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Abstract—Among the most challenging traffic-analysis attacks
to confound are those leveraging the sizes of objects downloaded
over the network. In this paper we systematically analyze this
problem under realistic constraints regarding the padding over-
head that the object store is willing to incur. We give algorithms
to compute privacy-optimal padding schemes—specifically that
minimize the network observer’s information gain from a down-
loaded object’s padded size—in several scenarios of interest: per-
object padding, in which the object store responds to each request
for an object with the same padded copy; per-request padding, in
which the object store pads an object anew each time it serves that
object; and a scenario unlike the previous ones in that the object
store is unable to leverage a known distribution over the object
queries. We provide constructions for privacy-optimal padding
in each case, compare them to recent contenders in the research
literature, and evaluate their performance on practical datasets.

I. INTRODUCTION

The transmission of objects in a way that hides the sizes
of objects transmitted from a network observer—either to hide
which of many potential objects is transmitted, or as an ingre-
dient in hiding which sender and receiver are communicating—
is a longstanding problem in traffic-analysis defense. Indeed,
the sizes of objects transmitted has been shown to single-
handedly enable fingerprinting websites or webpages, even
in the presence of otherwise sophisticated defenses against
this practice (e.g., [30]). Despite the utility of object sizes in
traffic analysis, the expense of hiding object sizes is such that
substantial threads of research on private communication either
do not even attempt to hide object sizes (e.g., in low-latency
anonymous messaging [26], [51], [70], [88] or protocols for
private video downloads, e.g., [87]) or restrict attention to
fixed-sized, small messages (e.g., anonymous microblogging
systems [1], [21]).

In this paper we consider a fundamental and practical
instance of this problem, in which a benevolent object store
enables clients to retrieve its objects. Each client’s communi-
cation with the object store is encrypted for that client, but
the sizes of objects it retrieves is nevertheless revealed to a
network observer. This network observer might also be one
of the clients of the object store and so can retrieve objects
himself. We further allow this observer (and the object store,
potentially) to know the frequency of requests for each object.
Being benevolent, the object store is willing to pad objects
before sending them, so that their sizes do not directly disclose
to the network observer the objects others retrieve. However,
the benevolence of the object store extends only so far; since
padding objects consumes more of its bandwidth, the object
store is willing to pad objects only so much. The question we

consider here is: how should the object store pad its objects
subject to this constraint, to best hide which object a client
retrieves from this network observer?

More specifically, for any object identifier s ∈ S, where
S is the set of all object identifiers, let objs denote the object
with identifier s at the object store, and let |objs| ∈ N denote
the size of objs. Consider random variables S, X, and Y, which
take on the object identifier s in a request, the corresponding
object’s actual size |objs|, and the object’s padded size when
returned, respectively. S is distributed according to a public
probability distribution, and so

P(X = x) =
∑

s∈S:|objs|=x

P(S = s)

is also public for each size x ∈ N. The goal of the object store
is to select a padding scheme ⌈·⌉ that pads each object objs
to a (possibly randomized) size ⌈objs⌉ before sending it, in
which case

P(Y = y) =
∑
s∈S

P
(
⌈objs⌉ = y

∣∣ S = s
)
P(S = s)

We presume that objects are served in full and cannot be
compressed, and so

P(⌈objs⌉ < |objs|) = 0 (1)

for all s ∈ S. Moreover, as mentioned above, the object store
is willing to pad each object only so much. We capture this
constraint by requiring, for a specified constant c ≥ 1, that

P(⌈objs⌉ > c× |objs|) = 0 (2)

for all s ∈ S. An object store might prefer (2) to requiring
only that objects be expanded by a factor of at most c in
expectation—i.e., that E

(
⌈objS⌉
|objS|

)
≤ c, where the expectation

is taken with respect to the distribution of S and any random
choices of ⌈·⌉—for fairness. Limiting padding overhead only
in expectation would still permit some objects to be expanded
by more than a factor of c, which might cause some clients to
unduly suffer if they retrieve that object more than others or
do so over a bandwidth-limited (or priced) connection.

Having adopted constraints (1)–(2), the object store cannot
hide all objects retrieved from the network observer. For
example, an object objs for which c × |objs′ | < |objs| or
c×|objs| < |objs′ | for every other object objs′ will be the only
object padded to a value in the range [|objs|, c× |objs|]. So,
objs will be identifiable to the network observer when returned
to a client. Rather than give up and return to today’s status quo,



however, the benevolent object store strives to protect client
privacy as well as it can (subject to (1)–(2)). In this paper, we
presume the measure of client privacy the object store seeks
to minimize is the mutual information between S and Y, also
referred to as the information gain, i.e.,

I(S;Y) = H(S)−H(S | Y) (3)

where H denotes entropy. That is, the object store seeks to
choose a padding scheme ⌈·⌉ to minimize I(S;Y) subject
to constraints (1)–(2). Note that since H(S) is a constant,
minimizing I(S;Y) thereby maximizes H(S | Y). This is useful
for privacy because H(S | Y) has been shown by Rioul [67,
Theorem 12] to lower-bound the guessing entropy G(S | Y)
according to

G(S | Y) > 2H(S|Y)

e
+

1

2
(4)

Thus, minimizing I(S;Y) increases the expected number of
guesses needed by the adversary to guess S given Y.

In this context, our algorithmic contributions, detailed in
Sec. III, are as follows:

• In a per-object padding scenario in which the object
store pads each object a single time and serves this
single padded object in response to repeated requests
(including possibly one from the network observer),
⌈objs⌉ is fixed across retrievals of objs and so ⌈·⌉
is, in effect, a function. In this case, we characterize
the privacy-optimal scheme ⌈·⌉, i.e., that minimizes
I(S;Y), by showing that it is nondecreasing in the
sense that if |objs| ≤ |objs′ | then ⌈objs⌉ ≤ ⌈objs′⌉.
We use this finding to give an explicit algorithm to
choose ⌈·⌉ to minimize I(S;Y) subject to the above
constraints. This algorithm computes ⌈·⌉ in O

(
#S2

)
time, where #S is the cardinality of S.

• In a per-request padding scenario in which the object
store pads each object anew before serving it each
time, we observe that we can express our problem as
an instance of rate-distortion minimization as origi-
nally considered by Shannon [72]. By doing so, we
can apply classic results to compute the privacy-
optimal ⌈·⌉ numerically.

• Both of the above contributions require the object
store to accurately predict the distribution of S, i.e.,
the distribution of requests it will receive, in order
to compute the optimal padding scheme ⌈·⌉. In cases
where the object store cannot do so, e.g., if the
adversary can affect S, we give an algorithm to solve
for a padding scheme ⌈·⌉ that pads objects to achieve
a measure that upper-bounds I(S;Y) even for an
adversarially chosen distribution. Perhaps surprisingly,
this algorithm computes ⌈·⌉ in O(#S) time and so is
the most scalable of our algorithms.

In Sec. IV, we empirically evaluate these algorithms using
two real-world datasets to compare the security they provide
to recently published algorithms for similar goals, for both
per-object padding and per-request padding [20], [63]. Our
evaluation shows that in terms of both information gain for
the adversary and the adversary’s practical ability to detect
object retrievals as being in classes of interest, our per-request

padding algorithm provided better security than the per-request
padding contender, and similarly, our per-object padding algo-
rithm dominated its contenders. Even our algorithm that does
not leverage a distribution for S remained competitive, while
being intrinsically robust to any mistakes in estimating that
distribution that would cripple the other algorithms.

We report our algorithms’ performance on these datasets
in Sec. V. Only our algorithm for finding the privacy-optimal
per-request padding scheme presented scaling challenges for
large numbers of objects and large values of c. However, we
show that once it computed a solution, this solution could
be incrementally adapted in response to object (size) changes
much faster than computing the distribution used by ⌈·⌉ from
scratch.

Finally, we discuss limitations and possible extensions
of our results in Sec. VI. We conclude in Sec. VII. Our
implementations and datasets are available on GitHub1.

II. RELATED WORK

Mutual information as a privacy measure: Mutual
information I(S;Y) between a random variable Y that will
be disclosed and secret information S that should not be
disclosed has been used to measure the information leakage
from S to Y in numerous contexts for over 70 years (e.g., [24],
[28], [34], [37], [48], [50], [59], [69], [71], [81], [82], [86]).
Perhaps closest to our work is one such example due to
Köpf and Dürmuth [48], who present techniques to thwart
timing attacks by minimizing an upper-bound on the mutual
information between a sequence of side-channel measurements
(of response times) and an encryption key. In their setting,
the performance penalty is calculated as the increase to the
average response time after delaying (i.e., padding) those
times. Since they assume that the channel will be used to send
multiple responses, calculating the average overhead across
all responses makes sense. As stated in Sec. I, though, we
adopt a per-object overhead constraint that, we believe, is
more appropriate for our scenario. This, in turn, leads to more
efficient runtimes for our algorithms that are most similar
to theirs, namely, our per-object algorithm and our unknown
distribution algorithm, described in Sec. III-A and Sec. III-C,
respectively.

Relative to the above work, our contribution lies in lever-
aging mutual information specifically to optimize the padding
applied to objects to hide the object returned over a network,
subject to padding size constraints, a problem for which
heuristic solutions continue to be published (e.g., [20], [63], as
we will discuss in Sec. IV). As we will show, in some cases we
can adapt known methods for minimizing mutual information
in other contexts, and in others we develop novel and very
efficient algorithms for doing so.

Alternatives to mutual information: Despite the
longevity and pervasiveness of mutual information as a privacy
measure, it is not without its critics (e.g., [42], [75]). For
instance, Smith [75] presents two programs—one that outputs
s (a uniformly drawn 8k-bit integer) when s ≡ 0 mod 8 and
another that reveals (only) s mod 2k+1 always—to argue that
mutual information is not a good measure of privacy: the first

1https://github.com/andrewreed/constrained-padding
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program yields a lower value for mutual information than
the second, even though it can also disclose s completely.
Translated to our context, then, a padding scheme ⌈·⌉ that
minimizes I(S;Y) might still allow for some objects to be
identified by their sizes. Note, however, that this is already
a possibility due to the object store’s adoption of (1)–(2) as
discussed in Sec. I, and would remain a possibility under these
constraints regardless of the privacy definition we adopt.

As an alternative to mutual information, Smith advocates
defining leakage as H∞(S)−H∞(S | Y), i.e., as the difference
between the min-entropy of S and the conditional min-entropy
of S given Y. Alvim et al. [3] extend this notion of leakage with
g-leakage, which broadens (and subsumes) the min-entropy
model first proposed by Smith [75] by introducing a gain
function that can be used to model other forms of adversarial
guessing. Alvim et al. [3, Theorem 5.1] further show that min-
capacity—the supremum of min-entropy leakage across all
distributions S—upper-bounds g-leakage for all gain functions.
Min-capacity is, in fact, equivalent to the metric that we
minimize in Sec. III-C.

Padding to achieve other privacy measures: Other
measures of privacy for padding security have been studied
in contexts similar to ours [54], [55], notably adaptations of
measures initially proposed for ensuring privacy of microdata
in statistical databases, namely: k-anonymity [68], [77], which
requires that for every possible padded size there must be
at least k objects padded to that size; and its generalization
ℓ-diversity [57], which requires that no object accounts for
more than 1

ℓ of any padded size’s probability. Aside from
having critics of their own (e.g., [52]), these measures are
orthogonal to mutual information: subject to padding con-
straints, minimizing mutual information does not necessarily
achieve the maximum ℓ for ℓ-diversity, and maximizing ℓ does
not necessarily minimize mutual information. Furthermore, as
discussed in Sec. I, combining ℓ-diversity with a per-object
padding constraint c is problematic, as a given ℓ may not be
achievable for a given c. Thus, we see both ℓ-diversity and
k-anonymity as ill-suited for our setting.

Differential privacy [29] is another privacy measure that
is used when a publicly available database must also protect
the privacy of the individuals whose data is contained in
the database. Differential privacy does so by adding noise
to released data so as to render two databases (that differ
in only one element) practically indistinguishable. Normally,
this noise is allowed to be either negative or positive, and
so would be unsuitable for our setting. However, Case et
al. [12] recently analyzed truncated mechanisms to provide
(ϵ, δ)-differential privacy in scenarios where noise must be
non-negative. In the (ϵ, δ)-differential privacy setting, δ must
be very small in order to be a meaningful application of (ϵ, δ)-
differential privacy [29, Chapter 2.3]. Unfortunately, small δ
leads to very large overhead. For instance, Case et al. [12]
show that, for the counting query where sensitivity is one,
the truncated discrete Laplace mechanism with ϵ = 0.5 and
δ = 10−6 yields an expected overhead of 25× the sensitivity.
In our setting, sensitivity will typically be much greater than
one as objects can differ greatly in size, and so this mechanism
will yield exceptionally large overhead (on average) if (ϵ, δ)-
differential privacy must be meaningfully upheld. So, just as
with ℓ-diversity and k-anonymity, we find differential privacy

to be impractical for our setting.

Leakage based on communication volume: Kellaris et
al. [47] analyzed an “outsourced” (i.e., untrusted) object store
that returns some subset of its objects in response to range
queries on their (encrypted) search keys by clients. They
evaluated basic sources of leakage that practical defenses might
permit, of which one is communication volume. This form
of leakage occurs when the object store observes how many
objects it returns to the client (but not which ones), as systems
leveraging ORAMs (e.g., [6], [15], [32]) would typically leak.
(See also Naveed [62].) While communication volume leakage
bears some similarity to our problem, our study differs in the
threat model (our object store is trusted, theirs is not), what
is sensitive (search terms in their case, objects in ours), and
the nature of the results (they presented attacks, we present
defenses).

Generic defenses against communication-volume leakage
in the model of Kellaris et al. have been explored recently
(e.g., [45], [46]). Lossless defenses (as we require here)
provide strong privacy but retrieve an object via multiple
fixed-sized retrievals—of total size larger than the original
object, and so themselves padded—over multiple rounds of
interaction. In contrast, our design does not require multiple
rounds or otherwise alter the communication pattern of object
retrievals (aside from padding them), and focuses on limiting
bandwidth overhead to a maximum multiplicative overhead per
object while achieving the best privacy that limit allows against
a network observer.

Leakage based on access patterns: The second basic
source of leakage analyzed by Kellaris et al. [47] is access
patterns, in which the object store observes which objects it
returns to the client, as would be typical of systems based
on searchable symmetric and structured encryption (e.g., [14],
[16], [18], [44]) or on deterministic and order-preserving
encryption (e.g., [4], [66]). Various other works have studied
access-pattern leakage and its detrimental effects on privacy
against an untrusted object store (e.g., [13], [36], [41], [49]).
Defenses against this risk tend to incorporate fake queries
(e.g., [35], [60], [65]), again which we eschew here due to
their overheads, or ORAMs, whose overheads are even worse
(e.g., [17]). Still, most defenses against access-pattern leakage
assume all objects are the same size (e.g., [35]), so that object
lengths do not leak information. It is exactly this assumption
that we seek to relax.

Webpage fingerprinting: The context within which traf-
fic analysis has been most often considered recently is webpage
fingerprinting. In this context, a network observer seeks to
determine which webpage (or which website) a user is access-
ing based on features visible to the observer. The variety of
features that the observer might leverage is vast [83], but it has
been shown that communication volume is particularly power-
ful for fingerprinting webpages [30]. Webpage fingerprinting
has been attempted within, among others, HTTPS traffic [2],
[19], [25], [33], [61]; encrypted web-proxy traffic [40], [76];
SSH proxy tunnels [9], [53]; netflow records [22], [84]; packet
headers [58]; and Tor traffic [11], [20], [38], [39], [43], [64],
[79], [80]. Many (though not all) proposed defenses against
webpage fingerprinting exploit protocol features in TCP and/or
HTTP (e.g., [56], [76]).

3



TABLE I: Objects used in algorithm illustrations in Sec. III.

Label URL (accessed Apr 25, 2021)
https://images.unsplash.com/... Size (B) Downloads

per day

P0 photo-1572095426476-808d659b4ea3 2493855 2.53
P1 reserve/qstJZUtQ4uAjijbpLzbT LO234824.JPG 3833489 27.92
P2 photo-1583582829797-b2990fb9946b 7929946 5.41
P3 photo-1591672524177-261a7744a2b6 13322074 12.41
P4 photo-1579832888877-74d7a790df36 13589747 1.09
P5 photo-1558136015-7002a0f5e58d 16235142 5.54
P6 photo-1586030307451-dfc64907aaa5 16719886 10.65
P7 photo-1558729923-720bbb76a430 19437984 5.07
P8 photo-1528233090455-e245a0c50575 25905442 2.27
P9 photo-1559422721-1ed9b8d28236 34389677 4.23

While padding web objects has been considered as a
defense (e.g., [20], [76]), we know of no work that shows
how to pad objects so as to maximize privacy subject to a
bandwidth overhead constraint, as we do here. In particular,
object padding schemes have been proposed to ensure k-
anonymity and ℓ-diversity [54], [55], as well as to reduce
mutual information [7]; while these works are more ambitious
than ours in attempting to address correlated, sequential re-
trievals typical of web applications, these proposed defenses
do not provably optimize the tradeoff between privacy and
overhead. For example, the defense proposed by Backes et
al. [7] must be run repeatedly to generate candidate padding
schemes, from which an object store would then select a
scheme that offers a tradeoff between privacy and overhead
that it finds acceptable, but with no guarantee of how close
to optimal the resulting scheme is. We instead focus on the
simpler scenario of independent object retrievals, for which
we are able to provide provably optimal privacy subject to an
overhead constraint.

III. ALGORITHMS

In this section we develop algorithms for calculating the
padding scheme ⌈·⌉ that optimally achieves privacy subject
to padding overhead constraints (1)–(2). We address multiple
scenarios: “per-object padding,” in which objects are padded
once and then provided in response to requests distributed
according to the known distribution on S (Sec. III-A); “per-
request padding,” in which objects can be padded anew in
response to each request, with each request again distributed
according to the known distribution on S (Sec. III-B); and
a third scenario in which the distribution on S is unknown
to the object store (Sec. III-C). In all cases, our target is to
minimize the mutual information I(S;Y) of S and the padded
object sizes Y revealed to the attacker. Once ⌈·⌉ has been
calculated, each invocation ⌈objs⌉ involves simply sampling
from the distribution for Y conditioned on the event S = s and
then padding objs to the sampled size, and so each invocation
is very efficient. As such, the primary cost we focus on in this
paper is the cost of calculating the distribution of Y conditioned
on S.

For each algorithm we provide, we illustrate the padding
scheme ⌈·⌉ it produces for objects selected from one of
the datasets we utilize in our evaluations in Sec. IV–V. We
defer detailed discussion of these datasets to that section,
but the objects selected for illustration in this section are
shown in Table I. We selected these objects to illustrate the

differences among algorithms effectively; we do not claim
that the selected objects are representative of the dataset from
which we drew them. Central to two of our algorithms is
knowing the frequency with which each object is requested, so
that we can estimate the distribution of S. For the objects listed
in Table I, this information is provided in the “Downloads per
day” column.

We reiterate that our threat model permits an attacker to
observe the sizes of objects returned in response to others’
requests, and to query the object store itself to observe padded
objects. However, we assume that these are the only features
available to the attacker. In particular, the sizes of all requests
(as observable on the network) are the same, and neither
others’ requests nor the contents of the objects returned to
these requests are visible to the attacker. We further assume
that the contents of objects returned to others’ requests have
no observable effect on network-level features available to the
attacker; i.e., two different objects, if padded to the same size,
will be indistinguishable to the attacker.

A. Per-object Padding

The case of per-object padding differs from per-request
padding in that ⌈objs⌉ is invoked only once per identifier s.
All queries for s then return this once-padded object. As such,
we can view ⌈·⌉ as a deterministic function in this case. Per-
object padding is appropriate when the expense of padding
anew for each query is deemed too costly, or if objects will
be diffused via content-distribution networks (CDNs) outside
the object store’s control.

A classic result (e.g., [23, Theorem 2.4.1]) regarding mu-
tual information is that in addition to (3),

I(S;Y) = H(Y)−H(Y | S) (5)

As such, when Y = ⌈objS⌉ is a deterministic function of S,
as in this case, then H(Y | S) = 0 and so I(S;Y) = H(Y).
Therefore, to minimize I(S;Y) it suffices to minimize H(Y).

In the remainder of this section, we show how to compute
the optimal function ⌈·⌉ for per-object padding. We first prove
an important property about the optimal ⌈·⌉ in Sec. III-A1
and then provide an algorithm to compute the optimal ⌈·⌉
efficiently in Sec. III-A2.

1) The Privacy-Optimal ⌈·⌉ is Nondecreasing: In this sec-
tion we prove that any privacy-optimal scheme ⌈·⌉ for per-
object padding is nondecreasing in object size, in the sense
that |objs| < |objs′ | ⇒ ⌈objs⌉ ≤ ⌈objs′⌉. To do so, consider
any function ⌈·⌉ satisfying padding constraints (1)–(2) that is
not nondecreasing, i.e., for which there are objects objs and
objs′ with |objs| < |objs′ | but for which ⌈objs⌉ > ⌈objs′⌉.
Since |objs| < |objs′ |, increasing ⌈objs′⌉ to ⌈objs⌉ will not
violate our padding constraints (in particular, (2)). Similarly,
decreasing ⌈objs⌉ to ⌈objs′⌉ will not violate our constraints (in
particular, (1)). Below we show that one of these alternatives
will decrease H(Y) and, therefore, I(S;Y), showing that ⌈·⌉
cannot be privacy-optimal. To do so, we use the following
proposition.

Proposition 1: Let f be a function that is defined on the
interval R ⊆ R, and that has a negative second derivative. For
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all z, z′ ∈ R such that z ≤ z′ and for any ϵ > 0 such that
z − ϵ ∈ R and z′ + ϵ ∈ R:

f(z) + f(z′) > f(z − ϵ) + f(z′ + ϵ)

Proof: Since a negative second derivative implies a de-
creasing first derivative,

f(z)− f(z − ϵ)

z − (z − ϵ)
>
f(z′ + ϵ)− f(z′)

(z′ + ϵ)− z′

and the result follows by rearranging terms.

To use Prop. 1, consider a partition {By}y∈N of the objects
based on their padded sizes, i.e., so that By = {s ∈ S :
⌈objs⌉ = y}. If we let py =

∑
s∈By P(S = s) and h(p) =

−p log2 p for p ∈ [0, 1], then

H(Y) =
∑
y∈N

h(py) (6)

Note that the second derivative of h(p) is h′′(p) = − 1
p ln(2) ,

which is negative for p ∈ [0, 1].

Now, return to considering a function ⌈·⌉ that is not
nondecreasing, i.e., there are objects objs and objs′ with
|objs| < |objs′ | but y > y′ where y = ⌈objs⌉ and y′ = ⌈objs′⌉.
If py ≤ py′ , then setting ϵ = P(S = s) and applying Prop. 1
yields h(py)+h(py′) > h(py − ϵ)+h(py′ + ϵ). In other words,
decreasing ⌈objs⌉ from y to y′ reduces H(Y). Otherwise (i.e.,
py > py′ ), setting ϵ = P(S = s′) and applying Prop. 1 shows
that increasing ⌈objs′⌉ from y′ to y reduces H(Y). Either case
reveals that the initial function ⌈·⌉, which is not nondecreasing,
cannot be privacy-optimal, either, and so any privacy-optimal
function ⌈·⌉ must be nondecreasing.

2) Finding the Privacy-Optimal ⌈·⌉: That the privacy-
optimal ⌈·⌉ must be nondecreasing allows us to leverage
dynamic programming to compute the solution. In general,
to leverage dynamic programming, it is necessary to express
our optimization problem recursively, i.e., so that the optimal
solution is computed by combining optimal solutions to over-
lapping subproblems (e.g., [27, Chapter 6]).

Let [i, j] = {i, . . . , j}, [i] = [1, i], and #S be the
cardinality of set S. Because the privacy-optimal ⌈·⌉ is non-
decreasing as a function of object size, there is a total order
ψ : [#S] → S of S by object size—i.e., a bijection satisfying
|objψ(k)| ≤ |objψ(k+1)| for k ∈ [#S − 1]—such that each
block By of the partition induced by ⌈·⌉ is of the form
By = {ψ(k)}k∈[i,j] where |objψ(j)| ≤ y ≤ c × |objψ(i)|.
We equivalently denote this block by B[i,j], and analogously
denote p[i,j] =

∑
s∈B[i,j]

P(S = s).

Now consider the function H defined recursively as
H(0) = 0 and, for 0 < j ≤ #S,

H(j) = min
i≤j:|objψ(j)|≤c×|objψ(i)|

(
H(i− 1) + h

(
p[i,j]

))
(7)

Then, computing H(#S) computes the privacy-optimal
padding scheme ⌈·⌉ for the per-object padding case: for the
value of i minimizing the right hand side of (7), we set
⌈objψ(k)⌉ = |objψ(j)| for all k ∈ [i, j]. (Note that no other
objects will be padded to this size, as otherwise (7) could
be minimized further, as shown in Sec. III-A1.) The recursion

y
s |P0| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |P8| |P9|
P0 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(a) c = 2

y
s |P0| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |P8| |P9|
P0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(b) c = 3

Fig. 1: P
(
Y = y

∣∣ S = s
)

produced by POP (Sec. III-A).

(7) exhibits the properties needed for dynamic programming to
be effective because H(i) can be leveraged in the calculation
of H(j) for every j > i. That is, H(i) can be computed
only once and saved to be looked up when needed. As a
consequence, dynamic programming (e.g., [27, Chapter 6])
yields an algorithm that runs in time O

(
(#S)2

)
. In the

following sections, we refer to this algorithm as Per-Object
Padding (POP).

When applied to the objects listed in Table I, POP produces
the conditional distributions shown in Fig. 1. Fig. 1a shows the
case c = 2, and Fig. 1b shows the case c = 3. (We believe
these values for c are larger than would typically be tolerated in
practice, but we use large values here to illustrate the effects of
the algorithm in light of the small number, but diverse sizes, of
the objects in Table I.) Because POP produces a deterministic
padding scheme ⌈·⌉, each row includes only one nonzero entry.
It is perhaps most insightful to consider how these distributions
change as c moves from c = 2 to c = 3. For example, POP
prescribes that P0 be padded to the size of P1 when c = 2,
leaving P2 isolated. In contrast, when c = 3, POP instead
prescribes padding P1 to the size of P2, leaving P0 isolated.
It is simple to confirm that under the padding constraints (1)–
(2), at least one of P0, P1, and P2 must be left isolated by a
deterministic padding scheme when c ≤ 3, but when allowed,
POP prefers to isolate P0 because it is requested less often
(see Table I).

B. Per-request Padding

In the per-request padding scenario, the padding scheme
⌈·⌉ can be calculated as a special case of rate-distortion
minimization proposed by Shannon [72] (see also [8, Sec. IV]).
Specifically, using our terminology, rate-distortion minimiza-
tion solves for a scheme ⌈·⌉ minimizing I(S;Y) subject to the
constraint

E(D(S, ⌈objS⌉)) ≤ d
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where D : S×N → [0,∞] is a distortion function, d ∈ R is a
positive constant, and the expectation is computed relative to
the distribution of S and random choices made by ⌈·⌉. Written
explicitly, this expected value is

E(D(S, ⌈objS⌉)) =
∑
s∈S

∑
y∈N

P(S = s)P(⌈objs⌉ = y)D(s, y)

Specifying D(s, y) = ∞ for any s such that P(S = s) > 0 im-
plies that a solution for rate-distortion minimization, if it exists,
must set P(⌈objs⌉ = y) = 0. As such, specifying D(s, y) = ∞
for any y < |objs| and any y > c × |objs| suffices to enforce
(1)–(2). Specifying D(s, y) = 0 for |objs| ≤ y ≤ c × |objs|
then provides maximum flexibility in choosing ⌈·⌉ to minimize
I(S;Y).

Having reduced our problem to rate-distortion minimiza-
tion, we can employ a known algorithm for that problem to
solve ours. Typically this problem must be solved numerically
because the optimization problem is nonlinear. An iterative
algorithm that converges to the optimal solution is due to
Blahut [10] and independently Arimoto [5] (see also [85]). For
our purposes, this algorithm works by iteratively computing
values {⟨ut(y), vt(y, s)⟩}t≥0 as follows for each s ∈ S and
each y, |objs| ≤ y ≤ c× |objs|, where β is a parameter:

vt+1(y, s) =
ut(y) exp(−β ×D(s, y))∑
y′ ut(y

′) exp(−β ×D(s, y′))

=

{
ut(y)∑

y′:D(s,y′)=0 ut(y
′) if D(s, y) = 0

0 otherwise
(8)

ut+1(y) =
∑
s∈S

P(S = s)vt+1(y, s)

(8) holds since in our case, D(s, y) ∈ {0,∞} for all s, y.

As t grows, the values ut(y) and vt(y, s) converge to
P(Y = y) and P

(
Y = y

∣∣ S = s
)
, respectively, for the optimal

⌈·⌉ for per-request padding, provided that v0(y, s) is initialized
to be nonzero for any y for which P

(
Y = y

∣∣ S = s
)

in
the privacy-optimal ⌈·⌉ is nonzero. So, in all empirical tests
reported in this paper, we initialized v0(y, s) by computing
every possible padded size for objs, i.e.,

Y (s) =

{
y′
∣∣∣∣ |objs| ≤ y′ ≤ c× |objs| ∧
∃s′ ∈ S : (P(S = s′) > 0 ∧ |objs′ | = y′)

}
and set

v0(y, s) =

{
1

#Y (s) if y ∈ Y (s)

0 otherwise

u0(y) =
∑
s∈S

P(S = s)v0(y, s)

We terminated the algorithm once Ĩt(S;Y) − Ĩt+1(S;Y) <
∆, where Ĩt(S;Y) is the value of I(S;Y) obtained using
P(Y = y) = ut(y) and P

(
Y = y

∣∣ S = s
)
= vt(y, s) in (5),

and where ∆ is a threshold to indicate when the algorithm
can cease iterating (as the per-iteration improvement to I(S;Y)
has become sufficiently small). In the sections that follow, we
refer to this algorithm as Per-Request Padding (PRP).

PRP produces the conditional distributions shown in Fig. 2
when applied to the objects in Table I. The most immediately
noticeable difference from Fig. 1 is that Fig. 2 includes values

y
s |P0| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |P8| |P9|
P0 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.81 0.00
P4 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.81 0.00
P5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
P7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.14
P8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.14
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(a) c = 2

y
s |P0| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |P8| |P9|
P0 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1 0.00 0.39 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.28 0.00 0.00
P3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.81
P4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.81
P5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.81
P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.81
P7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.81
P8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(b) c = 3

Fig. 2: P
(
Y = y

∣∣ S = s
)

produced by PRP (Sec. III-B).

< 1.0, which permits ⌈·⌉ to sample each response size from
the distribution in the row of the requested object. (Note that
each row sums to 1.0, i.e. the calculation of vt(y, s) followed
by ut(y), as per (8), yields a valid probability distribution.)
Whereas POP was forced to isolate either P0 or P2 when
c ≤ 3, PRP spreads probability mass to ensure that no object
is isolated; i.e., for any feasible response size y, there are
at least two objects that response could possibly represent.
Moreover, PRP spreads probability mass in the most effective
way possible to minimize I(S;Y).

C. Unknown Query Distribution

There are cases in which it is inconvenient or even im-
possible for the object store to estimate the distribution for
S. This might occur because the adversary can affect that
distribution or simply because the distribution is likely to vary
in unpredictable ways over time. Issa et al. [42] advocate
that the Sibson mutual information of order infinity, denoted
I∞(S;Y), be used in place of I(S;Y) to describe information
leakage when the distribution of the private random variable
S is complex or outside the defender’s control, where

I∞(S;Y) = log2
∑
y

max
s:P(S=s)>0

P
(
Y = y

∣∣ S = s
)

This alternative is attractive because I∞(S;Y) ≥ I(S;Y) [73],
[78] and, moreover, I∞(S;Y) = I(S;Y) for distributions of
S and Y meeting certain conditions [42, Lemma 2]. As such,
I∞(S;Y) is a conservative estimate of information leakage in
the absence of knowledge of the distribution for S (except
those s for which P(S = s) > 0) and, Issa et al. argue,
has other advantages as a measure of information leakage, as
well. Indeed, as mentioned in Sec. II, I∞(S;Y) is equivalent
to min-capacity, which Alvim et al. [3, Theorem 5.1] have
shown upper-bounds g-leakage for all gain functions and all
distributions S. Thus, minimizing I∞(S;Y) provides robust
privacy guarantees to the object store.
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In our scenario, constructing ⌈·⌉ that minimizes I∞(S;Y)
subject to overhead constraints (1)–(2) is very efficient. First,
note that for any s′ for which P(S = s′) > 0, constraints (1)–
(2) imply ∑

y:|objs′ |≤y≤c×|objs′ |

P
(
Y = y

∣∣ S = s′
)
= 1

and so ∑
y:|objs′ |≤y≤c×|objs′ |

max
s:P(S=s)>0

P
(
Y = y

∣∣ S = s
)
≥ 1

As such, for any S∗ ⊆ S such that

∀s, s′ ∈ S∗, s ̸= s′ :

[|objs|, c× |objs|] ∩ [|objs′ |, c× |objs′ |] = ∅ (9)

we know that I∞(S;Y) ≥ log2 #S
∗.

Now, for any S∗ ⊆ S define the anchors A(S∗) inductively
as follows: A(∅) = ∅ and, for S∗ ̸= ∅,

A(S∗) = {a(S∗)} ∪A(S∗ \B(S∗)) where (10)
a(S∗) = argmax

s∈S∗
|objs| and (11)

B(S∗) = {s′ ∈ S∗ : |obja(S∗)| ≤ c× |objs′ |} (12)

In words, the anchors of S∗ include the largest object of S∗

(see (11)) and the anchors of the set remaining after removing
those objects for which this anchor is no more than c times
larger (see (10), (12)).

Consider calculating the anchors A(S) of the full set S, and
for each B(S∗) calculated in the induction, pad each object in
B(S∗) to the size of anchor a(S∗); i.e.,

⌈objs⌉ = |obja(S∗)|

for each s ∈ B(S∗). This padding scheme respects constraints
(1)–(2) and yields I∞(S;Y) = log2 #A(S), since there are
only #A(S) values y to which objects are padded and

max
s:P(S=s)>0

P
(
Y = y

∣∣ S = s
)
= 1

for each such y. Moreover, since (9) is satisfied with S∗ =
A(S), we know that this value of I∞(S;Y) is the minimum.
This algorithm, which produces ⌈·⌉ in time linear in #S,
is denoted Padding without a Distribution (PwoD) in the
following sections.

Applying PwoD to the objects in Table I yields the con-
ditional distributions shown in Fig. 3. As in the case of POP,
PwoD is forced to isolate either P0 or P2 when c ≤ 3 (since
both produce deterministic padding schemes), and PwoD does
so in the same way as POP. The distributions resulting when
c = 3, shown in Fig. 3b, are also identical to those produced
by POP (Fig. 1b). When c = 2, however, PwoD prescribes that
P3–P9 be padded differently than POP prescribes, as can be
seen by comparing Fig. 3a to Fig. 1a. This is due to the fact
that PwoD iterates through an object list in reverse-order by
size and greedily assigns objects to the current anchor. Thus,
in Fig. 3a PwoD sets P9 as the first anchor and then pads P8
and P7 to P9’s size before arriving at P6 and creating the next
anchor.

y
s |P0| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |P8| |P9|
P0 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
P4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
P5 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
P6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
P7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(a) c = 2

y
s |P0| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |P8| |P9|
P0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(b) c = 3

Fig. 3: P
(
Y = y

∣∣ S = s
)

produced by PwoD (Sec. III-C).

IV. SECURITY EVALUATION

In this section, we begin by describing the datasets that we
created to support all of our security and performance tests.
Next we list the padding algorithms to which we compare,
and we describe how they work when used in our setting.
We then evaluate each algorithm’s ability to reduce I(S;Y)
for the two datasets. We conclude this section with a security
assessment that evaluates each algorithm’s ability to hinder a
network attacker in an operational setting.

A. Datasets

For our tests we use two datasets: a dataset of NodeJS2

packages, and a dataset of Unsplash3 images.

NodeJS Packages: To create our dataset of NodeJS
packages, we first referenced a list4 of all packages available on
the NodeJS Package Manager (NPM) registry. We then used
NPM’s Application Programming Interface (API) to retrieve
the weekly download statistics of each package, for the week
of Feb. 13-19, 2021. Finally, we sent HTTP HEAD requests
for each package to obtain the tarball size (in bytes) of its
most current version (as of Feb. 19, 2021). Overall, this dataset
contains the name, tarball size, and weekly download statistics
for 423,450 packages.5

Unsplash Lite: To create our Unsplash Lite dataset,
we first referenced Unsplash’s freely available “Unsplash Lite
Dataset 1.1.0” dataset6. This dataset includes the URL of

2https://nodejs.org/en/
3https://unsplash.com/
4https://github.com/nice-registry/all-the-package-repos, accessed Feb. 19,

2021.
5Due to limitations of NPM’s API, we did not retrieve statistics for scoped

packages (i.e., packages whose name begins with an @ symbol). Also, we
did not include packages with 0 weekly downloads. Overall, our starting list
contained 993,825 packages, and our final dataset is comprised of 423,450
packages.

6https://unsplash.com/data
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each image in the dataset, as well each image’s cumulative
downloads since the image was uploaded to Unsplash. Given
this information, we were able to issue HTTP HEAD requests
for each image in the dataset, as well as compute each image’s
average downloads per day (based on the difference between
the dataset’s creation date and the image’s upload date). In
total, our Unsplash Lite dataset contains the URL, file size (in
bytes), and average daily downloads for 24,997 images.

B. Padding Algorithms to Which We Compare

In this section we briefly introduce the other padding
algorithms to which we compare. These algorithms appeared
within the past five years in a well-regarded, peer-reviewed
venue focusing on privacy technologies, and so we take them
as representative of modern approaches for padding objects to
make their retrieval harder to detect by a network observer.
The padding schemes produced by each of these algorithms
for the dataset in Table I are shown in App. A.

D-ALPACA: Cherubin et al. [20] proposed padding
algorithms to defend against website fingerprinting attacks and,
so, that seek to address leakage resulting from the retrieval of
objects hyperlinked in a webpage, subject to padding overhead
constraints. Distilled down to our simpler scenario, though,
their padding algorithms result in natural contenders for com-
parison. One of these, called D-ALPACA, is deterministic and
so is suitable as a per-object padding algorithm. In brief, D-
ALPACA sets ⌈objs⌉ to be the smallest multiple of σ that is
≥ |objs|, where σ is an input parameter. For our setting, we
set σ = floor

(
(c− 1)× |objsmin

|
)
, where floor : R → N is the

floor function and where smin is the identifier of the smallest
object in the object store. This, then, ensures that D-ALPACA
does not violate c for any s ∈ S. Note that D-ALPACA is
insensitive to the distribution of S.

PADMÉ: Nikitin et al. [63] proposed a per-object
padding algorithm called PADMÉ. Like ours, PADMÉ seeks to
limit leakage about which object objs is returned from the size
⌈objs⌉ of the returned object, while also limiting padding over-
head. The notion of leakage that PADMÉ is designed to limit,
however, is simply the total number of valid padding sizes
over all objects; in particular, PADMÉ calculates per-object
padding sizes independent of the distribution of S. Specifically,
PADMÉ pads an object objs to size ⌈objs⌉ = b−(b mod 2E−S)
where E = floor(log2 |objs|), S = floor(log2E) + 1, and
b = |objs| + 2E−S − 1. Nikitin et al. show that this scheme
limits “leakage” to O(log logM) bits if the largest object is
of size M , with a padding overhead of c ≈ 1

2 log2 |objs|
< 1.12.

P-ALPACA: Cherubin et al. [20] also proposed a
randomized algorithm called P-ALPACA that is suitable as
a per-request padding algorithm. When applied to our setting,
P-ALPACA pads the response to a request s so that

P(⌈objs⌉ = y) = P
(
|objS| = y

∣∣ |objs| ≤ |objS| ≤ c× |objs|
)

=

∑
s′:|objs′ |=y

P(S = s′)∑
s′:|objs|≤|objs′ |≤c×|objs|

P(S = s′)

for each y, |objs| ≤ y ≤ c × |objs|. In particular, the most
probable padded size for objs is the most probable unpadded
size in the interval [|objs|, c× |objs|].

C. Mutual Information

To more systematically compare the security offered by
the six padding algorithms we consider, we applied them to
the two datasets described in Sec. IV-A and computed the
mutual information I(S;Y) of the distribution resulting from
each. Fig. 4a shows the results for the NodeJS dataset, and
Fig. 4b shows the results for the Unsplash dataset. Each bar
indicates the value for I(S;Y) that was achieved by each
algorithm, when calculated using the distribution of the given
dataset and the value of c on the horizontal axis. Each error
bar extends to I∞(S;Y) for each algorithm’s padding scheme,
which upper-bounds the worst-case I(S;Y) if the distribution
for S the defender assumed was incorrect. The algorithms are
ordered left-to-right roughly according to security, i.e., from
lower security to higher (since lower numbers indicate better
security). The one exception is PADMÉ, for which a bar is
added to the left of the cluster at the value of c that its padding
scheme achieved on the corresponding dataset (c = 1.09 in
Fig. 4a and c = 1.03 in Fig. 4b). Note that the y-axis in both
Fig. 4a and Fig. 4b begins at 5 bits.

As these figures show, D-ALPACA was not competitive
with the other algorithms in our tests. Indeed, it performed so
poorly that portions of its bars were clipped in both Fig. 4a
and Fig. 4b so that they would not distort the graph so as to
obscure the differences among the bars for other algorithms.
PADMÉ performed convincingly better than D-ALPACA (for
the c values it yielded on the two datasets) but was nevertheless
inferior to other alternatives in terms of mutual information of
the distribution it produced.

Of the remaining algorithms, PRP consistently produced
the lowest I(S;Y), which is not surprising since it is designed
specifically to minimize I(S;Y). (So is POP, but POP is
constrained to produce a padding scheme where only one
padded size is possible for each object, since ⌈·⌉ is constrained
to be deterministic.) However, PRP also produced the highest
I∞(S;Y) (of these four algorithms), which suggests that by
fine-tuning the padding scheme to the assumed distribution
for S, there is a risk of making security more sensitive to
errors in that assumption. On the other end of the spectrum,
PwoD achieves the best I∞(S;Y) in all cases; again, this is
unsurprising since it was designed to optimize this measure.
And, while I(S;Y) of the distribution it produces is generally
the worst of these four algorithms, it does not differ by much.
For this reason, and since PwoD does not rely on knowing
the distribution for S, it appears to be an attractive choice for
these datasets.

Another observation from these graphs is that POP outper-
formed P-ALPACA in most of the tests, producing a lower
I∞(S;Y) in all but one case (c = 1.1 in Fig. 4b) and a
I(S;Y) value that is no higher than (and often lower than)
P-ALPACA’s. This dominance is perhaps unexpected, since
POP is restricted to produce a deterministic padding scheme
⌈·⌉ whereas that produced by P-ALPACA need not be.

Finally, although P-ALPACA remained competitive for
these two datasets, we note that it provides no guarantees
regarding optimality when used on other datasets. To demon-
strate this, consider an object store that serves two objects,
objs and objs′ , with |objs| = 100B and |objs′ | = 101B. If
these objects are requested uniformly at random (i.e., each
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Fig. 4: Per-algorithm mutual information. Error bars extend to I∞(S;Y). Lower values indicate better security.

50% of the time), then H(S) = 1 bit and, if left unpadded,
I(S;Y) = 1 bit. Now, for c = 1.01, all of our algorithms—
PRP, POP, and PwoD—will set ⌈objs⌉ = |objs′ | for every
request of objs, resulting in I(S;Y) = 0 bits. P-ALPACA,
however, will only set ⌈objs⌉ = |objs′ | for half of objs’s
requests, resulting in I(S;Y) ≈ 0.31 bits. Thus, here we
see that P-ALPACA performs worse than our algorithms and
indeed is far from optimal (in a relative sense).

D. Attacker’s Recall and Precision

One of the criticisms sometimes levied against mutual
information as a measure of privacy is that it is difficult
to interpret operationally [42]. In this section, therefore, we
evaluate the extent to which the various algorithms we consider
interfere with a network attacker attempting to achieve a
specific operational goal, namely to infer whether a request
s is a member of a target set S∗ ⊆ S, based on the size
of the object returned in response to the request. Specif-
ically, for the observed size y, the adversary returns true
iff P

(
S ∈ S∗

∣∣ ⌈objS⌉ = y
)

≥ τ for a tunable parameter
0 ≤ τ ≤ 1. For a given setting of τ , the adversary’s recall
is the fraction of requests for some member of S∗ for which
the adversary returns true , and the adversary’s precision is the
fraction of its true declarations for which the requested object
is in S∗. We consider two different sets S∗, described below.

Vulnerable NodeJS Packages: For the NodeJS pack-
ages, we envision an adversary that wants to detect if any
vulnerable package was retrieved/installed by a server. If

so, the adversary might then hope to exploit the server via
a program such as Metasploit7. To define a subset S∗ of
“vulnerable” packages, we use a dataset provided by Ferenc et
al. [31] containing 88 NodeJS packages that, at the time of its
publication, contained vulnerable functions and whose source
code was available on GitHub. Note that these packages may
no longer be vulnerable. Still, we use this dataset as a way
to define a subset S∗ of “vulnerable” packages based on their
vulnerability at that time.

Unsplash Lite Nature Collection: The Unsplash Lite
dataset includes a table that contains user-created collections
of photos contained within the dataset. We used a collection
of 256 photos named Nature to create the adversary’s subset
S∗ of interest. We envision that such an adversary might want
to send the user targeted ads, in which case knowledge of
a downloaded picture might help the adversary to tailor the
selection of ads shown to the user.

We allow the adversary to know the object sizes and
retrieval distribution for S, as well as the padding algo-
rithm employed by the object store. For confidence thresh-
olds τ ∈ {0.0, 0.05, 0.10, . . . , 1.0}, we calculate this adver-
sary’s recall and precision for each algorithm using c ∈
{1.01, 1.03, 1.05, 1.07, 1.09}. The recall-precision curves that
result are depicted in Fig. 5 and Fig. 6.

Intuitively, a curve closer to the upper right-hand corner of
each plot indicates that the adversary did better at detecting

7https://www.metasploit.com/
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Fig. 5: Adversary’s recall and precision for detecting vulnerable NodeJS packages.
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Fig. 6: Adversary’s recall and precision for detecting the Unsplash Lite Nature collection.

requests in S∗. In that light, we see that better security
provided by an algorithm when measured using mutual infor-
mation (i.e., Fig. 4) translated reasonably well into diminished
precision and/or recall in these tests. Indeed, our per-request
padding algorithm (PRP) defended as well or better than the
competitor for per-request padding (P-ALPACA), and our per-
object padding algorithm (POP) consistently outperformed the
per-object padding competitors (D-ALPACA and PADMÉ).
Only PwoD was outperformed by P-ALPACA in some cases,
but P-ALPACA did so by leveraging the distribution of S; if
that distribution were unknown or incorrect, presumably the
protection offered by P-ALPACA would decay.

We also computed the precision-recall curve per vulnerable
NodeJS package and per Nature photo in the Unsplash Lite
dataset, to assess the extent to which individual objects could
still be identified by the attacker based on their sizes when
returned. To visualize these results, we reduced the precision-
recall curve for each s ∈ S∗ to a single number—the area
under the curve8 (AUC)—and then plotted the distribution of
AUC values per algorithm.

Figs. 7–8 show distributions for the vulnerable NodeJS
packages and the Nature photos, respectively. The more
bottom-heavy the distribution, the more members of S∗ the
algorithm protects. As such, it is easy to see from these
figures that our algorithms performed better than P-ALPACA,
particularly at smaller values of c, i.e., c = 1.01 (Fig. 7a)

8We extended each curve to the left to meet the vertical axis at its maximum
precision.

and c = 1.03 (Fig. 7b) for the NodeJS dataset and c = 1.01
(Fig. 8a) for the Unsplash dataset. D-ALPACA and, to a lesser
extent, PADMÉ were not competitive with the other algorithms.

Overall, we attribute the success of our algorithms to (4).
Specifically, minimizing I(S;Y) has the effect of increasing
the lower-bound of G(S | Y), i.e., by minimizing I(S;Y) one
would expect that the adversary who observes padded object
sizes would require more guesses, on average, to correctly
determine object identities. Since a precision-recall assessment
models an adversary that only makes a single guess, it stands
to reason that our techniques would excel in these tests.

V. PERFORMANCE EVALUATION

In this section, we report on the runtime performance of
PRP, POP, PwoD, and P-ALPACA in computing their padding
schemes. We did not evaluate the runtime performance of
either D-ALPACA or PADMÉ, as they do not need to compute
a padding scheme prior to usage. We conclude this section with
an analysis of the overall bandwidth increase imposed by each
padding scheme.

A. Implementation

Code Overview: We implemented all four algorithms
in Python. Additionally, we used Cython to optimize POP,
PRP, and P-ALPACA. By using Cython, we were able to
implement each algorithm’s core routines in “pure C” using
only C arrays and C data types. Furthermore, we leveraged
the multi-processing API OpenMP to parallelize both PRP and
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Fig. 7: Distributions of precision-recall AUC for vulnerable
NodeJS packages.
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Fig. 8: Distributions of precision-recall AUC for Unsplash Lite
Nature photos.

P-ALPACA so that they used all of the available processors
on our evaluation platform (see Sec. V-B).

PRP Improvements: Our implementation of PRP im-
proved upon the underlying algorithm in the following two
ways:

• Ĩt(S;Y) calculations. In our tests, calculating Ĩt(S;Y)

for every t ≥ 0 (and specifically the needed log-
arithms) was a performance bottleneck, and so our
implementation of PRP calculated only Ĩ10t(S;Y),
instead. As such, the algorithm terminated after
the first iteration 10(t + 1) for which Ĩ10t(S;Y) −
Ĩ10(t+1)(S;Y) < 10∆.

• Incremental update. Despite this optimization, PRP
was still considerably slower than the alternatives
(see Sec. V-D), so much so that recalculating the
distributions for use by ⌈·⌉, e.g., after changes to (the
sizes of) objects, could be a considerable disruption to
serving those changed objects. We anticipated, how-
ever, that incrementally updating these distributions
after only a few object changes would be much faster,
suggesting that their continuous maintenance could be
adequately responsive, even if computing them from
scratch would not be.
To this end, we implemented two versions of PRP.
The first, PRPinit, implemented PRP as described in
Sec. III-B and was used to calculate the initial padding
scheme for a given dataset and a given c. The second,
PRPinc, allowed for faster updates to a padding scheme
as object sizes were changed. PRPinc did this by re-
taining the final ut(y) and vt(y, s) values from PRPinit
(or a previous invocation of PRPinc) for values s and
y unaffected by the newly changed objects, using
these values to initialize u0(y) and v0(y, s). For other
values of y and s, u0(y) and v0(y, s) were initialized
as in Sec. III-B. After this initialization step, PRPinc
iterated in the same way as PRPinit, stopping once
Ĩ10t(S;Y)− Ĩ10(t+1)(S;Y) < 10∆.

Inputs: Our two datasets were each converted to a table,
implemented as a Pandas DataFrame, with columns Object ID,
Object Size, and Retrievals (per unit time). For each run of
an algorithm, we supplied the algorithm with the table for the
dataset being tested and a value for c. We also provided PRPinit
and PRPinc with a third input: the value for ∆ to indicate when
these algorithms should halt iterating and return their padding
scheme. For the NodeJS dataset we set ∆ = 1 × 10−3, and
for the Unsplash dataset we set ∆ = 5× 10−4. We arrived at
these values for ∆ by observing, for each dataset, at what point
smaller values for ∆ yielded minimal reductions to I(S;Y) at
the expense of increasing runtimes.

Outputs: PRPinit, PRPinc, and P-ALPACA each re-
turned their scheme for P

(
Y = y

∣∣ S = s
)

as a compact, linear
array that only contained the scheme’s nonzero values. These
algorithms also returned the auxiliary information needed to
support sampling from this array on a per-request basis. POP
and PwoD each returned a Python dictionary that mapped each
object’s original size to its padded size.

B. Evaluation Platform

Our evaluation platform was an Ubuntu 20.04.1 LTS virtual
machine running on VMware Workstation 15.5 Pro. The host
had a quad-core (eight logical processors) 2.80GHz Intel Core
i7-7700HQ CPU and 32GB of RAM; the virtual machine was
provided six logical processors and 20GB. That said, memory
usage was not a factor for any of the algorithms with the values
of c tested.
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C. Runtime Test Procedure

For PRPinit, POP, P-ALPACA, and PwoD, for each dataset
and for c ∈ {1.01, 1.02, . . . , 1.1}, we measured the time for
each algorithm to calculate its padding scheme. Each such test
was conducted ten times, and we report the average of these
measurements.

To test PRPinc, for each dataset we first created a list of the
ten most frequently retrieved objects. Then, we simulated each
object’s size being increased by 25% and measured the time
for PRPinc to update the padding scheme provided by PRPinit.
We report the average of ten such tests for each value of c. We
took this approach to test PRPinc because, in general, updating
the size of frequently requested objects led to longer runtimes
than when updating the sizes of infrequently requested objects.
Thus, our test for PRPinc was designed to estimate its worst-
case runtime.

D. Runtime Results

The runtime results are depicted in Figs. 9–10. The relative
standard deviations for all algorithms were less than 18%,
except for P-ALPACA, which ranged up to 124%. Our use of
OpenMP in P-ALPACA led to high variance since its runtimes
were so low.

Though each algorithm took less time on the Unsplash
dataset, Fig. 10 looks largely similar to Fig. 9. In other words,
the relative performance between each algorithm remained
unchanged between the two datasets. The absolute runtime
differences on the NodeJS and Unsplash datasets were due
mainly to their sizes—the NodeJS dataset contains about 17×
more objects.

Overall, PwoD outperformed the other algorithms, as its
runtime remained constant and negligible for a given dataset.
We then see P-ALPACA, POP, PRPinc, and PRPinit, in that
order. Furthermore, we see from both Fig. 9 and Fig. 10 that
PRPinit required significantly more time to compute its initial
padding scheme for each value of c than the other algorithms
required. With the addition of PRPinc, though, PRP required
considerably less time to maintain its padding scheme as object
sizes were changed. The addition of PRPinc therefore put
PRP’s steady-state runtime much closer to that of the other
algorithms.

Finally, we attribute the slight decrease in PRPinit’s runtime
between c = 1.09 and c = 1.1 in Fig. 10 to our decision to
calculate only Ĩ10t(S;Y), rather than each Ĩt(S;Y). To confirm
this, we conducted the Unsplash runtime test a second time
while calculating each Ĩt(S;Y). Though not depicted, this
test resulted in increasing runtimes for PRPinit, from a low
of 0.75 seconds at c = 1.01, to a high of 3.25 seconds at
c = 1.1. Additionally, this test revealed that, by calculating
only Ĩ10t(S;Y), PRPinit took 14 extra iterations at c = 1.09,
whereas it only took 6 extra iterations at c = 1.1. Thus,
we conclude that, although calculating Ĩ10t(S;Y) resulted in
overall reduced runtimes for PRPinit, it had the effect of
causing PRPinit to iterate more times than necessary to reach
its termination condition, which impacted some values of c
more than others.
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Fig. 9: Runtimes on the NodeJS dataset.
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E. Bandwidth Increase Analysis

Our final evaluation analyzed the overall bandwidth in-
crease incurred by each of the padding algorithms for c ∈
{1.01, 1.02, . . . , 1.1}. For this analysis, we calculated the
multiplicative increase to bandwidth that the object store would
have incurred over an arbitrary time interval if all of its objects
had been retrieved according to the distribution S. The results
for the NodeJS dataset are depicted in Fig. 11. Note that
Fig. 11’s y-axis starts at 1, which represents sending objects
with no padding, i.e., this is the object store’s baseline average
bandwidth. Unsplash is not shown, as the only significant
difference was that PADMÉ yielded a point at (1.031, 1.011),
compared to (1.093, 1.022) in Fig. 11.

Two trends stand out in Fig. 11. First, D-ALPACA had
a negligible effect on the object store’s overall bandwidth
since, for all values of c, the chosen input parameter σ (see
Sec. IV-B) was relatively small compared to the majority
of object sizes in the dataset. Second, PRP, PwoD, POP,
and P-ALPACA resulted in similar increases to the object
store’s overall bandwidth, despite producing different padding
schemes.

Finally, as mentioned in Sec. IV-B, PADMÉ is not a tunable
algorithm, and so it yielded a point rather than a line for this
analysis. Thus, at approximately c = 1.09, PADMÉ caused this
object store’s bandwidth to increase by 2.25%, whereas our
algorithms increased this object store’s bandwidth by 4.5%.
Note, though, that PADMÉ’s 2.25% savings in bandwidth (4.5%
minus 2.25%) came with a I(S;Y) that was roughly 18%
higher than our algorithms (see Fig. 4a).

VI. DISCUSSION

We see primarily two opportunities for improving on our
results. First, perhaps the most significant limitation of our
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Fig. 11: Bandwidth increase for the NodeJS dataset.

results is that the privacy metric we optimize measures privacy
only for independent object retrievals. In several contexts, most
notably web browsing, there are dependencies among objects
retrieved due to hyperlinking, a fact that has been used in
several previous works to fingerprint webpages (e.g., [19], [40],
[61]). This leakage could be reduced by transcluding at the
server those objects that the client-side browser would typi-
cally transclude when assembling a webpage (images, scripts,
stylesheets, etc.); the assembled page could then be padded at
the server as a single object. Some statistical dependencies
among pages would nevertheless remain due to hyperlinks
followed manually by the user.

Second, while our performance analysis of PRP in Sec. V
touched on the need to update padding distributions in re-
sponse to object (size) changes, we believe this topic warrants
further consideration. An object store that supports updates
to its objects’ sizes will need to recalculate object padding
distributions in response to those updates before serving the
new objects, if it is to protect its clients’ privacy from the
attacker we consider. If objects are updated frequently, then
these updates might therefore need to be batched and remain
hidden from clients until after the object store recalculates the
necessary padding distributions. Evaluating the best balance
among padding algorithm, batch size, and length of the recal-
culation time window for a given type of object store is a topic
of future work.

VII. CONCLUSION

Object size is a particularly potent feature for traffic
analysis, and one that encryption does nothing to obscure.
In this paper we provided algorithms for computing padding
schemes suitable for various scenarios, in which the object
store responds to every request with the same (padded) object
copy; in which the object store pads each object anew before
serving it; and in which the object store has no knowledge of
(or little confidence in its knowledge of) the distribution of
object requests it will receive. In each case we provided an
algorithm for constructing a padding scheme ⌈·⌉, subject to a
padding overhead constraint, that minimizes the information
gain I(S;Y) about the object identity S based on the padded
size Y of the object returned or, in the last case, an upper
bound I∞(S;Y) on the information gain that is robust to any
query distribution. Our empirical analysis using datasets of
NodeJS packages and of Unsplash Lite photos suggested that
our algorithms provide better privacy than competitors from
recent literature, and do so efficiently.
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“Challenging machine learning algorithms in predicting vulnerable
javascript functions,” in 7th International Workshop on Realizing Ar-
tificial Intelligence Synergies in Software Engineering, 2019, p. 8–14.

[32] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, May 1996.

[33] R. Gonzalez, C. Soriente, and N. Laoutaris, “User profiling in the time
of HTTPS,” in 16th Internet Measurement Conference, Nov. 2016, pp.
373–379.

[34] P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of
fading channels,” IEEE Transactions on Information Theory, vol. 54,
no. 10, pp. 4687–4698, Oct. 2008.

[35] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown, L. Li,
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APPENDIX

In this appendix we illustrate the padding schemes pro-
duced by each of PADMÉ, D-ALPACA, and P-ALPACA for
the dataset in Table I, to enable comparisons to the analogous
results for our algorithms shown in Figs. 1–3.

A. D-ALPACA

Fig. 12 illustrates P
(
Y = y

∣∣ S = s
)

when D-ALPACA is
applied to the objects listed in Table I. The values of y (i.e.,
the column headings) listed in Fig. 12 differ from those in
Figs. 1–3 because D-ALPACA pads objects to sizes that are
not necessarily the sizes of other objects, unlike POP, PRP, and
PwoD. Fig. 12a illustrates that D-ALPACA is not particularly
effective for the objects listed in Table I when c = 2, as
retrievals of six of the ten objects can be identified immediately
based on the sizes to which they are padded. Only once c = 3
is a majority of those objects padded to sizes where multiple
objects share the same padded size (Fig. 12b).

B. PADMÉ

Unlike the other algorithms considered here, PADMÉ is not
tunable to different padding factors c. Moreover, as shown in
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Fig. 13: P
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produced by PADMÉ [63].

y
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P0 0.08 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 0.29 0.66 0.06 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 0.00 0.34 0.03 0.15 0.29 0.14 0.06 0.00
P4 0.00 0.00 0.00 0.00 0.04 0.23 0.43 0.21 0.09 0.00
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(a) c = 2

y
s |P0| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |P8| |P9|
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P2 0.00 0.00 0.13 0.31 0.03 0.14 0.27 0.13 0.00 0.00
P3 0.00 0.00 0.00 0.30 0.03 0.13 0.26 0.12 0.06 0.10
P4 0.00 0.00 0.00 0.00 0.04 0.19 0.37 0.18 0.08 0.15
P5 0.00 0.00 0.00 0.00 0.00 0.20 0.38 0.18 0.08 0.15
P6 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.23 0.10 0.19
P7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.20 0.37
P8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.65
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(b) c = 3

Fig. 14: P
(
Y = y

∣∣ S = s
)

produced by P-ALPACA [20].

Fig. 13, PADMÉ is unfortunately ineffective when applied to
the objects listed in Table I—each of the objects is padded
to a different size. In part this is due to the small number of
objects or, more precisely, the low density of object sizes.

C. P-ALPACA

The effect of P-ALPACA on the objects in Table I is
shown in Fig. 14. Among all of the algorithms we consider, P-
ALPACA permits the widest variety of possible padding sizes
for each object, for the objects in Table I: e.g., when c = 3,
only the largest object can be padded to only a single size,
and some objects can be padded to up to six distinct sizes.
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