
Privately Evaluating Region Overlaps with Applications to Collaborative Sensor
Output Validation

Anrin Chakraborti
Duke University

Michael K. Reiter
Duke University

Abstract—Advances in computer vision have made it possi-
ble to accurately map objects as regions in 3-dimensional
space using LIDAR point clouds. These systems are key
building blocks of several emerging technologies including
autonomous vehicles. Comparing and validating the output
of sensors at different vantage points observing the same
scenery can enable these systems to detect faults, identify
common obstacles, and improve decision making. However
sharing sensor outputs among mutually untrusting parties
can leak unwanted information, e.g., model parameters or
relative location of the sensors. This work initiates the
study of cryptographic protocols that enable two parties
observing regions (or objects) in an arbitrary-dimension
Euclidean space to privately detect if the regions overlap
and approximate the volume of the overlapping region. The
protocols rely only on cheap symmetric-key primitives and
feature reasonable communication costs and compute times.
As applications, the protocols have been benchmarked on
data generated from the CARLA autonomous driving simu-
lator and the ScanNet 3D image dataset; they outperform a
2PC garbled-circuit baseline in communication volume and
compute time. For instance it takes roughly 0.5 seconds to
approximate the volume of the overlapping region of two 3D
boxes with low error probability.

1. Introduction

The task of visualizing and identifying objects in the
surrounding environment is an essential part of computer
vision systems. Autonomous vehicles that rely on sensors
(e.g., LIDAR) to visualize objects are prominent applica-
tions of these systems. However, faulty sensors can have
catastrophic consequences, e.g., when a vehicle fails to
detect an obstacle in its path. Sensor fusion and other col-
laborative techniques in artificial intelligence have shown
that when multiple parties validate each others’ findings
they can detect faults and make decisions with less un-
certainty [10, 35]. This concept can be very useful when
applied to vision systems for autonomous vehicles. Con-
sider the following two example applications:
• Connected Autonomous Vehicles (CAVs) [9, 11,

19, 27, 40] is an emerging technology that enables
autonomous vehicles to inter-connect and share in-
formation. CAVs have positive influences on traf-
fic flow [39], environmental impact [26, 36] and
road safety [9, 44]. In fact, the NHSTA predicts
that vehicle-to-vehicle communication will potentially
reduce or eliminate a significant number of road

crashes [1, 9]. In CAVs, sensed information such as
regions containing traffic lights, traffic signs, and on-
road movement can be shared among vehicles [19].

• Cooperative Obstacle Detection enables autonomous
vehicles to detect obstacles by sharing information
with each other. There are proposals for using this
technology for military vehicles including underwater
autonomous vehicles (UAVs) [20]. Cooperation can
enable vehicles that have limited fields of view, due
to terrain or by virtue of being covert, to detect
obstacles/targets in path with the aid of information
obtained from other vehicles.
However, if the parties do not fully trust each other,

the task of sharing information without leaking sensitive
information becomes challenging. For instance, vehicles
from different manufacturers may use proprietary models
to visualize the environment, and revealing the output(s)
may allow other parties to infer information about the
models. Similarly, a submarine may not want to reveal
its entire set of sensed objects, lest this reveal too much
about its precise location in the environment.

To tackle these problems, we initiate the study of
private protocols that detect if the regions sensed in space
by two parties overlap and estimate the volume of over-
lap. We are mainly concerned with Euclidean spaces of
arbitrary dimensions. We ask the following question:

Suppose two parties each has a set of regions,
where each region is defined by a set of points in
Euclidean space. How can each party determine
the regions in its set that overlap with one or more
regions in the other party’s set, while revealing
nothing more about its own set to the other party?

This task has several technical challenges that remain
unaddressed with existing tools. Cryptographic tools for
private matching, e.g., private equality testing and private
set intersection, detect exact matches of elements; this
will not suffice to solve our problem since sensor out-
puts can include noise. Fuzzy protocols [4, 14, 41] can
alleviate this problem, but they are designed for point
comparisons. When comparing regions which comprise
(possibly infinite) sets of such points, these techniques
do not scale. Consider the problem of detecting if two
polygons overlap. Protocols that compute similarity based
on Euclidean distance (e.g., [14]) can detect when points
of one polygon lie inside the other by computing pairwise
distances between the point and vertices of the other
polygon. However, it is not possible to repeat this process
for all the points as there may be infinitely many. Thus, to

detect such overlaps, the protocol needs to compute over
geometric primitives such as edges or faces of objects,
which is missing with current fuzzy matching protocols.

There is also limited work on privacy-preserving pro-
tocols for accomplishing computational geometry tasks in
2D, e.g., detecting intersections of convex 2D polygons
[2]; however it is not obvious how these tools can be ex-
tended to higher dimensions and at what costs. Geometric
tasks that are relatively simple in 2D often become expo-
nentially more expensive in higher dimensions. Consider
for example the task of computing the area of overlap
of two polygons in 2D. There are several protocols that
realize this function, even in a private setting [2, 30].
The protocols are straightforward since the overlapping
region of two polygons can be determined by computing
the intersections of the edges of the polygons. However,
the task is more complex in higher dimensions where
computing the overlapping region is non-trivial [3, 17].

Second, in our use-case the protocols will be exe-
cuted between resource-constrained devices, e.g., mobile
or edge-computing devices. Thus, compute-intensive tools
like fully homomorphic encryption, while being suitable
for implementing private versions of existing protocols
that perform this task non-securely, are too expensive.
Instead, we would like to rely on fast(er) primitives.

We answer our question affirmatively with protocols
for overlap detection and volume of overlap measurement
for convex regions. The protocols rely on efficient primi-
tives and leverage the following key ideas.

Bounding Box Overlaps: The first step in detecting if
two arbitrary (convex) regions overlap is to detect if their
corresponding bounding boxes overlap. A bounding box is
a simple geometric approximation of any complex shape
(e.g., a 3D LIDAR point cloud) and is typically a rectan-
gular cuboid of the smallest dimension that surrounds the
original region. If the bounding boxes do not intersect, the
original regions definitely do not intersect, as well. If the
bounding boxes overlap, more fine-grained protocols are
required to detect an overlap with certain guarantee.

We present two private protocols for detecting overlaps
of bounding boxes in a d-dimensional space. Our first
protocol takes as input axis-aligned bounding boxes, i.e.,
cuboids whose edges are aligned with the canonical axes,
and determines if the boxes overlap. For this, the protocol
computes the Minkowski difference of the two cuboids
and checks if the origin lies inside the set of points
in the Minkowski difference. The communication cost
of the protocol scales linearly in d, and computing the
Minkwoski difference only involves d subtractions which
can be easily realized in a secure computation framework.

Our second protocol takes as inputs two arbitrarily
aligned cuboids. The protocol is based on detecting if the
edges of one cuboid intersect the faces of the other cuboid.

Approximate Volume of Overlapping Region: Detecting
if two regions overlap is not enough to correlate and
verify the outputs of two sensors: while the sensors may
detect the same object, their relative positioning may be
incorrect. Consider the toy example in Fig. 1. Both cars
fitted with sensors detect a tree on the road, but sensor
2 places it in an incorrect location. Detecting this as a
match is an incorrect conclusion in this case.

Figure 1: Two sensors detecting the same object but with
incorrect relative positioning. Detecting intersection on its
own does not indicate that sensor 2 is faulty.

One way to mitigate this problem is by additionally
measuring the amount of overlap between the two regions.
Our assumption is that if the volume of the overlapping
region is large, then the regions are likely the same object.

We present two protocols that privately approximate
the volume of overlapping regions of arbitrary convex
polytopes. Our protocols build on the idea of approxi-
mating the volume of the overlapping region (between
tunable lower and upper bounds) of two regions [3]. The
key technical challenge is privately determining when a
point inside one region also lies within the other region.
For arbitrary polytopes in our first protocol, we solve the
problem by leveraging the fact that a point lies within
a convex polytope if it is on the same side of all the
faces of the polytope. Mathematically, this implies that
the dot product of the inward normals of all the faces
of the polytope with the point vector should be less than
zero. We check this condition using a technique combining
oblivious linear evaluation and limited use of a generic
secure 2PC circuit that solves the millionaire’s problem.

We provide an optimization in our second protocol
when the polytope in question can be easily triangulated
into simplicial structures, e.g., cuboids or polyhedrons.
The mathematical property we leverage is that for any d-
dimensional simplex, the barycentric coordinates of any
interior point lies in the range [0, 1]. We implement this
check using a combination of oblivious linear evaluation
and a range checking protocol that can be implemented ei-
ther as a garbled circuit, or with tailor-made protocols [4].
Implementation: We have implemented our protocols and
benchmarked them against 2PC garbled circuit baselines,
and the protocols of Atallah and Du [2] for polygons
extended to arbitrary-dimension polytopes. We have used
a combination of real world and randomly generated
datasets to benchmark the protocols. This includes a
dataset of 3D axis-aligned bounding boxes of road signs,
vehicles, etc. generated from the CARLA autonomous
driving simulator, and 3D oriented bounding boxes of
objects in the ScanNet dataset. Our protocol detects over-
lap of 3D axis-aligned boxes generated from the CARLA
simulator 4.2× faster than the garbled circuit baseline,
with lower communication requirements. Approximating
the volume of overlap of two bounding boxes with very
low error probability (0.001) requires 508 ms.

Our protocol detects overlaps of 3D oriented boxes
1.4–6.1× faster than the baseline. Similarly, approximat-
ing the volume of overlap is up to 4.17× faster than the
baseline with lower communication requirements. In all
cases, we outperform the protocols of Atallah and Du [2].

2. Related Work

Functionality This Work Atallah and Du [2]

Point Inclusion (general) O(ϕdλ) O(ϕdλκ)
Point Inclusion (simplex) O

(
d2λ

)
O
(
d2λκ

)
Overlap Detection (cube) O(dλ) O

(
2dλκ

)
Overlap Deetction (general) O(βϕλ) O(βϕλκ)
Overlap Volume (cube) O(dλ) -
Overlap Volume (simplex) O

(
d2λ

)
-

Overlap Volume (general) O(ϕdλ) -

TABLE 1: Asymptotic comparison of our protocols with the
protocols proposed for 2D by Atallah and Du [2]. ϕ: number of
faces, β: number of vertices, d: dimensions, λ: computational
security parameter, κ: key size for the additively homomorphic
scheme used in the protocols of Atallah and Du [2].

There is extensive work on cryptographic protocols
that privately compare and match items [13, 18, 23, 24, 32,
33, 34]; however none of these techniques extend trivially
to matching solid objects/regions in Euclidean space.
Comparison with Atallah and Du [2]: There is limited
work on two-party private protocols for computing tasks
related to solid geometric shapes and regions in Euclidean
space. The most prominent is the work by Atallah and Du
[2]; our protocols bear some resemblance to this work.
Indeed, the geometric principles underlying both are valid
in arbitrary-dimension Euclidean spaces. However, our
protocols are built from cheaper primitives: all our proto-
cols rely on oblivious linear evaluations with minimal use
of garbled circuits, while the protocols of Atallah and Du
[2] use additively homomorphic encryption and garbled
circuits. Specifically, their protocols rely on a protocol to
privately compute the scalar product of two vectors by
splitting the vectors into λ shares and computing over the
corresponding encrypted ciphertexts using a homomorphic
encryption scheme. Thus, the communication cost scales
linearly in λ, and the ciphertext size, κ. We circumvent the
need for secret-sharing and the use of additively homo-
morphic encryption for private scalar product computation
by using OLEs (see Sec. 5); thus, the communication
costs of our protocols are independent of κ (see Table 1).
Additionally, the use of OLEs over additively homomor-
phic encryption makes our protocols faster in practice.
Privacy-Preserving Proximity Detection: A loosely re-
lated task to detecting overlaps (as proposed in this work)
in 2D is privacy-preserving proximity detection [29, 30,
47], wherein a trusted user of a service (say Alice) wants
to learn if another user known to her (say Bob) is currently
nearby. However, current techniques only work in 2D
Euclidean spaces and extending these ideas even to 3D
while ensuring similar privacy goals is non-trivial. In
contrast, our goal is to design protocols for any arbitrary
dimension, and particularly applying them to 3D spaces.

3. Background

3.1. Geometric Properties

This section presents the necessary notations and back-
ground for the geometric concepts we will extensively use
in our technical description. The definitions will only per-
tain to the details necessary to understand the protocols,

and in some cases will be presented relatively informally.
More complete descriptions can be found in [6, 7].
Position Vector of a point pt = (x1, . . . , xd) ∈ Rd is its
relative position to an arbitrary reference point. Let pt′ =
(x′

1, . . . , x
′
d) ∈ Rd be an arbitrary reference point. Then,

the position vector of pt with reference to pt′ is the straight
line segment from pt′ to pt. The vector corresponding to
this line segment, denoted henceforth as p⃗t, is derived as
follows: for each i ∈ [1, d], p⃗t[i] = x′

i − xi. When the
position vector is defined in reference to the origin of the
axes (0, . . . , 0), we denote it as p⃗t = [x1, . . . , xd].
Normal Vector of a surface is a vector that is perpendicu-
lar to the surface. For a non-curved surface, all (infinitely
many) normal vectors are parallel to each other.

• For a line segment L with end points (x1, y1) and
(x2, y2), let L⃗ = [x2 − x1, y2 − y1] be the vector
corresponding to the line segment. Then, facing in the
direction that L⃗ points to, we may compute normal
vectors that are perpendicular to L and point to the
space on the left of the line segment, and similarly
normal vectors that are perpendicular to L and point
to the space on the right. These normal vectors are
computed as n⃗ = [y1 − y2, x2 − x1] and −n⃗ = [y2 −
y1, x1 − x2] and they are in opposing directions. To
check if n⃗ points to the left (and resp. to the right),
we can select any point that lies on the left of the line
segment, say pt with position vector p⃗t and compute
p⃗t · n⃗. If p⃗t · n⃗ ≥ 0, then n⃗ points to the space on the
left of the line segment.

• For the face of a polytope, a normal vector is com-
puted by taking the cross-product of the vectors cor-
responding to any two non-parallel edges of the face.
The inward normal vector of a face of a polytope
is a vector perpendicular to the face that points in
the direction of the space lying inside the polytope.
Whether a normal vector is inward facing can be
determined as above by computing the dot product
of the normal vector with the position vector of a
random point lying inside the polytope and checking
the sign of the output.

d-Polytope is a d-dimensional object with flat faces. For
example, a polygon is a 2-dimensional polytope, and a
polyhedron is a 3-dimensional polytope. In this work
we are concerned with convex polytopes, which may be
considered as the convex hull of a finite set of points (ver-
tices). This definition inherently implies that the polytope
is bounded, i.e., it has finite volume.

Fact 1. Let P be a d-polytope and let {f1, . . . , fϕ} be
the set of its faces. Let {f⃗1, . . . , f⃗ϕ} be the inward facing
normal vectors of the faces, i.e., vectors perpendicular to
the faces but facing towards the interior of P . Also, let
p1, . . . , pϕ be points on the boundary of the polytope such
that pi is an arbitrary point on fi. Let pt = (x1, . . . , xd) ∈
Rd be a point and p⃗ti be its position vector with respect
to pi. Then, pt ∈ P iff f⃗i · p⃗ti ≥ 0 for all i ∈ [1, ϕ],

Fact 1 implies that if we compare the vector drawn
from any arbitrary point on a face of a polytope to a
point pt, with the inward facing normal vector of the face,
then both these vectors should face towards the half space
that lies in the interior of the polytope if pt is inside the
polytope. For this, we check if the angle between these

vectors is in [0, π/2], which implies that the dot product
of these two vectors is ≥ 0. This process is repeated for
all faces to ensure that the point lies inside the polytope.
d-Cuboid is a polytope where each face is a quadrilateral.
We will focus on rectangular cuboids where each face is
a rectangle, and opposite faces are congruent rectangles
[6]. Rectangular cuboids are the most common type of
bounding boxes used in overlap detection tasks. A d-
cuboid is represented by the coordinate of the top left
corner, (x1, . . . , xd), and the lengths along each of the d
axes ℓ1, . . . , ℓd.
d-Simplex is the simplest d-dimensional convex poly-
tope. For instance the 2-simplex is a triangle, while
the 3-simplex is a tetrahedron. More formally, the d-
simplex is the convex hull of d + 1 affinely independent
points {v1, . . . , vd+1} which implies that v1 − vd+1, v2 −
vd+1 . . . , vd − vd+1 are linearly independent. The d-
simplex is then defined as the set of points

S :=

{
θ1v1 + . . .+ θd+1vd+1

∣∣∣∣∣
d+1∑
i=1

θi = 1 ∧ ∀i : θi ∈ R≥0

}
where R≥0 denotes the nonnegative reals.
Barycentric Coordinate System is a coordinate system
for d-dimensional Euclidean space in which the location
of a point is defined relative to a d-simplex.

Definition 1 (Barycentric Coordinate). Consider a d-
simplex, S with set of vertices {v1, . . . , vd+1}, vi ∈ Rd.
Let {v⃗1, . . . , v⃗d+1} be the set of position vectors of the
vertices of S. Given any pt ∈ Rd and its correspond-
ing position vector p⃗t, there always exists a unique
(a1, . . . , ad+1) ∈ Rd+1 such that

(a1 + . . .+ ad+1) p⃗t = a1v⃗1 + . . .+ ad+1v⃗d+1

(a1, . . . , ad+1) is the barycentric coordinate of pt.

Fact 2. For a d-dimensional point pt ∈ Rd and a
d-simplex S defined by its vertices {v1, . . . , vd+1}, let
(a1, . . . , ad+1) be the barycentric coordinate of pt relative
to S. Then, pt ∈ S iff ∀i ∈ [1, d+ 1], ai ∈ [0, 1].

Definition 2. Given two sets C1 and C2 comprising po-
sition vectors of all the points that lie inside or on the
boundary of two convex bodies in Rd, the Minkowski sum
C1 ⊕ C2 and difference C1 ⊖ C2 are defined as

C1 ⊕ C2 :=
{
x⃗+ y⃗

∣∣ (x⃗, y⃗) ∈ C1 × C2
}

C1 ⊖ C2 :=
{
x⃗− y⃗

∣∣ (x⃗, y⃗) ∈ C1 × C2
}

Both C1⊕C2 and C1⊖C2 are the position vectors of points
that lie inside or on the boundary of a convex body in Rd.

Fact 3. For two convex d-polytopes P1 and P2 repre-
sented by the set of points C1 and C2, respectively, the
two polytopes overlap iff the origin is in C1 ⊖ C2.

Separating Axis Theorem (SAT). Informally, the separat-
ing axis theorem states that two polytopes do not overlap
iff there is a separating axis between them which is either
perpendicular to a face of one of the polytopes or is per-
pendicular to an edge of either of the two polytopes [17].
An axis is a separating axis for two sets of points if the
projections of the sets of points on the axis are disjoint.
For d-dimensional cuboidal boxes, SAT checks O

(
d2
)

axes.

Fole : Ideal Function for Oblivious Linear Evaluation (OLE):
Parameters: Parties Alice and Bob, and finite field F
from which inputs are drawn.
Inputs: Alice has input x ∈ F and Bob has as input a
pair (u, v) ∈ F.
Output: Alice learns z = ux+ v. Bob learns ⊥.

Fvole : Ideal Function for Vector OLE (VOLE):
Parameters: Parties Alice and Bob, and finite field F
from which inputs are drawn.
Inputs: Alice has input x ∈ F and Bob has as input a
pair of vectors (u⃗, v⃗) ∈ Fd × Fd.
Output: Alice learns z⃗ = u⃗x+ v⃗. Bob learns ⊥.

Figure 2: Ideal functions for oblivious linear evaluation (OLE),
and vector oblivious linear evaluation (VOLE)

TABLE 2: Table of notation

Rd d-dimensional Euclidean space
p⃗t position vector of pt ∈ Rd

S d-dimensional Simplex
P d-dimensional polytope
B d-dimensional cuboidal box
C d-dimensional convex object

Volint volume of overlap of two d-dimensional convex bodies
Volapprx approximate volume of overlap of two d-dimensional

convex bodies

3.2. Cryptographic Primitives

Cryptographic Notation: We use the following standard
notations: F is a finite field with |F| = O

(
2λ

)
, and λ is a

security parameter. negl(·) is a function that is negligible
in the input parameter; e.g., negl(λ) = O

(
2−λ

)
.

Oblivious Linear Evaluation (OLE): Oblivious linear
evaluation (OLE) is a two-party cryptographic primitive
wherein Alice inputs x ∈ F; Bob inputs u, v ∈ F; and
Alice obtains ux+ v without learning u and v.
Vector Oblivious Linear Evaluation (VOLE): Vector
OLE (VOLE) is an extension of the OLE functionality,
where Bob’s input is a pair of vectors, and Alice learns
a linear combination of the vectors. Fig. 2 describes the
VOLE functionality. The state-of-the-art VOLE protocol
[42] is based on the learning parity with noise (LPN)
assumption. Further technical details can be found in [42].
Garbled Circuit: Yao’s garbled circuit [28, 43] is a
generic tool for secure two-party computation which en-
ables two parties, a circuit generator and evaluator jointly
compute a function that is encoded as a boolean circuit.
There is extensive research on optimizing garbled circuit
constructions and their applications [25, 38, 46]. We will
make black box use of existing garbled circuit construc-
tions, and in particular circuits that solve the millionaire’s
problem where one party holds a value a and the other
party holds a value b, and they compute whether a > b
(and resp. b > a) without revealing the values.

4. Security Definitions

Parties: We assume that two semi-honest (a.k.a. honest-
but-curious) mutually untrusting parties Alice and Bob run

the protocols. The parties may learn information from the
intermediate results but do not deviate from the protocol.

Assumptions: We make the following assumptions:
(1) Finite Space: The Euclidean space under considera-

tion for all protocols is bounded, and the parties know
the end-points along all of the axes. This is reasonable
since compute devices at a particular location only
have a limited and finite visibility, and can sense
points in the space with only finite precision.

(2) Common Frame of Reference: Parties have the same
frame of reference for a d-dimensional Euclidean
space in Rd; i.e., the origin in Alice and Bob’s views
of Rd coincide, and the d axes are correspondingly
aligned1. So, any region is represented the same by
each of them. We also assume (for simplicity) that
all points, geometric objects, etc., that we consider
reside in a space with positive coordinates; e.g., when
considering a 2-dimensional space, we assume that all
points, objects are in the first quadrant.

(3) Computational Assumptions: Since the protocols
are described are over Rd, we need to deal with coor-
dinates in R. Since the space is finite, the fixed point
representations of the coordinates in the space can be
mapped to a finite field. We assume (unless stated
otherwise) that the coordinates used in our protocols
are fixed-point representations of real numbers. Even
without fixed point representations there are tech-
niques to map rational numbers to finite fields [5, 12].
However, since such techniques are not a contribution
of this work, we omit these details here.

(4) Convex Regions: The (two-party) protocols we will
describe are primarily designed for convex objects.
Nonetheless, our protocols can be extended to non-
convex objects using standard techniques like convex
decomposition2 (wherever applicable). This transfor-
mation comes at the cost of additional pre-processing
that is performed locally at each party.

Definition 3 (Private Point Query). A private point query
protocol between two mutually untrusting semi-honest
parties, Alice and Bob, with inputs a point pt ∈ Rd and
a d-polytope P respectively, returns to Alice TRUE iff
pt ∈ P and FALSE otherwise. Bob learns nothing.

The protocol only returns a boolean decision; when
the protocol returns TRUE, Alice learns that pt lies inside
or on the boundary of P and nothing more. If the protocol
returns FALSE, alice does not learn any information about
P including the relative positioning of pt to P .

Definition 4 (Private Bounding Box Overlap Query). A
private bounding box overlap query protocol between
two mutually untrusting semi-honest parties with inputs
cubioidal bounding boxes B1 and B2 respectively, returns
to either of the parties TRUE iff B1∩B2 ̸= ∅, and FALSE
otherwise. The other party learns nothing.

It is known that the task of computing the exact
volume of the overlapping region of two polytopes with
cost sub-exponential in the number of dimensions is

1. To the best of our knowledge, proposals for inter-vehicle communi-
cation assume a global frame of reference (like GPS). A car’s local view
can be converted to this frame of reference using internal processing [31].

2. https://doc.cgal.org/latest/Convex decomposition 3/index.html

Fd
dot : Ideal Function for Vector Dot Product Range Check:

Parameters: Parties Alice and Bob. A Euclidean space Rd, and a
range of values [lower, upper] where lower, upper ∈ R, upper >
lower.
Inputs: Alice has input a⃗ ∈ Rd and Bob has input b⃗ ∈ Rd.

Output: Alice outputs TRUE if a⃗ · b⃗ ∈ [lower, upper] and
FALSE otherwise. Bob outputs ⊥.

Fd
bmul : Ideal Function Blinded Matrix Multiplication:

Parameters: Parties Alice and Bob, and a finite field F.
Inputs: Alice has input a⃗ ∈ Fd and Bob has as inputs a matrix
F ∈ Fϕ×d and a randomly sampled vectors r⃗ ∈ Fϕ.
Output: Alice outputs m⃗′ := F · a⃗+ r⃗ without learning F and
r⃗. Bob outputs ⊥.

Figure 3: Ideal functions for i) computing the dot product
between two vectors and comparing the output against a range
of values, and ii) computing a “blinded” dot product between a
matrix and a vector.

intractable. Hence, we turn to an approximation which
takes a slack parameter δ and an error probability ϵ, and
computes an approximate volume of overlap [3].

Definition 5 (Private Volume of Overlap Estimation). A
private approximate volume of overlap estimation protocol
between two mutually untrusting semi-honest parties with
inputs d-polytopes P1 and P2 respectively, returns to
either of the parties Volapprx ∈ R≥0 such that

P [Volint − δ ≤ Volapprx ≤ Volint + δ] ≥ 1− ϵ

where Volint is the volume of the overlapping region of
P1 and P2, δ ∈ (0, 1) is an input slack parameter, and ϵ ∈
(0, 1) is an input error probability for the approximation.

5. Cryptographic Building Blocks

This section describes the tools that we will use to
build our protocols in the next sections. As discussed
before, we use simple and computationally-efficient tools
keeping in mind that ultimately these protocols will be
deployed on resource-constrained devices. As such, we
will avoid expensive machinery, e.g., fully homomorphic
encryption, despite the fact that in some cases they may
come with additional benefits and features.

5.1. Privacy-Preserving Dot Product Computa-
tion & Range Check

In our protocols, we require a mechanism to check if
the dot product between two vectors lies in a range of
values, e.g., less than 0. The ideal function is defined in
Fig. 3. There are several ways to realize this functionality;
the obvious ones include using a garbled circuit or fully
homomorphic encryption to compute the dot product and
compare the output with the range end points. In addition,
Atallah and Du [2] present a protocol that combines
additively homomorphic encrytion with garbled circuits.

We take a more efficient alternative approach: we
realize Fd

dot using a combination of oblivious linear eval-
uations (in a field), and a garbled circuit solving the mil-
lionaire’s problem (or a private range checking protocol).

The idea is as follows (see Fig. 4): given a⃗ =
{a1, . . . , ad} and b⃗ = {b1, . . . , bd}, Alice and Bob map

Parameters: Parties Alice and Bob. Alice’s input is a vector a⃗ =
{a1, . . . , ad} ∈ Rd, and Bob’s input is a vector b⃗ = {b1, . . . , bd} ∈
Rd. A finite field F of order O(λ) bits.

[Compute Blinded Result]
(1) Using a fixed point representation of a1, . . . , ad, Alice maps the

values to values in F. Bob similarly maps the values of b1, . . . , bd
to values in F.

(2) Bob uniformly samples d elements r1, . . . , rd
$
:= F.

(3) For each i ∈ [1, d], Alice and Bob call Fole :
• Alice’s input is ai

• Bob’s input is bi and ri
• Alice learns aibi + ri.

(4) Alice computes s =
d∑

i=1

aibi + ri.

[Check Result]
To check if the dot product lies in some range [lower, upper], Bob gener-

ates a garbled circuit which takes as input s from Alice and r =
d∑

i=1

ri.

The circuit computes s − r (in the field) and checks if the value lies in
[lower, upper].

Figure 4: DotProdCheck: Private dot product of two vectors
and checking if the output lies in a range of values.

their respective vector components to values in a finite
field F using fixed-point representations. Then, Bob sam-
ples a vector r⃗ := [r1, . . . , rd] with random elements from
F, and using d calls to Fole , Alice and Bob compute for
each i ∈ [1, d], aibi + ri (see line 3 of Fig. 4). It may
be evident that summing up these values provides the dot

product of a⃗ and b⃗, blinded by the value of
d∑

i=1

ri.

Subsequently, Alice and Bob “deblind” the values
inside a garbled circuit generated by Bob and check if
the values are in the provided range. This is a series of
subtractions (in the field) followed by solving the million-
aire’s problem and is significantly faster than computing
the dot product entirely inside the garbled circuit.
Mapping Inputs to Field Elements: Since the first part
of our protocol computes on values in F, we need to
specifically define ranges to distinguish between positive
and negative values in the garbled circuit later in the
protocol. We use a fixed-point representation scheme that
converts the coordinates of the points used in our protocol
to integers in range [−ρ, ρ], where ρ is fixed based on the
size of the space and the desired level of precision. These
integers are then mapped to field elements in F.

Effectively, all vector components are mapped to field
elements in [−ρ, ρ]. It is easy to see that in this case
d∑

i=1

aibi ∈ [|F| − dρ2, dρ2] where the range [0, dρ2] rep-

resents the case
d∑

i=1

aibi ≥ 0 and [|F| − dρ2, |F| − 1]

represents the case otherwise. To distinguish the two
cases, we need to make sure that the ranges are disjoint;
we require that |F| − dρ2 > dρ2. As a running example,
consider d = 3 and ρ = 232. Then, |F| ≥ 268 suffices.

Theorem 1. Assuming that there is a protocol that realizes
Fole with O(λ) bits of communication, DotProdCheck
realizes Fd

dot with O(dλ) bits communication.

5.2. Blinded Matrix Dot Product Computation

Our protocols make extensive use of a primitive that
computes a dot product of a vector input by one party

Parameters: Parties Alice and Bob and a finite field F of order O(λ) bits.
Alice’s input is a vector a⃗ = {a1, . . . , ad} ∈ Fd, and Bob’s inputs are:
i) a matrix F ∈ Fϕ×d

F :=

c1,1 · · · c1,d

...
...

cϕ,1 · · · cϕ,d

and ii) a vector r⃗ ∈ Fϕ = [r1, . . . , rϕ] of random elements.

Protocol
(1) Bob samples a matrix R ∈ Fϕ×d

R :=

r1,1 . . . r1,d

...
...

rϕ,1 . . . rϕ,d

such that for i ∈ [1, ϕ],

d∑
j=1

ri,j = ri.

(2) Alice and Bob call Fvole d times such that in the j-th call:
• Alice’s input is aj .
• Bob’s inputs are the vectors corresponding to the j-th column of

F denoted by F [∗ : j] and the j-th column of R denoted by
R[∗ : j].

• Alice learns a vector [ajc1,j + r1,j , . . . , ajcϕ,j + rϕ,j].
(3) Using the values obtained above, Alice computes the matrix

M
′
:=

a1c1,1 + r1,1 . . . adc1,d + r1,d

...
...

a1cϕ,1 + rϕ,1 . . . adcϕ,d + rϕ,d

(4) Alice computes and outputs the vector m⃗′ := [m′

1, . . . ,m
′
ϕ] such

that m′
i =

d∑
j=1

M ′[i, j].

Figure 5: BlindedMatrixMultiply: Computation of dot product
between a vector and a matrix blinded by random values.

with a set of vectors (matrix) input by the other party, and
checks that outputs lie within a range of values. To achieve
this, we will use a “blinded” dot product computation
between a vector of one party and the rows of a matrix
representing the vectors of the other party. The ideal
function, Fd

bmul , is defined in Fig. 3. This can be realized
using Fd

dot , i.e., computing the dot product between the
input vector and each row of the matrix. However, a faster
process exists using Fvole as the underlying primitive.

The idea is as follows: let a⃗ be the vector input by
Alice and let F be the matrix input by Bob. In the protocol,
Bob samples a matrix of ϕ× d dimensions, R, where the
elements of the ith row sum up to the ith component of
r⃗ (see line 1 of Fig. 5). Then, using calls to Fvole , Alice
and Bob compute the matrix M ′ where the jth column
of the matrix is computed as aj × F [∗ : j] + R[∗ : j],
i.e., a scalar product between the jth column of F and
the jth component of a⃗ followed by an addition with the
jth column of R (see line 2 of Fig. 5).

Summing up the values in the ith row of M ′ gives
the dot product of a⃗ and the vector in the ith row of F
blinded by the summation of the values in the ith row of
R. Alice outputs the per-row sum of M ′ as the components
of the output vector m⃗′ (see line 4 of Fig. 5). Depending
on the protocol, the components of the blinded vector can
then be checked either inside a garbled circuit, or with a
dedicated private range checking algorithm [4].

Theorem 2. Assuming that there is a protocol realizing
Fvole for ϕ-length vectors with O(ϕλ) bits of communica-
tion, BlindedMatrixMultiply realizes Fd

bmul with O(ϕdλ)
bits of communication.

Parameters: Parties Alice and Bob. Alice’s input is a point pt ∈ Rd with
position vector (with respect to the origin) p⃗t = [x1, . . . , xd]. Bob’s
input is a closed, convex polytope P with ϕ faces in Rd. A finite field F
and a fixed-point representation of all coordinates that maps the positive
coordinates (and 0) to [0, ρ] and the negative coordinates to [|F|−ρ, |F|−
1] in F.

[Compute Blinded Result Vector:]
(1) For the faces of P , f1, . . . , fϕ, Bob computes the inward facing

normal vectors of the faces, f⃗1, . . . , f⃗ϕ and correspondingly the face
normal matrix

F =

c1,1 · · · c1,d

...
...

cϕ,1 · · · cϕ,d

(2) Let p1, . . . , pϕ be a vertex on the faces f1, . . . , fϕ respectively. Bob

computes the position vectors of p1, . . . , pϕ, denoted p⃗1, . . . , p⃗ϕ,
with respect to the origin, and computes f⃗p = [x′

1, . . . , x
′
i] where

x′
i = f⃗i · p⃗i.

(3) Bob samples a random vector r⃗ = [r1, . . . , rϕ] ∈ Fϕ.
(4) Alice and Bob call Fd

bmul with inputs p⃗t, and F , r⃗− f⃗p respectively.
This returns m⃗′ to Alice where for i ∈ [1, ϕ],

m′
i = p⃗t · F [i : ∗] + ri − x′

i

[Check Result Vector:]
(5) Bob generates a garbled circuit which takes m⃗′ as Alice’s input and r⃗

as Bob’s input. The circuit computes m⃗ := m⃗′ − r⃗, and checks that
all the components are in the range [0, dρ2].

(6) The circuit returns to Alice TRUE if the check returns true. Otherwise,
the circuit returns FALSE. Alice outputs the result.

Figure 6: PointQueryGeneral: Protocol for privately determin-
ing if a point lies in an arbitrary d-polytope.

6. Private Point Query

In this section, we will present two protocols for
private point queries (see Definition 3): a general protocol
where the input is an arbitrary d-polytope (Sec. 6.1), and
a more efficient protocol for d-simplices (Sec. 6.2).

6.1. Protocol for Arbitrary Polytopes

Intuition: The key idea behind the protocol is based on
Fact 1. More specifically, let pt ∈ Rd be a secret point
known to Alice while P is a convex polytope with ϕ
faces, f1, . . . , fi, known to Bob. For each face of P , Bob
computes the inward normal vector. Let {f⃗1, . . . , f⃗ϕ} be
the set of normal vectors. Also, let p1, . . . , pϕ be arbitrary
points on f1, . . . , fϕ (say one of the vertices) respectively,
and let p⃗ti is the position vector of pt with respect to pi.
Then, Alice and Bob jointly compute and check whether
p⃗ti · f⃗i ≥ 0 for each i ∈ [1, ϕ].

First note that p⃗ti = p⃗t − p⃗i where p⃗t and p⃗i are
position vectors with respect to the origin. Define p⃗t =
[x1, . . . , xd] and let f⃗i = ci,1x̂1 + . . . + ci,dx̂d, for each
i ∈ [1, ϕ]. Finally, let f⃗p = [x′

1, . . . , x
′
ϕ] be a vector such

that x′
i = f⃗i · p⃗i. If pt ∈ P , we have for each i ∈ [1, ϕ],

f⃗i · p⃗ti = f⃗i · (p⃗t− p⃗i) ≥ 0. In matrix form,

Fc1,1 · · · c1,d
...

...
cϕ,1 · · · cϕ,d

p⃗tx1

...
xd

 −

f⃗px
′
1
...
x′
ϕ

=
m⃗m1

...
mϕ

≥
0...
0

Our strategy to implement this check privately is a

two-step process. Let m⃗ := F · p⃗t− f⃗p. In the first step,

Alice learns m⃗′ := F · p⃗t − f⃗p + r⃗ where r⃗ is a vector
with random elements sampled by Bob. In the second step,
Alice and Bob use a generic 2PC circuit to check that for
all i ∈ [1, ϕ],m′

i − ri ≥ 0 where m′
i and ri are the i-th

component of m⃗′ and r⃗ respectively. This is essentially
solving a millionaire’s problem.

We will use Fd
bmul to compute m⃗′ in the first step

(see lines 3–4 of Fig. 6). Then, the second step involves
generating a garbled circuit distinguishing positive and
negative values in the components of m⃗′ (see lines 5–6).
Communication Cost & Security: The interactive step of
the protocol are the calls to Fd

bmul which requies O(ϕdλ)
bits of communication and the garbled circuit computa-
tion, where Alice’s and Bob’s inputs are ϕ-length vectors.
Thus, the overall communication cost of the protocol is
O(ϕdλ) bits when BlindedMatrixMultiply is used to real-
ize Fd

bmul . The security of the scheme likewise depends on
the security of BlindedMatrixMultiply securely realizing
Fd

bmul , which we show in Theorem 2.
Scaling to Multiple Polytopes: The protocol described
in Fig. 6 considers that Alice’s input is a point pt while
Bob’s input is a polytope P . The protocol can be easily
adapted to the scenario where Bob’s input is a set of poly-
topes, P1, . . . ,Pn with ϕ faces each. Instead of running
n instances of PointQueryGeneral with pt and each of
{P1, . . . ,Pn} as input, we leverage the fact that Fvole can
be used to batch the dot-product computation across all
instances with low amortized communication and compute
costs. This leads to an optimized protocol that scales better
with n (as we will demonstrate in Sec. 9).

Specifically, consider that F1, . . . , Fn are the face
normal matrices for these polytopes. Consider the matrix
F ′ = F1|| . . . ||Fn ∈ Rnϕ×d where F ′ is generated by
concatenating F1, . . . , Fn row-wise. Then, (pt ∈ P1) ∨
· · · ∨ (pt ∈ Pn) iff there is some t ∈ [1, n] such that
Ft · p⃗t− f⃗pt ≥ [0, . . . , 0]. For this the protocol computes
a “blinded” version of

F
′ c1,1 · · · c1,d

...
...

cnϕ,1 · · · cnϕ,d

p⃗tx1

...
xd

 −

f⃗p
′ x′
1
...

x′
nϕ

This computation is performed using d calls to Fvole

with Bob’s inputs being columns of F ′ and random vec-
tors of length nϕ. The rest of the steps of the protocol
require only minor modifications to account for the fact
that there are n polytopes. We omit further details.

6.2. Protocol for Simplex

Intuition: Our protocol expands on the discussion in
Sec. 3. Utilizing the properties of a simplex, we are able
to replace a garbled circuit with a dedicated private range
checking protocol, and eliminate several expensive steps
including pre-computing the faces and the face normal
vector. Specifically, given a d-simplex with the set of ver-
tices {v1, . . . , vd+1} and a point pt = (x1, . . . , xd) ∈ Rd,
let (a1, . . . , ad+1) be the barycentric coordinates of pt
relative to the simplex. Then we have for each i ∈ [1, d+
1], ai ∈ [0, 1] iff pt lies inside (or on the boundary) of the

Parameters: Parties Alice and Bob. Alice’s input is a point pt ∈ Rd with
position vector p⃗t = [x1, . . . , xd]. Bob’s input is a d-simplex in Rd

with {v1, . . . , vd+1} being the vertices of the simplex. A finite field F
and a fixed-point representation of all coordinates that maps the positive
coordinates (and 0) to [0, ρ] and the negative coordinates to [|F|−ρ, |F|−
1] in F. Precision γ for the fixed-point representation.

[Compute Blinded Coordinates:]
(1) Bob samples a random vector r⃗ = [r1, . . . , rd] ∈ Fd,
(2) Bob computes V and its inverse where

V :=

v1,1 − vd+1,1 . . . v1,d − vd+1,d

...
...

vd,1 − vd+1,1 . . . vd,d − vd+1,d

V
−1

:=

v′
1,1 . . . v′

1,d

...
...

v′
d,1 . . . v′

d,d

(3) Alice and Bob call Fd

bmul where Alice’s input is p⃗t, and Bob’s inputs
are V −1 and the vector r⃗ − V −1 · ⃗vd+1.

(4) Alice receives a⃗′ from Fd
bmul . Alice computes a′

d+1 = 1 × 10γ −
d∑

i=1

a⃗′[i].

[Check Barycentric Coordinates:]
(5) Bob generates a garbled circuit where Alice’s input is a⃗′ and Bob’s

input is r⃗. The circuit computes m⃗ := a⃗′ − r⃗′, and checks that all
the components of the vectors are in [0, 10γ].

(6) The circuit returns to Alice TRUE if the check returns TRUE. Other-
wise, the circuit returns FALSE. Alice outputs the result.

Figure 7: PointQuerySimplex: Protocol for privately determin-
ing if a point lies in a d-simplex.

simplex. Mathematically, let vi = (vi,1, . . . , vi,d) ∈ Rd.
The barycentric coordinates of pt are as follows.

Vv1,1 − vd+1,1 . . . v1,d − vd+1,d

...
...

vd,1 − vd+1,1 . . . vd,d − vd+1,d

a⃗a1

...
ad

=
p⃗tx1

...
xd

 −

v⃗d+1vd+1,1

...
vd+1,d

In our protocol, we will compute a⃗

a⃗ = V −1 · (p⃗t− v⃗d+1)

where p⃗t and v⃗d+1 are the position vectors of pt and
vd+1. In order to compute V −1 · (p⃗t− v⃗d+1), the protocol
(see Fig. 7) uses Fd

bmul . Alice’s input to Fd
bmul is p⃗t and

Bob’s inputs are V −1 and the vector r⃗−V −1 · v⃗d+1 where
r⃗ ∈ Fd is a vector of random elements (see line 3 of
Fig. 7). Fd

bmul returns to Alice a⃗ “blinded” by r⃗. These
values are then “de-blinded”, and the components are
checked against the range of values in [0, 1] (adjusted to
the fixed-point representation) (see line 5 of Fig. 7). For
simplicity, the protocol description in Fig. 7 shows how
to realize this using a garbled circuit, and we will desribe
later how this can be replaced with a dedicated private
range checking protocol. Also, the protocol checks that

ad+1 = 1−
d∑

i=1

ai ∈ [0, 1] (see line 4 of Fig. 7).

Communication Cost & Security: The communication
cost of the protocol is straightforward: the interactive
step calls Fd

bmul with the a matrix of dimension d × d
and a vector of length d. The overall communication
complexity is O

(
d2λ

)
bits of communication when using

BlindedMatrixMultiply as the protocol realizing Fd
bmul .

The security of the scheme also relies on the security of
BlindedMatrixMultiply, which we show in Theorem 2.

Parameters: Parties Alice and Bob. Inputs BAlice and BBob. Let pta =
(pta,1, . . . , pta,d) and ptb = (ptb,1, . . . , ptb,d) be the coordi-
nates of the topmost, left corner of BAlice and BBob respectively. Let
ℓa,1, . . . , ℓa,d and ℓb,1, . . . , ℓb,d be the lengths of the edges of BAlice

and BBob respectively along the d axes.

[Detect Bounding Box Overlap]
(1) Bob creates a garbled circuit which computes BAlice ⊖ BBob as

follows:
a) Compute ptr = (ptr,1, . . . , ptr,d) ∈ Rd such that ptr,i :=

pta,i − ptb,i − ℓb,i.
b) For m ∈ [1, d], compute ℓr,m = ℓa,m + ℓb,m.
c) For m ∈ [1, d], check if ptr,m ≤ 0 ≤ ptr,m + ℓr,m.
d) Return TRUE iff all the the above checks return TRUE.

Figure 8: OverlapAABB: Protocol to detect if two d-
dimensional axis-aligned bounding boxes overlap.

Replacing the Garbled Circuit with Range Checking:
An advantage of barycentric coordinates is that since the
components of a⃗ have to be checked against a range of
values with defined upper and lower limits, we can employ
a dedicated private range checking algorithm [4] instead of
a garbled circuit to solve the millionaire’s problem. Cast-
ing this to our protocol, we will check that all components
of a⃗′ are in the range [r, r+10γ] (in the field) where γ is
the precision parameter of the fixed point representation.
The communication cost to check each component in this
case scales linearly in γ. More details can be found in [4].

7. Private Bounding Box Overlap Query

This section provides protocols for private bounding
box overlap queries (see Definition 4) . We consider two
types of bounding boxes: i) axis-aligned boxes (AABB),
and ii) oriented boxes (OBB). AABBs are rectangular
bounding boxes where the edges of the box are aligned
with the canonical axes of the space in which the box
resides, and are used in majority of the applications since
they are easy to compute and detect overlaps with. OBBs
are rectangular bounding boxes where the edges are not
aligned with the axes of the space in which the box resides
and may often better describe a complex shape. First,
we will describe a simple protocol in Sec. 7.1 to detect
overlaps of axis-aligned boxes. Then, we will provide a
protocol detecting overlaps of oriented boxes in Sec. 7.2.

7.1. Detecting Overlap of Axis-aligned Boxes

We can detect when two axis-aligned bounding boxes
overlap by checking if any of the vertices of one box lies
within the other box. There are 2d vertices and a protocol
built on this idea will have costs scaling exponentially in
d. A more optimized protocol with cost scaling linearly
in d can be constructed based on Fact 3. Let BAlice and
BBob be the bounding box inputs of Alice and Bob. Alice
and Bob compute the Minkowski difference of BAlice and
BBob and then check if the origin is in BAlice ⊖ BBob.

The Minkowski difference of two axis-aligned boxes
is also an axis-aligned box and is easy to compute
[22]. Specifically, let BAlice and BBob be two axis-aligned
bounding boxes with pta = (pta,1, . . . , pta,d) ∈ Rd

and ptb = (ptb,1, . . . , ptb,d) ∈ Rd being the coordinates
of the top, leftmost corner vertex of BAlice and BBob

respectively. Also, let the lengths of the edges of BAlice

along the d-axes be ℓa,1, . . . , ℓa,d. Similarly, let the lengths

Parameters: Parties Alice and Bob. Inputs BAlice and BBob that have arbi-
trary orientations. Let the set of edges of BAlice be {Edge1, . . . , Edget}
where t = 2d and the set of faces of BBob be {Face1, . . . , Faceϕ}. A
finite field F and a fixed-point representation of all coordinates that maps
the positive coordinates (and 0) to [0, ρ] and the negative coordinates to
[|F| − ρ, |F| − 1] in F.

[Detect Edge-Face Intersection]
(1) Let the equation of the plane corresponding to Facej be cj,1x1 +

· · · + cj,dxd + cj,d+1 = 0. Bob computes the matrix

F :=

c1,1 . . . c1,d

...
...

cϕ,1 . . . cϕ,d

(2) Bob samples two random vectors r⃗1, r⃗2 ∈ Fϕ.
(3) Alice and Bob repeat the following for each edge

{Edge1, . . . , Edget}
a) Let pt1 := (x1,1, . . . , x1,d) and pt2 := (x2,1, . . . , x2,d)

be the end points of the line segment representing the edge, and
let p⃗t1 and p⃗t2 be their position vectors respectively.

b) Alice and Bob call Fd
bmul twice: in the first call, Alice’s input

is p⃗t1, and Bob’s inputs are F and r⃗1, while in the second call
Alice’s input is p⃗t2, and Bob’s inputs are F and r⃗2. Alice’s
outputs are m⃗′

1 and m⃗′
2 respectively.

c) Using a garbled circuit generated by Bob, Alice and Bob
compute m⃗1 := m⃗′

1 − r⃗1 and m⃗2 := m⃗′
2 − r⃗2. Let m⃗1 =

[m1,1, . . . ,m1,ϕ], m⃗2 = [m2,1, . . . ,m2,ϕ]. The circuit
checks if there is some i ∈ [1, ϕ], sgn(m1,i) ̸= sgn(m2,i),
i.e., (

(m1,i ∈ [0, dρ2]) ∧ (m2,i ∈ [|F| − dρ2, 0])
)

∨
(
(m1,i ∈ [|F| − dρ2, 0]) ∧ (m2,i ∈ [0, dρ2])

)
(1)

If so, then output TRUE.

[Detect Enclosing Object]
Alice selects an arbitrary point pta from within BAlice. Alice and Bob call
Fd

ppq with pta and BBob as inputs. If Fd
ppq outputs TRUE, then output

TRUE. Bob selects an arbitrary point ptb from within BBob. Alice and
Bob call Fd

ppq with ptb and BAlice as inputs. If Fd
ppq outputs TRUE, then

output TRUE.

Figure 9: OverlapOBB: Protocol for detecting if two d-
dimensional arbitrarily oriented bounding boxes overlap.

of the edges of BBob along the axes be ℓb,1, . . . , ℓb,d. If
ptr = (ptr,1, . . . , ptr,d) is the top, leftmost corner vertex
of BAlice ⊖ BBob, then for m ∈ [1, d]

ptr,m = pta,m − ptb,m − ℓb,m

Similarly, the length of the edges of BAlice⊖BBob along
the d axes, m ∈ [1, d] is given by

ℓr,m := ℓa,m + ℓb,m

OverlapAABB (Fig. 8) realizes this idea using a gar-
bled circuit, which computes BAlice ⊖ BBob (lines 1a–1b)
and then checks if the origin lies inside (line 1c)
Communication Cost & Security: OverlapAABB re-
quires O(d) bits of communication as the lengths of the
edges along each axis is input into the garbled circuit by
either party. The security of the scheme is straightforward:
any scheme implementing Yao’s garbled circuit for two-
party can be used to securely implement OverlapAABB.

7.2. Detecting Overlap of Oriented Boxes

Detecting if two oriented boxes overlap is significantly
more complex than the case for axis-aligned boxes 3. In

3. The idea of using the Minkowski difference can be applied to
oriented boxes as well, however computing the Minkowski difference of
two oriented boxes is expensive inside a secure computation framework

a non-private setting, the simplest way to detect if two
oriented boxes intersect is by using the separating axis
theorem (SAT) whereby the protocol tries to find a axis
such that the projections of the boxes along this axis are
disjoint (see Sec. 3.1).

In order to implement SAT over two boxes privately,
the axes along which the projections are checked are also
generated securely. That is, the parties input the vector
corresponding to the edges of their boxes into a secure
computation framework (e.g., a garbled circuit) which i)
computes the axes by computing the cross product of the
edges, ii) computes the projections of the two boxes on
the axes, and iii) checks if there is an axis along which
the ranges corresponding to the projections are disjoint.
Due to the vector operations inside the garbled circuit,
the process is computationally expensive.

We will present a computationally faster (albeit less
sophisticated) protocol that can be realized in a private
setting with lower communication and compute overheads
for low dimensions. The protocol is based on the following

Fact 4 ([17]). When two cuboidal boxes overlap, one of
two cases are possible: i) there is at least one edge of one
box that intersects with one (or more) face of the other
box, or ii) one box completely encloses the other box.

In our protocol, we will check for both conditions.
When the second condition holds, any arbitrary point
selected from the inner box will lie inside the outer box.
We will employ a private point query protocol to check if
a point in one box lies inside the other box. The first con-
dition requires more attention and for this we will rely on
the fact that we can detect when a line segment intersects
a plane by simply plugging in the coordinates of the end-
points of the line segment in the equation of the plane
and check if the values obtained are of opposite signs.
Specifically, consider that the point pt1 = (x1,1, . . . , x1,d)
and pt2 = (x2,1, . . . , x2,d) are the end points of a line
segment, and c1x1+ · · ·+cdxd+cd+1 = 0 is the equation
of a plane. Then, the line segment intersects the plane iff

sgn(c1x1,1+ · · ·+cd+1) ̸= sgn(c1x2,1+ · · ·+cd+1) (2)

OverlapOBB (Fig. 9) describes a private protocol
based on this idea. Bob first computes the matrix F using
the equations of all of the ϕ faces of BBob (line 1).

F :=

c1,1 . . . c1,d
...

...
cϕ,1 . . . cϕ,d

Then, for the end-points of each edge in BAlice, pt1

and pt2 and their position vectors p⃗t1 and p⃗t2, Alice and
Bob call Fd

bmul twice (see line 4b of Fig. 9): in the first
call Alice’s input is p⃗t1 and Bob’s inputs are F and a
randomly sampled vector r⃗1 ∈ Fϕ, and in the second call
Alice’s input is p⃗t2 and Bob’s inputs are F and a randomly
sampled vector r⃗2 ∈ Fϕ. Alice learns the dot product of
p⃗t1 and each of the face normal vectors in F blinded by
r⃗1 in m⃗′

1. Similarly, Alice learns m⃗′
2 respectively. With

these as Alice’s input and r⃗1 and r⃗2 as Bob’s inputs, Alice
and Bob ”deblind” the values inside a garbled circuit and
check if (2) holds (see line 4c).

Parameters: Parties Alice and Bob. Alice’s input is a closed
convex body CAlice and Bob’s input is a closed convex body CBob
in Rd. A jointly selected slack parameter, δ ∈ (0, 1).
[Compute Approximate Volume of CAlice ∩ CBob]

(1) Using VolumeQuery, Alice and Bob determine the volumes
of CAlice and CBob: VolAlice := Vol(CAlice), VolBob :=
Vol(CBob).

(2) Assuming Vol(CAlice) < Vol(CBob) let Volmin := VolAlice;
(3) Alice randomly samples N = O

(
1
δ2

)
point pt1, . . . , ptN

such that ptk := SampleQuery(CAlice) where k ∈ [1, N]
(4) Alice initializes a set of indicator variables {Z1, . . . , ZN}.

For each k ∈ [1, N], Alice calls PointQuery(ptk, CBob).
If PointQuery returns TRUE for ptk , Alice sets Zk = 1.
Otherwise, Alice sets Zk = 0.

(5) Alice outputs Volapprx := Volmin × 1
N

(Z1 + · · ·+ ZN).

Figure 10: Non-private approximation of volume of over-
lapping regions [3]

Communication Cost & Security: OverlapOBB makes
2× the number of edges calls to Fd

bmul , each call process-
ing a specific vertex of Alice’s input box. Implemented
naively (as in Fig. 9), this would process each vertex
multiple times since a vertex is shared by multiple edges.
Alternatively, it suffices to process each vertex separately,
and then use the results to check (2). In this way, the
number of calls to Fd

bmul is equal to the number of the
vertices of the box, which is 2d. The overall communica-
tion complexity is O

(
2dϕdλ

)
bits of communication when

BlindedMatrixMultiply is used to implement Fd
bmul . The

security of the protocol relies on BlindedMatrixMultiply
securely realizing Fd

bmul (shown in Theorem 2), and a
secure implementation of a garbled circuit.
Scaling to Multiple Boxes: OverlapOBB assumes that
Alice’s input is a bounding box BAlice and Bob’s input
is BBob. The protocol can be adapted to the case where
Bob’s input is a set of n boxes. Instead of running n
instances of OverlapOBB with each of Bob’s input we can
use the optimization proposed for PointQueryGeneral (see
Sec. 6) by batching the dot-product computations required
across all boxes (see line 4b of Fig. 9 for reference)
using Fvole . The resulting protocol has lower amortized
communication cost and compute time. We omit further
details as the steps are similar to the ones in Sec. 6.

8. Measuring Volume of Overlap

Even in a non-private setting, computing the intersec-
tion of simple closed convex bodies, e.g., axis-aligned
boxes, given the vertices of the boxes is challenging. It
is known that the problem is #P-hard, and there is no
algorithm with costs scaling polynomially in the number
of dimensions. To circumvent this problem, there is a line
of work on approximating the volume of intersection for
a large class of bodies. The algorithm (see Algorithm 10)
relies on three types of oracles for answering queries:
(1) Point Query Oracle PointQuery(pt, C): Given a

point pt ∈ Rd and a convex body C, it return TRUE
iff there is a body C′ in Rd such that pt ∈ C′ and
Vol((C′ \C)∪ (C \C′)) ≤ ϵpVol(C) where ϵp ∈ (0, 1).

(2) Volume Query Oracle VolumeQuery(C): Returns
a value Volapprx such that (1 − ϵv) Vol(C) ≤
Volapprx ≤ (1− ϵv) Vol(C) where ϵv ∈ (0, 1).

Parameters: Parties Alice and Bob. Alice’s input is a d-polytope PAlice

and Bob’s input is a d-polytope PBob. Alice and Bob have access to
volume and sample query oracles, VolumeQuery and SampleQuery re-
spectively. Alice and Bob fix an error probability ϵ ∈ (0, 1) and a slack
parameter δ ∈ (0, 1).

[Compute Approximate Volume of PAlice ∩ PBob]
(1) Alice and Bob compute VolAlice := VolumeQuery(PAlice) and

VolBob := VolumeQuery(PBob). Alice and Bob privately de-
termine min(VolAlice,VolBob) using a garbled circuit solving the
millionaire’s problem taking VolAlice and VolBob as inputs. W.l.o.g,
let this be PAlice.

(2) Alice and Bob perform the following steps for τ = 4
3 × ln(1

ϵ)
rounds. In the r-th round
a) Alice samples N = O

(
1
δ2

)
points from within PAlice,

{ptr,1, . . . , ptr,N} using SampleQuery(PAlice).
b) Alice initializes a set of indicator variables {Zr,1, . . . , Zr,N}.

For k ∈ [1, N], Alice and Bob call PointQueryGeneral with
ptr,k and CBob as input. If PointQueryGeneral returns TRUE
for ptr,k , Alice sets Zr,k = 1. Otherwise, Zr,k = 0.

c) Alice computes Volr := VolAlice × 1
N (Zr,1 + · · · + Zr,N)

(3) Alice outputs Volapprx as the median of the values Vol1, . . . ,Volτ
obtained in the τ rounds above.

Figure 11: ApprxOverlapVolume: Protocol for privately ap-
proximating the volume of intersection of two d-polytopes.

(3) Sample Query Oracle SampleQuery(C): Loosely
put, the oracle returns a uniformly random point
sampled from within C. 4

The algorithm outputs a value Volapprx ∈ R≥0 and
Bringmann and Friedrich [3] show that

P [Volint − δ · Volmin ≤ Volapprx ≤ Volint + δ · Volmin] ≥ 3
4

where Volint := Vol(CAlice ∩ CBob). The error probability
c = 1− 3

4 can be diminished through probability amplifi-
cation techniques5. Specifically, for a success probability
of 1− ϵ, the protocol is repeated poly(ϵ, c) times.

8.1. Private Approxinate Volume Estimation

We will now present a private protocol for approxi-
mating the volume of the overlapping region of two d-
polytopes satisfying Definition 5. The protocol denoted
ApprxOverlapVolume, implements Algorithm 10 using
a private point query protocol instantiated either with
PointQueryGeneral or PointQuerySimplex depending on
the type of input. Alice and Bob select an error proba-
bility ϵ ∈ (0, 1) and a slack parameter δ ∈ (0, 1). They
determine VolAlice = VolumeQuery(PAlice) and VolBob =
VolumeQuery(PBob) and min(VolAlice,VolBob) (see line 1
of Fig. 11). Assuming w.l.o.g. that min(VolAlice,VolBob) =
VolAlice, the rest of the steps are initiated by Alice.

Alice repeats the following steps for τ := O
(
ln 1

ϵ

)
rounds: Alice uniformly samples N = O

(
1
δ2

)
uniformly

random points pt1, . . . , ptN from within PAlice using
SampleQuery(PAlice). Alice and Bob call a private point
query protocol N times, with ptk as Alice’s input in the
k-th round, and PBob as Bob’s input (line 2). For each
point that the query returns TRUE, Alice increments a
counter. The approximate volume of overlap of PAlice and
PBob is proportional to the total value of the counter after
executing point queries over all N points. The protocol

4. Bringmann and Friedrich [3] formalize this idea to achieve almost
uniform random sampling for a body in Rd. We refer to that paper for
more details on how to realize this oracle.

5. https://www.cs.huji.ac.il/course/2006/tcsg/Tirgul/tirgul1.pdf

outputs the median value of all the values computed in
the previous τ rounds (line 3).
Volume of Overlap for Axis-Aligned Boxes: When
applying the protocol to the special case of axis-aligned
bounding boxes, we can apply PointQueryGeneral or
PointQuerySimplex to determine if a point lies inside a
box. However, a simpler and more efficient mechanism
exists to implement this check. Specifically, consider a
point pt = (x1, . . . xd) and an axis-aligned bounding box
B where each point inside (or on the boundary) of the
box lies within the range of values [x′

m,0, x
′
m,1] along the

m-th axis. This range of values for each axis can be easily
determined from the vertices of the box. Then, pt ∈ B iff

(x1 ∈ [x′
1,0, x

′
1,1]) ∧ · · · ∧ (xd ∈ [x′

d,0, x
′
d,1])

The check can be implemented by solving d instances
of the millionaire’s problem and a series of logical AND
operations in a garbled circuit; we omit the details of this
straightforward implementation.
Communication Cost & Security: The communication
cost of the protcol depends on the instantiation of private
point queries. When instantiated with PointQueryGeneral,
ApprxOverlapVolume requires O

(
1
δ2 ln

1
ϵ · ϕdλ

)
bits of

communication where the ϕ is the number of faces of
Bob’s input polytope. Also, the security of the protocol
directly reduces to the security of the protocol used to
realize private point queries. For the protocols presented
in this paper, the security of ApprxOverlapVolume reduces
to the arguments presented in Sec. 6 showing security of
PointQueryGeneral and PointQuerySimplex.

9. Evaluation

We implemented all the protocols presented in this
paper in C++11. The implementations use the NTL li-
brary [37] for implementing the finite field arithmetic,
and the operations are performed over a 128-bit prime-
order field. We used the open-source implementation6 of
the state-of-the-art VOLE scheme [42]. We implemented
garbled circuits with the emp-toolkit open-source library7.
The protocol of Atallah and Du [2] was implemented with
Paillier encryption scheme with 2048-bits keys.
Datasets: We used a combination of real-world datasets
and randomly generated datasets for benchmarking.
(1) Randomly-generated Polytopes: We created a

dataset with 100 randomly generated polytopes with
different specifications using Polymake [15]. To gen-
erate an arbitrary polytope in R2 and R3, randomly
sampled points are provided as vertices of the poly-
tope. In 2D space, the polygons generated have 3–16
vertices, and in 3D space the polytopes generated
have 4–18 vertices; note that the simplest polygon is
a triangle with 3 vertices and the simplest polytope
in 3D is a tetrahedron with 4 vertices.

(2) Axis-aligned bounding boxes from CARLA: We
used the open-source CARLA autonomous driving
simulator [8] to generate a dataset of bounding boxes
of real-world objects. The CARLA simulator enables

6. https://github.com/emp-toolkit/emp-zk
7. https://github.com/emp-toolkit/emp-sh2pc

a user to control a vehicle in an open-world simulator
and monitor the output of different sensors. The
sensors generate 3D bounding boxes for objects on
the road, which includes other vehicles, pedestrians,
road signs, etc. Similar technology is used by vehicle
manufacturers (e.g., Audi [16], Honda [21]).

(3) 3D oriented bounding boxes from ScanNet: We
used a dataset of 3D oriented bounding boxes of
objects in the ScanNet dataset8. ScanNet contains
aerial images of objects in domestic settings. The
dataset chosen has been used for validation of a
model identifying 3D oriented bounding boxes [45].

Platform: All experiments (unless otherwise stated) were
run on two t2.xlarge Amazon EC2 instances with 4 vCPUs
and 16GB of RAM, placed in different zones (US East
and West). The network bandwidth between them was
measured to be around 40–60MB per second using iperf9.

9.1. Microbenchmarks

Private Point Queries: We compared our private point
query protocol PointQueryGeneral with a garbled-circuit
implementation and the point inclusion protocol of Atallah
and Du [2]. The benchmark is over random polytopes with
different numbers of vertices/faces. The objective is to
demonstrate how our protocol scales with the complexity
of the polytopes input to the protocol as compared to the
garbled-circuit baseline. Fig. 12 shows the results:
(1) Communication Volume: Fig. 12a and Fig. 12b

show how communication volume scales with the
number of faces of the input polytope in R2

and R3, respectively. The communication cost
of PointQueryGeneral scales better than the GC
baseline and for polygons with more than 10
edges, PointQueryGeneral has a lower communi-
cation volume compared to the baseline. In R3,
PointQueryGeneral has lower communication vol-
umes for all polytopes with 4–18 faces.
The GC baseline and PointQueryGeneral both have
lower communication requirements than the protocol
of Atallah and Du [2] by roughly two orders of mag-
nitude. This is expected as the cost of their protocol
depends on λ and κ (see Table 1). For 2048-bit keys
and computational security parameter λ = 80, the
communication cost of the point inclusion protocol of
Atallah and Du [2] for a 4 sided polygon is 640 KB
in comparison to 4.4 KB for PointQueryGeneral.
PointQueryGeneral communication cost also scales
better han the protocol of Atallah and Du [2]; a full
comparison can be found in the Appendix.

(2) Compute time: Fig. 12c and Fig. 12b show how
compute time scales with the number of faces of
the input polytope in R2 and R3, respectively. For
polygons in R2, PointQueryGeneral is 1.3–2× faster
than the GC baseline, and in R3, PointQueryGeneral
is 1.4–2.1× faster. Both PointQueryGeneral and the
GC baseline outperform the construction of Atallah
and Du [2] where signficant time is spend in encryp-
tion and decryption; PointQueryGeneral is 2.7−5.1×
faster than the construction of Atallah and Du [2].

8. https://github.com/qq456cvb/CanonicalVoting
9. https://iperf.fr/

2 4 6 8 10 12 14 16

4

6

8

10

Number of Faces

C
om

m
.V

ol
um

e
(i

n
K
B

)

GC Baseline
PointQueryGeneral

(a) 2D: Comm. vs. Num of Faces

4 6 8 10 12 14 16 18

5

6

7

8

9

10

Number of Faces

C
om

m
.V

ol
um

e
(i

n
K
B

)

GC Baseline
PointQueryGeneral

(b) 3D: Comm. vs. Num of Faces

3 6 10 14

20

40

60

80

100

120

23.4 24.8 27.3

36.2
40.8

48.4 50 50.2

62
66.1

74.1

82.2

90.2

98.3

106.3

114.4

18 18.2 19.2 22.2 22.8 24 25 25.2

Number of Faces

C
om

pu
te

Ti
m

e
(i

n
m
s)

GC Baseline
Atallah and Du [2]
PointQueryGeneral

(c) 2D: Time vs. Num of Faces

4 8 12 16

50

100

150

200

36 38.8
44.8

54.2
60.2

69.2 74 76.2

99.1
111.2

123.3
135.3

147.46
159.54

171.62
183.7

26.2 27.6 28.6 30.2 31.2 32.6 33.2 36

Number of Faces

C
om

pu
te

Ti
m

e
(i

n
m
s)

GC Baseline
Atallah and Du [2]
PointQueryGeneral

(d) 3D: Time vs. Num of Faces
Figure 12: Comparison of PointQueryGeneral with a garbled circuit baseline. The dataset includes randomly-generated polytopes
with different number of faces. For polygons (in 2D) with more than 10 faces, PointQueryGeneral has lower communication volume.
In 3D, PointQueryGeneral has lower communication for polytopes with up to 18 faces. PointQueryGeneral outperforms the baseline
in terms of compute time. In 2D, PointQueryGeneral is 1.3− 2× faster and in 3D PointQueryGeneral is 1.4− 2.1× faster than the
baseline. Both PointQueryGeneral and the GC baseline are faster than the construction of Atallah and Du [2] and the communication
costs of both protocols are lower by roughly two orders of magnitude (see Fig. 17 in the Appendix for more details).

2 4 6 8 10

50

100

150

200

Number of Boxes (n)

C
om

m
.V

ol
um

e
(i

n
K
B

)

GC Baseline
OverlapOBB

(a) Comm. vs. Num of Boxes

2 4 6 8 10
0

1,000

2,000

3,000

564

1,162

1,719

2,280

2,900

246
327 359 387

472

Number of Boxes (n)

C
om

pu
te

Ti
m

e
(i

n
m
s)

GC Baseline
OverlapOBB

(b) Comp. vs. Num of Boxes

2 4 6 8 10

0

20

40

60

Number of Boxes (n)

C
om

m
.V

ol
um

e
(i

n
K
B

)

GC Baseline
ApprxOverlapVolume

(c) Comm. vs. Num of Boxes

2 4 6 8 10

50

100

150

200

250

42.5

123.9

187.36

241.7

270.5

29.2 36.1

54.4
62.5 62.5

Number of Boxes (n)

C
om

pu
te

Ti
m

e
(i

n
se

co
nd

s)

GC Baseline
ApprxOverlapVolume

(d) Comp. vs. Num of Boxes
Figure 13: Communication volume and compute time of OverlapOBB and ApprxOverlapVolume when detecting overlaps and
approximating volume of overlaps respectively for a set of oriented boxes. With set size n = 10, OverlapOBB is 6.1× faster and
has 5.1× lower communication volume. With n = 10, ApprxOverlapVolume is 4.17× faster and requires 4× lower communication.

9.2. CARLA Axis-Aligned Boxes

We used the CARLA simulator to generate views of
the same road intersection from different vehicles (at that
intersection) and compared the objects in their views. The
simulator generates 3D axis-aligned bounding boxes for
other vehicles, road signs, pedestrians, and traffic signs.

Measure Comm Comp

OverlapAABB 42 KB 2.80 ms
GC baseline 51.0 KB 11.60 ms
Atallah and Du [2] 11.5 MB 496 ms

TABLE 3: Communication and computation costs of
OverlapAABB, a garbled-circuit baseline and the protocol of
Atallah and Du [2] when detecting if two axis-aligned boxes
overlap. OverlapAABB is 4.2× faster than the GC baseline and
165× faster than the construction of Atallah and Du [2].

Table 3 shows how OverlapAABB compares with a
garbled-circuit baseline and the construction of Atallah
and Du [2] when detecting if two axis-aligned boxes
overlap. We note that Atallah and Du [2] only provide a
protocol for detecting overlaps of convex polygons which
we extend to polytopes and use here in the benchmarking.
The GC baseline implements a simple process where each
vertex of a party’s bounding box is checked to determine
whether it lies inside the other party’s bounding box. If
any of the vertices lie inside, the bounding boxes overlap.
OverlapAABB is roughly 4.2× faster than the baseline

and has 20% lower communication costs. Compared to the
construction of Atallah and Du [2], OverlapAABB is 165×
faster; this is expected since the cost of OverlapAABB
scales linearly in the number of dimensions in contrast to
exponentially-scaling costs for their protocol (see Table 1)

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

5

10

15

20

Error Probability (ϵ)

C
om

m
.V

ol
um

e
(i

n
K
B

)

ApprxOverlapVolume- 0.1
ApprxOverlapVolume- 0.2
ApprxOverlapVolume- 0.5

(a) Comm. vs. Error Prob.

0.1 0.06 0.02 0.008 0.004 0.001

0

200

400

600

Error Probability (ϵ)

C
om

pu
te

Ti
m

e
(i

n
m
s)

ApprxOverlapVolume- 0.1
ApprxOverlapVolume- 0.2
ApprxOverlapVolume- 0.5

(b) Time vs. Error Prob.
Figure 14: Communication volume and compute time of
ApprxOverlapVolume when approximating the volume of over-
lap of two axis aligned bounding boxes for error probability ϵ.
The plots correspond to the slack parameter, δ = 0.1, δ = 0.2
and δ = 0.5.

Measuring Volume of Overlap: We ran experiments to
estimate the communication and compute costs of ap-
proximating volume of overlap between two axis-aligned
bounding boxes using ApprxOverlapVolume. Fig. 14a
shows how communication volume scales with the error
probability ϵ for different values of the slack parameter δ.

As expected, the communication volume scales inversely
with the error probability. For ϵ = 0.001, and δ = 0.1, the
protocol requires 22 KB of communication.

Fig. 14b shows how compute time scales with the er-
ror probability. Similar to the communication volume, the
compute time scales inversely with ϵ. For ϵ = 0.001 and
δ = 0.1, the protocol requires 508 ms to approximately
compute the volume of the overlapping region.

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

500

1,000

1,500

Error Pobability (ϵ)

C
om

m
.V

ol
um

e
(i

n
K
B

)

ApprxOverlapVolume
GC Baseline

(a) Comm. vs. Error Prob.

0.1 0.06 0.02 0.008 0.004 0.001

6

8

10

12

14

16

18

Error Pobability (ϵ)

C
om

pu
te

Ti
m

e
(i

n
se

co
nd

s)
ApprxOverlapVolume

GC Baseline

(b) Time vs. Error Prob.
Figure 15: Communication volume and compute time when
applying ApprxOverlapVolume to approximate the volume
of overlap of two oriented bounding boxes compared to a
garbled circuit baseline for error probability ϵ. δ = 0.1.
ApprxOverlapVolume is 1.2× faster than the baseline and
requires 20% less communication.

9.3. ScanNet Bounding Boxes

ScanNet is an annotated dataset of 3D objects in
indoor domestic scenes. Recent work [45] on generat-
ing bounding boxes for 3D objects has been evaluated
on the dataset. We have used the ground truth data
used for validation in [45] as inputs to OverlapOBB
and ApprxOverlapVolume. The baseline is a garbled cir-
cuit implementation of the separating axis theorem (see
Sec. 3), and the protocol by Atallah and Du [2].

Measure Comm Comp

OverlapOBB 26.0 KB 211 ms
GC baseline 30.0 KB 280 ms
Atallah and Du [2] 11.5 MB 496 ms

TABLE 4: Comparison of communication and computation
costs of OverlapOBB with a garbled circuit baseline when
detecting if two oriented bounding boxes overlap. OverlapOBB
is 1.4× faster than the GC baseline and 2.3× faster than the
construction of Atallah and Du [2] and requires 443× lower
communication volume.

Detecting Overlaps: Table 4 compares OverlapOBB with
the baseline in terms of communication volume and com-
pute times. OverlapOBB is roughly 40% faster than the
baseline and requires 15% lower communication volume.
Compared to Atallah and Du [2], OverlapOBB is 2.3×
faster due to the use of cheaper primitives and requires
roughly 443× lower communication volume.
OverlapAABB vs. OverlapOBB: OverlapOBB can also be
directly applied to axis-aligned bounding boxes. While
doing so, the communication volume and compute times
are going to be the same as those reported in Table 4.
This is because OverlapOBB is agnostic to the orientation
of the box. Interestingly, OverlapAABB and OverlapOBB

present a trade-off in communication volumes and com-
pute time. When using OverlapAABB for axis-aligned
boxes, the compute time is optimized since we do not need
to compute scalar products to check if vertices of one box
lies within the other (see Sec. 7.1 for more details). On
the other hand, OverlapOBB needs to compute the scalar
product to check for vertex inclusion, but due to the use of
a communication-efficient VOLE protocol to implement
this, the communication volume of OverlapOBB is lower.

Measuring Volume of Overlap: Fig. 15 compares
ApprxOverlapVolume when approximating the volume of
overlap of two oriented boxes with a garbled circuit
baseline. The slack parameter δ = 0.1; similar trends are
observed for other values of δ and the results are omitted.
OverlapOBB requires roughly 20% lower communication
volume and is 1.2× faster than the baseline.

Scaling to Multiple Boxes: In realistic settings, Alice
and Bob will observe multiple objects (boxes) in their
immediate surrounding. For instance, vehicles at an in-
tersection will observe multiple objects which includes
other vehicles, pedestrians, road signs etc. Thus, the box
corresponding to each such object observed by Alice must
be compared with all the boxes of the objects observed
by Bob. In our experiment, this corresponds to Alice
providing as input a bounding box, while Bob provides a
set of n boxes. Of course, the trivial solution is running
each protocol n times independently, but as described
in Sec. 6 and Sec. 7, our protocols can be optimized to
batch the n instances together for better communication
and compute costs. This is applicable to OverlapOBB and
ApprxOverlapVolume for oriented boxes.

Fig. 13a and Fig. 13b show how communication vol-
ume and compute time scale with n, the number of
boxes input by Bob in OverlapOBB. With 10 boxes to
compare with Alice’s input box, the baseline requires
up to 5.1× more communication volume compared to
OverlapOBB. The improvement comes from the fact that
the most expensive part of the protocol in OverlapOBB
i.e., computing vector dot products is implemented using
the communication efficient VOLE protocol. The opti-
mization batching dot-product computations using VOLE
across all boxes input by Bob yields not only the im-
provements over the baseline, but also shows at least a
4× improvement in communication costs over a naive
repetition of OverlapOBB for each of the input boxes.

Fig. 13b shows how compute time scales with the
number of boxes compared. OverlapOBB is up to 6.1×
faster than the baseline as the VOLE protocol used re-
lies only on cheap symmetric key primitives. On the
other hand, in the case of the baseline implementing the
separating axis theorem, the garbled circuit implements
several expensive steps which includes computing vector
cross products to generate candidate axes and computing
projections along these axes.

Similar improvements are also observed for
ApprxOverlapVolume. Fig. 13c shows that the
communication cost of ApprxOverlapVolume scales
more gracefully than the baseline with the number
of boxes compared. With 10 boxes to compare, the
baseline incurs 4× higher communication costs. Fig. 13d
shows that compute time of ApprxOverlapVolume scales
better with the number of boxes than the baseline. As

2 4 6 8

5

10

15

20

25

Number of Frames

C
om

m
.V

ol
um

e
(i

n
M
B

)

OverlapAABB
GC baseline

(a) Comm. vs. Num of Frames

1 3 5 7

0

2,000

4,000

6,000

185.6
371.1

560
742.4

929
1,113.6

1,300
1,490.8

768

1,536

2,304

3,078

3,850

4,610

5,380

6,150

Number of Frames

C
om

pu
te

Ti
m

e
(i

n
m
s)

OverlapAABB
GC baseline

(b) Comp. vs. Num of Frames

2 4 6 8

0

200

400

600

800

1,000

Number of Frames

C
om

m
.V

ol
um

e
(i

n
K
B

)

ApprxOverlapVolume-0.1
ApprxOverlapVolume-0.2
ApprxOverlapVolume-0.5

(c) Comm. vs. Num of Frames

1 3 5 7

0

10

20

30

Number of Frames

C
om

pu
te

Ti
m

e
(i

n
se

co
nd

s)

ApprxOverlapVolume-0.1
ApprxOverlapVolume-0.2
ApprxOverlapVolume-0.5

(d) Comp. vs. Num of Frames
Figure 16: Communication volume and compute time of OverlapAABB and ApprxOverlapVolume when detecting overlaps and
approximating volume of overlaps, respectively, for objects in frames derived from the A2D2 dataset. When comparing objects in a
frame observed by a vehicles with objects in frames observed by 8 other vehicles, OverlapAABB is 4.1× faster and requires 20%
less communication. Approximating the volume of overlap between objects in the frames requires up to 1 MB of communication
with error probability ϵ = 0.01 and slack parameter δ = 0.1, and takes around 34 seconds of compute time.

expected, using VOLE to perform vector dot products
is significantly more efficient than performing these
operations inside the garbled circuit. With 10 boxes to
compare, ApprxOverlapVolume is 4.17× faster than the
baseline. Additionally, compared to naively repeating
ApprxOverlapVolume for each of the n boxes input
by Bob, batching the dot-product computations across
all n instances using VOLE results in 3.4× lower
communication cost and 3.2× lower compute time.

9.4. AUDI A2D2 Dataset

A2D2 [16] is an autonomous driving dataset released
by AUDI. Among other things, the dataset provides 3D
bounding boxes for objects observed on the road. These
objects include other vehicles, traffic signals, pedestrians,
buildings, etc. The dataset includes more than 12,000
frames, where each frame is a camera snapshot of the road
observed from a specific vehicle at a given point in time,
and includes annotated 3D axis-aligned bounding boxes
for objects in the frame. For benchmarking our protocols,
we have randomly sampled 100 frames out of the available
12,000, and we run pairwise comparisons between objects
in these frames. This represents two vehicles observ-
ing frames of the road using their cameras and LIDAR
sensors, and comparing and validating outputs. We have
estimated compute times and communication volume for
detecting overlaps and approximating the overlap volume.
Platform: To simulate realistic settings, we ran our exper-
iments on low-resource setups available on AWS. Specif-
ically, we used t2.small EC2 instances available on AWS
with 1 available vCPU and 2 GiB of RAM, running
Linux. In contrast, there are proposals suggesting that
future smart vehicles will be equipped with powerful
processors and advanced graphics capabilities10. Thus, our
experiments may in fact underestimate performance.
Detecting Overlaps Between Objects in Frames:
Fig. 16a and Fig. 16b show how communication and com-
pute time scales with OverlapAABB when a frame ob-
served by one particular vehicle is compared with different
number of frames, each observed by a different vehicle.
The baseline is a garbled-circuit implementation detecting

10. https://developer.nvidia.com/blog/now-available-drive-agx-orin-
with-drive-os-6/

if two axis-aligned bounding boxes overlap. The frames in
our dataset typically contain 8 detected road objects; i.e.,
each frame contains 8 axis-aligned bounding boxes. As
expected, OverlapAABB is 4.1× faster than the baseline
and requires 20% lower communication costs.

Approximating Volume of Overlap: Fig. 16c and
Fig. 16d show how communication volume and compute
time scales when approximating the volume of object
overlap in frames captured by different vehicles. For
the experiments, the error probability ϵ = 0.01. When
comparing 8 frames (captured by 8 other vehicles) with a
frame captured by a particular vehicle, the compute time
required for approximating volume of overlap between
objects is roughly 34 seconds with the slack parameter
δ = 0.1. The total communication volume is around 1MB.

10. Conclusion

This paper presents cryptographic protocols for pri-
vately computing if two regions in Euclidean space over-
lap and approximating the volume of the overlapping
region. These protocols can aid validation of sensor out-
puts (as part of computer vision systems) of mutually
untrusting parties without revealing sensitive information,
and can be used to detect faults, help in better decision-
making, etc. From an intellectual perspective, this paper
takes a step forward in building efficient protocols for
secure computational geometry with real-world applica-
tions to, e.g., connected autonomous vehicles (CAVs).
The protocols rely on cheap cryptographic primitives and
feature reasonable communication requirements and com-
pute times. The protocols have been benchmarked on real-
world datasets and outperform garbled-circuit-based 2PC
baselines and tailormade constructions for 2D.

11. Acknowledgments

This research was supported in part by NSF grant
2113345, NIFA grant 2021-67021-34252, and ARO grant
W911NF-17-1-0370. The views and conclusions in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of NSF, NIFA, ARO, or the U.S.
Government.

References

[1] National Highway Traffic Safety Administration
et al. Traffic safety facts: 2007 data: Pedestrians.
Annals of Emergency Medicine, 53(6):824, 2009.

[2] Mikhail J. Atallah and Wenliang Du. Secure multi-
party computational geometry. In Workshop on Al-
gorithms and Data Structures. Springer, 2001.

[3] Karl Bringmann and Tobias Friedrich. Approxi-
mating the volume of unions and intersections of
high-dimensional geometric objects. Computational
Geometry, 43(6-7):601–610, 2010.

[4] Anrin Chakraborti, Giulia Fanti, and Michael K.
Reiter. Distance-aware private set intersection. In
32nd USENIX Security Symposium (USENIX Secu-
rity 23), 2023. URL https://www.usenix.org/system/
files/sec23summer 333-chakraborti-prepub.pdf.

[5] Hao Chen, Kim Laine, Rachel Player, and Yuhou
Xia. High-precision arithmetic in homomorphic
encryption. In Cryptographers’ Track at the RSA
Conference, pages 116–136. Springer, 2018.

[6] Christopher Clapham and James Nicholson. The
concise oxford dictionary of mathematics (4 ed.).
2009.

[7] H.S.M Coxeter. Regular polytopes 3 ed. 1973.
[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla,

Antonio Lopez, and Vladlen Koltun. CARLA: An
open urban driving simulator. In Proceedings of the
1st Annual Conference on Robot Learning, pages 1–
16, 2017.

[9] David Elliott, Walter Keen, and Lei Miao. Recent
advances in connected and automated vehicles. jour-
nal of traffic and transportation engineering (English
edition), 6(2):109–131, 2019.

[10] Wilfried Elmenreich. An introduction to sensor
fusion. Vienna University of Technology, Austria,
502:1–28, 2002.

[11] Daniel J Fagnant and Kara Kockelman. Preparing a
nation for autonomous vehicles: opportunities, bar-
riers and policy recommendations. Transportation
Research Part A: Policy and Practice, 77:167–181,
2015.

[12] Pierre-Alain Fouque, Jacques Stern, and Geert-Jan
Wackers. Cryptocomputing with rationals. In In-
ternational Conference on Financial Cryptography,
pages 136–146. Springer, 2002.

[13] Michael J. Freedman, Kobbi Nissim, and Benny
Pinkas. Efficient private matching and set intersec-
tion. In Advances in Cryptology – EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer
Science, pages 1–19, 2004.

[14] Gayathri Garimella, Mike Rosulek, and Jaspal Singh.
Structure-aware private set intersection, with applica-
tions to fuzzy matching. In Advances in Cryptology–
CRYPTO 2022: 42nd Annual International Cryptol-
ogy Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15–18, 2022, Proceedings, Part I, pages
323–352. Springer, 2022.

[15] Ewgenij Gawrilow and Michael Joswig.
polymake: a framework for analyzing convex
polytopes. In Polytopes—combinatorics and
computation (Oberwolfach, 1997), volume 29 of
DMV Sem., pages 43–73. Birkhäuser, Basel, 2000.

[16] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,
Xavier Ricou, Rupesh Durgesh, Andrew S. Chung,
Lorenz Hauswald, Viet Hoang Pham, Maximilian
Mühlegg, Sebastian Dorn, Tiffany Fernandez, Mar-
tin Jänicke, Sudesh Mirashi, Chiragkumar Savani,
Martin Sturm, Oleksandr Vorobiov, Martin Oelker,
Sebastian Garreis, and Peter Schuberth. A2D2:
Audi Autonomous Driving Dataset. 2020. URL
https://www.a2d2.audi.

[17] Stefan Aric Gottschalk. Collision queries using
oriented bounding boxes. The University of North
Carolina at Chapel Hill, 2000.

[18] Adam Groce, Peter Rindal, and Mike Rosulek.
Cheaper private set intersection via differentially
private leakage. Proceedings on Privacy Enhancing
Technologies, 2019:25–6, 2019.

[19] Jianhua He, Zuoyin Tang, Xiaoming Fu, Supeng
Leng, Fan Wu, Kaisheng Huang, Jianye Huang, Jie
Zhang, Yan Zhang, Andrew Radford, et al. Co-
operative connected autonomous vehicles (cav): re-
search, applications and challenges. In 2019 IEEE
27th International Conference on Network Protocols
(ICNP), pages 1–6. IEEE, 2019.

[20] Anthony J Healey and Douglas P Horner. Collab-
orative vehicles in future naval missions, obstacle
detection and avoidance. In Proceedings of the IFAC
Conference on Modelling and Control of Marine
Craft, 2006.

[21] Honda. Hdd hri driving dataset, 2022. URL https:
//usa.honda-ri.com/hdd.

[22] Samuel Hornus. A review of polyhedral intersection
detection and new techniques. Research Report
RR-8730, INRIA, 2015. URL https://hal.inria.fr/
hal-01157239v1/document. hal-01157239v1.

[23] Bailey Kacsmar, Basit Khurram, Nils Lukas, Alexan-
der Norton, Masoumeh Shafieinejad, Zhiwei Shang,
Yaser Baseri, Maryam Sepehri, Simon Oya, and
Florian Kerschbaum. Differentially private two-party
set operations. In 2020 IEEE European Symposium
on Security and Privacy, pages 390–404, September
2020. doi: 10.1109/EuroSP48549.2020.00032.

[24] Lea Kissner and Dawn Song. Privacy-preserving
set operations. In Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, page 241–257, 2005. doi: 10.
1007/11535218 15. URL https://doi.org/10.1007/
11535218 15.

[25] Vladimir Kolesnikov and Thomas Schneider. Im-
proved garbled circuit: Free xor gates and ap-
plications. In International Colloquium on Au-
tomata, Languages, and Programming, pages 486–
498. Springer, 2008.

[26] Pantelis Kopelias, Elissavet Demiridi, Konstantinos
Vogiatzis, Alexandros Skabardonis, and Vassiliki
Zafiropoulou. Connected & autonomous vehicles–
environmental impacts–a review. Science of the total
environment, 712:135237, 2020.

[27] Changliu Liu, Chung-Wei Lin, Shinichi Shiraishi,
and Masayoshi Tomizuka. Distributed conflict res-
olution for connected autonomous vehicles. IEEE
Transactions on Intelligent Vehicles, 3(1):18–29,
2017.

[28] Silvio Micali, Oded Goldreich, and Avi Wigderson.

How to play any mental game. In Proceedings of
the Nineteenth ACM Symp. on Theory of Computing,
STOC, pages 218–229. ACM, 1987.

[29] Bin Mu and Spiridon Bakiras. Private proxim-
ity detection for convex polygons. 2013. URL
https://doi.org/10.1145/2486084.2486087.

[30] Bin Mu and Spiridon Bakiras. Private proximity
detection for convex polygons. Tsinghua Science and
Technology, 21(3):270–280, 2016.

[31] University of California San Diego. Collaborative
intelligence in smart and connected vehicles,
2023. URL http://cwc.ucsd.edu/research/
collaborative-intelligence-smart-and-connected-vehicles.

[32] Benny Pinkas, Thomas Schneider, and Michael
Zohner. Faster private set intersection based
on OT extension. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 797–
812, San Diego, CA, August 2014. USENIX
Association. ISBN 978-1-931971-15-7. URL https:
//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/pinkas.

[33] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection
using permutation-based hashing. In 24th USENIX
Security Symposium, pages 515–530, August 2015.

[34] Benny Pinkas, Mike Rosulek, Ni Trieu, and
A. Yanai. Psi from paxos: Fast, malicious private
set intersection. In Advances in Cryptology -– EU-
ROCRYPT 2020, volume 12106 of Lecture Notes in
Computer Science, pages 739–767, 2020.

[35] Jurek Z Sasiadek. Sensor fusion. Annual Reviews in
Control, 26(2):203–228, 2002.

[36] Steven E Shladover, Dongyan Su, and Xiao-Yun
Lu. Impacts of cooperative adaptive cruise control
on freeway traffic flow. Transportation Research
Record, 2324(1):63–70, 2012.

[37] Victor Shoup et al. Ntl: A library for doing number
theory, 2001.

[38] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza
Sadeghi, Thomas Schneider, and Farinaz Koushanfar.
Tinygarble: Highly compressed and scalable sequen-
tial garbled circuits. In 2015 IEEE Symposium on
Security and Privacy, pages 411–428. IEEE, 2015.

[39] Alireza Talebpour and Hani S Mahmassani. In-
fluence of connected and autonomous vehicles on
traffic flow stability and throughput. Transportation
Research Part C: Emerging Technologies, 71:143–
163, 2016.

[40] Elisabeth Uhlemann. Time for autonomous vehicles
to connect [connected vehicles]. IEEE vehicular
technology magazine, 13(3):10–13, 2018.

[41] Erkam Uzun, Simon P Chung, Vladimir Kolesnikov,
Alexandra Boldyreva, and Wenke Lee. Fuzzy labeled
private set intersection with applications to private
real-time biometric search. In USENIX Security
Symposium, pages 911–928, 2021.

[42] Chenkai Weng, Kang Yang, Jonathan Katz, and
Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for
boolean and arithmetic circuits. In 2021 IEEE Sym-
posium on Security and Privacy (SP), 2021.

[43] Andrew Chi-Chih Yao. How to generate and ex-
change secrets. In 27th Annual Symposium on Foun-

dations of Computer Science (sfcs 1986), pages 162–
167. IEEE, 1986.

[44] Lanhang Ye and Toshiyuki Yamamoto. Evaluating
the impact of connected and autonomous vehicles
on traffic safety. Physica A: Statistical Mechanics
and its Applications, 526:121009, 2019.

[45] Yang You, Zelin Ye, Yujing Lou, Chengkun Li,
Yong-Lu Li, Lizhuang Ma, Weiming Wang, and
Cewu Lu. Canonical voting: Towards robust oriented
bounding box detection in 3d scenes. Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

[46] Samee Zahur, Mike Rosulek, and David Evans. Two
halves make a whole. In Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, pages 220–250. Springer, 2015.

[47] Hui Zhu, Fengwei Wang, Rongxing Lu, Fen Liu,
Gang Fu, and Hui Li. Efficient and privacy-
preserving proximity detection schemes for social
applications. IEEE Internet of Things Journal, 5(4):
2947–2957, 2018. doi: 10.1109/JIOT.2017.2766701.

Appendix

2 4 6 8 10 12 14 16
0

2

4

6

8

10

Number of Faces

C
om

m
.V

ol
um

e
(i

n
K
B

lo
gs

ca
le

) Atallah and Du [2]
PointQueryGeneral

(a) 2D: Comm. vs. Num of Faces

4 6 8 10 12 14 16 18
0

2

4

6

8

10

Number of Faces

C
om

m
.V

ol
um

e
(i

n
K
B

lo
gs

ca
le

) Atallah and Du [2]
PointQueryGeneral

(b) 3D: Comm. vs. Num of Faces

Figure 17: Communication cost (in logscale) of the protocol
of Atallah and Du [2] when processing polytopes of different
complexities. PointQueryGeneral has more than two orders of
magnitude lower communication requirements, and scales more
gracefully than the protocol of Atallah and Du [2]

1. Proofs of Theorems

Theorem. Assuming that there is a protocol that realizes
Fole with O(λ) bits of communication, DotProdCheck
realizes Fd

dot with O(dλ) bits communication.

Proof. The communication cost of DotProdCheck is
straightforward: Alice and Bob call Fole d times, and
overall this step costs O(dλ) bits of communications. In
addition, Alice and Bob compute a garbled circuit with
d inputs, which also costs O(dλ) bits of communication.
The total communication cost of the protocol is O(dλ).
Security: The security of the scheme relies on the ar-
gument that if there is a protocol, π realizing Fole and
there is a PPT simulator, Simπ that can indistinguishably
simulate Alice’s and Bob’s views in the ideal world simu-
lation of the real world execution of π, then there is a PPT
simulator Sim that can indistinguishably simulate Alice’s
and Bob’s views in the ideal world simulation of the real
world execution of DotProdCheck.

Simulating Bob’s view: In the real world execution of
DotProdCheck, Bob does not receive any output, and only
receives the intermediate results from π when computing
s. In the ideal world, for i ∈ [1, d], Sim sends Bob’s inputs
bi and ri to Fole along with randomly sampled elements
r′i

$
:= F. Assuming that there is a protocol realizing

Fole that can be indistinguishably simulated, Bob’s view
in the ideal world simulation of DotProdCheck can be
indistinguishably simulated by Sim.
Simulating Alice’s view: In the real world execution of
DotProdCheck, Alice receives s. In the ideal world execu-
tion, for each i ∈ [1, d], Sim sends Alice’s input ai to Fole .
Additionally, Sim samples random elements b′i

$
:= F

and r′i and sends as inputs to Fole . Sim provides output

of Fole , aib′i + r′i, to Alice. Note that aib
′
i + r′i

$
:= F

is indistinguishable from the output in the real world
execution of DotProdCheck, aibi + ri

$
:= F since

ri
$
:= F.
Subsequently, Sim generates a garbled circuit, which

takes as input s from Alice. Additionally, if Alice’s output
from DotProdCheck is TRUE, Sim’s input into the gar-
bled circuit is some r′ ∈ [s− upper, s− lower] ∈ F and if
Alice’s output from DotProdCheck is FALSE, Sim’s input
into the garbled circuit is some r′ /∈ [s−upper, s−lower] ∈
F. Since a garbled circuit can realize any function se-
curely, any secure implementation of a garbled circuit
ensures security of this step and makes the real world ex-
ecution and ideal world simulation indistinguishable.

Theorem. Assuming that there is a protocol realizing
Fvole for ϕ-length vectors with O(ϕλ) bits of communica-
tion, BlindedMatrixMultiply realizes Fd

bmul with O(ϕdλ)
bits of communication.

Proof. The communication cost of BlindedMatrixMultiply
is straightforward: Alice and Bob call Fvole d times with
vectors of length ϕ. The total communication cost of this
step is O(ϕdλ) bits of communication. The rest of the
steps are non-interactive and do not require any commu-
nication.
Security: The security of the scheme relies on the ar-
gument that if there is a protocol, π that securely re-
alizes Fvole and there is a PPT simulator, Simπ that
can indistinguishably simulate Alice’s and Bob’s views
in the ideal world simulation of the real world execu-
tion of π, then there is a PPT simulator Sim that can
indistinguishably simulate Alice’s and Bob’s views in the
ideal world simulation of the real world execution of
BlindedMatrixMultiply.
Simulating Bob’s view: In the real world execution, Bob
does not receive any output from BlindedMatrixMultiply
and only receives the intermediate results when engaging
in d calls to a protocol π securely realizing Fvole . In the
ideal world, for each j ∈ [1, d], Sim’s sends Bob’s inputs
F [∗ : j] and R[∗ : j] along with a random element a′j

$
:=

F to Fvole . Assuming that there is a protocol realizing
Fvole that can be indistinguishably simulated, Bob’s view
in the ideal world simulation of BlindedMatrixMultiply
can be indistinguishably simulated by Sim.
Simulating Alice’s view: In the real world execution of
BlindedMatrixMultiply, for each j ∈ [1, d], Alice’s output

is a vector [ajc1,j + r1,j , . . . , ajcϕ,j + rϕ,j]. In the ideal
world simulation, for each j ∈ [1, d], Sim calls Fvole with
inputs: i) aj , and ii) the vectors [c′1,j , . . . , cϕ,j]

$
:= Fϕ

and [r′1,j , . . . , r
′
ϕ,j]

$
:= Fϕ. Sim provides the output of

Fvole , [ajc
′
1,j + r′1,j , . . . , ajc

′
ϕ,j + r′ϕ,j] to Alice. Since,

[ajc
′
1,j+r′1,j , . . . , ajc

′
ϕ,j+r′ϕ,j]

$
:= Fϕ, it is indistinguish-

able from the real world output [ajc1,j+r1,j , . . . , ajcϕ,j+

rϕ,j]
$
:= Fϕ as r1,j , . . . , rϕ,j

$
:= F. Thus, Alice’s

view can be indistinguishably simulated in the ideal world
execution by Sim.

2. Comparison with Atallah and Du [2]

We have run experiments to evaluate how the com-
munication costs of PointQueryGeneral compares to the
protocol of Atallah and Du [2] for polygons/polytopes
of different complexities (i.e., number of edges/faces).
The polygons and polytopes are sampled from the
dataset of randomly-generated polytopes described in
Sec. 9. Fig. 17 describes the result. The communica-
tion cost of PointQueryGeneral is almost two orders of
magnitude lower than the protocol of Atallah and Du
[2]. This is expected since the communication cost of
PointQueryGeneral is asymptotically lower by a factor of
the key size of the additively homomorphic encryption
scheme used in their scheme, κ (see Table 1 for reference).

