the server still saves communication time with 𝑔 sensors,

and apparently, communicating with 𝑔 sensors over WiFi would
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Figure 15: Latency of P1 in failure and failure-free scenarios
in the CPS deployment.
take longer than the one additional round of communication with

the client over an Ethernet cable.

Overall, PG has shown promising performance in practical sce-

narios and may be deployed in some real-time applications, e.g.,

water distribution system monitoring pressure and water leaks [4].

7 RELATEDWORK
Comparison with privacy-preserving sensor fusion and ag-
gregation.Most privacy-preserving data aggregation systems only

protect individual sensor inputs but fail to handle malicious sensors

that attempt to sway the aggregated value [22, 23, 35, 42, 43, 49].

Only a handful provide a partial solution by leveraging a cryp-

tographic proof that sensor input has a specific property (say, is

within a predetermined range) [28, 31, 73]. PG takes a fundamen-

tally different approach by tolerating malicious sensor inputs with-

out asking for input validity proofs. Other works (e.g., [23, 42])

provide privacy-preserving aggregation with tolerance to benign

(crash) sensor failures, i.e., where some sensors fail to provide their

inputs. Instead, our system deals with Byzantine failures, where

corrupted sensors can provide the server with arbitrary values.

A number of privacy systems [34, 42, 60, 73] additionally provide

differential privacy. These systems still do not formally defend

against pollution attacks.

SIA [67] explored a setting where individual sensor inputs do

not need to be privacy-protected but the central server needs to

verifiably provide clients with correct values. This helps achieve

integrity. In contrast, PG achieves both privacy and integrity.

Pollution attacks and Sybil attacks. Pollution attacks have also

been studied in other areas such as network coding [2] and per-

sonalized services [78]. We work with a fundamentally different

setting, focusing on data and sensor pollution attacks. Our pollution

attack scenarios are also different from those of Sybil attacks [30],

where an adversary may forge multiple or even an unlimited num-

ber of identities to damage distributed systems. While Sybil attacks

and pollution attacks may share somewhat the same goal, Sybil

defenses [5] offer no help for defending against data pollution.

Liveness in multi-party computation. Achieving liveness effi-
ciently has been a difficult problem for garbled circuit-based multi-

party computation. For instance, schemes in [44, 45] do not achieve

liveness. Some prior work on GC [13, 26] achieves liveness by intro-

ducing multiple servers and using secret-sharing-based techniques

to help liveness. This is not only less efficient in general but also

requires significant communication and interaction, which makes

it ill-suited in bandwidth and energy-restricted environments.

Comparison with differentially-private systems. Apple [6]

and Google [36] use differential privacy [32, 33] mechanisms to

compute aggregate statistics. In these systems, each sensor adds

random noise, and the noisy data will be aggregated to get an esti-

mation of the aggregated values. These systems allow us to achieve

robustness but have to trade between accuracy and privacy. Increas-

ing the noise level reduces information leakage for individuals, but

also reduces the estimated accuracy.

Essentially, the goals between differentially-private systems and

our system are orthogonal. In a differentially-private system, the

server will know a noisy version of the value measured by each

sensor, and thus learn much more than that in our system. However,

the client learns slightly less than our system because of the noise

added.

Fault-tolerance and garbled circuits. Nielsen and Orlandi [66]

built LEGO for two-party computation in the malicious case. In

LEGO, the garbler first sends many gates, and the receiver tests if

they are constructed correctly by opening some of them. Then, the

parties run interactively to solder the gates (as Lego blocks) into

a circuit. They use a fault-tolerant circuit to ensure a valid output

from a majority of good ones. In contrast, our system exploits the

fault-tolerant features of the underlying algorithms to achieve a

garbled circuit-based, privacy-preserving system that can tolerate

pollution attacks, returning correct results even in the presence of

Byzantine failures and malicious attacks.

Non-colluding multi-party computation. The assumption that

a number of parties do not collude is not only used to build theoret-

ical multi-party computation [10, 18, 44, 61], but used in practical

multi-party computation systems [20, 21, 28, 31, 45, 64]. Among

these systems,many use garbled circuits as a building block (e.g., [20,

21, 44, 45, 64]). Our notion of non-collusion follows this line of re-

search but has an architecture that is different from all these existing

systems. In our setting, we assume that clients only have the means

to contact the server, and we assume the server and sensors do not

collude. Note that non-collusion of parties does not imply that the

parties are trusted. Rather, it simply means these parties do not

work together (i.e., share internal states). A few systems [20, 21, 64]

relying on the non-colluding assumption work in the three-party

computation only, using modern mobile devices. They attempt to

resolve different problems from ours.

Efficient GC implementations. Starting from Fairplay [55], a

large number of GC tools (compilers or implementations) have been

proposed [15, 29, 40, 48, 54, 75, 80]. Our system is based on (but

makes significant modifications to) TinyGarble [75], an approach

that in addition to using state-of-the-art optimizations such as free-

XOR [47], row reduction [65], fixed-key AES garbling [15], and half

gates [81], leverages logic synthesis to reduce the size of circuits.

Our PG achieves false-key awareness in the garbling scheme of

P2. To the best of our knowledge, all existing GC frameworks do

not have this feature implemented.

Thedifference amongP0, FKN,KMR, andNPS.Our basic scheme,

P0, shares some similarities with both Feige, Kilian, and Naor
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(FKN) [37] and Kamara, Mohassel, and Raykova (KMR) [44]. The

difference is that FKN and KMR only involve a server and parties

(in our case, sensors) and the server needs to send back the garbled

output to the parties, while in our model, the server needs to return

the garbled output to the client and optionally to the sensors. In

FKN and KMR, the server and one party do heavy work that is lin-

ear in the size of the circuit, while in our case, each sensor’s role is

symmetric, and each sensor only does work that is linear in the size

of its input. The security of KMR requires only obliviousness and

authenticity of the garbling scheme, while PG additionally requires

privacy of the garbling scheme.

P0 is also similar to Naor, Pinkas, and Sumner (NPS) [65], one

designed specifically for auctions. In NPS, there is an auction issuer

who generates the circuit, a number of bidders who send their

garbled values, and an auctioneer who computes the garbled values

and returns the final result to all bidders. Instead of relying on

an external, trusted circuit issuer, our circuit generator is just one

participating client (who would also expect a reply from the server).

Moreover, NPS uses proxy oblivious transfer to provide the parties

with the garbled input, but we choose to use an agreed common coin,

just as FKN and KMR, for the purpose of efficiency and scalability.

The servers in both FKN and NPS can learn the output, while

KMR and P0 do not.

8 CONCLUSION
Wedesign and implement PG—aByzantine fault-tolerant and privacy-

preserving multi-sensor fusion system by developing techniques

from dependable distributed systems and modern cryptography.

Besides protecting privacy, PG can defend against pollution attacks

and provide guaranteed output delivery. Via a deployment on a

cloud-based system and a cyber-physical system, we show that PG

is efficient in both failure-free and failure scenarios.
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