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ABSTRACT
Defending an enterprise network requires making prioritization
decisions daily; one is deciding which compromised hosts to re-
mediate (reimage). We study the utility of endpoint monitoring
data to perform this prioritization, with the driving goal being
to minimize “regret” as measured by future (next-week) malware
execution on hosts whose remediation was deprioritized. Leverag-
ing data gathered by the vendor of a major endpoint protection
product, we show that it is possible to prioritize remediation by
training a classifier that predicts imminent malware execution. Per-
haps surprisingly, while it might seem essential to maximize the
amount of training data by collecting across an array of enterprises
to which endpoint protection is deployed, at least in the case of the
endpoint protection vendor (itself a major, worldwide company),
predictive performance for a single enterprise can remain excellent
when training is restricted to the enterprise itself. One advantage of
single-enterprise training is the ease of combining different views
of the hosts, such as via file-based and network-based monitoring.
In the cases studied, although an exact comparison was impossible
due to a time gap, the single-enterprise dataset with richer features
resulted in superior prediction of malware execution compared to
the multi-enterprise dataset.
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1 INTRODUCTION
The practice of defending an enterprise network involves prioriti-
zation at many levels. Each day, an enterprise’s security team must
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Figure 1: Overview. By assessing malware execution patterns
and low prevalence network activity, defenders can prioritize
hosts requiring remediation.

choose which compromised hosts to remediate (reformat/reimage),
which outdated software to patch, and which network connections
to monitor with extra vigilance. This prioritization must be done
with stringent constraints on the human and compute resources
available that day. Complicating the situation, not all malware en-
counters warrant a disruptive remediation such as reimaging an
employee laptop, which incurs substantial labor cost to both the se-
curity team and the employee. Only when malware can circumvent
the automated defenses is it appropriate to apply labor-intensive
remediation. Intuitively, the security team’s goal is to minimize
“regret,” as measured by a combination of two factors held in ten-
sion: first, the failure to remediate a compromised host today that
subsequently worsens, and second, causing unjustified business
disruption. Typically, this means ignoring malware encounters on
disk that are quarantined automatically, and reserving human in-
tervention for hosts with malware execution, particularly when it
is long-lived and persistently circumvents automated defenses.1

This study focuses on prioritizing defenses for the subset of
the network directly visible from employee laptops (Fig. 1). Em-
ployee machines are often the primary client in enterprise networks
and are a common entry point for attackers, who use their initial
foothold on a compromised laptop as a “pivot” for attacking more
critical servers. In environments with limited capacity for monitor-
ing and cleaning infected hosts, it is inevitable that on any given
day, mitigations can only be partially implemented. This work en-
deavors to inform one of those inevitable triage decisions in a data-
driven manner by using telemetry from two existing host-based

1We use the term “regret” intuitively. In some scenarios, regret can be quantified as
a single number. In our context of remediation, a precision-recall curve more fully
captures the cost tradeoffs.
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Figure 2: Scope-vs-agency: white boxes inform preventative
hygiene; gray box responds to active infection (our focus).

monitoring systems in production environments. We investigate
the question, “Which laptops are likely to be compromised?” The
answer can be used not only to prioritize remediation, but poten-
tially to enable mitigation strategies such as carefully monitoring
network traffic to/from risky machines by redirecting their traffic
through enhanced monitoring systems [7, 17, 44].

1.1 Background: Patching vs. Remediation
Prioritization is nontrivial. Security teams juggle many responsi-
bilities, two of which are patching and remediation. Though often
conflated, these distinct tasks are analogous to fireproofing and
firefighting (prevention vs. treatment), which occur at different
time scales and require different training. Our study focuses on re-
mediation; nevertheless, we review both patching and remediation
for completeness. Ultimately, security teams must address both.

Consider a problem that initially appears simple: deciding which
software vulnerabilities to patch (i.e., which outdated software to
upgrade). Large-scale patching can require significant effort and
time [21], making it wise to patch important vulnerabilities first.
To help with this process, most vulnerabilities are described by a
Common Vulnerabilities and Exposures (CVE) entry, with an asso-
ciated Common Vulnerability Scoring System (CVSS) Base Score
that ranges from least to most severe (0.0 to 10.0). It may therefore
seem reasonable to simply patch the CVEs with the highest score
first. However, this ranking has been shown to be unrepresentative
of which vulnerabilities were actually exploited in the wild [42]
and in some cases little better than random [2], suggesting that a
different ranking would provide better protection (e.g., EPSS [15]).

Why? Consider the taxonomy in Fig. 2, where the white boxes in-
form prevention, and the gray box represents treatment. A security
vulnerability has multiple facets: the intrinsic mechanism of a vul-
nerability (universal unchanging facts), the existence and frequency
of actual exploits in the wild, influenced by availability of easy-to-
use exploit code (aggregate infection dynamics), and the specific
host defenses and firewalls in an enterprise (local environment).
Furthermore, if a host in the enterprise is actually compromised (lo-
cal infection dynamics), then the security teammust both remediate
the host and identify the entry point to limit further damage.

Using the CVSS Base Score [9] as a standalone ranking is mis-
guided; it covers only the upper-left box of Fig. 2. Proper use of

CVSS considers temporal (upper-right) and environmental (lower-
left) factors when informing preventative hygiene. But this work
goes further: once an outbreak or infection occurs locally (gray box
in Fig. 2), the required course of action is very different from preven-
tative hygiene. Infected hosts must be quarantined or wiped. But
importantly, the risk calculation changes significantly, reflecting
the difference between the prior probability and posterior proba-
bility of infection once a confirmed case exists—others are more
likely to be infected by transmission or by a similar vector. This is
our focus.

1.2 Contributions
We analyze two real-world datasets, with a focus on remediation.
(1) A multi-enterprise dataset of event logs from Cisco Advanced
Malware Protection (AMP), an endpoint protection system for Win-
dows and Mac hosts, which includes an antivirus engine. This data
consisted of one year (2018-2019) of events generated by the AMP
software on several million hosts in thousands of enterprise net-
works. As our primary indicator of host compromise, we used the
execution of known malware, since it implies the attacker was in
a position to cause harm. (2) A recent case study (2022-2023) of a
single enterprise, including both detailed AMP records and host-
based network flow records. The network records were collected
by AnyConnect Network Visibility Monitor (NVM), a host-based
network monitoring system deployed primarily on laptops. Our
analysis showed the following:
(1) In the multi-enterprise dataset, it was possible during a typical

week to predict the set of hosts that would execute malware in
the next week with 92% precision and 27% recall (avgPrec=0.40,
auROC=0.75). While this level of performance can be of some
use, individual enterprises may struggle to obtain the data for
training the classifier (thousands of enterprises).

(2) In the single-enterprise study, which had orders of magnitude
fewer hosts but richer available features, it was possible to
predict the set of hosts that would begin or continue to execute
malware in the next week with 92% precision and 49% recall
(avgPrec=0.68, auROC=0.89).

(3) In the single-enterprise study, it was possible to combine data
feeds from file-based and network-based monitoring. By do-
ing so, we found that network connections to low prevalence
destinations and new public suffixes could serve as important
supporting features when predicting malware execution, con-
sistent with statistics on abused TLDs [32].

In summary, we use the history of malware execution to inform
remediation in an enterprise setting.We show that in the case of one
large, multi-national enterprise, it is possible to predict imminent
malware execution with high precision (Sec. 6), enabling a security
team to prioritize human interventions such as reimaging machines.
While exact comparison between studies was impossible due to the
time gap, our results suggest that it may not be essential to amass
data across thousands of enterprises to anticipate compromises.

2 RELATEDWORK
We conceptually organize related work using the taxonomy in
Fig. 2. The vertical dimension represents global vs local scope, while
the horizontal dimension roughly represents defender vs attacker
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control (which also corresponds to rate of change: static vs dynamic).
Our work focuses on using global and local malware execution data
(right quadrants) to inform an enterprise’s remediation actions
(lower right).

The upper left quadrant (global, vulnerability-driven) could in
principle include all basic research in identifying security vulner-
abilities; we do not presume to survey the entire field. From a
practitioner’s perspective, the key centralized resource is the Na-
tional Vulnerability Database (NVD) [22], which catalogues CVEs
and CVSS Base Scores [9]. In addition, several works studied global
patching behavior. Nappa et al. [21] found that it could take months
for patching to reach 90% of hosts worldwide, while Sarabi et al. [27]
showed that even updating quickly left a significant window of risk
when a product exhibited new vulnerabilities frequently. Vaniea and
Rashidi [39] studied user experiences when patching. Our work
assumes enterprises are aware of vulnerabilities, but that patch
deployment can take time.

The upper right quadrant (global, exploit-driven) includes ag-
gregate compromises and publicly reported attack campaigns, as
reported by threat and incident feeds such as SANS @RISK [26],
Talos [38], the Internet Storm Center [25], VERIS Community Data-
base (VCDB) [40], Symantec SecurityFocus [37] (contemporaneous
with the historical dataset, but which has since been superseded),
as well as DNS and IP reputation blocklists [33, 34]. Xiao et al. [42]
provided early detection of which CVEs were actually exploited
somewhere in the wild, using community detection to correlate the
use of vulnerable applications (aggregated by ISP) against the rate
of blocklisting of addresses in those ISPs. Jacobs et al. [14, 15] built
a different model of which CVEs will be exploited and proposed
it as a metric for prioritizing patching. Shen et al. [30] used aggre-
gated Intrusion Prevention System (IPS) data to discover groups
of CVEs that were often exploited together, possibly reflecting at-
tack campaigns using a common exploit kit. Soska and Christin
[31] predicted compromises of public websites that used a content
management system such as WordPress. Liu et al. [19] correlated
publicly declared breaches in VCDB against externally measurable
symptoms such as DNS or BGP misconfiguration.

The lower left quadrant (local, vulnerability-driven) addresses
the specific security posture of a single enterprise. Enterprises
tend not to publicize their software inventory and host/network
defenses, except when breaches occur [24]. But security controls
defined by the Center for Internet Security (CIS) [6] and ISO/IEC
27002:2013 [13] have generally been accepted as best practice, and
have been used by cyber insurance firms to assess their clients [41].
Focusing on the operations of security teams, Bollinger et al. [5]
described practical heuristics (“playbook”) to routinely scan for
adversary behavior. Sundaramurthy et al. [35, 36] and Kokulu et
al. [16] studied the human factors of several university and industry
Security Operations Centers (SOCs).

We now survey the work in the lower right quadrant of Fig. 2,
which is the quadrant most relevant to our work. DeKoven et al. [8]
assessed the link between the lower left and lower right quadrants
by monitoring traffic from a university residential network (15k
hosts). Some correlations were intuitive (P2P and Tor correlated
with compromise) but others were counterintuitive (password man-
agers and antivirus also correlated with compromise). The surpris-
ing results reinforced the need for customized, enterprise-specific

strategies. Both Yen et al. [43] and Bilge et al. [4] studied malware
encounters (via file appearances) in enterprises, and the latter pre-
dicted which machines would be infected by malware sometime
in the next 6 months. Our work differs in important ways: we use
actual malware execution (not just file appearances) as a stronger,
direct indicator of host compromise. We also require prediction in
an actionable time frame (1 week), and we require high precision
(high auROC is not sufficient), since remediation involves costly
human intervention. Sharif et al. [28] studied HTTP traffic from a
mobile ISP to predict whether a user was about to visit a malicious
URL in the next 30 seconds. Their work showed that it might be
possible to anticipate risky behavior on short time scales. Shen et
al. [29] developed the Tiresias system, which used recurrent neural
networks (RNNs) to predict future security events. Their work re-
sembles ours, but an important difference is that Tiresias’s training
data and predicted events were mostly exploit attempts rather than
successful exploitation. In our use case, a CSIRT would need to
filter out nearly all of Tiresias’s predictions to focus their limited
(human) resources on actual compromises. The authors of Tiresias
acknowledged that training for rare events is not a strength of
RNNs; in our datasets, successful compromises are rare. Our work
helps security teams prioritize remediation efforts by anticipating
successful compromise, specifically future (next-week) malware
execution, and does so in a human-actionable time frame.

3 DATASETS
We studied two host-based datasets. The first was a historical (2018-
2019), large-scale anonymized dataset covering an array of enter-
prises, consisting of events collected from the Cisco Advanced
Malware Protection, a file-oriented endpoint protection system
(antivirus) for Mac and Windows hosts. The second represented a
recent (2022-2023) case study of a single enterprise (Cisco itself),
and was comprised of data from two host-based systems: events
from the endpoint protection system, and network flow records
from a host-based network monitor installed on the same hosts.

3.1 Multi-Enterprise Dataset (2018-2019)
The first dataset was a large, multi-enterprise dataset, which con-
sisted of events generated by the Cisco Advanced Malware Pro-
tection (AMP) agent software on 12.8 million hosts in 9206 busi-
nesses from September 1, 2018 through August 31, 2019.2 For this
dataset, we defined a “business” to be an AMP administrative do-
main that could represent either an entire enterprise or a subset of
an enterprise; for both simplicity and anonymization, we did not
distinguish these cases. Although the businesses were anonymized,
we assessed the similarities and differences among the enterprises
through the lens of their AMP agents—in particular, their statistics
on vulnerabilities and compromises (see Appendix A.1). The AMP
events comprised 96 event types ranging from administrative log-
ging to high fidelity indicators of compromise: examples include
the start/completion of virus scans, maintenance notifications, pol-
icy updates, observations of vulnerable software being run, and
detection of malicious activities such as malware execution and

2All analysis for the multi-enterprise dataset was performed shortly after the data was
collected. Due to organizational changes, the authors no longer had access to this data
during the single-enterprise study.
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connections to blocklisted IP addresses. A few event types in the
AMP dataset are shown in Table 1; see Table 10 for a more complete
version. Not all event types were present for all businesses, partly
because each administrative domain could decide which events
were activated and reported.

Table 1: Sample AMP Event Types

Hosts (%) Events (%) Event Type

81.593 4.423 Policy Update
66.886 10.011 Computer Metadata Changed
44.441 4.305 Scan Started
41.938 4.253 Scan Completed No Detections

... ... ...
30.349 0.983 Vulnerable Application Detected
2.165 0.028 Executed Malware
0.503 0.735 Network Conviction

Our work incorporated statistics on all event types (see Sec. 6).
However, we highlight the most important one here: Executed Mal-
ware. We used the Executed Malware (ExecMalw) event as our
primary indicator that the host was compromised. That is, even if
AMP blocked the reported execution, the fact that it was even at-
tempted means that the attacker was already in a position to cause
harm, e.g., by taking a less noticeable action such as exfiltrating
a file or by executing newer malware not yet recognized by AMP.
Moreover, whether the attacker obtained access via social engineer-
ing or technical means, it is likely the attacker could have done so
again on the same system or similar ones. We assume ExecMalw
events are ground truth.

Table 2: Top AMP Vulnerable Applications

Hosts (%) Program

9.85 Google Chrome
8.61 Oracle Java(TM) Platform SE
6.38 Adobe Acrobat Reader
4.32 Mozilla Firefox
3.37 Microsoft Office
3.13 Adobe Flash Player
2.81 Microsoft Internet Explorer
0.61 Microsoft Silverlight
0.27 Adobe Acrobat
0.02 OpenSSH

In addition, we note one other event type that plays an impor-
tant role as a supporting feature: Vulnerable Application Detected
(VulnApp), which triggers when the host has executed a vulnerable
application, such as an out-of-date web browser. Each program ex-
ecuted was queried (via hash) in a vulnerable application database,
and an alert was generated if there was an associated CVE.3 The
VulnApp alerts did not cover all possible applications, but rather
focused on several common ones (Table 2). In addition, VulnApp
3The vulnerability database itself is generated using a system by Grieco and
O’Donnell [10] that installs known versions of applications on a test machine, which
then records hashes of any installed files. The known versions are cross-referenced
with the NVD [22] to establish vulnerability status.

was configured by default with a suppression interval of 7 days; if
the same vulnerable application was run more than once within
the same week, only a single event was emitted. Note that VulnApp
is not an indicator of compromise, but simply declares a potential
weakness, which may or may not be exploitable in the local en-
vironment. Nevertheless, as will be seen in our results, VulnApp
events can serve as important supporting features in predicting
future compromise. We found it useful to split these events into
multiple features: one feature for each vulnerable application in
Table 2.

3.2 Single-Enterprise Dataset (2022-2023)
The second dataset was a case study of a single enterprise, Cisco
itself, from January 17, 2022 through January 29, 2023. Working
closely with the security team, we obtained detailed AMP records
from about 41,000 hosts, including an extra detail not available
in the historical dataset: the malware name, for each event that
represented a malware encounter or execution.

This single-enterprise case study also included a second data
source: Cisco AnyConnect Network Visibility Monitor (NVM),
which was comprised of records of network connections made
by Windows and Mac employee laptops, with the notable feature
that each flow was associated with the endpoint software that made
the connection. Specifically, the NVM telemetry is collected by a
host-based network monitor that records statistics of connection
“flows” as defined by the standard 5-tuple: TCP/UDP, source IP and
port, destination IP and port. Each connection is associated with
a set of features including the number of incoming and outgoing
bytes, the process making the connection, the parent process, and
metadata about the host. For this work, we use the restricted and
anonymized subset of NVM fields shown in Table 3.

Table 3: Sample NVM Anonymized Flow Record

Field Name Sample Explanation

uuid [anonymized] unique per endpoint
dst_ip 2001:DB8:2::a destination IPv4/v6

dst_name www.cisco.com forward DNS
dst_port 443 TCP or UDP port
L4_proto 6 6 = TCP, 17 = UDP

event_start 1576563894 Unix timestamp
event_end 1576563901 Unix timestamp

bytes_client 15230 downloaded to local
bytes_server 5921 uploaded to remote

process firefox filename of executable
sha256 3559E2F1... hash of executable

p_process launchd parent filename
p_sha256 066D2A82... parent hash

Note that in contrast to AMP, which focuses on potentially harm-
ful events such as indicators of compromise or vulnerabilities, the
NVM dataset captures a summary of network connections, the vast
majority of which are presumably not malicious. Moreover, NVM
was only available on a subset of the AMP hosts (22k out of 41k),
and only for half of the AMP duration: July 12, 2022 through Janu-
ary 25, 2023. Nevertheless, the NVM data was sufficient to study
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the effect of combining network features with the existing AMP
features on a limited subset of hosts.

3.3 Ethical Considerations
All endpoint and network data was collected according to the pri-
vacy and data protection policies of the authors’ institutions.4 The
datasets were analyzed within a platform designed to restrict ac-
cess to a subset of Cisco employees with proper oversight and valid
justification to analyze the data.

Since the datasets contained potentially sensitive corporate and
personal information, further steps (beyond access control) were
taken to anonymize the multi-enterprise dataset. All telemetry data
in the multi-enterprise dataset was aggregated or de-identified such
that it could not reasonably be used to identify an individual or
entity such as a business. As a preprocessing step, the AMP data
was scrubbed in three steps: (1) anonymize all fields that identify
a user, (2) anonymize all fields that identify an organization, and
(3) remove all fields not critical to the analysis. The anonymized
or removed fields included MAC addresses, source IP addresses,
usernames, hostnames, full directory paths, and other host-specific
identifiers that were used internally by the capture mechanism. The
anonymization itself was performed using a keyed hash (HMAC-
SHA256), prior to any data processing.

4 LIMITATIONS
We discuss limitations of this study. First, due to limited data reten-
tion and access policies, the multi-enterprise dataset was analyzed
shortly after data collection, and was no longer accessible to the re-
searchers during the time of the single-enterprise case study. Thus,
Sec. 6.1 reflects the analysis as completed at the time of original data
collection (2018-2019), which unfortunately could not be revisited
for further investigation. This means that the remediation study’s
comparison between the multi-enterprise and single-enterprise
datasets uses similar but not identical experimental setups. Second,
we assume that malware executions and retrospective detections re-
ported by AMP are ground truth (though our results do not depend
on other AMP detections to be correct), and that manual interven-
tion by the security team is required if and only if these events
persist over several days. A given enterprise security team may
differ from this admittedly simplified intervention policy. Third,
the NVM sensor does no inspection of network packet payloads;
it simply associates network flows (5-tuples) with the program on
the host that made those connections. This study ignores any host
compromises that would have been detected via network traffic
signatures alone. Moreover, we do not use IDS/IPS information
that would normally be available to a security team; our analysis
is entirely host-based, and is therefore blind to activity on hosts
(including most servers) that lack the AMP and NVM agents.

Finally, an important caveat is that both malware and malware
detection are moving targets. Between the time frame of the multi-
enterprise dataset and the single-enterprise case study, the AMP
detections shifted from almost entirely traditional signatures to-
ward an increased number of sandbox-based detections, presumably

4Our case involved two institutions. The second institution’s IRB ruled that in this
particular scenario, the primary institution had sole responsibility of ensuring the
appropriate approvals to conduct this research.

due to new malware (e.g., polymorphic) designed to evade tradi-
tional signatures. In order to accommodate this shift, we adjusted
the the definition of compromise to include both classic detections
of malware execution and “retrospective detection.” A retrospec-
tive detection occurs when a file that was observed at time 𝑡0 is
determined at time 𝑡1 > 𝑡0 to have been malicious, usually after sub-
mission to a malware sandbox. The connection between malware
execution and retrospective detection is that both are cases where
the malware likely evaded the automated defenses, at least for some
time. Retrospective detection is, with high probability, implied mal-
ware execution. We believe our adaptation is a good approximation
of “typical malware detections” during both the multi-enterprise
and single-enterprise time frames. Nevertheless, it is important to
acknowledge that what constitutes a typical malware detection
(even by the same antivirus vendor) is a definition that changes
over time.

5 EXPERIMENTAL DESIGN
This section provides a high level, intuitive overview of the exper-
iments in this paper. Our objective was to create a classifier that
would predict which hosts would execute malware in an actionable
time frame (e.g., next week). This enables a security team to allo-
cate (human) resources to the task of investigating and remediating
hosts, with priority given to the highest risk hosts. Note that in
contrast to a patching study that might focus on the presence or
absence of vulnerabilities as their main features, for remediation we
used all features available to us from local machines (put another
way, vulnerabilities only partially explain malware execution). We
created classifiers for both multi-enterprise and single-enterprise
datasets, and measured the performance of the classifiers using
precision/recall (PR) curves.

Why is prediction needed? Why not simply prioritize remedia-
tion of hosts that have recently executed malware? There are two
reasons. First, the strategy is reactive: malware often acts in multi-
ple stages, and malicious network activity that finds an entry point
for installing malware could precede any file-based malware detec-
tion by AMP. Predicting ahead at 1-week granularity provides an
opportunity to be proactive—it provides time to configure advanced
network monitoring and other extra defenses that cannot be ap-
plied to all hosts. Second, there will always be some acute and some
chronic infections: typically, in the multi-enterprise dataset, about
40% of hosts that executed malware in week 𝑁 do not execute mal-
ware in week 𝑁 +1. We do not blindly advise security teams to drop
their existing priorities in order to manually clean any host that
exhibits at least one malware execution. Simply remediating all of
last week’s infected hosts (even assuming zero false alarms) would
waste 40% of the effort and cause business disruption in those cases,
as the malware would have been resolved by automated defenses.
For these reasons, we aim to predict infected hosts in week 𝑁 + 1,
and do so whether or not they were infected in week 𝑁 .

6 PREDICTION EXPERIMENTS AND RESULTS
Sec. 6.1 and Sec. 6.2 detail the experiments and results for predicting
which hosts will require remediation using the multi-enterprise
and single-enterprise datasets, respectively. We then discuss the
implications of those results in Sec. 7.
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6.1 Multi-Enterprise Dataset
We now describe the experimental setup for the multi-enterprise
dataset. We cast the prediction as a standard binary classification
problem. Given as input the AMP data for a single host during week
𝑛, we would like to predict a binary indicator: will this host execute
malware during week 𝑛 + 1? As an example, if 𝑛 is 2019wk24 (the
week beginning 2019-06-10), our training and test data would be as
follows.
• Training: For each host, the AMP event counts from 2019wk23
(begins 2019-06-03), plus a binary indicator of whether it emits
an ExecMalw event during 2019wk24 (begins 2019-06-10).

• Testing: For each host, the AMP event counts from 2019wk24
(begins 2019-06-10). The classifier attempts to predict the binary
indicator of whether each host emits an ExecMalw event during
2019wk25 (begins 2019-06-17).

We use ExecMalw events as our definition of compromise. For
predictors, we used 104 features: 22 vulnerable application event
types (see Fig. 2), plus 82 other AMP event types available to us (see
Table 10), including previous indicators of compromise, antivirus
file quarantines, and typically benign events such as computer
metadata changes. We performed minimal feature engineering,
and no feature selection; the results therefore reflect “out-of-the-
box” performance of our methodology on typical AMP data. The
features were simply the weekly event counts, e.g., the total number
of malware execution events, ignoring details like malware names.

Unsurprisingly but importantly, the class imbalance for this task
is extreme. Clean hosts vastly outnumber compromised hosts; in the
example above, the distribution was 2,513,153 (99.78%) negatives to
5,650 (0.22%) positives. For such imbalanced classes, our choice of
performance evaluation metric can significantly impact operational
utility [12]. In this domain, receiver operating characteristic (ROC)
curves are popularly used to evaluate classifier performance, but
many classifiers with impressive ROC curves actually produce too
many false alarms to be useful, due to the base-rate fallacy [3]. To
illustrate this, consider a classifier with a near-perfect ROC curve
that, at its chosen operating point, perfectly detects all compromises
(true positive rate = 100%) while admitting only a 1% false alarm rate.
In our particular situation, this classifier would return 5,650 true
detections and over 25,000 false alarms. According to Bollinger et
al. [5], such a classifier would be of little practical use to an incident
response team, since the cost of investigative reports is dominated
by the time spent by analysts trying to find actionable, true positive
events. Security teams therefore prefer “high-fidelity reports” which
have essentially zero false positives, or “investigative reports” where
true positives significantly outnumber false positives, and usually
retire a report when this no longer holds.

With these practical considerations in mind, instead of ROC, we
choose the precision-recall (PR) curve as our primary evaluation
metric, with a particular focus on maximizing precision at the left-
most (low recall) portion of the curve. Intuitively, we are preferring
a search engine that returns high quality results on its first page,
even if this results in a tradeoff where results further down the list
are of inferior quality. (The “Precision at K” metric is used exten-
sively in information retrieval [1].) Such a PR curve is desirable
because it enables the choice of a high-fidelity operating point: e.g.,
the classifier reports only the top 100 hits, 95 of which are true

positives. Even if such a classifier has an inferior ROC curve and
can only predict 30% of the compromised hosts when evaluated
on the entire dataset, there exists a threshold that a security team
might find useful in practice.

We trained a few standard classification models on the AMP
prediction task. We had three requirements in our choice of model.
First, the model must be straightforward for a security team to
implement out-of-the-box. Second, the result must be interpretable,
as security teams must produce incident reports explaining the
reason any detection(s) triggered on a particular host [5]. Third, as
discussed above, the model needs to be evaluated on its PR curve,
which means that the detections must be ordered. One way to do
this is to require the classifier to output a real number such as a
probability. This enables a PR curve to be produced by sliding the
detection threshold between 0 and 1.

Based on these requirements, we chose to build the following
classification models using scikit-learn [23] and Spark ML [20]:
logistic regression, k-nearest neighbors (kNN) with 𝑘 = 3 . . . 11,
and random forest5 with 10, 50, and 100 estimators, adjusting hy-
perparameters until performance stopped improving. (Linear SVMs
in scikit-learn failed to converge on our dataset; we suspect the
decision boundary is highly non-linear.) For dataset balancing, we
compared the results when using all the data against the results
when downsampling the training set to achieve a negative to pos-
itive class ratio of 10:1. Overall, we found that random forests
achieved the best performance on our dataset.6 We also observed
that in this dataset, using all available data for training was superior
to downsampling, despite the extreme class imbalance.

Fig. 3 shows the performance of the best classifier of our set,
random forest with 100 estimators, over five consecutive weeks of
the AMP telemetry. These five weeks were chosen in order to exem-
plify both the typical classifier performance (2019wk7, 2019wk10,
and 2019wk11), as well as two of the worst performing weeks of
the year (2019wk8, 2019wk9). Examining one of the typical weeks,
2019wk10, the classifier achieved an average precision of 0.40, with
precision reaching 1.0 at the leftmost (low recall) edge of the curve.
A usable operating point for this classifier might be a threshold
of 1000 detections (prec=0.98 and recall=0.10). At this operating
point, only 978 of the 10054 compromised hosts are reported by
the classifier, but the precision is high enough to be of immediate
practical use. Depending on the application, a threshold of 3000
detections (prec=0.92, recall=0.27) may also be acceptable. If we
permit 50% precision, perhaps as an investigative report performed
by an analyst with extra time, the classifier covers around 40% of
the compromised hosts.

The two poorly performing weeks (2019wk8, 2019wk9) in Fig. 3
occurred at the time of a sudden spike in the number of compro-
mised hosts in the AMP population. The compromise count doubled
one week and then returned to normal the next week. Spikes can
occur for several reasons: an attack campaign that both spreads
quickly and is resolved quickly, a false-positive AV signature that
is subsequently corrected, or a new true-positive AV signature that
detects malware that has been on a large number of hosts for some

5A random forest works by voting among the individual decision tree estimators. One
way to output a score between 0 and 1 is to report the fraction of estimators that gave
an output of 1 (compromised host).
6Spark random forests did not support cost-sensitive training.
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(a) 2019wk7, begins 2019-02-11

(b) 2019wk8, begins 2019-02-18

(c) 2019wk9, begins 2019-02-25

(d) 2019wk10, begins 2019-03-04

(e) 2019wk11, begins 2019-03-11

Figure 3: Classifier performance for 1-week-ahead predic-
tion of malware execution, shown over 5 consecutive weeks.
Most weeks resemble 2019wk7, 2019wk10, and 2019wk11. A
sudden spike in the number of compromised hosts (which
is resolved by the next week) resulted in what appears to
be under-prediction for 2019wk8 and over-prediction for
2019wk9.

time. After examining the distribution of raw prediction probabil-
ities from the classifier as compared to typical weeks, we believe
the classifier performance reflects an under-prediction for 2019wk8
and over-prediction for 2019wk9. This type of event occurred a few
other times, as shown in Fig. 4, which summarizes the performance
trends over the course of the year for the following metrics: average
precision, area under ROC, precision at 1000, and precision at 3000.
But we observed that even during weeks with poor performance,
precision at 1000 tended to remain at 0.8 or higher, a potentially
useful operating point.

Sep Oct Nov Dec Jan
2019

Feb Mar Apr May Jun Jul Aug

Prediction Week

0.0

0.2

0.4

0.6

0.8

1.0

AreaUnderROC
AvgPrecision
Prec@1000
Prec@3000

Figure 4: Performance trends over the course of a year, for 1-
week-ahead prediction ofmalware execution using a random
forest classifier.

We now examine the classification model produced by the ran-
dom forest classifier for one of the more typical weeks (2019wk24,
avgPrec=0.5, auROC=0.86). Table 4 shows the top feature impor-
tances of the random forest classifier. Feature importances are com-
puted by the mean decrease in Gini impurity provided by that
feature over all estimators (trees). They are normalized such that
the sum of all feature importances equals 1, and in Table 4, the
rightmost column is simply the cumulative sum of the “importance”
column. Note that feature importance can be misleading when fea-
tures are highly correlated, as it can spread the importance across
the similar features. Nevertheless, we see some notable patterns
that we list here. One of the top features for predicting future
malware execution is a past history of malware execution. (We
discuss implications of this in Sec. 7.) The second strongest feature
is “Threat Detected in Exclusion.” These are files originally marked
malicious by AMP, but which the security team has explicitly al-
lowed. The presence of these files is apparently still a predictor of
imminent malware execution. Next on the list is “File Detection,”
which indicates that a known-malicious file has appeared on the
system, but without an attempt (yet) to execute it. The next indi-
cator, “Computer Metadata Changed,” is triggered whenever there
is a detectable change in system metadata such as hostname or
network interface card, for example when the IP address changes.
“Threat Quarantined” is the event that occurs whenever a routine
virus scan encounters known malware on disk and places it in a file
quarantine. Only lower in the list do the vulnerable applications
begin to appear, beginning with vulnerabilities in Adobe Acrobat
Reader.
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Table 4: Feature Importances for Multi-Enterprise

Feature (Event Type) Importance
∑𝑘

𝑖=1

Executed Malware 0.2649 0.2649
Threat Detected in Exclusion 0.0805 0.3454
File Detection 0.0662 0.4116
Policy Update 0.0638 0.4753
Computer Metadata Changed 0.0543 0.5297
Failed to Delete from Quarantine 0.0529 0.5826
Attempting Quarantine Delete 0.0524 0.6350
Low Prevalence Execution 0.0352 0.6702
Threat Quarantined 0.0323 0.7025
Generic IOC 0.0301 0.7326
Quarantine Failure 0.0251 0.7577
Repeated Malware Download 0.0226 0.7803
Scan Started 0.0186 0.7989
Scan Completed No Detections 0.0178 0.8167
Vulnerable Application Detected 0.0177 0.8344
Vulnerable Adobe Acrobat Reader 0.0154 0.8499
Quarantined Item Deleted 0.0149 0.8647
Network Conviction (NFM Det.) 0.0106 0.8754
Execution Blocked 0.0092 0.8845
Retro Quarantine of False Negative 0.0090 0.8935

We note three side experiments. First, to investigate the effects of
business size, we examined the precision-recall curves of groups of
businesses: small (under 1000), medium (1000 to 10000), large (over
10000). While the large group had the greatest average precision
(median 0.61), surprisingly, the small group (median 0.45) slightly
outperformed the medium group (median 0.41). It appears that large
businesses benefit the most from an extensive dataset, but small
and medium businesses may, hypothetically, compensate somewhat
by learning from each other. Second, since the goal was to predict
compromise in week 𝑛 + 1, it seems reasonable to train not just
on week 𝑛, but on weeks 𝑛 − 1, 𝑛 − 2, . . .. In our experiments, we
noticed a slight benefit when adding a few weeks of historical data,
but performance decreased when training over several months. We
hypothesize that this is due to the non-stationarity of the features
that predict compromise over time. Third, there appears to be an
inherent upper bound on recall for the multi-enterprise dataset.
A sizable fraction of hosts that executed malware each week had
classifier prediction probability ≈ 0, meaning that based on the
previous week’s AMP features, they were indistinguishable from
the large majority of clean hosts. This may be a limitation of the
model, or of the AMP features available in the multi-enterprise
dataset.

6.2 Single-Enterprise Dataset
In the previous subsection, we predicted host compromise (malware
execution) across a large array of enterprises. While the results
showed promise, the approach is unfortunately not useful to a
typical enterprise for at least two reasons: most enterprises do not
have access to data across thousands of other businesses, and the
classifier is optimized for overall performance, not performance in
a particular enterprise of interest. Thus, in this section we describe
our second dataset: a single enterprise case study (Cisco itself). Note
that the large historical dataset occurred in 2018-2019, while the

single-enterprise case study covered 2022-2023, which means that
there was some evolution in both the malware landscape and the
endpoint protection software. Therefore, in addition to examining
multi-enterprise vs. single-enterprise scenarios, this also tested
whether the predictive approach remained effective after a several
year gap.

Our experimental setup for the single-enterprise dataset was
similar to the large historical dataset in Sec. 6.1, with slight im-
provements for operational relevance. For each host, we aggregated
AMP/NVM data across two-week sliding windows (6 days in the
past, today, 7 days in the future), where the classification task was
to use the past week (today and 6 days past) to predict whether a
compromise would occur any time in the next 7 days. We narrowed
the scope to hosts with AMP detections but not necessarily com-
promises: for example, a JavaScript pop-under that occurs when
visiting a website is a detection but not a compromise, as it does not
by itself warrant human intervention. We omitted hosts with abso-
lutely zero AMP activity, since a remediation action could not be
justified without any evidence of potentially suspicious activity. In
order to accommodate the shifting landscape of malware and mal-
ware detectors from traditional signatures toward more sandbox-
based detections, we adjusted the the definition of compromise to
include detections of both malware execution and sandbox-based
“retrospective detection” (see Sec. 4).

Where possible, we also added host-based network telemetry
data from the NVM system. Based on an actual example of compro-
mise (malware that performed DLL injection) that was observed by
the security team during the study, we hypothesized that malware
was more likely than other software to connect to low prevalence
network destinations and may serve as a supporting feature. On the
other hand, there was a long tail of benign low prevalence activity:
on any given day, almost 1/3 of all destination domains visited were
singletons (i.e., only one host connected to that domain), most of
which were benign. We therefore restricted the set of singletons
to those that were not already present the previous day, result-
ing in the following “new singleton” features: file hash, process
name, destination domain (coarsened to the first private suffix, e.g.,
mail.google.com is truncated to google.com), and destination IP
subnet (/24 for IPv4 and /48 for IPv6). Finally, we added the per-host
count of new public suffixes that were not present the previous day.

Combining AMP and NVM data for each host and time point,
we created a feature vector containing the following:

• AMP: Histograms of events and detected malware names for
the past 6 days and the current day (histogramswere encoded
as a count per feature using scikit-learn DictVectorizer):

• NVM: per-host counts of new singletons of the following
types: hash, process name, IP subnet, domain

• NVM: per-host counts of new public suffixes (e.g., .com,
.co.uk)

We set up several experiments. Due to heterogeneous deploy-
ment of AMP and NVM across managed hosts and limitations on
data availability, only 22k out of 41k hosts with AMP detections had
corresponding NVM data, and that data was available only for half
the duration AMP. Nevertheless, the available data was sufficient
to measure the effect of training data length, number of hosts, and
the presence or absence of NVM features. We ran the following
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(a) 6-month AMP (22k hosts), test begins 2023-01-02

(b) 6-month AMP + NVM (22k hosts), test begins 2023-01-02

(c) 12-month AMP (41k hosts), test begins 2023-01-02

Figure 5: Classifier performance for 1-week-ahead prediction
of malware execution in a single enterprise, with varying
features and training time. All test sets were the same time
period, beginning 2023-01-02. Note that while ROC curves
must be monotonic, PR curves can fluctuate, e.g., when a few
false positives are followed by many true positives.

3 experiments, training a binary classifier to predict whether a
compromise (malware execution or retrospective detection) would
occur in the next 7 days.

• 6-month AMP: 22k hosts with both AMP and NVM, using
AMP features only

• 6-month AMP + NVM: 22k hosts with both AMP and NVM,
using both AMP and NVM features

• 12-month AMP: 41k hosts, using AMP features only

In all three cases, the training and the testing data intervals were
separated by a 1 week gap. In each case, we trained a balanced
random forest classifier [18] with 100 estimators, where we ran-
domly under-sampled the majority class for each bootstrap sample
in order to balance it. All models trained in less than an hour of
compute time.

We show the results of all three experiments, including the
precision-recall (PR) and receiver operating characteristic (ROC)
plots in Fig. 5. In addition, we list the top features for each of the
three experiments in Table 5, Table 6, and Table 7.

Table 5: Feature Importances for 6-Month AMP

Feature (Past/Current Event or Detection) Importance

current_detect__JS:Adware.Popunder.G 0.059004
current_event__Threat Detected 0.050519
past_compromise 0.035114
past_detect__JS:Adware.Popunder.G 0.034255
current_compromise 0.033429
current_event__Cloud IOC_Executed Malware 0.031082
current_detect__JS:Adware.Popunder.D 0.030757
past_event__Threat Detected 0.022609
past_event__Retrospective Detection 0.021819
past_event__Cloud IOC_Executed Malware 0.019762
past_detect__JS:Adware.Lnkr.L 0.012575
current_detect__JS:Adware.Lnkr.L 0.011596
past_detect__JS:Adware.Popunder.D 0.011395
current_event__Retrospective Detection 0.010339
current_detect__W32.File.MalParent 0.008382

Table 6: Feature Importances for 6-Month AMP + NVM

Feature (Past/Current Event or Detection) Importance

current_detect__JS:Adware.Popunder.G 0.048932
past_compromise 0.045179
current_event__Threat Detected 0.044980
current_compromise 0.038727
new_public_suffixes_count 0.036172
past_detect__JS:Adware.Popunder.G 0.031208
current_event__Cloud IOC_Executed Malware 0.030402
new_singleton_subnets_count 0.028367
new_singleton_domains_count 0.028246
current_detect__JS:Adware.Popunder.D 0.024364
past_event__Retrospective Detection 0.024230
past_event__Threat Detected 0.023441
past_event__Cloud IOC_Executed Malware 0.016360
new_singleton_hashes_count 0.013341
past_detect__JS:Adware.Popunder.D 0.012955

To illustrate the contribution of low prevalence (“singleton”)
network features in Table 6, we describe two examples that actually
occurred. Low prevalence features are a type of anomaly detection,
but in our use case, are not sufficient by themselves. For example,
one of the authors visited farmsidekitchen.com (a local restau-
rant), and was the only employee in the company that did so during
a given time period. This singleton event (prevalence=1) is the most
extreme possible anomaly, yet it was benign. In fact, on any given
day, nearly half of all domains visited are benign singletons. On
the other hand, one machine compromise incident involved the
Sality malware, which injected itself into what appeared to be a
normal program: duo device health.exe. The hash of the device
health executable on disk remained identical to the hash observed
on thousands of other hosts. However, the device health process,
which normally connects only to a few well-known servers, con-
nected to several malicious singleton domains: suewyllie[.]com,
724hizmetgrup[.]com, and pelcpawel.fm.interia[.]pl, as well
as more than 100 IPv4 addresses in singleton /24 prefixes. The
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Table 7: Feature Importances for 12-Month AMP

Feature (Past/Current Event or Detection) Importance

past_evt_Cloud IOC_Executed Malware 0.058180
past_compromise 0.051350
current_evt_Cloud IOC_Executed Malware 0.038131
current_evt_Threat Detected 0.030108
current_compromise 0.028917
past_evt_Threat Detected 0.022447
past_det_JS:Adware.Popunder.G 0.015835
past_det_W32.DFC.MalParent 0.015001
current_det_JS:Adware.Popunder.G 0.013212
current_det_Auto.7DF7E9D268.Adware 0.011176
current_det_W32.DFC.MalParent 0.010958
current_det_JS:Adware.Popunder.D 0.010012
past_evt_Retrospective Detection 0.009230
past_det_JS:Adware.Popunder.D 0.008447
past_det_PUA.Win.Dropper.Generic 0.008225
current_det_PUA.Win.Dropper.Generic 0.007561
current_evt_Retrospective Detection 0.006965
past_det_Auto.7DF7E9D268.Adware 0.006389
current_det_W32.File.MalParent 0.004822
current_det_W32.20509F5C91-95.SBX.TG 0.004217
past_det_W32.6165CE1CFD-95.SBX.TG 0.003764
past_det_W32.File.MalParent 0.003748
current_det_JS:Trojan.JS.Agent.UJY 0.003597
current_det_W32.B65FE764AC-95.SBX.TG 0.003187
past_det_W32.20509F5C91-95.SBX.TG 0.003145
current_det_W32.6165CE1CFD-95.SBX.TG 0.003041
past_det_W32.B65FE764AC-95.SBX.TG 0.002995
past_det_W32.Auto:3d62c45b09 0.002945
current_det_W32.Auto:e52a185db3 0.002911
past_det_W32.D5D86903BB-95.SBX.TG 0.002604

magnitude of singleton behavior was a strong supporting feature
indicating a compromised host.

Perhaps surprisingly, despite orders of magnitude fewer training
examples, the single-enterprise classifier for predicting next-week
malware execution performs as well as or better than the classifier
for the multi-enterprise dataset. Moreover, precision significantly
improves when we add features from NVM, and when we train on a
longer period of data with more example hosts. Table 8 shows exam-
ple operating points for the classifiers, illustrating the progressive
improvement. We discuss potential reasons for this in Sec. 7.

Table 8: Example Classifier Operating Points

Experiment Precision Recall

6-month AMP 0.71 (5/7) 0.20 (5/25)
6-month AMP + NVM 0.83 (10/12) 0.40 (10/25)
12-month AMP 0.92 (54/59) 0.49 (54/111)

6.3 Classifier Degradation Over Time
One question not addressed in the previous experiments is how
quickly the classifier trained for predicting malware execution
would degrade over time. Answering this could shed light on how

quickly malware behavior changes. In the experiments above, the
classifier was trained on data from weeks 1 . . . 𝑛 and applied to
week 𝑛 + 2. (The 1 week gap avoids any possible overlap between
training and test data.) In this section, we take the same classifier
(trained on weeks 1 . . . 𝑛) and apply it to weeks 𝑛 + 3, 𝑛 + 4, and
further. Specifically, we used exact the classifier from Fig. 5c, which
was trained on 1 year of data, and applied it to test data starting
with a 1 week gap and increasing up to a 19 week gap. Represen-
tative performance curves are shown in Fig. 6. Note that a 1 week
gap is equivalent to Fig. 5c, so we omit it.

(a) 2023wk2 (2 week gap), begins 2023-01-09

(b) 2023wk3 (3 week gap), begins 2023-01-16

(c) 2023wk4 (4 week gap), begins 2023-01-23

(d) 2023wk14 (14 week gap), begins 2023-04-03

Figure 6: Classifier degradation over time. The random for-
est classifier decreases in performance as the gap between
training and test data is increased from 1 week to 14 weeks.

The degradation in classifier performance can be tracked through
the average precision numbers in Fig. 6 (roughly, the area under
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the PR curve), which decrease from 0.68 (1 week) and 0.66 (2 weeks)
to 0.34 (14 weeks). While there still remains a high precision region
on the left side of the precision-recall graph, there is a noticeable
decrease in performance. This suggests that some malicious activ-
ity is transient (“malware-of-the-week”), while other malware is
perennial and recurs over long periods of time. The data in Fig. 6
therefore suggests that while the classifier retained some utility for
months, the "best used by" period of the classifier appears to be 1-2
weeks after training.

7 DISCUSSION
We discuss the results of the prediction experiments in Sec. 6. While
an exact comparison is impossible due to the time gap, it is remark-
able that the prediction of next-week malware execution appears
to have benefited from focusing on a single enterprise with orders
of magnitude fewer training examples than the multi-enterprise
dataset. We have several hypotheses for why this may be the case.
The first is that there may exist local idiosyncrasies that do not
generalize across enterprises. To revisit the firefighting analogy,
suppose that in some neighborhood, the houses with metal roofs
(usually beneficial) were built near a row of pine trees; in this
neighborhood, the houses with metal roofs may be at greater risk,
since dry pine needles in gutters can become kindling for fires. The
single-enterprise case study is a unique environment with multiple
layers of defense, including network blocking via managed DNS
and IP null routes, which already eliminates connections to many
low-reputation domains. This may mean that the detection of a
JavaScript pop-under ad (browser pop-ups that do not block the ac-
tive window but instead remain underneath until the main browser
window is closed) is a slightly stronger indicator of compromise
than it would be in the average enterprise, even if in both cases the
detection itself does not warrant remediation.

A second factor may be that focusing on one enterprise enabled
us to use more detailed features such as malware names, increasing
the number of AMP features used by the random forest classifier
from around 100 to tens of thousands, even if most appeared infre-
quently. A third factor in favor of the single-enterprise is the ability
to effectively leverage a longer time span of training data. The multi-
enterprise dataset did not appear to benefit from extending the
training period beyond two weeks, and in some cases it worsened
performance. In the single-enterprise case, the increase in training
data from the 6-month to the 12-month experiment yielded substan-
tial improvements (and using balanced random forests helped coun-
teract over-fitting a small training set). We suspect that both the
network environment and the malware landscape are more stable in
a single enterprise than the multi-enterprise dataset. A final factor
in favor of the single-enterprise case is the relative ease of joining
data from multiple sources and vendors. While not a fundamental
limitation of the multi-enterprise case (i.e., vendor-aggregated data),
typical vendor product teams for antivirus and network monitoring
software are scattered across corporate boundaries and are pre-
vented by policy from sharing sensitive customer data. In contrast,
practically every security team already joins multiple data sources
from different vendors in its day-to-day operations. The 6-month
AMP + NVM experiment showed that predicting imminent mal-
ware execution can benefit from adding a network perspective—in

particular, by aggregating rare events by host, counting the number
of new “singleton” domains, IP subnets, hashes, and processes, as
well as the number of new public suffixes (for a given host). This
suggests that well-crafted network features can be useful predictors.

There were operational lessons learned while working closely
with an enterprise security team. As discussed in Sec. 6.1, when hu-
man analysts must review the outputs of a detector, high precision
is critical, and ROC curves can be misleading. For example, Fig. 5a,
Fig. 5b, and Fig. 5c all have nearly identical auROC ≈ 0.88, which is
generally considered a good result. However, an analyst handed a
list of results from the detector in Fig. 5a would waste considerable
time on false positives. We therefore recommend focusing on high
precision when human analysts are involved. A second lesson was
that simple ML models are more suitable for several reasons. They
tend to be more explainable, which is often a legal requirement—in
unfortunate cases where an employee is fired based on evidence
acquired from their company laptop, any ML-based detections must
be translated into justifications acceptable in a court of law. Simple
models also require minimal tuning as data and malware evolve
over time. A security team for a large enterprise often deploys thou-
sands of detectors in their “playbook” [5]; plays that require hand
tuning quickly become irrelevant. Moreover, it is not yet clear that
deep learning models are always superior on tabular, heterogenous
data types; Grinsztajn et al. show that tree based models are still
superior in many cases [11].

Finally, we discuss the implications of the feature importance
rankings in both the multi-enterprise and single-enterprise case
studies (Table 4 and Table 7), as they shed light on malware be-
haviors. The top feature was always a variant of “past history of
malware execution,” which reflects several common incident pat-
terns. First, some hosts did not or could not undergo remediation
when malware was initially detected (and automatic quarantine
failed). Second are cases where root cause malware went unde-
tected by AMP; that malware repeatedly launched a secondary
payload that was recognized by AMP and quarantined. Third, some
malware such as “droppers” are intrinsically designed to download
other malware, and so are reliable indicators of further infection
(“malware begets malware”). Not surprisingly, these three cases
tend to correspond to infections that require human intervention.
Moving down the list in Table 4 were two features that reflect hu-
man behavior: “Policy Update” and “Computer Metadata Changed.”
The former is consistent with an IT organization deploying a new
AV policy to better detect threats, while the latter represents user
behavior such as moving from a secure network (office) to an unse-
cure network (coffee shop). Lower in the feature importance table
were vulnerable applications—vulnerabilities did correlate with
compromises, just not as the primary, strongest predictors. In the
single-enterprise study (Table 7), one of the notable indicators was
JavaScript pop-unders. Pop-under ads are not themselves harmful,
but as discussed above, in certain environments or in large num-
bers, they may be an indicator of other issues. The presence of
malware sandbox (SBX.TG) detections in the top 30 features in Ta-
ble 7 suggests that AMP was detecting early signs of malware that
did not yet have a signature in the virus database. The particular
malware families that require human intervention will inevitably
change over time. However, our approach can detect many of those
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patterns automatically and present them to the incident response
team via the feature importance tables.

8 CONCLUSION
Defending an enterprise network involves many prioritization de-
cisions: one is deciding which machines to remediate via human
intervention. We show that malware execution risk can be an ef-
fective metric for prioritization. Perhaps surprisingly, it does not
appear to be essential to collect training data across thousands of en-
terprises; predictive performance for a single enterprise can remain
excellent even when training is restricted to the enterprise itself.
Moreover, in the single-enterprise setting, it is relatively easy to
combine different views of the hosts, such file-based and network-
based telemetry. In our case, the richer features enabled nearly half
of imminent (next-week) malware executions to be predicted with
high precision.
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A APPENDIX
A.1 Multi-Enterprise Dataset Survey:

Correlating Malware and Vulnerabilities
This section provides a survey of the multi-enterprise AMP dataset
through the lens of aggregate statistics on vulnerabilities and mal-
ware executions. While all business entities were anonymized (in-
cluding business sector), this analysis gives a sense for the simi-
larities and differences among those enterprises, from the vantage
point of their AMP agents. An added benefit of this lens is that it
enables us to test a classic claim: that running vulnerable software
is a major reason for compromised hosts.

To survey the diversity of businesses in the multi-enterprise
dataset through the lens of their vulnerabilities and compromises
(i.e., malware executions), we began by relating the two factors on
a per-business basis over a 12 month time period. In Fig. 7, each
disc represents a business of at least 1000 hosts, with 𝑦-position
indicating the fraction of hosts that executed malware that month,
and 𝑥-position indicating the fraction of vulnerable hosts (i.e., that
executed software with CVSS Base Score ≥ 6 at the time). The
relative size of the businesses (by number of hosts) is monotonically
related to the area of the disc. At such a coarse granularity, the
link between vulnerability fraction and compromise fraction was
not visually obvious, but Spearman’s rank correlation coefficient
indicated a weak positive relation of 𝜌 ≈ 0.3 that was statistically
significant in all months (𝑝-value < 1e-6). Moreover, when pooled
across all businesses, vulnerable hosts were slightly more likely to
be compromised than non-vulnerable hosts; the relative risk (a.k.a.
risk ratio) of compromisewas greater than 1 in all but a singlemonth
(𝑅𝑅 = 0.95 in 2018-11). Fig. 7 also suggests that compromises tended
to follow seasons where many businesses experience coordinated
increases or decreases in attacker activity in the same month(s).
Note that there were businesses with a large fraction of vulnerable
hosts that suffered few compromises, and vice versa. This suggests,
not surprisingly, that more factors affect host compromise than the
number of unpatched vulnerabilities alone.

Ideally we would like to discover why compromises occurred, i.e.,
whether a particular CVE is correlated with host compromises. The
AMP data sheds light on this, with a couple of important caveats.
The first caveat is that this type of analysis can show correlation
but not causation. The second caveat is that there exist equivalence
classes of vulnerabilities that are statistically indistinguishable from
the standpoint of the AMP compromise counts. This can happen,
for example, if every employee is issued a standard laptop that

includes MS Office affected by CVE-𝑥 and Adobe Acrobat Reader
affected by CVE-𝑦. More precisely, we say that vulnerabilities 𝑥
and 𝑦 “coincide” on a set of hosts 𝐻 and time interval 𝑇 when
∀ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 : 𝑥 affects ℎ at time 𝑡 ⇔ 𝑦 affects ℎ at time 𝑡 . The
“coincide” relation is an equivalence relation, and thereby forms
equivalence classes of vulnerabilities; we name these “coincidence
classes.” Any statements we make based on statistical correlation of
vulnerabilities to compromises will necessarily apply to coincidence
classes as the fundamental unit. Moreover, two different coincidence
classes of vulnerabilities may still be highly correlated if the sets of
hosts they affect are close but not quite identical.

Caveats granted, we can compare the compromise rate of hosts
that are affected by a given vulnerability against the baseline com-
promise rate of hosts in the AMP ecosystem. Fig. 8a shows an ex-
ample for a Java vulnerability (CVE-2013-3829), which is a member
of a coincidence class of 11 CVEs. The plot includes a 95% confi-
dence interval (translucent band) for the compromise fractions of
both the vulnerable and clean hosts. In the case of CVE-2013-3829,
the ExecMalw rate does not differ significantly from the baseline
rate. Note that we use a conservative definition of significance: we
require non-overlap of the 95% confidence bands when comparing
the compromise fractions of the vulnerable and non-vulnerable
host populations.

In contrast, the Microsoft Office vulnerability (CVE-2015-1641)
in Fig. 8b was reported by SecurityFocus [37] to have been exploited
in the wild, and indeed the compromise rate for the hosts affected by
this CVE is significantly greater than the baseline AMP compromise
rate. (Note: the baseline is the same in all three plots, but the vertical
scale is different.) Likewise, Fig. 8c shows an Excel vulnerability
(CVE-2014-6360) with greater compromise rate than baseline, but
at the time of writing, SecurityFocus had no confirmed reports of
this vulnerability being exploited in the wild. Nevertheless, it may
be worth examining these hosts for common patterns of malicious
activity centered around Excel.

While the 3 CVE examples seem consistent with intuition, broad-
ening the scope of analysis yields a surprising result, shown in Ta-
ble 9. The contingency table summarizes the observed compromises
related to 118 CVEs (coincidence classes), for which an average
of at least 500 hosts/day were vulnerable to each CVE. Each CVE
is counted in one cell of the table, depending on two factors: (1)
public exploit status according to SecurityFocus (no reports yet,
proof-of-concept published, or exploited in the wild), and (2) the
duration of time in the AMP population for which the CVE-affected
hosts exhibited significantly more compromise than baseline (never,
minority of the time, or majority of the time). Interestingly, the
compromise rates do not change significantly based on a CVE’s
public exploit status; Pearson’s 𝜒2 = 1.75 (𝑝 = 0.78) fails to reject
the null hypothesis of independence.

This result could be due to the small fraction of exploits that
are publicly reported, or to near-coincident CVEs dampening the
observed differences in the rows. Nevertheless, this result suggests
that the exploit status available in public databases may be a poor
proxy for the actual vectors of compromise in a given set of enter-
prises. Instead, performing analysis of actual compromise rates such
as that in Fig. 8 and Table 9 may be more effective for prioritizing
patching.
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Figure 7: Per-business compromised host vs. vulnerable host fractions (every other month shown). Each business is a circle of
random color with area monotonically related to number of active hosts. For all months, the Spearman rank correlation (𝜌)
between compromised and vulnerable fractions was weak but significant (𝑝-value < 1e-6). The relative risk (𝑅𝑅) of compromise
for vulnerable hosts as compared to non-vulnerable hosts, was computed across all hosts regardless of business.
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Figure 8: CVEs corresponding to various levels of host com-
promise over time, with 95% confidence bands. CVE-2015-
1641 had public reports of exploits in the wild (SecurityFo-
cus), but CVE-2014-6360 had no reports yet.

Table 9: CVE Counts by Public Exploit Status vs AMP Signifi-
cant Compromise Duration (𝜒2 = 1.75, 𝑝 = 0.78)

Public
Exploit Status

AMP Duration of Signif. Compr.
Never Minority Majority

No Reports Yet 50 14 36
Proof-of-Concept 4 1 5
Expl. in the Wild 4 2 2

A.2 Supplemental Table: AMP Event Types
The following table (Table 10) provides a more comprehensive list-
ing of AMP event types than the abbreviated sample table provided
in the main body of the text (Table 1).
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Table 10: Top AMP Event Types by Hosts and Events

Hosts (%) Events (%) Event Type Description (if available)

81.593 4.423 Policy Update An agent has been told to fetch policy.
66.886 10.011 Computer Metadata Changed Some of the computer’s metadata (e.g. IP address, OS) changed.
44.441 4.305 Scan Started An agent has started scanning.
41.938 4.253 Scan Completed No Detections A scan has completed without detecting anything malicious.
33.484 3.628 Product Update Started A product update has begun.
30.814 0.289 Product Update Completed A product update has successfully completed.
30.349 0.983 Vulnerable Application Detected Host has executed a program with known vulnerabilities.
28.322 0.166 Reboot Pending An agent has started the reboot process.
28.259 0.170 Reboot Completed An agent has completed its reboot.
24.666 2.064 Low Prevalence Execution A file with low prevalence was executed.
22.944 0.093 Update Reboot Required The new connector is installed but not running.
18.220 0.464 Policy Update Failure A policy update failed, and the policy was not successfully applied.
14.047 0.072 Update Reboot Advised New connector installed and running; some features need reboot.
9.985 2.300 File Detection A file-based threat was found on this system (detection).
8.684 3.260 Product Update Failed A product update has failed.
8.393 1.451 Threat Quarantined A threat was successfully quarantined.
8.311 24.960 Attempting Quarantine Delete Attempting to remove an item from quarantine.
6.214 1.729 Quarantined Item Deleted A quarantined item has been successfully deleted.
5.991 0.206 Retro File Fetch Completed The request for a remote file was successful.
5.826 24.165 Failed to Delete from Quarantine A quarantined item was not successfully removed from quarantine.
5.803 0.024 Uninstall
4.475 0.497 Quarantine Failure A detected threat was not successfully quarantined.
4.271 0.097 Retro File Fetch Failed The request for a remote file failed (retrospective).
4.063 0.152 Generic IOC Suspicious behavior indicates possible compromise (e.g., OpenIOC).
3.863 7.503 System Process Protected Prevented memory injection attack on Windows system process.
2.721 1.068 Threat Detected in Exclusion A threat was detected in an excluded path, or otherwise whitelisted.
2.616 0.086 Retro Quarantine Attempt Failed A retrospective quarantine was attempted and failed. Most likely

the original location no longer exists.
2.316 0.105 Retro Quarantine of False Negative A file (once thought clean) was marked malicious and quarantined.
2.165 0.028 Executed Malware The computer executed known malware.
2.159 0.113 Exploit Prevention Full Summary Preventedmemory injection attack on an application - full summary.
2.159 0.113 Exploit Prevention Prevented memory injection attack on an application - summary.
1.960 0.016 Scan Completed With Detections A scan has completed and detected malicious items.
1.647 0.018 Retro Restore of False Positive A file (once thought malicious) was marked as clean and restored.
1.364 0.007 IOC Configuration Update Success Endpoint IOC Configuration Update Success.
1.282 0.014 Scan Failed A scan has been attempted, and failed to run.
1.165 0.006 IOC Definition Update Success Endpoint IOC Definition Update Success.
1.128 0.013 Retro Restore from Quarantine A retrospective restore was completed successfully.
1.082 0.014 Retro Quarantine Success A retrospective quarantine was completed successfully.
0.789 0.007 Fault Cleared
0.762 0.283 Execution Blocked Execution of an application was blocked.
0.759 0.004 Retro Restore from Quarantine Failed A retrospective restore was attemped and failed. Most likely the

original location no longer exists.
0.573 0.006 Repeated Malware Download Same parent process repeatedly attempted to introduce the same

piece of malware.
0.567 0.025 Critical Fault
0.565 0.019 Major Fault
0.503 0.735 Network Conviction Connection detected by Network Flow Monitor (NFM), aka DFC.

... ... ... ...
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