
International Journal of Information Security
https://doi.org/10.1007/s10207-021-00574-3

REGULAR CONTRIBUT ION

Defeating traffic analysis via differential privacy: a case study on
streaming traffic

Xiaokuan Zhang1 · Jihun Hamm2 ·Michael K. Reiter3 · Yinqian Zhang4

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2021

Abstract
In this paper, we explore the adaption of techniques previously used in the domains of adversarial machine learning and
differential privacy to mitigate the ML-powered analysis of streaming traffic. Our findings are twofold. First, constructing
adversarial samples effectively confounds an adversary with a predetermined classifier but is less effective when the adversary
can adapt to the defense by using alternative classifiers or training the classifier with adversarial samples. Second, differential-
privacy guarantees are very effective against such statistical-inference-based traffic analysis, while remaining agnostic to
the machine learning classifiers used by the adversary. We propose three mechanisms for enforcing differential privacy for
encrypted streaming traffic and evaluate their security and utility. Our empirical implementation and evaluation suggest that
the proposed statistical privacy approaches are promising solutions in the underlying scenarios

Keywords Differential privacy · Traffic analysis

1 Introduction

Machine learning (ML) is a powerful tool which can extract
implicit information from massive data, which has shown
promising results in many areas such as image recognition
[17,26,54,56] and natural language processing [22,38,53].
However, when used with malicious intentions, ML also
empowers notable attacks. One such example is the traffic-
analysis attack, which is a type of side-channel attack.

B Yinqian Zhang
yinqianz@acm.org

Xiaokuan Zhang
zhang.5840@osu.edu

Jihun Hamm
jhamm3@tulane.edu

Michael K. Reiter
michael.reiter@duke.edu

1 Ohio State University, Columbus, Ohio, USA

2 Tulane University, New Orleans, LA, USA

3 Duke University, Durham, NC, USA

4 Research Institute of Trustworthy Autonomous Systems and
Department of Computer Science and Engineering, Southern
University of Science and Technology, Shenzhen,
Guangdong, China

In side-channel attacks, the adversary may learn secrets of
a system or an application that are otherwise well protected,
by observing traces (e.g., timing, power, or resource usage)
of its execution. Traffic analysis, or more specifically web-
site fingerprinting, aims to breach users’ privacy by inferring
visited websites from the encrypted traffic. By learning from
patterns of encrypted traffic to/from known web pages, the
ML algorithm can classify unidentified traffic with reason-
able accuracy.With the recent development of deep learning,
such traffic analysis has become more powerful, invalidat-
ing many previously established defenses against traditional
machine learning [51].

A recent work [49] in USENIX Security shows that a
traffic analysis attacker, by merely observing the encrypted
network packet sequence of the victim, is able to infer the
video that the victim is watching on popular online video
streaming platforms (e.g., Youtube, Netflix). They show that
by extracting the packet burst patterns of the encrypted
video streams, the adversary can achieve very high clas-
sification accuracy (e.g., 99% for Youtube videos). This
indicates that the online video streaming is no longer private
from a passive network observer, even if proper encryption
mechanism is applied. With increasing learning capacity,
the security threats unleashed by these techniques grow
rapidly, which calls formore effective defenses. In this paper,
we use streaming traffic analysis as a motivating example

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-021-00574-3&domain=pdf
http://orcid.org/0000-0002-4646-7146

X. Zhang et al.

and explore generic solutions to ML-powered side-channel
attacks [34,44,64,65].
Adversarial samples as defenses Inspired by the recent
advances in adversarialmachine learning,we first explore the
use of adversarial samples to defeatML adversaries. Usually,
adversarial samples are utilized by the attacker to fool ML
defenders. However, in our scenario, we consider the inverse
use: utilize the adversarial examples to confuseMLattackers.
To defeat the ML attacker, which is a convolutional neural
network (CNN) classifier, we apply the Projected Gradient
Descent (PGD) [35] to generate adversarial samples, and we
successfully lower the classification accuracy to the base-
line. Nevertheless, adversarial samples are fragile: they do
not transfer well, and the classifier can also adapt to them. by
choosing a different classifier or applying adversarial train-
ing, the adversary who aims to perform traffic analysis on
encrypted streaming packets can still achieve high accuracy.
Differential privacy as defenses The failure in the adoption
of adversarial samples to defeat streaming traffic analysis
motivated us to seek more principled solutions to counter
such a powerful adversary. Inspired by Xiao et al. [62],
who exploit d∗-privacy—a variant of differential privacy—
to insert random noise to disturb storage side channels in
procfs, we seek to apply a similar principle as a defense
against traffic-analysis attacks. However, compared with dif-
ferentially private procfs proposed byXiao et al., applying
differential privacy on network traffic is fundamentally dif-
ferent as traffic analysis is non-interactive. In contrast, attacks
leveraging procfs are interactive, because the statistical
database is constructed as the attacker queries procfs.
Thus, the Laplacian noise can be inserted in the return values
of the procfs queries. Differentially private streaming traf-
fic needs to be applied proactively to the entire data streams.
The approach to do so and its effectiveness with regard to
security guarantees and utility loss (i.e., low bandwidth over-
head and small amount of lags) is uncertain.

To protect streaming traffic by applying differential pri-
vacy, we adapt three mechanisms: (1) Fourier Perturbation
Algorithm (FPAk) [47], a differentially private mechanism
that answers long query sequences over correlated time series
data in a differentially private manner based on the Dis-
crete Fourier Transform (DFT); (2) d∗-private mechanism
(d∗), which extends the d-privacy mechanism from Chan et
al. [8] and applies Laplacian noise on time series data; (3)
dL1-private mechanism (dL1), which achieves d-privacy with
regard to L1 distance. We perform extensive experiment on
these three mechanisms to evaluate their security as well as
utility. For security, we show that by selecting proper param-
eters, all these mechanisms can effectively defeat all types
of classifiers, i.e., can reduce their classification accuracy to
the baseline of random guessing. For utility, we demonstrate
that the utility cost, defined as waste and deficit, is moderate.
We also compare the three mechanisms empirically, and we

further compare FPAk with a baseline defense mechanism,
which shows that the waste induced by FPAk is at least one
order of magnitude lower than the baseline approach.

To demonstrate the practicality, we implement the FPAk

privacy mechanism in a Chrome extension that proxies the
Youtube streaming between the browser and the server,
which intercepts and modifies XMLHttpRequest(XHR)
requests and responses. Our evaluation suggests that the
extension completely renders the attacks proposed by Schus-
ter et al. [49] ineffective. The techniques proposed in this
paper also shed light on defenses against website finger-
printing attacks and generic side-channel attacks that rely
on machine learning classifiers. Our study has provided an
important piece of evidence, suggesting that the differen-
tial privacy is a promising solution to ML-enabled inference
attacks.

2 Background

Side-channel attacks and trafficanalysisSide-channel attacks
usually involve analysis of externally observable character-
istics of a computer system to extract sensitive information
(e.g., cryptographic keys). Traffic analysis attacks are side-
channel attacks that observe the meta-data of the encrypted
network traffic to classify the traffic [20,43,60]. For our
purposes here, a side channel arises from an attacker’s obser-
vation of a feature x , which may itself consist of multiple
components. We let X denote the space of all possible such
x values. Often, the attacker will collect feature vectors x and
their associated labels in a training phase, to build a machine
learning model to which it will apply observations x seen
during his attack.
Deep learning In the past, various ML techniques have been
employed in statistical side-channel attacks [12,44,64,65].
For example, support vectormachines (SVM)have been used
to perform website fingerprinting in the Tor network [44]
and infer foreground apps on Android [12]; hidden Markov
models (HMM) have been used to infer Android Activity
transitions [10] and extract cryptographic keys in a cross-
VM setting [65]; k nearest neighbors (kNN) have been used
to perform keystroke inference on smartwatch [34] and link
Bitcoin addresses to an iOS device [64]. Deep Learning [29]
is an ML approach that uses multiple layers of nonlinear
processing units, each of which transforms the representa-
tion at one level into that at a higher, more abstract level. The
most representative deep learning model is the Deep Neu-
ral Network (DNN) [2], which is an artificial neural network
(ANN) with multiple hidden layers between the input and
output layers [2]. DNNs are very effective at finding hidden
features in high-dimensional data, which is hard for humans.
It has been applied to solve various problems, producing
promising results in different areas such as image recog-

123

Defeating traffic analysis via differential privacy: a case study on streaming traffic

nition [17,26,54,56], speech recognition [21,37,48], natural
language processing [22,38,53], and malware detection [11].
One of the most popular DNN models is the Convolutional
Neural Network (CNN) [30]. CNN typically applies convo-
lutional operation at lower levels and is designed to process
data that has a form of multi-dimensional arrays.
Adversarial samples and adversarial trainingAn adversarial
sample x ′ is an input that is crafted from a legitimate (untam-
pered) input to make a classifier misclassify x ′ [55]. More
specifically, x ′ is created to be within some distance thresh-
old from some untampered input x , in the hopes that this
will imply that x ′ remains in the same class as x according
to some notion of ground truth. However, x ′ is manipulated
so that the ML classifier will classify x ′ differently from x .
Methods of generating adversarial samples include Fast Gra-
dient SignMethod (FGSM) [18], ProjectedGradient Descent
[35], Carlini/Wagner attack (CW) [7], etc.

In response, defenses have been proposed to make clas-
sifiers more robust against adversarial samples. To date, the
most successful one is adversarial training [18,35,55], which
basically retrains the classifier using the adversarial sam-
ples that were generated to fool the classifier, in order to
increase the classification accuracy on these crafted sam-
ples. However, its effectiveness highly depends on whether
the classifier can generate adversarial samples similar to the
ones used by the attacker, which is difficult to guarantee.
Privacy Because an adversarial sample x ′ generated from x
is designed to be misclassified, it might be viewed as a more
“privacy preserving” representation of x if correct classifi-
cation constitutes a privacy violation. For this reason, we
explore the generation of adversarial samples as a privacy
protection in a specific domain, in Sect. 5. Despite the pos-
sibility that adversarial samples so generated might suffice
to defeat ML classifiers today, there remains the possibility
that future classifiers, or auxiliary information that might be
brought to bear by the attacker (classifier), would divulge the
correct class of x ′.

For this reason, in this paper we also explore a novel appli-
cation of differential privacy [14] to this same domain, which
will guarantee that certain classes cannot be distinguished by
any classifier (that works with the same features). The orig-
inal definition of differential privacy is specific to statistical
databases.More specifically, two databases x, x ′ are adjacent
if they differ in exactly one element. A randomized algorithm
A : X → Z satisfies ε-differential privacy if for any adjacent
databases x, x ′ and all Z ⊆ Z ,

P (A(x) ∈ Z) ≤ exp(ε) × P
(
A(x ′) ∈ Z

)
.

Chatzikokolakis et al. [9] proposed a generalization of
differential privacy called d-privacy that will be useful here.
A metric d on a set X is a function d : X 2 → [0,∞)

satisfying d(x, x) = 0, d(x, x ′) = d(x ′, x), and d(x, x ′′) ≤

d(x, x ′) + d(x ′, x ′′) for all x, x ′, x ′′ ∈ X . A randomized
algorithm A : X → Z satisfies (d, ε)-privacy if for all Z ⊆
Z ,

P (A(x) ∈ Z) ≤ exp(ε × d(x, x ′)) × P
(
A(x ′) ∈ Z

)
.

In our context, the application of A to sufficiently close exam-
ples x and x ′ (i.e., d(x, x ′) is “small”) from different classes
will ensure that any classifier has a similar probability of
classifying A(x) and A(x ′) within any subset Z of classes.
MPEG-DASH standard MPEG-DASH is a video streaming
standard that segments video streams to variable segment
sizes due to variable-rate encoding, and instruments the
request of video content at the granularity of segments. The
size of the video chunks to be requested is specified as a
parameter (i.e.,range) of theHTTP request header.Youtube
video streaming implements a variant of MPEG-DASH [39],
which allows the client to specify a chunk of video to be
downloaded by setting the range parameter to the desired
offsets in bytes. The YouTube client adaptively changes this
parameter to adjust the requested video chunk size, based on
the content of the video and the network condition.

3 Amotivating example

A recent study by Schuster et al. [49] demonstrated that
packet burst patterns of the encrypted video streams (an
observable side channel that reveals the size of the segments)
can be used to fingerprint video streams from providers such
as Youtube with very high detection accuracy. In this paper,
we used this MPEG-DASH video-stream fingerprinting as
a motivating example to explore how side channels using
ML can be mitigated. To demonstrate the capability of the
attacks, we extended their idea [49] and performed finger-
printing attacks of 40 Youtube videos using a set of five ML
classifiers. The attack was performed in a closed-world set-
ting, in which we assumed the video to be classified is one
of the 40; this closed-world setting is themost advantageous
to the attacker and the least favorable to the defender.
Data collection We manually chose 40 Youtube videos
related to four types of sports (basketball, American foot-
ball, soccer, and hockey) as our dataset. To find these videos,
we typed “NBA”, “NFL”, “MLS” and “NHL” into Youtube
search separately, filtered out the short videos that are less
than 20minutes (tomake sure the video length is long enough
for analysis) and selected 10 videos from each category. Each
of the 40 videos was visited from a Chrome browser 100
times during trace collection. Therefore, in total 4000 (i.e.,
40×100) traces with 40 distinct labels (i.e., the content of the
videos) were included in our dataset. We recorded the times-
tamps and sizes of all packets of the first 3minutes of network
traffic after starting to stream each video. The data collection

123

X. Zhang et al.

Fig. 1 CNN architecture; n denotes the number of elements of one trace, i.e., the total time divided by the window size

Table 1 Accuracy with one standard deviation

Model SVM LR RF Neural Net CNN

Average accuracy 0.809 0.823 0.751 0.831 0.944

Standard deviation 0.067 0.063 0.046 0.011 0.004

process was automated using Selenium and Wireshark’s
tshark. All the data were collected from a desktop con-
nected to our campus network using 1 Gbps Ethernet. The
whole process of data collection took about 15 days.
Preprocessing To convert videos in the dataset into feature
vectors of equal length, we aggregated the raw data into 0.25-
second bins. Here, 0.25s is the window size. Each 3-minute
video stream was thus abstracted as an array of 720 elements
(i.e., bins). Note that we did not filter out the ad traffic that
occurs at the beginning of the captures.
Classifiers We implemented five classifiers, including Sup-
port Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF), Neural Net and Convolutional Neural
Network (CNN), in Python. Specifically, SVM, LR and RF
were implemented using scikit-learn [45], and Neural
Net and CNN were implemented using Tensorflow [1]
with the Keras front end. For Neural Net, we used a single
Dense layer with 40 neurons and the Sigmoid function as the
activation function. For CNN, we used the same structure as
that used by Schuster et al. [49]. It consists of three convolu-
tional layers, 1 max pooling layer, and two dense layers. The
detailed CNN structure is shown in Fig. 1.
Classification results We applied the 5 classifiers to classify
the 4000video traces.Weusedfivefold cross-validation: each
time, a different 20% of the traces were used for testing while
the remaining 80% were used for training. The features of
the dataset were normalized using the MinMaxScaler()
method provided by scikit-learn. For CNN, we used a
batch size of 32 and themodel was trained for 40 epochs1. As
shown in Table 1, SVM, LR and RF achieved 0.809, 0.823,
and 0.751 classification accuracy, respectively. Neural Net
reached 0.831 classification accuracy. CNN had the highest
accuracy of 0.944. The classification results had very small
variance in the fivefold tests. These experiments validate the
attack demonstrated by Schuster et al. [49]. The results sug-
gest that machine learning, and particularly deep learning

1 The model converged after 40 epochs. Training for 1000 epochs
improved the accuracy by only 0.024.

Fig. 2 Threat model

(e.g., CNN), can empower traffic analysis to easily identify
the Youtube video streams from encrypted traffic.

4 Threat model

The attack described in Sect. 3 motivates the following sce-
nario. A user who watches a Youtube video in a web browser
(streaming client) wishes to hide the content of the video.
An attacker sitting on the network (e.g., Internet service
provider or local network administrator) aims to infer the
content of the video by observing only side-channel infor-
mation. The defender is a network proxy placed between
the service provider (i.e., Youtube) and the browser, which
obfuscates the network flows from/to the content provider
to defeat the fingerprinting attacks. The attacker utilizes fea-
tures (e.g., bytes per second, packets per second or burst
series) of the request and response packets of the MPEG-
DASH video streams as side-channel vectors.
AttackerWeconsider the attacker to be a passive traffic analy-
sis attacker, who can observe the encrypted packet sequences
transmitted between the client machine and the streaming
server via the network.
Defender The defender intercepts all connections between
the client and the server and modifies the requests according
to the defense mechanisms, so that the responses sent by
the server would follow the pattern dictated by the requests.
The attacker can only observe the traffic after the defender’s
perturbation.

5 Adversarial machine learning

Our first attempt is to fool the machine-learning attackers
with techniques used in adversarial machine learning.

123

Defeating traffic analysis via differential privacy: a case study on streaming traffic

5.1 Crafting adversarial samples

To generate adversarial samples, we followed the Projected
Gradient Descent (PGD) method [35], which is a multi-step
variant of the Fast Gradient Sign Method (FGSM) [18].
FGSM Let x be the input sample, g(x; θ) the classifier param-
eterized by θ , y the true label associatedwith x , L(g(x; θ), y)
the loss/cost function of the classifier, and η the parame-
ter that controls the amount of perturbation. For untargeted
attacks—i.e., the classifiermisclassifies a sample as any label
but the true label—FGSM generates the following adversar-
ial sample x∗ from the clean sample x :

x∗ = x + η sign(∇x L(g(x; θ), y)) (1)

The perturbation x∗ − x is the gradient image ∇x of the
given loss L , which by definition is the direction where the
loss increases the most. The method then takes only the sign
values of the gradient to make it unit l∞-normed, then mul-
tiplies the normalized gradient with the desired perturbation
strength η.When η is large, the perturbation is more effective
but is more detectable to human eyes or machine classifiers.
When η is small it is less effective but is less likely to be
detected.
PGD PGD can be considered as a universal first-order adver-
sary. In each iteration, PGD follows the following rule:
x ′
i+1 = Fclip(FGSM(x ′

i)), where FGSM(x ′
i) represents

the output of FGSM as in (1). Fclip keeps x ′
i+1 within a

predefined perturbation range.
In our experiment, we used the PGD implementation

in the adversarial-robustness-toolbox [41]
Python library. We adjusted the level of injected noise (dic-
tated by the eps parameter, eps ∈ [0, 1]) to generate
adversarial samples corresponding to different noise levels.
Suppose the original value is v.With eps=α, the adversarial
value is within the range of v±αv. To see how the classifiers
perform on adversarial samples, we targeted the CNNmodel
and generated corresponding adversarial test samples using
PGD, with the noise level eps = 0.1 and the max number
of iterations (max_iter) set to 100. Then, we fed these sam-
ples to the CNN classifier trained using clean samples. The
CNNclassifierwas unable to classify such samples,with only
0.003 accuracy, which is significantly lower than the origi-
nal accuracy (0.944). This result suggests that the adversarial
samples are very effective against the CNN classifier.

5.2 Limitations of adversarial samples

However, the attacker can also take actions to adapt to these
adversarial samples.Here,we study twopossible approaches:
using a different classifier and conducting adversarial train-
ing.

Table 2 Transferability test. The numbers are classification accuracy
of adversarial examples on different architectures

Test CNN SVM LR Neural Net
Base

CNN 0.003 0.421 0.344 0.148

SVM 0.048 0.009 0.008 0.028

LR 0.190 0.130 0.263 0.001

Neural net 0.530 0.164 0.088 0.028

Using a different classifier The adversarial samples gener-
ated by PGD are designed to fool one particular classifier,
which may not be able to deceive other classifiers (may not
transfer well). To see whether adversarial samples can trans-
fer, we conduct a transferability study on the classifiers. Since
RF does not provide gradients, we test SVM, LR, CNN and
Neural Net, and the eps is set to 0.1 for PGD. The aver-
age results of 5 rounds are shown in Table 2. As shown in the
table, the adversarial samples targeted the CNNmodel do not
work well on others; SVM can still achieve 0.570 accuracy.
The adversarial samples based on SVMseem toworkwell on
all other classifiers; however, as shown shortly, the attacker
could conduct adversarial training to easily circumvent the
defense.
Conducting adversarial training If the attacker is aware of
the defender’s strategy of using adversarial examples, it can
adapt to such a setting and regain accuracy by training with
those adversarial examples. Similarly, the defender can also
generate adversarial examples, knowing that the attacker will
try to make the classification robust. Although finding an
exact equilibrium is difficult [19], the attacker can practically
utilize the adversarial training technique byMadry et al. [35]
to make the classification robust.

We conducted the adversarial training on the CNN model
for 10 epochs using their method; the eps for adversarial
training was set to 0.1. Then, we re-generated the adversarial
samples targeting the new CNN model. After this process,
the new classifier achieved 0.791 accuracy on the new adver-
sarial samples, which indicates that the adversarially trained
CNN model is robust against adversarial samples. There-
fore, unlike the majority of works in adversarial ML where
the classifier is the victim and is assumed to stay unchanged,
in our setting the adversary is assumed to be aware of any
defense strategy that is taken and allowed to adapt accord-
ingly. The defender faces a much harder situation when
applying adversarial ML techniques under such an assump-
tion.

123

X. Zhang et al.

6 Differentially private streaming

The failure in the adoption of adversarial samples to defeat
streaming traffic analysis motivated us to seek more prin-
cipled solutions to counter such a powerful adversary.
Differential privacy [14] stands out as a feasible solution.
Differential privacy offers a principled privacy guarantee
for statistical databases that allows users to query aggregate
statistics of elements in the database without leaking indi-
vidual data elements. It offers strong privacy promises that
guarantees statistical indistinguishability of two databases
that are different in only one element.

We would like to develop ε-differentially private mecha-
nisms for streaming traffic, which, by adding random noise
(dictated by ε and a distance threshold t) into the encrypted
video streams, render any two videos within distance t to be
statistically indistinguishable to each other. In this sense, any
two video streams within distance t (which can be selected
by the defender) can be intermingled andmade indistinguish-
able with respect to ε-differential privacy, though in extreme
cases may require adding substantial noise. In this section,
we explore three mechanisms, FPAk , d∗-privacy and dL1-
privacy, to enforce differential privacy on streaming traffic.

6.1 Differentially private mechanisms

Fourier perturbation algorithm (FPAk). Rastogi et al. [47]
proposed the Fourier Perturbation Algorithm (FPAk), which
can answer long query sequences over correlated time-
series data in a differentially private manner by using
the Discrete Fourier Transform (DFT). A DFT is a linear
transform of a length-n real or complex-valued sequence
Q = (Q[1], . . . , Q[n]) into another length-n complex-
valued sequence F = (F[1], . . . , F[n]) where

F[j] =
n∑

i=1

exp(
2π

√−1

n
i j)Q[i].

The F[j] is called the j-th Fourier coefficient of theDFT(Q).
An Inverse DFT (IDFT) is also a linear transform of a
complex-valued sequence P = (P[1], . . . , P[n]) to another
complex-valued sequence R = (R[1], . . . , R[n]) where

R[j] = 1

n

n∑

i=1

exp(
2π

√−1

n
i j)P[i].

An IDFT has the property I DFT (DFT (Q)) = Q.
Let Lap (λ) denote a random variable drawn from the

Laplace distribution with scale λ and location μ = 0. Sup-
pose the inputs of the FPAk algorithm are Q, λ, and k. FPAk

is described as follows:

(a) Keep the first k Fourier coefficients F[1], . . . , F[k] after
computing DFT(Q).

(b) Compute F̃[i] = F[i] + Lap (λ) for i = 1, . . . , k.
(c) Return Q̃ = I DFT (PADn([F̃[1], . . . , F̃[k]])), where

PADn([F̃[1], . . . , F̃[k]]) denotes the sequence of
length n obtained by appending n − k zeros to
F̃[1], . . . , F̃[k].

Rastogi et al. [47] proved that FPAk (Q, λ) is ε-differentially
private for λ = √

kΔ2(Q)/ε, where Δ2(Q) denotes the L2
sensitivity of a set of Qs. Formally, Δ2(Q) is the smallest
number such that for all Q, Q′ ∈ Q, |Q − Q′|2 ≤ Δ2(Q).
d∗-private mechanism Xiao et al. [62] leveraged d-privacy
with a particular distance metric d∗ on one-dimensional time
series. Let x and x ′ denote two time series. The d∗ metric was
defined as:

d∗(x, x ′) =
∑

i≥1

|(x[i] − x[i − 1]) − (x ′[i] − x ′[i − 1])|

To achieve d∗-privacy, Xiao et al. [62] extended a mech-
anism from Chan et al. [8] to implement a d∗-private
mechanism as follows: Let N denote the natural numbers
and D(i) ∈ N denote the largest power of two that divides
i ; i.e., D(i) = 2 j if and only if 2 j |i and 2 j+1� | i . Note that
i = D(i) if and only if i is a power of two. The mechanism
A computes a noised value x̃[i] that is used in place of x[i]
using the recurrence

x̃[i] = x̃[G(i)] + (x[i] − x[G(i)]) + ri (2)

where x[0] = x̃[0] = 0, and

G(i) =
⎧
⎨

⎩

0 if i = 1
i/2 if i = D(i) ≥ 2
i − D(i) if i > D(i)

(3)

ri ∼
{
Lap

(1
ε

)
if i = D(i)

Lap
(�log2 i�

ε

)
otherwise

(4)

It was proven by Xiao et al. [62] that the algorithm in
Eqns. 2eqn:recurrence:noise is (d∗, 2ε)-private.
dL1-private mechanism L1 distance is a common metric for
measuring the similarities between two time series [13,63].
Let x and x ′ denote two time series. TheL1distance is defined
as: dL1(x, x ′) = ∑

i |x[i] − x ′[i] |. To achieve dL1-privacy,
the mechanism to add noise is described as follows [62]: The
mechanism A computes a noised value x̃[i] that is used in
place of x[i] as

x̃[i] = x[i] + ri (5)

123

Defeating traffic analysis via differential privacy: a case study on streaming traffic

Fig. 3 Abstraction of data flow with defense

where

ri ∼ Lap
(
1

ε

)
(6)

The algorithm in Eqns. 5eqn:recurrence-L1:noise is (dL1, ε)-
private [62].

6.2 Applying privacymechanisms on streaming data

Without loss of generality, the problem specified in Sect. 4
can be simplified and abstracted as the following classifica-
tion problem: An encrypted video stream can be modeled as
a sequence of 2-tuples {(ti , si)}i≥0, where (ti , si) represents
a video segments of size si that is downloaded at time ti . As ti
is a timestamp represented in continuous time, the adversary
needs to discretize the sequence of 2-tuples by grouping all
2-tuples falling in the same time window of length w (e.g.,
as small as a microsecond or as large as a second) into a
single value. As such, each video stream is represented as
a time series x = {b j } j≥0, where b j is the total size of the
downloaded video during time slot j . We let X denote the
space of all possible such x values. Often, the attacker will
collect feature vectors x and their associated labels in a train-
ing phase, to build a machine learning model to which it will
apply observations x seen during his attack.

The goal of the defender is to prevent the videos from
being identified by the attacker, which is achieved by adding
random noise. The workflow of defense and attacks is
depicted in Fig. 3. Specifically, the defender takes the fol-
lowing steps to reduce the information leakage. First, she
sets a window size w to convert the 2-tuples (ti , si) into a
fix-length time series x . Then, she adds random noise, which
is dictated by the differentially private mechanisms, to the
time series, and generates the noised time series x̃ . When
the noised time series x̃ is reflected as packets, we assume
all packets are transmitted instantaneously; depending on the
maximum packet size allowed by the physical network layer,
it can be represented as a sequence of 2-tuples (t̃i , s̃i), which
are what the attacker observes. Note that the mapping from
the time series to the sequence of two tuples is only deter-
mined by the network condition which is agnostic to the
content of the video. The attacker then chooses his window
size (wA) to generate a new time series, denoted as ẋ , and
performs classification on ẋ .

As such, when used to obfuscate streaming traffic, the
three differentially private mechanisms, FPAk , d∗ and dL1,
require two parameters,w and ε. Here,w represents the win-

dow size, which also determines the length of x̃ . For example,
w = 1s means each element of the noised time series repre-
sents the total size of downloaded video segments within an
interval of 1s. Parameter ε specifies the privacy level of the
mechanism: the smaller the ε is, the better the privacy would
be.

When wA is different from w, x̃ and ẋ may have different
lengths. As a result, the attacker may need to merge/split
bins in x̃ to create ẋ . Here, we let x̃ be a time series of n
elements and ẋ be a time series of nA elements. Without loss
of generality, we only consider cases where wA mod w =
0 or w mod wA = 0. The merging and splitting of bins are
performed as follows:

• Merging is requiredwhenwA >w. Let r = wA/w. Every
r bins from x̃ will be merged (summed) into one bin in
ẋ , i.e.,

ẋ[i] =
i×r+(r−1)∑

j=i×r

x̃[j]

For instance, whenwA = 2s andw = 1s, r = 2, nA = 1
2n.

ẋ[i] = x̃[2i] + x̃[2i + 1].
• Splitting is requiredwhenwA <w. Let r = wA/w. Here,
we assume that the volume of each bin follows uniform
distribution. Therefore, every bin from x̃ will be split
(divided) evenly into 1/r bins in ẋ , i.e.,

ẋ[j] = r × x̃[i], j = i

r
, . . . ,

i + 1

r
− 1

For instance, whenwA = 1s andw = 2s, r = 1
2 , nA = 2n.

ẋ[2i] = ẋ[2i + 1] = 1
2 x̃[i].

7 Evaluation

In this section, we evaluate the security and utility of FPAk

and d∗. We implemented both mechanisms in Python. For
FPAk , k was set to 10, so during the Fourier transformation,
only the first 10 Fourier coefficients were kept. FPAk took
a sequence of 2-tuples and parameter w and ε as input, dis-
cretized it into a time series x with window sizew, calculated
λ = √

10Δ2(Q)/ε (where Δ2(Q) denoted the L2 sensitiv-
ity of the set of 40 videos collected in Sect. 3), and returned
another time series x̃ of the same size after adding noise by
following the steps mentioned in Sect. 6.1. Similarly, in our

123

X. Zhang et al.

(a) FPAk (b) d∗ (c) dL1

Fig. 4 Classification accuracy of fivefold cross-validation when trained with original traces and tested with noised traces

implementation of d∗, it took a sequence of 2-tuples, w and
ε as input, discretized it into a time series x with window size
w, and outputted another time series x̃ after adding noise.

The two methods were applied on the 40 × 100 traces
collected in Sect. 3. In our experiment, we used ε ={5 ×
10−8, 5 × 10−7, . . ., 50}, w = {0.05s, 0.25s, 0.5s, 1s, 2s},
so there were 50 pairs in total. Each element of the noised
time series was truncated by a clip bound of [0, 1GB] to avoid
negative volume or enormous volume, because the download
size cannot be negative and it is not realistic to complete
downloading a large chunk of data within a small window
size. Therefore, values less than 0 were changed to 0, and
values larger than 1GB were truncated to 1GB.

7.1 Security evaluation

The security of the differentially private mechanisms is eval-
uated by classification accuracy. We used the same method
mentioned in Sect. 3 to preprocess the data and train the clas-
sifiers. According to the dataset used for training and testing,
we consider the following cases:

7.1.1 Trainedwith x (clean data), tested with x̃ (noised data)

To compare with the defensemechanism of using adversarial
samples described in Sect. 5.2, we first used the same 5 clas-
sifiers trained with original traces to classify the noised data
generated by the two mechanisms with different choices of
ε, when w = 0.25s. The classification accuracy and standard
deviation of a fivefold cross-validation are shown in Fig. 4.

For all the data points, the standard deviation is quite
small (< 0.01), hardly visible in the figures. For FPAk (Fig.
4a), since it involved the Fourier transformation, the new
traces were totally different from the originals, so the classi-
fier could not recognize them for all ε values. For d∗, since
the noise was added upon the original trace, ε played an
important role. As shown in Fig. 4b, for ε ≤ 5 × 10−6, d∗
was effective. When ε ≥ 5 × 10−5, the noise added was
not enough to deceive the classifiers. The trend of dL1 (Fig.
4c) is very similar to that of d∗, but the settings need to be

ε ≤ 5 × 10−7 in order to maintain the baseline accuracy for
all classifiers, which is one order of magnitude smaller than
the settings of d∗. These results suggest that with properly
selected noise level, both mechanisms can effectively defeat
traffic analysis attacks. In the following, we consider a more
powerful adversary that could adapt by training the classifiers
also with noised data.

7.1.2 Trained with x̃ (noised data), tested with x̃ (noised
data)

We evaluated how the two parameters,w and ε, would affect
the security of the defense mechanisms by using the CNN
classifiermentioned inSect. 3 as the adversary andmeasuring
the accuracy of the classification. We specifically consider
two scenarios: wA = w and wA �= w.

• wA = w. First, we consider the scenario where the attacker
and the defender use the same w, which means that x̃ = ẋ .
We altered w to see how it would affect the classification
accuracy. The results of the classification accuracy and stan-
dard deviation of a fivefold cross-validation are shown in
Fig. 5. The classification accuracy with FPAk protected data
is shown in Fig. 5a. When ε was smaller (e.g., ε = 0.05 and
ε = 0.5), more noise was added during the transformation.
The classification accuracy remained low as w increased.
However, when ε was larger (e.g., ε = 5 and ε = 50), the
noise level was low and w played a more significant role—
when w = 2s, the classification accuracy went down by
about 15%. This is because larger window sizes (used by
the adversary during discretization) erased some important
features in the data traces, making the classification harder.

The classification accuracy with d∗ protected data is
shown in Fig. 5b. With smaller ε values (e.g., ε = 5 × 10−8

and ε = 5 × 10−7), w still had no impact on the classifi-
cation accuracy at all. A different trend was observed when
ε = 5 × 10−6: w = 2s would increase the accuracy to
about 25%. We conjecture it was related to the mechanism
by which d∗ added noise: The amount of noise added had a
linear relationship with the length of the time series. When
w was large, with the video length remaining the same, the

123

Defeating traffic analysis via differential privacy: a case study on streaming traffic

(a) FPAk (b) d∗ (c) dL1

Fig. 5 wA = w: effect of w

time series had fewer elements. Therefore, the noise added
was less, which was not enough to confuse the classifier.
When ε = 5 × 10−5, the classification accuracy fluctuated
as w increases from 0.05 to 2. We believe this was the com-
bined result of two causes: the larger window size reduced
the noise level, but also eliminated some of the useful infor-
mation used by the classifiers. The classification accuracy
with dL1 protected data is shown in Fig. 5c. The trend is very
similar to that of d∗, the main difference is that to maintain
the baseline accuracy, dL1 requires ε ≤ 5 × 10−7, which
is one order of magnitude smaller than the threshold of d∗.
The reason is that d∗ and dL1 have different distance metrics
and different noise-adding mechanisms. For all methods, the
standard deviation of each data point was very small (less
than 0.01).

Next, we study the effect of ε. The result is shown in
Fig. 6. The x axis is log10(ε/5) (e.g., x = −3 means that
ε = 5 × 10−3). We only show the cases of w = 0.05s
and w = 2s, since they were the smallest and largest w

values we experimented with; result of other w values were
similar. Similar to Fig. 5, the standard deviations in Fig. 6
were negligible. From Fig. 6, we can see that in order to keep
a low classification accuracy, d∗and dL1 methods required
a much smaller ε. For example, when w = 0.05s, to make
sure the classifier had a baseline accuracy (i.e., 2.5%, given40
videoswith 100 traces each), d∗ needed ε ≤ 5×10−6 and dL1
needed ε ≤ 5×10−7,whileFPAk only required ε ≤ 0.5. This
is because the definitions of ε in themethods are different.We
also provide a proof to bridge the ε values between traditional
differential privacy and d-privacy in Appendix 1.

• wA �= w. Next, we consider the scenario where the
attacker and the defender chose different w. To perform the
experiment, first, we set ε ={5 × 10−8, 5 × 10−7, . . ., 50},
respectively. Then,we letw = {0.05s, 0.25s, 0.5s, 1s, 2s}, and
tested the classification accuracy when wA = {0.05s, 0.25s,
0.5s, 1s, 2s}. We only show the results when w = 0.05s
and w = 2s in Fig. 7. We can see from the figure that with
the same w, when wA increased, the classification accuracy
for both methods decreased. The amount of decrease with

(a) FPAk: w = 0.05s (b) FPAk: w = 2s

(c) d∗: w = 0.05s (d) d∗: w = 2s

(e) dL1: w = 0.05s (f) dL1: w = 2s

Fig. 6 wA = w: effect of ε

d∗and dL1 was more significant than FPAk . From this result,
it can be inferred that choosing a smaller wA would benefit
the adversary. This is because the larger window size used
by the adversary during discretization erased some important
features in the data traces.

From the defender’s perspective, the choice of w made
a difference in the effectiveness of the defense. For FPAk ,
w = 0.05s and w = 2s did not differ much (Fig. 7a, b). But
ford∗,wmattered: forw = 0.05s (Fig. 7c), ε = 5×10−6 was
good enough to fool the classifier; but for w = 2s (Fig. 7d),
ε = 5× 10−6, the classifier can achieve an accuracy of 40%
when wA ≤ 0.5s. Smaller w also made dL1 more effective
against the classifier, as shown in Fig. 7e, f. Therefore, from
the defender’s perspective, if the d∗ or dL1 method is chosen,
it is better to choose a smaller w to achieve better privacy.

123

X. Zhang et al.

(a)FPAk: w = 0.05s (b)FPAk: w = 2s

(c) d∗: w = 0.05s (d) d∗: w = 2s

(e) dL1: w = 0.05s (f) dL1: w = 2s

Fig. 7 wA �= w

Fig. 8 An example of waste and deficit

7.2 Utility evaluation

We define two metrics, waste and deficit, to evaluate the
utility of the mechanisms. Let the original time series be x
and noised time series be x̃ . Consider the cumulative traces
A = ∑n

1 x and B = ∑n
1 x̃ . We definewaste as the maximum

difference between traces A and B when the noised trace B
is above the original trace A.

waste = max
1≤i≤n

{max(B[i] − A[i], 0)} (7)

deficit is defined as the maximum difference between A
and B when the noised trace B is below the original trace A.

deficit = max
1≤i≤n

{max(A[i] − B[i], 0)} (8)

wastemeans the maximum amount of data that have been
downloaded in advance during a time period, and deficit
means the maximum amount of data that needs to be down-
loaded to keep streaming during a time period. An example
ofwaste and deficit is illustrated in Fig. 8. The red line repre-
sents the cumulative volume of the original trace A, and the
blue line is that of the noised trace B. The deficit is the max
difference between the two lines in the orange area, while
the waste is that in the blue area.

The utility of the three mechanisms was evaluated using
the same set of w and ε values as in Fig. 5. The waste and
deficit of each noised trace were computed first, and the
average waste and deficit over all traces were calculated and
shown in Figs. 9 and 10. According to Fig. 9a, parameter w

did not affect thewaste ofFPAk much. But when ε increased,
wastewould decrease, since there was less noise added. Sim-
ilarly, for d∗ and dL1, ε was the major factor that affected the
waste (see Fig. 9b, c). However, w also had an influence:
When ε was fixed, larger w indicated fewer waste for d∗ and
dL1. We conjecture it was again related to the mechanism by
which d∗ and dL1 added noise. The amount of noise added
had a linear relationship with the length of the series. When
w was larger, the time series was shorter for the same video
length. Therefore, less noise was added, which resulted in
smaller waste.

However, the deficit metric of the three mechanisms fol-
lowed a different trend (Fig. 10). In FPAk , deficit was less
fluctuated when w and ε changed (Fig. 10a). For different
(w,ε) pairs, the average deficit stayed within [1.5MB, 3MB].
However, for d∗, changes in either w or ε affected the deficit
significantly. From Fig. 10b, it was clear that when thew was
small (e.g., 0.05s), there was no deficit at all for all ε values;
when the w was large (e.g., 2s), the deficit could be as large
as 0.8MB. The deficit of dL1 (Fig. 10c) was quite similar to
that of d∗: the deficit was negligible when w was small and
stayed within 1MB when w was large. Overall, FPAk cost
less waste but incurred more deficit, while d∗ and dL1 had
fewer deficit with higher waste.

Note that it is possible to take measures to lower thewaste
and deficit. For example, one can choose an ε value to ensure
privacy while keeping a reasonable waste and deficit. Low-
ering the upper bound can reduce thewaste, while increasing
the lower bound can remove the deficit. Also, the deficit can
be easily eliminated if buffering the video content upfront
for a few seconds.

7.3 Comparison of mechanisms

To compare the three differentially private mechanisms, we
chose the best (w,ε) pair for eachmethod, which achieves the
baseline accuracy (i.e., 2.5%) and lowest waste. According
to the experiment results presented in Sects. 7.1 and 7.2, for
FPAk , the best parameters were w = 2s, ε = 0.5; for d∗, w =

123

Defeating traffic analysis via differential privacy: a case study on streaming traffic

(a) FPAk (b) d∗ (c) dL1

Fig. 9 waste experiment

(a) FPAk (b) d∗ (c) dL1

Fig. 10 deficit experiment

(a)waste (b) deficit

Fig. 11 Utility Comparison: FPAk (w = 2s, ε = 0.5); d∗ (w = 0.5s, ε = 5e-6); dL1 (w = 2s, ε = 5e-7)

0.5s, ε = 5 × 10−6 were chosen; for dL1, we used w = 2s, ε
= 5 × 10−7. The waste and deficit distribution of the 4000
traces after applying the three methods are shown in Fig. 11.
From Fig. 11a, it is clear that with the best parameters, FPAk

traces had a median waste of about 200%; median waste of
dL1 traces was about 300%; that of d∗ traces was even higher
(600%). For deficit (Fig. 11b), however, more than 80% of
d∗ traces had a deficit less than 1%; most of dL1 traces had
a deficit less than 5%; the majority of FPAk traces (> 50%)
had at least 5% deficit.

From Fig. 11, we find that FPAk tended to induce less
waste (about 200% of the original video size). To achieve
similar security protection, dL1 cost about 300% waste (1.5
times of FPAk), while d∗ had to download 3 times more vol-
ume than FPAk . To achieve differential privacy, some utility
loss has to be allowed when applying the three mechanisms.
Moreover, it is clear that with the same security level (in
regards to classification accuracy), if the primary objective
is to minimize the waste, FPAk is the best choice; if the main
goal is to reduce the deficit, d∗ would be the better option.
dL1 is somewhere in the middle, which is more balanced.

We also studied the waste added per window for the three
mechanisms when choosing the best parameters. The waste

added in the i th window is denoted as δ[i]. Following the
notions in Sect. 6, we have δ[i] = x̃[i] − x[i].

For FPAk , x̃[i] = Q̃[i], so

δ[i] = Q̃[i] − x[i].

For dL1,

δ[i] ∼ Lap
(
1

ε

)
.

For d∗, based on the mechanism presented in Sect. 6.1,

δ[i] = x̃[i] − x[i] = ri + rG[i] + rG[G[i]] + · · · + r1.

The average waste added per window of the 4000 traces
when choosing the best parameters in each setting were pre-
sented in Fig. 12. We find that the waste added per window
stayed at roughly 0.7MB and 0.9MB for FPAk and dL1,
respectively, while that of d∗ was increasing gradually from
0.1MB to 0.8MB. This is consistent with their noise adding
mechanisms presented in Sect. 6. Based on this observation,
when the length of the video increases, the noise of d∗ will
accumulate, costing more waste than FPAk and dL1.

123

X. Zhang et al.

Fig. 12 The waste added per window with the best parameters: FPAk
(w = 2s, ε = 0.5); d∗ (w = 0.5s, ε = 5e-6); dL1 (w = 2s, ε = 5e-7)

7.4 Comparison with baseline defense

In a baseline defense mechanism, the defender could sim-
ply download at a constant rate for all videos in the dataset.
To make videos with different total data size indistinguish-
able, smaller videos need to be padded with dummy data
to obfuscate the traffic analysis. We designed the follow-
ing mechanism to avoid introducing deficit in the resulting
streams: With a bin size of w, we divided each time series
into multiple bins and identified the maximum value of
downloaded data (denoted as C) for all bins of these 4000
original time series. Then, as a baseline defense mechanism,
all videos were downloaded at a constant rate of C bytes
per w. As such, from the attacker’s perspective, all video
streams were identical, and no deficit would be incurred
for the noised video. We evaluated this baseline method
with w = [0.05s, 0.25s, 0.5s, 1s, 2s], and the correspond-
ingwaste are [15.7GB, 14.9GB, 11.5GB, 8.1GB, 4.1GB],
which represent the extra data downloaded for a 3-minute
video.

We note that it is only fair to compare this baseline
approach with FPAk , because both of them require knowl-
edge of the download profiles of all videos in a dataset (i.e.,
the set of videos the defender would like to render indistin-
guishable). By contrast, d∗and dL1 can be used to add noise
on-the-fly. As shown in Fig. 9a, the waste induced by FPAk

is at least one order of magnitude lower than the baseline
approach. With a tunable privacy level ε, i.e., by enforcing
statistical indistinguishability rather than absolute indistin-
guishability, FPAk can be much more practical (e.g., with
less than 10MB waste when ε = 5).

8 Impacts of video lengths

In the previous sections, the video length (l) was set to 3min-
utes (180s); in this section, we further studied how the video
length would affect the security. Specifically, we evaluated
the security with l = [30s, 60s, 90s, 120s, 150s]. We used the

same 40×100 traces. Here, we setwA = w = 0.25s sincew

is not the major factor affecting security and utility based on
our evaluation in Sect. 7. We used ε ={5 × 10−8, 5 × 10−7,
. . ., 50}. The settings in the FPAk method remain the same,
i.e., k = 10. We assume that the attacker uses the noised data
(x̃) for training and testing.We used fivefold cross-validation
for security evaluation.

8.1 Impact on security

The classification accuracy and one standard deviation of
a fivefold cross-validation with different video lengths are
shown in Fig. 13.
FPAk . The result for the FPAk method is shown in Fig. 13a.
When ε is small (e.g., ε = 0.05 and ε = 0.5), the classi-
fication accuracy remains low since the noise level is high.
However, when ε is larger (e.g., ε = 5 and ε = 50), longer
videos yield higher classification accuracy: when ε = 50,
the accuracy goes down by over 30% when l = 30s, com-
pared to l = 150s. The reason is that longer videos have
more features in the traces, which gives the classifier more
information to better separate them.
d∗. The result with d∗ as the defense mechanism is shown
in Fig. 13b. When ε ≤ 5 × 10−6, the video length does
not affect the accuracy. When ε = 5 × 10−5, however, the
accuracy keeps increasing when l is increasing. The reason
is the same as that in FPAk : longer videos indicate more
features, thus easier classification.
dL1. The result of the dL1 mechanism is shown in Fig. 13c.
As shown in the figure, dL1 requires tighter parameters (ε ≤
5×10−7) to maintain the baseline accuracy, compared to d∗.
When the noise level is low (ε ≥ 5× 10−6), dL1 mechanism
cannot keep the videos indistinguishable. The accuracy also
increases when the video length increases.

8.2 Implications of longer videos

Our evaluation shown in Fig. 13 indicates that longer videos
need tighter parameters (ε) to maintain the same security
level. However, if the video length is longer than the defender
expected,what are the implications on the threemechanisms?
Note that FPAk is not applicable in this scenario, since the
video length must be known before it performs the Fourier
Perturbation. Therefore, we focus on d∗ and dL1 in this sub-
section.
Methodology To answer this question, we need to find a
way to set d∗ and dL1 in the same security level when
the video length is short and evaluate the impact when
the length is longer. To achieve this, for each method, we
first define Acc(m0, w0, ε0, l0) as the classification accu-
racy when method = m0, w = w0, ε = ε0, l = l0, and
thres(m0, w0, l0) as the maximum ε that can maintain the
baseline accuracy when method = m0, w = w0, l = l0.

123

Defeating traffic analysis via differential privacy: a case study on streaming traffic

(a) FPAk (b) d∗ (c) dL1

Fig. 13 Classification accuracy with different video lengths

Fig. 14 Classification accuracy when ε is set to thres (d∗, 0.25, 30) and
thres (dL1, 0.25, 30) for d∗ and dL1, respectively

In our case, since the baseline accuracy is 0.025, for each
method, the thres(m0, w0, l0) needs to satisfy the following
two conditions:

Acc(m0, w0, thres, l0) = 0.025,

∀ε ≥ thres, Acc(m0, w0, ε, l0) > 0.025.

For d∗ and dL1, we use the two conditions in binary search
to find the approximate thres when w = 0.25s, l = 30s.
Suppose the search range for the i th round in the binary
search is [Li , Ri]. Since we use Python for evaluation and
the floats in Python follow the IEEE 754 double precision
standard, which contain 53 bits of precision (16 digits)2, the
stopping condition is set as Ri −Li ≤ 1e-16. After the binary
search ends (n rounds), we set thres = Rn .
Evaluation For d∗ and dL1, we use the evaluation result
presented in Fig. 13 to set the [L0, R0] for the binary
search. For d∗, L0 = 5e-6, R0 = 5e-5; for dL1, L0 = 5e-
7, R0 = 5e-6. After the binary search ends, we have the
thres for the two mechanisms3. Then, we set the ε to the
thres for d∗ and dL1, respectively, and evaluate the classi-
fication accuracy with fivefold cross-validation when l =
[60s, 90s, 120s, 150s, 180s]. The results are shown in Fig.
14. We can learn that when the video length is longer than

2 https://docs.python.org/3/tutorial/floatingpoint.html
3 thres(d∗,0.25,30) = 0.0000111524321020, thres(dL1,0.25,30) =
0.0000024160161657.

Fig. 15 Workflow of the Chrome extension

30 seconds, the classification accuracy increases no matter
which defense mechanism is chosen. However, the impacts
on the two mechanisms are different: for d∗, the accuracy
increases to about 18%when l = 180s; for dL1, the accuracy
goes up to over 40%, which is more than twice as that of d∗.
The results indicate that dL1 is less effective when the video
length is longer than the expected setting, compared to d∗.
Therefore, if the video to be protected may have a longer
length than the defender expected, it is better to choose d∗
over dL1.

9 Real-world implementation

Todemonstrate the practicality of our approach,we imple-
mented the FPAk privacy mechanism in a Chrome extension
that proxies Youtube streaming. The workflow of the exten-
sion is illustrated in Fig. 15. First, the Youtube client running
inside the Chrome browser sends a request to the Youtube
server,which is intercepted by the extension. Instead of relay-
ing the request immediately, the proxy sends requests on
behalf of the client at a constant rate (e.g., once per second),
which is specified by thew parameter of the extension. After
receiving the responses from the server, the proxy caches the
video chunks locally. If there is a pending request from the
Youtube client, the extension returns the requested portion to
the client directly from local storage. In this way, theYoutube
requests/responses as seen by an external observer are fully
controlled by the extension. Since the request pattern from
the proxy is differentially private, traffic analysis is thwarted.

To enforce the privacy guarantee, the range parame-
ters in the proxy’s requests are decoupled from those in the
client’s requests. The requests sent by the Chrome extension
use a range parameter dictated by the FPAk mechanism.
To properly watch a Youtube video, both its video stream

123

https://docs.python.org/3/tutorial/floatingpoint.html

X. Zhang et al.

Table 3 Classification result when the Chrome extension is enabled.
Each column represents the accuracy when trained with the spec-
ified feature. The features are up/down/total bytes per bin (BPB),

up/down/total packets per bin (PPB), up/down/total average packet
length per bin (LPB), up/down/total bursts (BURST), and the combina-
tion of all 12 features (ALL)

wA (s) BPBup BPBdown BPB PPBup PPBdown PPB LPBup LPBdown LPB BURSTup BURSTdown BURST ALL

0.05 0.16 0.12 0.16 0.12 0.16 0.14 0.14 0.13 0.16 0.14 0.15 0.16 0.13

0.25 0.20 0.16 0.22 0.18 0.16 0.20 0.12 0.08 0.16 0.23 0.14 0.19 0.21

0.5 0.19 0.12 0.22 0.14 0.16 0.20 0.14 0.08 0.10 0.19 0.14 0.15 0.20

1 0.16 0.14 0.18 0.14 0.19 0.13 0.10 0.10 0.11 0.16 0.14 0.12 0.18

2 0.14 0.12 0.16 0.13 0.14 0.16 0.10 0.10 0.09 0.16 0.16 0.19 0.17

and its audio stream needs to be downloaded. We applied the
differentially private mechanism on both streams.
Implementation In our implementation, we made use of the
Xhook4 framework, which allows us to intercept and mod-
ify the XMLHttpRequest requests and responses. In our
implementation of FPAk , k = 10, w = 1s, ε = 0.5.We used
the numjs5 library, which is similar to Python’s numpy,
to implement numeric computation, and used the Random
library in SIM.JS6 to implement the Laplace distribution.
The extension has about 700 lines of Javascript code in total.
Note that the use of FPAk requires the original trace of the
video to be known to the proxy beforehand.
Data collectionWeused the samemethods described in Sect.
3 to collect traces for 10 videos, and 100 traces for each video,
with our extension enabled. Therefore, the network traffic
observed is only the communication between the extension
and the Youtube server. The traces were collected when the
w parameter of the extension was set to 1s, which means that
it would send a video request and an audio request to the
Youtube server every 1 second.
Effectiveness To demonstrate that the extension can indeed
defeat ML-based traffic analysis, we extracted 12 features
which were also time series from the stream and performed
classification one by one. The features were: the number of
bytes per bin (BPB), the number of packets per bin (PPB),
the average packet length per bin (LPB), the size of bursts7

(BURST).
In BPB series, each element represents the volume in

one bin; in PPB series, each element is the number of
packets collected in one bin; and in LPB series, each ele-
ment represents the average packet length in one bin, i.e.,
LPB[i] = BPB[i]/PPB[i] if PPB[i] > 0. In BURST series,
each element is the value of burst in one bin. The subscrip-
tion “up”means packets from client to server; “down”means
packets from server to client; no subscription means the sum

4 https://github.com/jpillora/xhook
5 https://github.com/nicolaspanel/numjs
6 https://github.com/mvarshney/simjs-source
7 A burst is the total size of all packets whose timestamps are no farther
apart than a threshold. Here, the threshold is set to 0.5s.

of “up” and “down.” We also evaluated the classification
accuracy with all 12 features combined, labeled as ALL.8

The dataset (1000 traces)was split into a training set (80%,
800 traces) and a test set (20%, 200 traces). We set wA =
{0.05s, 0.25s, 0.5s, 1s, 2s} to bin the traces, then trained the
CNN model in Sect. 3 for 40 epochs with a batch size of 32
using the training set. After that, the classification was per-
formed on the test set. The results are shown in Table 3. As
expected, the CNN model can hardly classify these obfus-
cated traces. For most cases, the classifier only achieved an
accuracy of about 15%. Using certain features may increase
the classification accuracy (e.g., 23% with BURSTup for
wA = 0.25s), which were still significantly lower than the
values in Table 1. This result suggests that differential pri-
vacy is effective in defeating machine learning adversaries.
According to the Post-processing Lemma [15], the composi-
tion of differentially private mechanisms is still differentially
private. Therefore, combining the features does not benefit
the attacker. As shown in the “ALL” column in Table 3, the
12-feature combined classification accuracy remained on the
same level as individual features.
UsabilityWhile we cannot directly quantify the user experi-
ence, in our evaluation, the video streaming went smoothly
without pausing after buffering for roughly 3 seconds at
the very beginning. We leave a comprehensive user study
on the usability as future work. Nevertheless, an optimal
implementation of our statistical privacy mechanisms would
enforce the privacy on both the client side and the server
side. The browser extension can only control the request rate
of the Youtube video streaming, but cannot directly control
the response rate from the server. If the server chooses to
respond to a request with a packet pattern that is specific
to the downloaded video, privacy of the streaming traffic
cannot be protected by the extension alone. Fortunately, as
shown in our experiment, it is not the case—packet patterns
in the video download are not content-specific. Therefore,
the packet patterns do not leak additional information.

8 In previous sections, the evaluations were performed on the BPB
feature; here, we show that extracting more features does not really
help the classification.

123

https://github.com/jpillora/xhook
https://github.com/nicolaspanel/numjs
https://github.com/mvarshney/simjs-source

Defeating traffic analysis via differential privacy: a case study on streaming traffic

10 Discussion

In this section, we discuss the limitation and extension of the
statistical privacy approaches.
Reducing waste To be practical, measures must be taken to
lower the waste. For example, one can lower the security
guarantee by increasing the ε, so that the amount of noise
added is reduced. Another possible approach is to make the
upper clip bound smaller. In Fig. 11a, the upper clip bound
is set to 1GB, which is far from realistic scenarios. It would
be more reasonable to find an empirical clip bound based on
real-world statistics.
Leakage through video length None of the statistically pri-
vate mechanisms prevents leakage through the length of the
videos. Intuitively, to make an 1-minute video indistinguish-
able from an 1-hour video, considerable amount of noise
must be added to hide the difference of the video length, as
theL2 sensitivity in this case is prohibitively high.As a result,
the utility of the solutionwill drop significantly. Therefore, in
practice, it is more desirable to onlymake videos with similar
length indistinguishable from one another. To do so, group-
ing the videos by length and padding them to the longest
length in each group might be a good solution. For example,
all videos of the length between 50-minute to 1-hour could
be considered in one group and padded so that all of them
appear to be a 1-hour video.
Applying the mechanisms to protect longer videos In our
paper, the videos are only 3-minute long, which may not be
realistic in reality. While the methods present in the paper
can be applied to longer videos, due to the increase in the
video length, more noise needs to be added in order to make
them indistinguishable. Tomake it more practical and reduce
the utility cost, the user can utilize the approaches to reduce
thewaste as mentioned above, as well as grouping the videos
before adding noise.Moreover, in practice, it may not be nec-
essary to maintain a baseline accuracy; lowering the security
guarantee to obtain a reasonable balance between security
and utility may be a better approach.
Comparing the three mechanisms In Sect. 7.3, we compared
the utility of the three differentially private mechanisms with
certainw and ε parameters selected to render the CNNclassi-
fier ineffective. However, CNN classification accuracy does
not translate directly to security guarantees. As these mecha-
nisms offer different theoretical privacy guarantees, directly
comparing them is less meaningful. However, it is worth
mentioning that FPAk mechanism additionally requires the
knowledge of the entire time series x before transforming it
into the noised version x̃ . This additional requirement may
be less desirable in scenarios where such information is not
available.
Applying differential privacy to website fingerprinting
Although we have shown that differentially private mech-
anisms are promising countermeasures to streaming traffic

analysis attacks, directly applying the same approach to
prevent website fingerprinting requires some modifications.
Unlike streaming traffic, HTTP traffic is more interactive.
For example, an HTML web page may embed a number of
objects (e.g., JavaScript files or images) that will be down-
loaded after the HTML file is parsed by the browser. While
streaming allows us to proactively request video contents
beforehand and cache data locally, the download of some
HTML resources can only start after finishing the download
of a previous resource. We plan to address this type of inter-
active web traffic and expand our approach to WF attacks in
future work.
Open-world settings In this paper, we performed our eval-
uation on a 40-video dataset. While 40 may seem to be a
small number, in real attacks, the attacker may utilize some
auxiliary information to narrow down the set of videos the
victim may be watching. Moreover, the closed-world setting
is the most advantageous to the attacker and the least favor-
able to the defender. As a result, it would be much harder to
build a defense against attackers in the closed-world settings
than open-world settings. Our evaluation demonstrates the
effectiveness of the defense method in a more challenging
scenario. Therefore, the proposed defense should also work
in the open-world settings.
Practical deployment To deploy our defense approaches in
real-world systems, it is important to make the end users
aware of the trade-off between privacy and cost. Better pri-
vacy leads to higher waste and/or higher deficit. If the deficit
is too high, the video cannot be played smoothly; if thewaste
is too high, the cost of network usage will increase. To lower
thedeficit, the service provider can enforce larger packet sizes
of the first few seconds with differential privacy guarantee.
Fortunately, all mechanisms offer tunable security parame-
ters to adjust privacy levels. Service providers can configure
a set of privacy levels for end users to choose from; the pri-
vacy gain and utility loss should be properly explained so
that the users can adjust their levels accordingly.

11 Related work

Defenses against side-channel attacks Our work has been
influenced by prior studies that insert noise to obfuscate
side-channel observations.Many research projects have tried
to perturb timers to mitigate timing side-channel attacks
[32,33,59]. Researchers have also shown that adding noise to
shared resources can be an effective defense [4,25,66]. Par-
ticularly relevant to our work is due to Xiao et al. [62], which
introduced the d∗ algorithm tomitigate storage side channels
resulting from procfs in Linux, so that statistics reporting
through procfs satisfies d-privacy for a meaningful dis-
tance metric d∗. Their work considered interactive statistical
data release, i.e., in which the defender knows exactly when

123

X. Zhang et al.

and how the adversary observes the data. In our case, the
adversary does not have to interact with the defense sys-
tem; he only needs to passively observe the streaming traffic,
which requires this defense to be more pervasively applied.
This, in turn, underscores the importance of measuring its
utility impact, as we have done here.
Privacy of time-series data Our work is built upon a num-
ber of previous studies that apply differential privacy to
time-series data. Rastogi et al. [47] proposed the Fourier
Perturbation Algorithm (FPAk) algorithm to ensure differ-
ential privacy for time-series data. Shi et al. [50] proposed
aggregator-oblivious encryption to ensure differential pri-
vacy for distributed time-series data. Benhamouda et al. [3]
extended this work to introduce a general framework for con-
structing privacy-preserving aggregator-oblivious encryp-
tion schemes. Fan et al. [16] presented a framework, FAST,
to release real-time aggregate statistics under differential pri-
vacy based on filtering and adaptive sampling. Cao et al.
[6] proposed two methods to answer a subset of representa-
tive slidingwindow queries with differential privacy. Kellaris
et al. [24] introduced ω-event privacy over infinite streams,
which protects any event sequence occurring in ω succes-
sive timestamps. None of these works considered applying
differential privacy to defeat traffic analysis, however.
Website fingerprinting defenses One important branch of
traffic analysis is website fingerprinting (WF) on encrypted
channels or anonymity networks (e.g., Tor). In a typical
WF attack, the adversary utilizes supervised machine learn-
ing techniques to train a classifier with encrypted network
traffic to/from a set of websites of interest and then clas-
sify unknown traffic captured from the victim. Prior works
have shown effectiveness of such attacks [43,44,51,52,60].
Accordingly, many research projects have explored mecha-
nisms [5,23,44,61] to address this security threat. The major
difference between these work and ours is that our method
is designed with a theoretical privacy guarantee. We believe
our solution can be applied to WF attacks as well. However,
unlike streaming traffic, which is essentially non-interactive,
additional care must be taken to eliminate leakage through
interactive traffic patterns. We plan to expand our approach
to WF attacks in future work.
Private messaging systems Prior works have applied dif-
ferential privacy techniques in private messaging systems.
One of the first systems is Vuvuzela [58], which is a large-
scale private messaging system that protects against both
passive and active adversaries with differential privacy guar-
antee. There are other works that extend Vuvuzela for private
messaging systems [27,28,57]. Although these works also
applied differential privacy to prevent traffic analysis, how-
ever, their scenarios are completely different. In these private
messaging systems, the information they are trying to hide
is the participants of communications, i.e., who is talking to
whom in the system. In our scenario, the two parties involved

are obviously known—the client and the server; however, we
strive to prevent traffic analysis from divulging the content
that is being streamed from the server to the client.
Privacy using adversarial ML The possibility that adversar-
ial ML might be leveraged to improve privacy by interfering
with automated classification of observations is a relatively
new idea. Oh et al. [42] specifically considered methods to
interfere with automated person recognition in an image.
Marohn et al. [36] similarly explored the effectiveness of
an image-obfuscation technique dubbed “thumbnail preserv-
ing encryption” against ML classifiers. A recent paper [40]
has also explored adversarial ML to defeat traffic analysis
attackers. However, they assume that the defender can arbi-
trarily inject/remove/change packets, which is unrealistic in
our case.
Differential privacy and adversarial samples There are
works that use differential privacy to increase the robust-
ness of classifiers against adversarial samples [31,46]. These
papers have different objectives from ours. Their goals are
to improve the robustness of classification; our paper has the
opposite goal: using differential privacy to make classifica-
tion difficult.

12 Conclusion

In this paper, we borrowed techniques from adversarial
machine learning and differential privacy to address pri-
vacy concerns of streaming traffic. Our findings suggest that
constructing adversarial samples effectively confounds an
adversary with a predetermined classifier but is less effec-
tive when the adversary can adapt to the defense, either
by using alternative classifiers or training the classifier with
adversarial samples. On the other hand, differential privacy
effectively defeats statistical-inference-based traffic analysis,
while remains agnostic to the machine learning classifiers
used by the adversary. Our evaluation suggests that the dif-
ferentially private mechanisms used in the paper offer good
security protection with moderate utility loss.

Funding This project is supported in part by NSF grants 1718084,
1750809, 1801494, and grant W911NF-17-1-0370 from the Army
Research Office. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research
Office or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation herein

Declarations

Conflicts of interest The authors have no conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

123

Defeating traffic analysis via differential privacy: a case study on streaming traffic

Appendix A: Appendix

Theorem 1 c D, we have method A that is ε-private, and
method B that is (d∗, ε)-private. We denote the maximum
and minimum d∗ distance in D as dmax and dmin. Then, we
have:
(1) If B is (d∗, ε)-private, then B is (εdmax)-private.
(2) If A is ε-private, then A is (d∗, ε

dmin
)-private.

Proof According to the definitions, we have:

A : P(A(x) ∈ Z) ≤ exp(εA) × P(A(x ′) ∈ Z) (A.1)

B : P(A(x) ∈ Z) ≤ exp(εB × d∗(x, x ′)) × P(A(x ′) ∈ Z)

(A.2)

For B, we have:

εB × dmin ≤ εB × d∗(x, x ′) ≤ εB × dmax (A.3)

If B is (d∗, ε)-private,

P(A(x) ∈ Z)

P(A(x ′) ∈ Z)
= exp(ε × d∗(x, x ′)) ≤ exp(ε × dmax)

(A.4)

SoB is at least (εdmax)-private. Similarly, if A is ε-private,
let ε = ε′ × d∗(x, x ′), we have:

ε′ = ε

d∗(x, x ′)
≤ ε

dmin
(A.5)

So A is at least (d∗, ε
dmin

)-private ��.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensor-
flow: Large-scale machine learning on heterogeneous distributed
systems (2016). arXiv preprint arXiv:1603.04467

2. Bengio, Y., et al.: Learning deep architectures for ai. Foundations
and trends® in Machine Learning (2009)

3. Benhamouda, F., Joye, M., Libert, B.: A new framework for
privacy-preserving aggregation of time-series data. ACM Trans.
Inf. Syst. Secur. (TISSEC) 18, 1–21 (2016)

4. Brickell, E., Graunke, G., Neve, M., Seifert, J.P.: Software miti-
gations to hedge AES against cache-based software side channel
vulnerabilities. In: IACR Cryptology ePrint Archive (2006)

5. Cai, X., Nithyanand, R., Wang, T., Johnson, R., Goldberg, I.: A
systematic approach to developing and evaluating website finger-
printing defenses. In: 2014 ACM Conference on Computer and
Communications Security. ACM (2014)

6. Cao, J., Xiao, Q., Ghinita, G., Li, N., Bertino, E., Tan, K.L.:
Efficient and accurate strategies for differentially-private sliding
window queries. In: 16th International Conference on Extending
Database Technology. ACM (2013)

7. Carlini, N., Wagner, D.: Towards evaluating the robustness of neu-
ral networks. In: IEEE Symposium on Security and Privacy. IEEE
(2017)

8. Chan, T.H.H., Shi, E., Song, D.: Private and continual release of
statistics. ACM Trans. Inf. Syst. Secur. (TISSEC) 14, 1–24 (2011)

9. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi,
C.: Broadening the scope of differential privacy using metrics.
In: International Symposium on Privacy Enhancing Technologies
Symposium. Springer (2013)

10. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app without
actually seeing it: Ui state inference and novel android attacks. In:
USENIX Security Symposium (2014)

11. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware
classification using random projections and neural networks. In:
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE (2013)

12. Diao,W., Liu, X., Li, Z., Zhang, K.: No pardon for the interruption:
New inference attacks on android through interrupt timing analysis.
In: 2016 IEEE Symposium on Security and Privacy (SP). IEEE
(2016)

13. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.:
Querying and mining of time series data: experimental compari-
son of representations and distance measures. VLDB Endowment
(2008)

14. Dwork, C.: Differential privacy. In: 33rd International Conference
on Automata, Languages and Programming (ICALP) (2006)

15. Dwork, C., Roth, A., et al.: The algorithmic foundations of dif-
ferential privacy. Found. Trends Theor. Comput. Sci. 9, 211–407
(2014)

16. Fan, L., Xiong, L.: An adaptive approach to real-time aggregate
monitoring with differential privacy. IEEE Trans. Knowl. Eng. 26,
2094–2106 (2014)

17. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierar-
chical features for scene labeling. IEEE Trans. Pattern Anal. Mach.
Intell. 35, 1915–1929 (2013)

18. Goodfellow, I.J., Shlens, J., Szegedy,C.: Explaining and harnessing
adversarial examples (2014). arXiv:1412.6572

19. Hamm, J.: Machine vs machine: minimax-optimal defense against
adversarial examples (2017). arXiv:1711.04368

20. Hayes, J., Danezis, G.: k-fingerprinting: a robust scalable website
fingerprinting technique. In: USENIX Security Symposium (2016)

21. Hinton,G.,Deng, L.,Yu,D.,Dahl,G.E.,Mohamed,A.R., Jaitly,N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep
neural networks for acoustic modeling in speech recognition: the
shared views of four research groups. IEEE Signal Process. Mag.
29, 82–97 (2012)

22. Jean, S., Cho, K., Memisevic, R., Bengio, Y.: On using very
large target vocabulary for neural machine translation (2014).
arXiv:1412.2007

23. Juarez, M., Imani, M., Perry, M., Diaz, C., Wright, M.: Toward an
efficient website fingerprinting defense. In: European Symposium
on Research in Computer Security. Springer (2016)

24. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differen-
tially private event sequences over infinite streams. VLDB Endow
7, 1155–1666 (2014)

25. Keramidas, G., Antonopoulos, A., Serpanos, D.N., Kaxiras, S.:
Non deterministic caches: a simple and effective defense against
side channel attacks. Design Autom. Embed. Syst. 12, 221–230
(2008)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In: Advances in Neural
Information Processing Systems (2012)

123

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1711.04368
http://arxiv.org/abs/1412.2007

X. Zhang et al.

27. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom:
Horizontally scaling strong anonymity. In: 26th Symposium on
Operating Systems Principles. ACM (2017)

28. Lazar, D., Zeldovich, N.: Alpenhorn: Bootstrapping secure com-
munication without leaking metadata. In: OSDI (2016)

29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature (2015)
30. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images,

speech, and time series. In: The Handbook of Brain Theory and
Neural Networks (1995)

31. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Cer-
tified robustness to adversarial examples with differential privacy.
In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE
(2019)

32. Li, P., Gao, D., Reiter,M.K.:Mitigating access-driven timing chan-
nels in clouds using stopwatch. In: 43rd International Conference
on Dependable systems and networks. IEEE (2013)

33. Liu,W., Gao,D., Reiter,M.K.: On-demand time blurring to support
side-channel defense. In: European Symposium on Research in
Computer Security. Springer (2017)

34. Liu, X., Zhou, Z., Diao,W., Li, Z., Zhang, K.:When good becomes
evil: Keystroke inference with smartwatch. In: 22nd ACMConfer-
ence on Computer and Communications Security. ACM (2015)

35. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.:
Towards deep learning models resistant to adversarial attacks
(2017). arXiv:1706.06083

36. Marohn, B., Wright, C.V., Feng, W.C., Rosulek, M., Bobba, R.B.:
Approximate thumbnail preserving encryption. In: 1st Interna-
tional Workshop on Multimedia Privacy and Security (2017)

37. Mikolov, T., Deoras, A., Povey, D., Burget, L., Černockỳ, J.:
Strategies for training large scale neural network language models.
In: 2011 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE (2011)

38. Mnih,A., Teh,Y.W.:A fast and simple algorithm for training neural
probabilistic language models (2012). arXiv:1206.6426

39. Mondal, A., Sengupta, S., Reddy, B.R., Koundinya, M., Govin-
darajan, C., De, P., Ganguly, N., Chakraborty, S.: Candid with
youtube: Adaptive streaming behavior and implications on data
consumption. In: 27th Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video (NOSSDAV). ACM
(2017)

40. Nasr, M., Bahramali, A., Houmansadr, A.: Blind adversarial net-
work perturbations (2020). arXiv:2002.06495

41. Nicolae, M.I., Sinn, M., Tran, M.N., Buesser, B., Rawat, A., Wis-
tuba, M., Zantedeschi, V., Baracaldo, N., Chen, B., Ludwig, H.,
Molloy, I., Edwards, B.: Adversarial robustness toolbox v1.2.0.
CoRR (2018). arXiv:1807.01069

42. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for
privacy protection—a game theory perspective. In: IEEE Interna-
tional Conference on Computer Vision (2017)

43. Panchenko, A., Lanze, F., Pennekamp, J., Engel, T., Zinnen, A.,
Henze, M., Wehrle, K.: Website fingerprinting at internet scale. In:
NDSS (2016)

44. Panchenko, A., Niessen, L., Zinnen, A., Engel, T.: Website finger-
printing in onion routing based anonymization networks. In: 10th
Annual ACMWorkshop on Privacy in the Electronic Society. ACM
(2011)

45. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel,M., Prettenhofer, P.,Weiss, R., Dubourg, V.,
Vanderplas, J., Passos,A., Cournapeau,D., Brucher,M., Perrot,M.,
Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach.
Learn. Res. (2011)

46. Pinot, R., Yger, F., Gouy-Pailler, C., Atif, J.: A unified view on
differential privacy and robustness to adversarial examples (2019).
arXiv:1906.07982

47. Rastogi, V., Nath, S.: Differentially private aggregation of dis-
tributed time-series with transformation and encryption. In: 2010

ACM SIGMOD International Conference onManagement of data.
ACM (2010)

48. Sainath, T.N., Mohamed, A.R., Kingsbury, B., Ramabhadran, B.:
Deep convolutional neural networks for LVCSR. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE (2013)

49. Schuster, R., Shmatikov, V., Tromer, E.: Beauty and the burst:
Remote identification of encrypted video streams. In: USENIX
Security Symposium (2017)

50. Shi, E., Chan, H., Rieffel, E., Chow, R., Song, D.: Privacy-
preserving aggregation of time-series data. In: NDSS (2011)

51. Sirinam, P., Imani,M., Juarez,M.,Wright,M.:Deepfingerprinting:
Undermining website fingerprinting defenses with deep learning
(2018). arXiv:1801.02265 (2018)

52. Sun, Q., Simon, D.R., Wang, Y.M., Russell, W., Padmanabhan,
V.N., Qiu, L.: Statistical identification of encrypted web browsing
traffic. In: IEEE Symposium on Security and Privacy. IEEE (2002)

53. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning
with neural networks. In: Advances in Neural Information Process-
ing Systems (2014)

54. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A., et al.: Going deeper
with convolutions. In: CVPR (2015)

55. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., Fergus, R.: Intriguing properties of neural networks
(2013). arXiv:1312.6199

56. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a
convolutional network and a graphical model for human pose esti-
mation. In: Advances in Neural Information Processing Systems
(2014)

57. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., Zeldovich, N.: Sta-
dium: A distributed metadata-private messaging system. In: 26th
Symposium on Operating Systems Principles. ACM (2017)

58. VanDenHooff, J., Lazar, D., Zaharia,M., Zeldovich,N.: Vuvuzela:
Scalable private messaging resistant to traffic analysis. In: 25th
Symposium on Operating Systems Principles. ACM (2015)

59. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained
timers in xen. In: 3rd ACMWorkshop on Cloud Computing Secu-
rity Workshop. ACM (2011)

60. Wang, T., Cai, X., Nithyanand, R., Johnson, R., Goldberg, I.: Effec-
tive attacks and provable defenses for website fingerprinting. In:
USENIX Security Symposium (2014)

61. Wang, T., Goldberg, I.: Walkie-talkie: An efficient defense against
passive website fingerprinting attacks. In: USENIX Security Sym-
posium (2017)

62. Xiao, Q., Reiter, M.K., Zhang, Y.: Mitigating storage side channels
using statistical privacy mechanisms. In: 22nd ACM Conference
on Computer and Communications Security. ACM (2015)

63. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary
LP norms (2000)

64. Zhang, X., Wang, X., Bai, X., Zhang, Y., Wang, X.: Os-level side
channels without PROCFS: Exploring cross-app information leak-
age on IOS. In: NDSS (2018)

65. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side
channels and their use to extract private keys. In: 19th ACM con-
ference on Computer and communications security. ACM (2012)

66. Zhang, Y., Reiter, M.K.: Düppel: retrofitting commodity operat-
ing systems to mitigate cache side channels in the cloud. In: 2013
ACMconference onComputer and communications security.ACM
(2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1206.6426
http://arxiv.org/abs/2002.06495
http://arxiv.org/abs/1807.01069
http://arxiv.org/abs/1906.07982
http://arxiv.org/abs/1801.02265
http://arxiv.org/abs/1312.6199

	Defeating traffic analysis via differential privacy: a case study on streaming traffic
	Abstract
	1 Introduction
	2 Background
	3 A motivating example
	4 Threat model
	5 Adversarial machine learning
	5.1 Crafting adversarial samples
	5.2 Limitations of adversarial samples

	6 Differentially private streaming
	6.1 Differentially private mechanisms
	6.2 Applying privacy mechanisms on streaming data

	7 Evaluation
	7.1 Security evaluation
	7.1.1 Trained with x (clean data), tested with tildex (noised data)
	7.1.2 Trained with tildex (noised data), tested with tildex (noised data)

	7.2 Utility evaluation
	7.3 Comparison of mechanisms
	7.4 Comparison with baseline defense

	8 Impacts of video lengths
	8.1 Impact on security
	8.2 Implications of longer videos

	9 Real-world implementation
	10 Discussion
	11 Related work
	12 Conclusion
	Appendix A: Appendix
	References

