
Nimble: Fast and Safe Migration of Network Functions
Sheng Liu

Microsoft Corporation
liusheng@microsoft.com

Michael K. Reiter
Duke University

michael.reiter@duke.edu

Theophilus A. Benson
Brown University
tab@cs.brown.edu

Abstract—Network function (NF) migration alongside (and
possibly because of) routing policy updates is a delicate task, making
it difficult to ensure that all traffic is processed by its required
network functions, in order. Indeed, all previous solutions to this
problem adapt routing policy only after NFs have been migrated,
in a serial fashion. This paper proposes a design called Nimble
for interleaving these tasks to complete both more efficiently while
ensuring complete processing of traffic by the required NFs, provided
that the route-update protocol enforces a specific property that we
define. We demonstrate the benefits of the Nimble design using an
implementation in Open vSwitch and the Ryu controller, building
on both known routing update protocols and a new protocol of our
design that implements specifically the needed property.

I. INTRODUCTION

Stateful network functions (NFs) are a staple of modern networks.
For example, network intrusion detection/prevention systems
(NIDS/NIPS) are central to supporting secure and efficient operation
of networks. For such NFs, the consequences of missing packets
can be significant, and methods to sneak attacks past NIDS/NIPS
to destination targets have a long history (e.g., [1], [2], [3]).

Network operators reconfigure network routing-policies daily,
e.g., up to 20 times on average per day in a Tier-1 ISP [4]. The risk
of traffic sidestepping NFs is particularly acute during routing-policy
updates. Even if NFs remain in place during the update, packets
that transition from a point upstream of the NF on the old routing
path to a point downstream from the NF on the new routing path
can result in an NF missing these packets. Routing-policy update
algorithms that ensure consistent update (e.g., [5], [6], [7]) can
guarantee that all traffic gets processed (again, when the NF does
not move), for example by ensuring that each packet traverses either
its old path in its entirety or its new path in its entirety.

If the NF migrates alongside the routing-policy update (e.g.,
the need to change one is caused by the need to change the
other), though, then consistent update cannot, by itself, ensure
complete processing of packets. Rather, ensuring that all packets get
processed by their intended NFs requires additional coordination
to both migrate NFs to their new locations and adjust routing
policies in a way that ensures that all packets get processed. To
our knowledge, existing works proposed to do so (e.g., [8], [9],
[10], [11], [12]) coordinate these actions by performing network
forwarding-state update strictly after NF migration is finished.
While these techniques are capable of being used with arbitrary
route-update protocols, their generality delays flow redistribution
longer than necessary, possibly delaying rectification of the issue
that required the routing-policy update in the first place.

In this paper we provide a method and its implementation, called
Nimble, for interleaving routing-policy update and NF migration

in a software-defined network (SDN), in a way that significantly
reduces the latency to achieve both and without permitting packets
to evade processing by NFs. Our technique works with any
route-update protocol that implements a property we call relaxed
waypoint correctness, which includes consistent-update protocols
like CU [7] and SCC [5]. We confirm the sufficiency of relaxed
waypoint correctness using model checking. Moreover, we design
a route-update protocol “RWC” that enforces only relaxed waypoint
correctness to show that Nimble can indeed exploit the gap between
this property and traditional consistent-update semantics to more
efficiently update the network in some cases.

As we will show, permitting both routing updates and NF migra-
tions to proceed concurrently is a delicate endeavor. To synchronize
these tasks as little as possible, Nimble leverages targeted buffering
and packet marking in the network to coordinate packet processing
with NF migration. The benefits to this approach are myriad,
however, including lower latency for completion of both tasks and,
depending on the routing-update protocol with which NF migration
is being deployed and the circumstances requiring their update,
reduced packet loss and/or reduced rule overhead in switches.

We have implemented Nimble on Open vSwitch [13] and the Ryu
controller [14]. We evaluate implementations of Nimble building
on CU [7], SCC [5], and the RWC protocol of our own design. We
empirically compare Nimble to OpenNF [9] and SwingState [10],
and demonstrate the benefits of our design in both FatTree and ISP
topologies. To summarize, our contributions are as follows.
• We describe an algorithm for integrating NF migration with

routing-policy updates in SDN networks to accomplish both
with greater speed than performing them serially, as previous
solutions do (Sec. IV).

• We define a condition of a routing-update protocol called relaxed
waypoint correctness that, together with our NF migration
algorithm, ensures that packets traverse their NF waypoints
correctly. We confirm the sufficiency of this condition using
model checking and provide an example route-update algorithm
that implements (only) relaxed waypoint correctness without
traditional consistent-update semantics (Sec. V).

• We demonstrate the benefits of our NF migration algorithm in
empirical comparisons to alternatives (Sec. VII).

II. RELATED WORK

NF migration in SDNs requires careful coordination between
efficient routing-policy updates and NF migration. To ensure that
all packets are processed correctly during NF migration, existing
works [8], [9], [10], [11], [12] update network forwarding state
strictly after NF migration is done. While some approaches [9], [11]



use a centralized controller to reroute affected traffic from the old to
new NF position, other works [8], [10], [12] tunnel traffic directly
to the new NF position to reduce latency. An example of the former
class is OpenNF [9], which uses a centralized SDN controller to
coordinate NF migration with packet redistribution. The affected
incoming packets arriving at old NF positions are buffered at the
controller during NF migration to avoid packet loss. An example of
the latter class is SwingState [10], which creates a tunnel between
the old and new position of each NF. NF states are prepended to
packets arriving at the old location and are forwarded to the new
location. All of these works change network routing policy after NF
migration is finished, which slows down traffic redistribution. Other
works [15], [16] that deal with dynamic scaling of NFs either do
not address the consistency issues that arise during routing-policy
updates, or do not ensure NF chain-wide correctness (e.g., [17]).

Works offering consistent routing-policy update using SDN
(e.g., [5], [6], [7], [18], [19], [20], [21]) do not consider NF
migration. They assume the location of each NF is fixed. Most
works provide either strong consistency that ensures that packets
traverse either the old path or the new path [5], [7], [21] or guarantee
specific properties (e.g., loop freedom) via weaker consistency [6],
[18], [19], [20]. In this paper, we use SCC and CU as examples to
update network forwarding state. SCC implements a property called
suffix causal consistency [5] to ensure that each packet traverses
either its old or new path. CU uses two-phase commit to perform
rule updates atomically across the network.

Numerous works focus on virtual machine (VM) migration [22],
[23], [24], [25]. Some works [22], [23] clone VM instances in
their entirety, but they do not coordinate VM migration with the
change of routing policies. Other works [24], [25] propose to
migrate VMs along with the underlying virtual network, though
they suffer from service disruption. Compared with these works,
our algorithm achieves seamless reconfiguration by carefully
coordinating routing-policy update and NF migration.

In our paper, NFs move along with their states. Some works [26],
[27], [28] maintain an external data store such that states do not
need to migrate during NF migration. StatelessNF [26] keeps all
NF states in a standalone centralized store, while other works [27],
[28] maintain states both locally and remotely for performance.

III. FRAMEWORK AND GOALS

A. SDN Model

We adopt an SDN model, in which a controller deploys rules
to distributed switches to implement routing policy.

a) Flows: As is standard, we define a flow to consist of
packets with the same addressing information, i.e., IP 5-tuple. We
denote the space of all possible such 5-tuples, and so the space
of all flows, by F, and the space of flows between switches or
between a switch and the controller by F∗⊂F. When convenient,
we treat a flow f as a set of all possible packets with addressing
information defined by f and use pkt ∈ f to denote a packet pkt
with the addressing information of f.

b) Controller: The network has a logically centralized
controller that is responsible for configuring the switches to update
the route of each flow. The controller executes an SDN application
consisting of a route generator and an update scheduler (see Fig. 1).

Fig. 1: Typical components of a network controller
The route generator decides whether to change the routes of flows
by monitoring the network conditions and topology changes. The
output of the route generator is the routing path of each flow f.

The SDN update scheduler produces rules (defined below)
to be deployed on each switch, and schedules rule deployments
to switches to preserve certain network routing properties when
transitioning from the old routing policies to the new. Specifically,
the update scheduler outputs a schedule of rule deployment in `
steps, denoted as U1,U2,...,U`. Each Ur includes a set of flowadd
and flowdel commands to add or remove rules on switches; we
discuss these commands and the structure of rules below. The
commands in Ur are issued simultaneously to switches in the
network, and updates of Ur are finished before Ur+1 begins.

We refer to an invocation of the SDN application to reconfigure
routing policy as a new epoch. We assume that each routing policy
change completes—i.e., its rules are deployed throughout the
network—before the next epoch begins.

c) Switches: Each switch maintains a flow table that stores
rules (see below) for flow management. We denote the set of rules
in the flow table of switch S as S.ruleSet. The controller modifies
this set by invoking the following interface, which is similar to that
of OpenFlow [29]:
• S.flowadd(Rj) inserts rule Rj into S.ruleSet.
• S.flowdel(Rj) removes rule Rj from S.ruleSet.
We assume that switches support bundling, a feature provided
with OpenFlow version 1.4., i.e., that a set of invocations from
the controller will collectively be performed as a single atomic
transaction with respect to packet processing by the switch.

d) Rules: The instructions for how a switch should treat
packets are specified by rules. When a packet arrives at a switch,
it can be matched to at most one rule installed on the switch, which
determines what happens to the packet. Each rule R includes (at
least) the following fields, all immutable:
• R.switch specifies the unique switch S where R can be installed.
• R.priority specifies the priority of this rule, with higher priorities

indicated by larger numbers, and with a special priority∞ to rep-
resent the maximum priority, which is used only by our algorithm;

• R.cover ⊆ F specifies the flows to which this rule can be
matched, i.e., a packet pkt can be matched to R only if
f∈R.cover for the flow f containing pkt .

• R.sendTo specifies the switch identifier (in practice, an outbound
port) to which packets matched to this rule should be forwarded.

B. Network Functions

Our goal is to extend the SDN model described above to support
NFs. Recall that the SDN route generator in the controller produces
new routing policies, as shown in Fig. 1. The output is also provided
to an NF application to determine for each flow f the switch at which
f will be processed by each of its waypoint NFs. This information is
further provided to the update scheduler to reconfigure the network.



A network function NF i is an object with an immutable field
NF i.flowSpec ⊆ F and a method NF i.processPkt that takes
as input a packet pkt in some f ∈ NF i.flowSpec and outputs a
(possibly empty) set of packets P , also in f. We assume that NF i

is linearizable [30] with respect to a sequential specification that
specifies its correct behavior when NF i.processPkt is invoked
sequentially. Let NF1, ..., NFn denote all NFs.

C. Goals

Our goal is to update routing policies efficiently while ensuring
packets are processed by NFs correctly. Most prior works on SDN
routing-policy updates that achieve waypoint enforcement (e.g., [6],
[7], [31]) do so assuming that NFs remain at fixed locations of the
network during the routing-policy update. Instead, here we allow NF
locations to change from one epoch to the next, and our contribution
lies in ensuring that waypoint enforcement continues to hold.

To understand the challenges in permitting migration alongside
route updates, consider the example in Fig. 2 where a network
functionNF i migrates from the old position Sold

i to the new position
Snew
i . The flow f, which should be processed by NF i, also needs its

path to be updated from S1→Sold
i →S2 to S1→Snew

i →S2. The
path change can be accomplished by updating the rule matched to
f at S1. Migrating NF i and updating the path of f without coordina-
tion can be harmful, however. For example, if the controller sends
commands to migrateNF i and updates S1 simultaneously, S1 might
be updated before NF i migrates to Snew

i . Then, packets of f might
start to arrive at Snew

i before NF i can process packets there, which
may cause problems since packets can bypass NF i. Also, if S1 has
not been updated by the time NF i leaves Sold

i , packets may arrive at
Sold
i withNF i no longer there; depending on how Sold

i handles these
packets, this could result in packet loss or packets bypassing NF i.

Several works (e.g., [8], [9], [10]) have explored the possibility of
migrating network functions in concert with routing-policy updates.
A strength of these approaches is that they make no assumptions
regarding properties of the underlying route-update algorithm,
except that it eventually deploys the rules to faithfully implement
routing policies. However, because these NF-migration algorithms
must tolerate any transitory behavior of the underlying route-update
algorithm, they necessarily must be conservative in how they
migrate NFs, to ensure that no packets bypass their NF waypoints
while the routing policy is updated. In fact, for this reason, all of
them permit routing-policy updates to proceed only after all NF
migrations have completed.

Our contribution here is an algorithm that leverages consistency
properties of underlying routing-update algorithms to permit NFs
to be migrated alongside rule deployment for new routing policies,
more efficiently than simply serializing routing-policy update after
NF migration. In particular, our approach demonstrates that by
leveraging an SDN routing-policy update algorithm that provides
a property that we call relaxed waypoint correctness (see Sec. V-A),
we can implement waypoint correctness (defined in the next
paragraph) when NFs are allowed to change locations much more
efficiently than known approaches to achieving both.

Waypoint correctness: Let [w] = {1,...,w}. For each flow f,
there is an injective function wpf : [nf]→ [n] where nf ≥ 0 is the

Fig. 2: Example of NF migration
number of network functions that should process packets of f sequen-
tially and wpf(k) is the k-th network function that packets in f must
traverse. We require that if wpf(k)=i, then f∈NF i.flowSpec. Our
correctness condition is that the network enforces the waypoint prop-
erty, i.e., for any f and any packet pkt in f that enters the network,
• if nf>0, then NF i.processPkt(pkt ) is invoked for i=wpf(1);
• for each k, 1 ≤ k < nf , if NF i.processPkt(pkt

′) is invoked
for i = wpf(k), outputting P , then NF i′.processPkt(pkt

′′) is
invoked for i′=wpf(k+1) and for every pkt ′′∈P ;

• no other invocations of any network function occur except by
the above two rules; and

• if NF i.processPkt(pkt
′) is invoked for i=wpf(nf), producing

output P , then every pkt ′′∈P is forwarded to its destination.
The first condition guarantees that if packets of f need to be
processed by at least one network function, they must be processed
by the first NF, wpf(1). Together with the first condition, the
second condition ensures that packets of f are processed by network
functions sequentially. The third condition prevents packets from
being processed by network functions that are not specified. We
use the last condition to guarantee the delivery of packets to the
destination. Let nmax=maxfnf , i.e., nmax is the maximum number
of waypoints that any flow can be required to traverse.

IV. MIGRATABLE NETWORK FUNCTIONS

Our framework uses an existing SDN route-update algorithm
to generate rules and schedules to update routing policy.

A. Component Changes

To support NF migration, we require that the controller, switches,
and rules be functionally enhanced in the following ways. Below
we assume that each NF is hosted at a switch; this hosting could
be implemented on the switch for a simple NF or at an attached
middlebox for a more complex one.

a) Controller: The controller executes our algorithm
that augments the SDN framework with two conceptual steps
(elaborated in Sec. IV-B).

b) Switches: We add three new switch interfaces.
• S.export(i,j) marshals NF i into a set P of packets with source

address (the IP address) of S and destination address of Sj, and
outputsP .S.export(i,j) executes only while noNF i.processPkt
invocations are underway at S, and S no longer permits
invocations of NF i.processPkt once S.export(i,j) completes.

• S.import(i,j) instructs switch S to await the arrival of packets P
from Sj, from which to reconstitute function NF i locally. This
invocation causes S to allocate two buffers, an inbound buffer
to hold packets to be processed in NF i.processPkt invocations
once NF i is reconstituted locally, and an outbound buffer to hold
packets output from NF i.processPkt invocations. Starting from
this invocation and until NF i is reconstituted locally, packets
matched to any R∈S.ruleSet for which R.sendTo=NF i (see



Fig. 3: Conceptual additions by our algorithm

below) are buffered in the inbound buffer for NF i. Packets
output from NF i.processPkt invocations are buffered in the
outbound buffer for NF i, until a S.release(i) invocation.

• S.release(i) releases the packets in the outbound buffer for NF i

to be matched against S.ruleSet, and disables buffering so that
packets inbound to or outbound from NF i are no longer buffered.

S.import, S.export, and S.release can be invoked by the controller,
just like S.flowadd and S.flowdel.

c) Waypoint counters: We add to each packet a field,
called its waypoint counter, that can hold any value in
[nmax+1] = {1, ... , nmax + 1}. Upon arrival in the network,
a packet’s ingress switch initializes the packet’s waypoint counter
to 1. In brief, this counter is incremented in the packet as it is
submitted to each of its waypoints for processing (see below). In
this way, rules can treat a packet differently depending on how
many of its waypoints it has already traversed.

d) Rules: We extend rules to include a new field R.wpCtr
that takes on a value in [nmax]∪{∗}, and stipulate that a packet
can be matched to this rule only if R.wpCtr = ∗ or the packet’s
waypoint counter equals R.wpCtr. As such, when packet pkt in
flow f arrives at switch S, pkt is matched to the highest priority
rule R∈S.ruleSet for which f∈R.cover and either R.wpCtr=∗
or the packet’s waypoint counter equals R.wpCtr; we denote this
rule as match(S,pkt ). If there is no R ∈ S.ruleSet to which pkt
can be matched, then pkt is dropped. We also extend rules to
accommodate additional functionality related to the R.sendTo field.
• R.sendTo can be a network function NF i, in which case for

any packet pkt it matches to R, S =R.switch increments the
pkt ’s waypoint counter and then submits pkt to NF i in an
NF i.processPkt(pkt ) invocation. If NF i is not hosted locally at
R.switch, then the packet must be buffered (in the inbound buffer
for NF i, see above) until it is. Any packets returned from the
NF i.processPkt(pkt ) invocation are matched again to S.ruleSet.
We do not require NF i to process packets’ waypoint counters,
but we do require that any packets NF i.processPkt(pkt ) emits
bear the same waypoint counter as pkt .

• R.sendTo can take on two more possible values, namely func-
tions encap[f] and decap. If a switch S matches packet pkt to
rule R∈S.ruleSet where R.sendTo=encap[f], then the packet
is encapsulated into a packet for flow f, which is then resubmitted
for matching against S.ruleSet at this switch S. A packet matched
to a rule R∈S.ruleSet where R.sendTo=decap is decapsulated
(i.e., the existing packet header is removed) and the packet con-
tained therein is then resubmitted for matching against S.ruleSet.

B. Algorithm

Our algorithm augments the SDN framework outlined in Sec. III
with two conceptual steps (see Fig. 3). The first instantiates routing
policy for tunnels to migrate NFs from their old locations to their

Fig. 4: Example for algorithm description

new locations and to relocate traffic that arrives at an NF’s old
location to its new location. Once these routes have been determined,
the full routing policy (including these new routes and the location of
NFs) is then submitted to the routing-policy update scheduler, which
produces the schedule for deploying rules to switches. The second
phase of our algorithm then augments this update schedule with
commands to bridge traffic on/off tunnels as needed, to invoke each
NF with packets destined for it at its new location, and to initiate
migration of NFs. A later phase of our algorithm (not shown in
Fig. 3) cleans up the bridging rules once they are no longer needed.

The first of these steps is implemented as follows, per NF i that
migrates from Sold

i to Snew
i in this epoch.

Migration routes: The controller constructs a route from
Sold
i to Snew

i to carry flows f mig
i , f tuni with source Sold

i and
destination Snew

i . f mig
i , f tuni and their associated route are

added to the routing policy that is input to the update scheduler.

f mig
i will be used to migrate NF i from Sold

i to Snew
i , and f tuni

will be used to tunnel packets from Sold
i to Snew

i that should be
processed by NF i. Because we assume that the IP addresses of
Sold
i and Snew

i are distinct from the source and destination addresses
of flows routed according to the policies output from the route
generator, the routes chosen to carry f mig

i , f tuni cannot contradict
the routes output from the route generator.

Fig. 4 shows an example for this step. Suppose a flow f, which
is processed by NF1 and NF2, needs to be rerouted from the path
S1→S2→S3→S4→S5→S6 (solid line) to the path S1→S7→
S4→ S8→ S9→ S6 (dashed line). Consequently, the controller
decides to migrate NF1 from S2 (=Sold

1 ) to S7 (=Snew
1 ) and NF2

from S3 (=Sold
2 ) to S9 (=Snew

2 ). S2→S1→S7 can be selected as
the migration route between Sold

1 and Snew
1 . S3→ S4→ S8→ S9

can be selected as the migration route between Sold
2 and Snew

2 .
Recall that the update generator now outputs a schedule for rule

deployment in ` steps U1,U2,...,U`, where each Ur includes a set
of flowadd and flowdel commands. Continuing with the example of
Fig. 4, before adding migration routes by our algorithm, the update
scheduler might formulate the following three-step schedule. In the
first step, S7, S8, and S9 install new rules; i.e., U1 should include
the flow modification commands for these three switches. In the
second step (U2), S4 is updated to send packets to S8. In the third
step (U3), S1 is modified and packets are sent through the new path.
By feeding migration routes, the first step U1 should also contain
extra commands on S2, S1 for migration of NF1, and commands
on S3, S4, S8 for migration of NF2.

Continuing our algorithm, it first sets R.wpCtr←∗ for any rule
R in any flowadd or flowdel command in any step of the given
update schedule U1,...,U`, indicating that these rules ignore packet
waypoint counters. Then, for each NF i to be hosted at a switch



Snew
i in this epoch different from the switch Sold

i where it was
hosted in the last, the controller performs the following steps.

Rules for routing toNF i: The controller constructs additional
rules as follows. First, the controller constructs a rule Renc

i

with the following fields:
• Renc

i .switch←Sold
i

• Renc
i .cover←

f

∣∣∣∣∣∣∣∣
∃pkt ,R : pkt ∈f

∧ R∈Sold
i .ruleSet

∧R=match(Sold
i ,pkt )

∧ R.sendTo=NF i


• Renc

i .wpCtr←∗
• Renc

i .priority←∞
• Renc

i .sendTo←encap[f tuni ]
In addition, the controller constructs the rule Rdec with the
following fields:
• Rdec

i .switch←Snew
i

• Rdec
i .cover←{f tuni }

• Rdec
i .wpCtr←∗

• Rdec
i .priority←∞

• Rdec
i .sendTo←decap

Finally, for each k ∈ [nmax], the controller constructs a rule
Rinv

i,k with the following fields:
• Rinv

i,k.switch←Snew
i

• Rinv
i,k.cover←{f |wpf(k)=i}

• Rinv
i,k.wpCtr←k

• Rinv
i,k.priority←∞

• Rinv
i,k.sendTo←NF i

In the example of Fig. 4, S2 and S3 should install rule Renc
1 and

Renc
2 , respectively, to encapsulate packets of f onto f tuni . In this way,

packets arriving at S2 or S3 can be relocated to new positions S7 and
S9, respectively, during NF migration. Packets relocated through
these tunnels to the new NF locations should be decapsulated back
to the original flow f such that they can traverse the remainder of the
new path after being processed by the appropriate NF. Therefore,
S7 and S9 need rules Rdec

1 and Rdec
2 , respectively.

Rinv
i,k has two functions. First, it sends packets that need to be

processed (i.e., with waypoint counter k where wpf(k) = i) to
NF i. Note that packets of f output from NF i will have a waypoint
counter of k + 1 and thus will not be matched to Rinv

i,k again.
Second, Rinv

i,k prevents packets from being processed twice by NF i.
Continuing with the example of Fig. 4, since at the beginning of
U3, S4 has been updated (in U2) but S1 has not yet been changed,
packets of f traversing a part of old path (S1→S2→S3→S4) and
a part of new path (S4→S8→S9→S6) encounter both the old (S3)
and new position (S9) of NF2. Rinv

2,2 at S9 ensures packets carrying
waypoint counter 2 can be processed by NF2, but packets with
waypoint counter 3 (NF2 already processed these packets at S3)
are forwarded to next switch S6 immediately (packets are matched
by the rule enforcing the new routing policy).

Now that these rules have been generated, we need to integrate
them into the update schedule. To do so, the algorithm initializes
U`+1 to be empty, i.e., U`+1 ← {}. Then, for each migrating
network function NF i, the controller performs the following.

Update schedule: To deploy Renc
i , Rdec

i , {Rinv
i,k}k∈[nmax] in the

update schedule U1, U2, ..., U`+1, the controller performs the
following steps.
• The controller adds Snew

i .flowadd(Rdec
i ), Snew

i .import(i,j),
and Snew

i .flowadd(Rinv
i,k) for each k ∈ [nmax] to U1, where

Sold
i =Sj.

• The controller searches for the last step Ur in which rules
to route f mig

i , f tuni are deployed. It adds Sold
i .flowadd(Renc

i )
and Sold

i .export(i,j) to Ur+1 where Snew
i =Sj.

• The controller adds Snew
i .release(i) to U`+1.

The first bullet incorporates commands to prepare switches at new
positions for NF migration. In the example of Fig. 4, the controller
issues S7.import(1,2), S7.flowadd(Rdec

1 ) and S7.flowadd(R
inv
1,1) to

S7. The first of these commands instructs S7 to wait for messages
from S2 and prepare to reconstruct NF1 locally. The controller also
performs similar operations on S9.

The second bullet incorporates commands to migrate NF i from
its old to its new position. This should be done after the rules
implementing the migration route have been deployed (i.e., after
step Ur ). In the example of Fig. 4, assume the controller deploys
rules to create a tunnel S2→S1→S7 to migrate NF1 from S2 to
S7 in step U1. Then, in step U2, the controller can use the interface
S2.export(1,7) to instruct S2 to create a set of packets to marshal
NF1 and send these packets to S7. Upon receiving packets from S2,
S7 reconstructs NF1 and starts to perform NF1.processPkt invoca-
tions. Meanwhile, S2 uses the rule Renc

1 to encapsulate the packets
of f to packets of f tun1 . Packets of f tun1 are then forwarded to S7 and
S7 uses the rule Rdec

1 to decapsulate these packets back to packets of
f. The packets have not been processed by S2 and therefore should
carry the waypoint counter 1. Thus, S7 uses the rule Rinv

1,1 to forward
these packets to NF1. After being processed by NF1, the resulting
packets are buffered at S7 with the waypoint counter 2.

The last bullet ensures that packets released from switches at
new positions can be matched to rules implementing new routing
policy at all downstream switches. In the example of Fig. 4, the
controller sends S7.release(1) in step U4. S7 then releases the
buffered packets to the network since S4, S8 and S9 have installed
rules to forward packets to the destination.

The last step of our algorithm cleans up migration-related rules
once they will no longer be used. Specifically, for each migrated
NF i, the following is performed:

Bridging rules cleanup: After sufficient time passes to ensure
that f mig

i and f tuni will contain no more packets, the controller
issues Sold

i .flowdel(Renc
i ) and Snew

i .flowdel(Rdec
i ) commands.

In Fig. 4, this step causes the deletion of Renc
1 and Rdec

1 from
S2 and S7, respectively, and the deletion of Renc

2 and Rdec
2 from S3

and S9, respectively. The rules to implement the migration routes
S2→ S1→ S7 and S3→ S4→ S8→ S9 can also be removed, if
doing so does not disrupt other routing policy.

V. UPDATE SCHEDULING

The algorithm described in the previous section adapts a given
update schedule to migrate NFs during path updates. In this section,
we explore the requirements for the given update schedule that,



when combined with the algorithm of the previous section, ensures
waypoint correctness as defined in Sec. III-C. We define a sufficient
condition in Sec. V-A, and then report on our use of model checking
to confirm that this condition is sufficient in Sec. V-B. Finally, in
Sec. V-C we provide an update scheduling algorithm that is tailored
to implement specifically this condition.

A. A Sufficient Condition for Waypoint Correctness

In this section, we give a sufficient condition for the NF-migration
algorithm of Sec. IV to ensure the waypoint correctness property
defined in Sec. III-C. Recall that during a route change, each NF i

is migrated from its old location Sold
i to its new location Snew

i , while
traffic to be processed by NF i that arrives at Sold

i and matched to
a rule R with R.sendTo=NF i is transported from Sold

i to Snew
i

to be processed once NF i is reconstituted there. Whether traffic
reaches Snew

i via this mechanism or by the new routing policy does
not matter. Rather, all that really matters is that a packet on flow
f with waypoint counter k reaches either Sold

wpf(k)
or Snew

wpf(k)
. We call

this property relaxed waypoint correctness:
Relaxed waypoint correctness: An update scheduling

algorithm satisfies relaxed waypoint correctness if during any route
update, it ensures that for each flow f and each k∈ [nf], each packet
on flow f with waypoint counter k reaches Sold

wpf(k)
or Snew

wpf(k)
.

Our NF-migration algorithm in Sec. IV guarantees the waypoint
correctness property defined in Sec. III-C, if the underlying
update scheduling algorithm (used by the update scheduler in the
controller) satisfies relaxed waypoint correctness. An example of
an update scheduling algorithm that implements this property is
CU [7], which on its own ensures that each packet traverses either
the old path in its entirety or the new path in its entirety. When
conjoined with our NF migration algorithm, a packet that is being
routed along its old path might be tunneled from Sold

i to Snew
i

for processing by NF i, after which it will be buffered until the
route update is complete. From that point forward, it will be routed
along its new path. A natural question is whether there are route
update algorithms that satisfy relaxed waypoint correctness without
enforcing a packet to traverse only the path of its old flow or of its
new one. In Sec. V-C we answer this question in the affirmative.

B. Model Checking

We applied model checking to confirm that our algorithm of
Sec. IV enforces waypoint correctness described in Sec. III-C. We
used Z3Py [32], a Python API for the Z3 solver [33], to model the
underlying route-update algorithm and packet redistribution, and
let Z3 verify waypoint correctness. We constructed our model with
fifteen switches in a mesh topology and with three flows. Each
routing path was eight switches and each path contained three
NFs. We modeled the effects of one new epoch that implemented
a routing policy with NF migration (i.e., each NF was moved to
a different position) using rules in the old and new configuration.

The underlying route-update algorithm deployed rule updates
on switches (i.e., deleting unused rules and installing new rules) in
at most `=15 steps, with each switch being updated at most once.
Each switch utilized either old or new rules to process packets based
on the step during which it received those packets. For example, if

S1 was scheduled to be updated in step U3, S1 used an old rule R1

to match f1 before U3 began and a new rule R2 after U3 completed.
During U3, to model unknown delays for switch updates to occur,
either R1 or R2 was used to match f1 nondeterministically. The step
at which packets were received by each switch through the network
was non-decreasing. Moreover, the update schedule generated by
the underlying route-update algorithm ensured relaxed waypoint
correctness. Z3 explored all possible rule-update schedules
constrained by the above conditions to enforce new routing policy
of each flow. As such, the model checked was not dependent on any
specific route-update protocol, but rather permitted any route-update
strategy as long as it satisfied these properties.

Our algorithm incorporated NF migration into the rule-update
schedule generated by the underlying route-update algorithm and
used tunnels to redistribute packets from old NF locations to new
ones. For simplicity, the correctness of tunnels was assumed, and
tunnels were not modeled explicitly. Specifically, when a packet
on flow f arrived at Sold

i and was matched to rule Renc
i , the packet

was delivered to Snew
i , as if through the tunnel.

To model the delay caused by buffering packets at new NF
locations, the specific step at which Snew

i forwarded packets
using its new rule should not be earlier than the step at which
Snew
i .release(i) is invoked. For example, if a packet arrived at Sold

i

for NF i at step U3 and then was forwarded through the tunnel
to Snew

i , Snew
i could not release packets until Snew

i .release(i) was
deployed at step U5. We let the Z3 solver explore all possible delays
before Snew

i released packets and check for violations of waypoint
correctness. In previous, incorrect versions of our algorithm, this
model checking revealed corner cases that resulted in property
violations. For the algorithm presented in the previous sections,
however, after running about one day on a 32-core, 2.1GHz
computer with 256GB of memory, the model checker successfully
terminated and found no violations.

C. Update Scheduling for Relaxed Waypoint Correctness

In this section we provide an update scheduling algorithm, which
we call RWC (for “relaxed waypoint correctness”), that is specifi-
cally designed to satisfy relaxed waypoint correctness, no more, no
less, whenever it is possible to achieve this property while updating
each switch only once during an epoch change. The algorithm is
inspired by the TSU [6] routing update algorithm, though we have
adapted it to accommodate NF migration and waypoint ordering.

RWC computes the update schedule U1, U2, ..., U` using a
0-1 integer program (IP). As we will show, the update schedule,
once computed, enables Nimble to complete faster in some cases
than schedules produced by consistent-update algorithms such
as CU, thereby demonstrating a gap that Nimble can exploit
between relaxed waypoint correctness and typical consistent-update
properties. This IP can be solved (if it has a solution) using solvers
like CPLEX or Gurobi, though not in time polynomial in the
network size. As such, RWC serves primarily to reveal this gap
or, in large networks, to produce an update schedule only as a
precomputation step, off the critical path of updating the network.

As presented here, RWC assumes that the old and new routing
policies differ only in a single path; i.e., a flow f (or set of flows) tran-
sitions from one old path to one new path. (Multiple path changes



Minimize `′ subject to:

`′≥r ·xrj ∀r∈ [m],Sj∈S± (1)

1=
∑

r∈[m]

xrj ∀Sj∈S± (2)

yrj,j′ =1−
∑
r′≤r

xr
′

j ∀r∈ [m],(Sj,Sj′)∈L− (3)

yrj,j′ =
∑
r′≤r

xr
′

j ∀r∈ [m],(Sj,Sj′)∈L+ (4)

yrj,j′ =1 ∀r∈ [m],(Sj,Sj′) ∈
(Pold∪Pnew)\(L+∪L−)

(5)

zr,k
j′ ≥zr,kj +yr−1

j,j′ −1 ∀r∈ [m],k∈ [nf ],Sj′ ∈S,
Sj∈S\{Sold

wpf(k)
,Snew

wpf(k)
}

(6)

zr,k
j′ ≥zr,kj +yrj,j′−1 ∀r∈ [m],k∈ [nf ],Sj′ ∈S,

Sj∈S\{Sold
wpf(k)

,Snew
wpf(k)

}
(7)

zr,kj =1 ∀r∈ [m],k∈ [nf ],Sj∈{in(f)} (8)

zr,kj =0 ∀r∈ [m],k∈ [nf ],Sj∈{out(f)} (9)

zr,k+1
j ≥zr,kj ∀r∈ [m],k∈ [nf−1],Sj∈S (10)

Fig. 5: RWC integer program for generating update schedule

can be implemented one-by-one in multiple updates.) Moreover, our
presentation assumes that both the old and new paths are loop-free.

1) Integer program: Let Sold be the set of switches that appear
on the old path; Snew the set of switches that appear on the new
path; S = Sold ∪ Snew; Pold ⊆ Sold × Sold the links comprising
the old path; and Pnew ⊆ Snew × Snew the links comprising the
new path. Therefore, Pold \ Pnew is the set of links that will be
disabled by the path change (i.e., that will no longer be traversed
by the rerouted flow f), and Pnew \ Pold is the set of links that
will be enabled by the path change. Let S±⊆Sold∩Snew contain
the switches at which links to carry f must be both enabled
and disabled, i.e., Sj ∈ S± iff Sj ∈ Sold ∩ Snew and for some
Sj′ , (Sj,Sj′) ∈ (Pold \Pnew)∪ (Pnew \Pold). Let L+ be the new
links enabled at the switches in S±, and let L− bet the old links
disabled at the switches in S±; i.e., (Sj,Sj′) ∈ L+ iff Sj ∈ S±
and (Sj,Sj′) ∈ Pnew \Pold, and (Sj,Sj′) ∈ L− iff Sj ∈ S± and
(Sj,Sj′)∈Pold\Pnew. For a natural number w, let [w]={1,...,w}.

The optimization, shown in Fig. 5, minimizes the number `′ of
update steps subject to constraints (1)–(10). xrj is a binary variable
signaling if switch Sj∈S± is updated in step r; i.e., if the solution
to the integer program has xrj =1, then the controller will include
its updates to Sj in Ur . Constraint (2) ensures that each switch in
S± is updated exactly once. m is the number of switches.

The binary variable yrj,j′ for each (Sj,Sj′)∈Pold∪Pnew indicates
whether the rerouted flows will be forwarded directly from Sj to
Sj′ as of the end of update Ur . Constraint (3) ensures that yrj,j′ =0
once link (Sj,Sj′) ∈ L− has been disabled, and constraint (4)
ensures that yrj,j′ = 1 once link (Sj,Sj′) ∈ L+ has been enabled.
Constraint (5) ensures that yrj,j′ =1 for any other link in Pold∪Pnew.

The binary variable zr,kj indicates if a packet on the rerouted
flow f, upon reaching switch j after the end of update r−1 and
before the end of update r , has yet to be processed by NF i where
i=wpf(k). Constraints (6) and (7) ensure that if yr−1j,j′ =yrj,j′ =1
and so the packet is forwarded directly from Sj to Sj′ , and if
the packet was not yet processed by NF i upon reaching Sj (i.e.,

zr,kj = 1), then it still remains to be processed upon reaching
Sj′ (i.e., zr,kj′ = 1). Of course, this reasoning is valid only if
Sj 6∈ {Sold

i ,Snew
i }; if Sj = Sold

i then the packet will be processed
by NF i there, and if Sj = Snew

i then the packet will be buffered
at Sj awaiting NF i. Therefore, constraints (6) and (7) are included
only for Sj 6∈{Sold

i ,Snew
i }. Constraints (8) and (9) indicate that the

packets of flow f have yet to be processed by NF i upon their arrival
at their ingress in(f) and must be processed by NF i upon departing
the network at their egress out(f). Finally, constraint (10) ensures
that if a packet has yet to be processed by NF i for i=wpf(k), then
it also has yet to be processed by NF i′ for i′=wpf(k+1).

2) Generating the update schedule: Given a solution to the
integer program of Fig. 5, the update scheduler generates the update
schedule as follows. We assume that S\((Sold∩Snew)\S±) is the set
of switches at which the new rulesRnew to implement the new rout-
ing policy differ from the rulesRold already deployed to the network.
• For each Sj ∈ Snew \ Sold, the update scheduler adds
Sj.flowadd(R) to U1 for each R ∈ Rnew \ Rold for which
R.switch=Sj.

• For Sj ∈ S± for which xrj = 1, the update scheduler adds
Sj.flowadd(R) to Ur+1 for each R ∈ Rnew \ Rold for
which R.switch = Sj, and S.flowdel(R) to Ur+1 for each
R∈Rold\Rnew for which R.switch=Sj.

• For Sj ∈Sold\Snew, the scheduler adds Sj.flowdel(R) to U`′+2

and for each R∈Rold\Rnew for which R.switch=Sj.
After we obtain the update schedule U1, U2, ..., U` (`=`′+2), it
can then be turned over to the algorithm of Sec. IV-B for adaptation
as prescribed there.

VI. IMPLEMENTATION

We implemented our NF migration algorithm (Sec. IV) using
Open vSwitch [13] and the Ryu controller [14]. Packets’ waypoint
counters were stored in six bits of the VLAN tag, permitting up
to nmax = 26− 2 waypoints per flow. PRADS [34] was used as
network functions and was modified to provide APIs for migration.
We implemented three route-update algorithms, namely SCC [5],
CU [7], and RWC, to generate rule-deployment schedules. We
incorporated our state migration algorithm into the schedule updater
as described in Sec. IV to achieve waypoint correctness.

A. Route-Update Algorithms

a) SCC: In SCC [5], each packet carries a packet timestamp
that may be changed by the rules to which it is matched as it
traverses switches in the network. Each switch receiving a packet
finds the matching rule, checking that this rule is recent enough
to match to this packet by comparing the packet’s timestamp with
the rule’s timestamp. To implement relaxed waypoint correctness,
the algorithm performs updates in two steps. First, each ingress
switch is updated so that packets can be matched only to rules
consistent with the new routing policy. Then the remaining switches
are updated concurrently to forward packets through new paths.
Packets are buffered as needed at switches awaiting new rules.

Our implementation leverages unused header bits, namely six
bits of the VLAN tag, to store the timestamp in each packet. We
modified Open vSwitch (OVS) to extract these bits from each
packet, to compare the packet timestamp with rule timestamp,



and to set these bits based on the action of the rule to which it
is matched. If the timestamp of the matching rule is smaller than
the packet timestamp, then this packet is buffered awaiting more
up-to-date rules. To buffer packets, we connected each OVS with
a local Ryu controller (running on the switch) that is in charge of
updating rules for this switch. Instead of buffering packets itself,
OVS forwards packets to the local controller. A globally centralized
controller running our algorithm uses a RESTful API to issue
rule modification commands to the local controller. Then the local
controller updates OVS using OpenFlow and also sends buffered
packets back to the switch when appropriate.

b) CU: Consistent Update (CU) first deploys, but does not yet
enable, rules with a new timestamp at all switches. Then, after all
the new rules have been installed, the controller updates the ingress
switch to start tagging packets with the new timestamp to allow
each downstream switch to apply the new configuration. Therefore,
CU makes each packet traverse either its old or new path in its
entirety, and in this way enforces relaxed waypoint correctness.

Like in SCC, our implementation leverages six bits of the VLAN
tag to store the CU timestamp in each packet. However, unlike
SCC, the value of the rule timestamp must be equal to the value
of timestamp carried by the packet in order to match to this packet.
Also, since CU does not need to buffer packets, local controllers are
not required. A centralized controller running the CU algorithm uses
OpenFlow to directly issue rule modification commands to OVS.

c) RWC: We solved the optimization in Fig. 5 with
Gurobi [35]. The controller runs RWC and deploys updates in
multiple steps.

B. NF Migration

We instantiated network functions using the Passive Real-time
Assets Detection System (PRADS). PRADS passively listens to
network traffic and gathers information about hosts and services
sending traffic. We modified PRADS to permit import/export
of portions of its state (similar to OpenNF [9]), such as per-flow
statistics. After receiving the Sold

i .export command, Sold
i exported

the relevant PRADS state and crafted packets on f mig
i . Each PRADS

instance executed on a host directly connected to Sold
i or Snew

i . Sold
i

and Snew
i were in charge of forwarding packets to the PRADS

instance. To implement encapsulation and decapsulation, we used
the IP tunnel command to configure Generic Routing Encapsulation
(GRE) tunnels on each host. Moreover, to guarantee that packets
carrying NF state are delivered to destination NF instances, a
TCP connection was used. Snew

i used the local controller to buffer
packets until receiving a S.release(i) invocation.

VII. EVALUATION

Our experiments were conducted on topologies emulated in
Mininet [36] on a 32-core, 2.1GHz computer with 256GB of mem-
ory. We used a fat-tree topology with K=8 ports per switch, and
one ISP topology (Forthnet from Topology Zoo [37]) for these tests.
The K=8 fat-tree contained 80 switches, and IP addresses were
assigned as prescribed by Al-Fares et al. [38]. The Forthnet topology
contained 62 switches and 62 links. To simulate the delay between
the controller and switches, we randomly chose the position of the
controller and computed the path from the controller to each switch

600

700

800

900

SC
C CU RW

C

1300

1500

1700

1900

SC
C CU RW

C

3000

3400

3800

4200

SC
C CU RW

C

T
im

e
(m

s)

Nimble SwingState OpenNF

(a) fat-tree

1900

2100

2300

2500

SC
C CU RW

C

2600

3000

3400

3800

SC
C CU RW

C

6600

7600

8600

9600

SC
C CU RW

C

T
im

e
(m

s)

Nimble SwingState OpenNF

(b) Forthnet
Fig. 6: NF migration and path change times

using a spanning tree protocol. The delay for each hop was measured
using a simple topology with one OVS switch and two hosts sending
ping packets through it. Specifically, the delay between each switch
and the controller was computed as db+dh×h where db is the con-
trol path delay measured by Huang et al. [39] for a setting similar to
ours, dh is the delay for one hop, andh is the number of hops. dbwas
sampled from a normal distribution with mean 32ms and standard
deviation 5.1ms and dh from normal distribution with mean 3ms
and standard deviation 0.3ms. To create realistic path changes on
the fat-tree networks, we replayed a log of route changes collected
from Facebook’s network [40]. For Forthnet, we used shortest-path
routing and induced route changes by breaking links. In each case,
NFs were reassigned from the old path to the new path randomly
but constrained to appear on the new path in waypoint order.

We compared Nimble to OpenNF [9] and SwingState [10] over
three route-update algorithms, namely SCC [5], CU [7] and RWC
(Sec. V-C), based on our own implementation of each. SwingState
migrates an NF over a tunnel between its old and new locations.
OpenNF utilizes the centralized controller as a relay node to transfer
NF states and redistribute incoming packets. Both SwingState
and OpenNF separate state migration from path change. In each
comparison, random values were sampled using the same random
seed (or set of seeds) across each pair of state-migration and
route-update algorithm; i.e., random link failures, packet sizes, NF
locations were the same for each algorithm pair.

A. NF Migration and Path Change Time

We first measured the performance of these algorithms for NF
migration and path change. Each evaluation involved 100 runs,
in which hosts sent 100 packets per second for each flow. Fig. 6
demonstrates the times required to finish both NF migration and path
changes; Fig. 6a shows times for 100 path changes with two NF mi-
grations per path change in a fat-tree topology (K=8), and Fig. 6b
shows times for 178 path changes with three NF migrations per path
change in the Forthnet topology, induced by breaking its “busiest”
link carrying the most flows. Each boxplot in Fig. 6a and Fig. 6b rep-
resents 100 points, i.e., one per run. The box marks the first, second



12250

12500

12750

13000

13250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
ot
al

n
u
m
b
er

of
ru
le
s

Time (ms)

SCC+Nimble SCC+OpenNF SCC+SwingState

(a) SCC

12300

12600

12900

13200

13500

0 1000 2000 3000 4000 5000 6000
Time (ms)

CU+Nimble CU+OpenNF CU+SwingState

(b) CU

12250

12500

12750

13000

13250

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (ms)

RWC+Nimble RWC+OpenNF RWC+SwingState

(c) RWC

Fig. 7: Rules in the network during 100 path changes and accompanying NF migrations for fat-tree topology; markers show completion of
path changes (×) and NF migrations (◦)

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

Nimble+SCC
Nimble+CU
Nimble+RWC

SwingState+SCC
SwingState+CU
SwingState+RWC

OpenNF+SCC
OpenNF+CU
OpenNF+RWC

(a) fat-tree

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Time(s)

(b) Forthnet
Fig. 8: Times for receiving 1MB upon link failure

(median), and third quartiles, and whiskers extend to cover points
within 1.5× the interquartile range. Outliers are shown as dots.

As can be seen in these figures, Nimble performed much faster
than SwingState and OpenNF, since NF migration and path change
were executed simultaneously. OpenNF required much more time to
perform the updates because it uses a single controller to buffer and
redistribute packets. Upon receiving a large number of incoming
packets, the controller consumed a lot of resources to process these
packets, which significantly slowed down the rule-update process.

B. Memory Overhead in Switches

To evaluate the number of rules (including rules to build tunnels)
imposed on the switches by each algorithm, we examined the
per-switch logs of rule installations and deletions. We computed
a time series of the total number of rules installed across all
switches in the network, including the time cleaning up tunnels
used to migrate NFs and to tunnel traffic. This time series for a
representative run of each of SCC, CU, and RWC using Nimble,
SwingState and OpenNF on the fat-free topology is shown in Fig. 7.
(We obtained similar results on Forthnet [41], which are not shown
due to space constraints.) Each curve is marked with the time when
NF migration for all flows was done and the time when all path
changes were completed. All three algorithms require installing
rules per network function NF i on Sold

i and Snew
i to deal with

incoming packets. Unlike OpenNF, Nimble and SwingState also

need to build tunnels to migrate NFs and to tunnel traffic which
results in a larger number of rules. Though OpenNF required fewer
extra rules on switches, it induced a significantly larger delay for
NF migration and path change to be finished.

C. Recovery from Link Failure

We conducted two tests of each algorithm’s ability to sustain
networked applications across link failures. The first used the fat-tree
topology (K=8) with the capacity of each link set to 300MB/sec.
We launched 448 TCP connections, each sending packets according
to a Poisson process. The size of each packet was sampled from
a distribution of packet sizes across all applications in a Google
datacenter (the W3 workload shown in Montazeri et al. [42, Fig. 1]).
The parameter of the Poisson process was then chosen so that the
busiest link averaged 50% utilization. We broke one random link
and selected all affected flows to update their routing policies to
avoid that link. Fig. 8a shows the CDF of times for the destination to
receive 1MB using each algorithm, averaged over the affected flows.

The second test used synthetic traffic matrices from a modulated
gravity model [43] for the Forthnet topology. We set the total traffic
volume to average 1.5Gb/ sec, spread (according to the gravity
model) across TCP connections between all switch pairs. The
capacity of each link was set to 800MB/sec. We randomly broke
one link and selected all affected flows to update their routing
policies. Fig. 8b shows the CDF of times for the destination to
receive 1MB using each algorithm, averaged over the affected flows.

Nimble outperformed SwingState and OpenNF in recovering
from the link fault (Fig. 8). Though SwingState also uses tunnels to
migrate NFs, it mirrors packets but still attempts to deliver packets
through the old path (which contained a failed link in these tests)
during NF migration. Moreover, for Forthnet topology, RWC outper-
formed SCC and CU when incorporated with Nimble, showing that
Nimble can achieve even faster network recovery using RWC than
when coupled with a traditional consistent update in some cases.

VIII. CONCLUSION

We presented an algorithm that accelerates NF migration and
accompanying path changes in SDN networks over current solutions.
Our design carefully interleaves NF migrations with path changes,
and ensures correctness of traffic processing if the route-update
protocol on which we build ensures a property that we call relaxed
waypoint correctness. We provided a route-update protocol designed
to achieve this property, without enforcing other properties typical
of consistent-update protocols. We showed the sufficiency of this
property through model checking and the improvements achieved
by our algorithm in empirical comparisons to the state of the art.



REFERENCES

[1] D. J. Chaboya, R. A. Raines, R. O. Baldwin, and B. E. Mullins, “Network
intrusion detection: Automated and manual methods prone to attack and
evasion,” IEEE Security & Privacy, vol. 4, no. 6, 2006.

[2] T.-H. Cheng, Y.-D. Lin, Y.-C. Lai, and P.-C. Lin, “Evasion techniques:
Sneaking through your intrusion detection/prevention systems,” IEEE
Communications Surveys & Tutorials, vol. 14, no. 4, 2012.

[3] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intrusion
detection systems: Taxonomy, solutions, and open issues,” Information
Sciences, vol. 239, Aug. 2013.

[4] T. Schneider, R. Birkner, and L. Vanbever, “Snowcap: Synthesizing network-
wide configuration updates,” in ACM SIGCOMM, Aug. 2021, p. 33–49.

[5] S. Liu, T. A. Benson, and M. K. Reiter, “Efficient and safe network updates
with suffix causal consistency,” in 14th ACM European Conference on
Computer Systems, Mar. 2019.

[6] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently secure network
updates,” in ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Science, 2016, pp. 273–284.

[7] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions
for network update,” in ACM SIGCOMM, Aug. 2012.

[8] A. Gember-Jacobson and A. Akella, “Improving the safety, scalability, and
efficiency of network function state transfers,” in ACM Workshop on Hot
Topics in Middleboxes and Network Function Virtualization, 2015, pp. 43–48.

[9] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network function
control,” in ACM SIGCOMM, 2014, pp. 163–174.

[10] S. Luo, H. Yu, and L. Vanbever, “Swing State: Consistent updates for stateful
and programmable data planes,” in 3rd Symposium on SDN Research, 2017,
pp. 115–121.

[11] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/Merge:
System support for elastic execution in virtual middleboxes,” in 10th USENIX
Symposium on Networked Systems Design and Implementation, Apr. 2013.

[12] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally controlled distributed
vnf state management,” in ACM Workshop on Hot Topics in Middleboxes and
Network Function Virtualization, 2015, p. 37–42.

[13] “Open vswitch,” http://openvswitch.org.
[14] “Ryu controller,” https://osrg.github.io/ryu.
[15] G. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. M. Jr., “Metron: NFV

service chains at the true speed of the underlying hardware,” in 15th USENIX
Symposium on Networked Systems Design and Implementation, Apr. 2018.

[16] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker, “E2: A framework for nfv applications,” in 25th Symposium on
Operating Systems Principles, Oct. 2015.

[17] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamation, “Transparent flow migration
for NFV,” in 24th IEEE International Conference on Network Protocols, 2016,
pp. 1–10.

[18] K. Foerster, A. Ludwig, J. Marcinkowski, and S. Schmid, “Loop-free
route updates for software-defined networks,” IEEE/ACM Transactions on
Networking, vol. 26, no. 1, pp. 328–341, 2018.

[19] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford,
and R. Wattenhofer, “Dynamic scheduling of network updates,” in ACM
SIGCOMM, Aug. 2014, pp. 539–550.

[20] F. Klaus-Tycho, M. Ratul, and W. Roger, “Consistent updates in software
defined networks: On dependencies, loop freedom, and blackholes,” in IFIP
Networking Conference and Workshops, 2016.

[21] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,” in
1st ACM Symposium on Software Defined Networking Research, 2015.

[22] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live migration of virtual machines,” in 2nd USENIX Symposium
on Networked Systems Design and Implementation, 2005, p. 273–286.

[23] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield,
“Remus: High availability via asynchronous virtual machine replication,” in
5th USENIX Symposium on Networked Systems Design and Implementation,
2008, p. 161–174.

[24] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller, M. Caesar, J. Rexford,
and D. Walker, “Transparent, live migration of a software-defined network,”
in ACM Symposium on Cloud Computing, 2014, pp. 1–14.

[25] D. M. F. Mattos and O. C. M. B. Duarte, “Xenflow: Seamless migration
primitive and quality of service for virtual networks,” in IEEE Global
Communications Conference, 2014, pp. 2326–2331.

[26] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network functions:
Breaking the tight coupling of state and processing,” in 14th USENIX
Symposium on Networked Systems Design and Implementation, Apr. 2017.

[27] J. Khalid and A. Akella, “StreamNF: Performance and correctness for stateful
chained NFs,” in 16th USENIX Symposium on Networked Systems Design and
Implementation, 2019.

[28] W. Shinae, S. Justine, H. Sangjin, M. Sue, R. Sylvia, and S. Scott, “Elastic
scaling of stateful network functions,” in 15th USENIX Symposium on
Networked Systems Design and Implementation, Apr. 2018.

[29] “Open Networking Foundation,” https://www.opennetworking.org/wp-content/
uploads/2014/10/openflow-switch-v1.5.1.pdf.

[30] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for
concurrent objects,” ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, Jul. 1990.

[31] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good network updates for
bad packets: Waypoint enforcement beyond destination-based routing policies,”
in 13th ACM Workshop on Hot Topics in Networks, 2014.

[32] “Z3py,” https://github.com/ericpony/z3py-tutorial.
[33] L. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Theory and

Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS/ETAPS), Mar. 2008, pp.
337–340.

[34] “Passive real-time asset detection system,” https://github.com/gamelinux/prads.
[35] “Gurobi solver,” http://www.gurobi.com.
[36] “Mininet,” http://mininet.org.
[37] “Topology zoo,” http://www.topology-zoo.org.
[38] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center

network architecture,” in ACM SIGCOMM, Aug. 2008, pp. 63–74.
[39] D. Huang, K. Yocum, and A. Snoeren, “High-fidelity switch models for

software-defined network emulation,” in ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, Aug. 2013.

[40] H. Chen and T. Benson, “Hermes: Providing tight control over high-
performance SDN switches,” in 13th International Conference on Emerging
Networking Experiments and Technologies, 2017, pp. 283–295.

[41] S. Liu, “Efficient and safe migration of network functions using software-
defined networking,” Ph.D. dissertation, The University of North Carolina at
Chapel Hill.

[42] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-driven
low-latency transport protocol using network priorities,” in ACM SIGCOMM,
Aug. 2018, p. 221–235.

[43] M. Roughan, “Simplifying the synthesis of internet traffic matrices,” in
SIGCOMM Computer Communication Review, Oct. 2005, p. 93–96.


