
141

Interpretable Noninterference Measurement and

Its Application to Processor Designs

ZIQIAO ZHOU∗,Microsoft Research, USA

MICHAEL K. REITER∗, Duke University, USA

Noninterference measurement quantifies the secret information that might leak to an adversary from what

the adversary can observe and influence about the computation. Static and high-fidelity noninterference

measurement has been difficult to scale to complex computations, however. This paper scales a recent

framework for noninterference measurement to the open-source RISC-V BOOM core as specified in Verilog,

through three key innovations: logically characterizing the core’s execution incrementally, applying specific

optimizations between each cycle; permitting information to be declassified, to focus leakage measurement to

only secret information that cannot be inferred from the declassified information; and interpreting leakage

measurements for the analyst in terms of simple rules that characterize when leakage occurs. Case studies

on cache-based side channels generally, and on specific instances including Spectre attacks, show that the

resulting toolchain, called DINoMe, effectively scales to this modern processor design.

CCS Concepts: · Security and privacy→ Logic and verification; · Hardware→ Theorem proving and

SAT solving.

Additional Key Words and Phrases: information flow, interference, declassification, interpretability

ACM Reference Format:

Ziqiao Zhou and Michael K. Reiter. 2021. Interpretable Noninterference Measurement and Its Application

to Processor Designs. Proc. ACM Program. Lang. 5, OOPSLA, Article 141 (October 2021), 30 pages. https:

//doi.org/10.1145/3485518

1 INTRODUCTION

Noninterference [Goguen and Meseguer 1982] is a classic information flow policy that, informally,
requires that an attacker’s view be unaffected by the values that should remain secret to it. Since
systems often necessarily leak some information, however, a more practical goal is to insist that
the interference be łsmallž, which in turn requires that it be measured in some way. Various
methodologies have been proposed for doing so statically (e.g., Backes et al. [2009]; Phan and
Malacaria [2014]; Zhang et al. [2010]), though these techniques invariably must balance a tension
between measurement fidelity and scalability to complex computations.

A recent advance in this domain was due to Zhou et al. [2018], which formulated noninterference
measurement in terms of a projected model counting problem that, in turn, was amenable to
relatively efficient, approximate model counting methods. Their measurement approach, however,
scales to programs of only modest complexity, for two reasons. Computationally, their technique
relies on symbolic execution to generate a logical postcondition for the computation for which

∗Work performed in part at the University of North Carolina, Chapel Hill, NC, USA.

Authors’ addresses: Ziqiao Zhou, Microsoft Research, Redmond, WA, USA, ziqiaozhou@microsoft.com; Michael K. Reiter,

Duke University, Durham, NC, USA, michael.reiter@duke.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART141

https://doi.org/10.1145/3485518

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3485518
https://doi.org/10.1145/3485518
https://doi.org/10.1145/3485518

141:2 Ziqiao Zhou and Michael K. Reiter

noninterference is to be measured. For example, this step alone required six hours for Smaz and
eight hours for Gzip, using 16 cores, for extracting postconditions to measure the risk of CRIME
attacks [Kelsey 2002] against these compression libraries. More qualitatively, while their technique
provides a measurement of interference, it provides the analyst little assistance in interpreting the
measurement or focusing the analysis on particular aspects of the leakage.
While noninterference measurement for arbitrary computations remains out of reach, in this

paper we adapt the approach of Zhou et al. [2018] to address the previous shortcomings within
a particularly important and complex domain, namely information leaks arising in hardware
processors. Leakage of software secrets due to processor optimizations have attracted massive
attention in recent years, especially since the discovery of vulnerabilities arising due to the footprint
of speculative executions in processor caches (Spectre [Kocher et al. 2019], Meltdown [Lipp et al.
2018], and variants). Even though many defenses (e.g., Tan et al. [2020]; Wang and Lee [2007];
Werner et al. [2019]; Zhou et al. [2016]) have been proposed to interfere with cache-based side
channels, we are aware of no measurement methodology to compare designs and evaluate their
effectiveness, working directly from their Verilog specifications. Adapting a technique like Zhou
et al. [2018] to do so, moreover, appears difficult: the sheer complexity of modern processor designs
both necessitates greater support to help the analyst understand the factors contributing to the
leakage and poses significant scaling challenges to such techniques.
In this paper, we present a methodology to measure and interpret leaks in processors, using

three key advances:
• Our methodology enables analysts to declassify certain information, thereby focusing the mea-
surement on any other leakage that might be occurring, i.e., leakage that cannot be inferred
from the declassified information. For systems as complex as modern processors, this ability is
essential to permit analysts to decompose and analyze leakage in a piecemeal fashion.
• The complexity of processor designs means that once leakage is measured, the exact conditions
that cause this leakagemight not immediately be evident. Ourmethodology therefore incorporates
a method of interpreting the leakage, i.e., providing simple rules that indicate circumstances in
which leakage will (or will not) occur. These rules facilitate analyst understanding of the root
causes of leakage and can guide analysts to declassify leakage that can be ignored. Each such
rule is additionally accompanied by a precision and recall, so that analysts can prioritize the rules
they address. These rules are expressed in terms of conditions in which leakage occurs, enabling
executions to be generated that demonstrate the leakage if desired but hiding the particulars of
the executions from analysts if not.
• Since generating a logical postcondition for a processor’s execution of a program en masse
is intractable, we devise a method to build the postcondition one cycle at a time. To build
single-cycle formulas, we abandon symbolic execution, as we found that applying it to hardware
designs induces significant path explosion for even one CPU cycle. Instead, we extract the single-
cycle formulas without solving for feasible paths, and then leverage a number of aggressive
optimizations when stitching single-cycle formulas together to build the postcondition for the
processor’s multi-cycle execution.
Due to the focus of our methodology on support for declassification and interpretability, we

call our tool that realizes it DINoMe (for łDeclassification and Interpretability for Noninterference
Measurementž).
To evaluate DINoMe, we apply it to evaluate leakage during execution on a RISC-V BOOM

core [Celio et al. 2017], a state-of-the-art public domain processor design. Our improvements
to generating logical postconditions for execution permit DINoMe to do so for more than 100
cycles of this core. This, in turn, permits us to evaluate leakage from cache-based side channels

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:3

(Prime+Probe [Osvik et al. 2006] and Flush+Reload [Yarom and Falkner 2014]) in various sce-
narios, including cryptographic key leakage in sliding-window based modular exponentiation
(e.g., Aciiçmez [2007]; Percival [2005]), leakage of secrets due to speculative execution, and how this
leakage is (incompletely) mitigated by proposed improvements such as ScatterCache [Werner
et al. 2019] and PhantomCache [Tan et al. 2020]. In each case, we not only measure interference
but also generate rules to explain why the leakage occurs, and in some cases refine our view of the
leakage using declassification. Our performance evaluation of DINoMe indicates that these types
of analyses complete in times ranging from seconds to under 15 minutes (using horizontal scaling),
after an initial phase to assemble the logical postcondition of up to (only) two hours on (only) a
single core.
The rest of this paper is structured as follows. We discuss related work in Sec. 2, and provide

both background on the framework on which we build [Zhou et al. 2018] and our introduction
of declassification to it, our first contribution, in Sec. 3. We present our method for interpreting
leakage in Sec. 4. We address implementation challenges in Sec. 5, and then evaluate DINoMe

through several case studies in Sec. 6. We discuss DINoMe’s performance in Sec. 7, its limitations
in Sec. 8, and our conclusions in Sec. 9.

2 RELATED WORK

To our knowledge, DINoMe is the first work to measure information leakage from an executable
hardware specification instantiated with a software program, in a manner that supports declassifi-
cation and interpretation of its leakage results.

Timing side-channel analysis. Constant-time verification (e.g., Almeida et al. [2016]; Barthe
et al. [2014]; Blazy et al. [2019]; Gleissenthall et al. [2019]; Zhang et al. [2015]) is a commonly used
technique to analyze timing side channels. Software-level verification (e.g., Almeida et al. [2016];
Blazy et al. [2019]) checks whether a software program runs in a constant time under specified
hardware assumptions. For example, a software-level analysis [Almeida et al. 2016] might conclude
that a variable leaks if it is used in a branch condition or as an address in memory access. In a
different approach, hardware-level verifiers (e.g., Gleissenthall et al. [2019]; Zhang et al. [2015,
2018]) can formally verify the existence of timing side channels using cycle-precise logic derived
from hardware specifications. These works check for timing dependencies on secret variables but
do not quantify secret leakage due to timing variations in different executions.

Hardware leakagemodeling. Some works use simplified hardware models instead of real designs
(e.g., Chattopadhyay et al. [2017]; Doychev et al. [2013]; Malacaria et al. [2018]), which makes the
computation target feasible but requires more domain knowledge and manual effort to construct
the model. Black-box analysis of real systems avoids the use of domain knowledge through a data-
driven method that uses sampled data in a real system for estimating the leakage (e.g., Nilizadeh
et al. [2019]; Oleksii et al. [2020]; Song et al. [2001]). In contrast, DINoMe measures leakage from
hardware specifications written in a hardware design language.

Quantitative informationflow.QIF (e.g., Gray [1991]; Smith [2009, 2011]) represents information
leakage through a numeric measurement; most mainstream QIF works (e.g., Chapman and Evans
[2011]; Phan and Malacaria [2014]; Zhang et al. [2010]) use entropy as their measure [Seidenfeld
1986]. The use of entropy for measuring QIF in actual systems can lead to significant costs, due to
the need to compute the input preimage per output value. In addition, real implementations tend
to use the most conservative min-entropy measure; e.g., QIF-Verilog [Guo et al. 2019] propagates
a min-entropy label per gate and accumulates the leakage across all gates, which overestimates
leakage due to its conservative leakage accumulation, especially in large, complex hardware designs

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:4 Ziqiao Zhou and Michael K. Reiter

(e.g., a CPU core). Entropy also does not distinguish between leaking a few bits in many execu-
tions or leaking more bits in a few cases. Alternatives to entropy-based leakageÐe.g., differential
privacy [Dwork et al. 2006], noninterference measurement [Zhou et al. 2018], classifier-based
measurement [Chapman and Evans 2011], and quantitative hyperproperties [Sahai et al. 2020;
Yasuoka and Terauchi 2014]Ðmeasure the attacker’s ability to distinguish some secret values from
others. Those metrics do not accommodate declassification or leakage interpretability, our main
concerns here.

Declassification. To rule out allowed leakage and focus on targeted leakage, information flow
control research supports declassification policies to specify the secret information permitted to
transfer to observable variables (e.g., Banerjee et al. [2008]; Chong and Myers [2004]; Ferraiuolo
et al. [2017]; Giacobazzi and Mastroeni [2018]; McCall et al. [2018]; Sabelfeld and Myers [2003];
Sabelfeld and Sands [2009]). However, while this work omits declassified information from its
analysis, it does not quantitatively measure the remaining leakage in light of what the attacker can
already infer from the declassified information. In contrast, our work adapts information leakage
measurement to account for such inferences.

Leakage interpretability. To interpret quantitative leakage, domain-specific works (e.g., SPEECH-
MINER [Xiao et al. 2020], CacheBar [Zhou et al. 2016]) use customized measures following a
specific attack templates, forgoing general measures. Although those customized measures are
more understandable when interpreting a specific attack vector, they are blind to leakage from dif-
ferent attacks not considered. One crucial improvement our work makes in evaluating information
leakage is to generate an interpretable model to explain how leakage occurs. Already an emerging
topic in machine learning (e.g., Chen et al. [2018]; Molnar [2019]), interpretability is especially
important in security evaluation, since it is not easy to draw a clear threshold to indicate when
a system is secure enough, even with a perfect measure. Many methods for measuring leakage
in software (e.g., Chattopadhyay and Roychoudhury [2018]; Godefroid et al. [2012]; Wang et al.
[2009]; Zhou et al. [2018]) generate a code path to help the analyst understand leakage. However,
leakage in hardware-software joint codebases often exploits interactions between the two, which
can manifest in many code-dependent paths. We are aware of no comparable work that explores an
interpretable ML model to explain information-flow leakage, though the method we use to extract
explanations in Sec. 4.3 builds from previous work in interpretable ML (e.g., Friedman and Popescu
[2008]; Ribeiro et al. [2016, 2018]).

3 NONINTERFERENCE AND DECLASSIFICATION

We begin in Sec. 3.1 by providing background on the noninterference measurement methodology
of Zhou et al. [2018]. We then discuss how we extend this methodology to support declassification,
our first contribution, in Sec. 3.3.

3.1 Background on Noninterference Measure

To analyze the leakage from a procedure proc1, the procedure is modeled as having four different
sets of formal parameters: a set Vars®s of secret input variables; a set Vars®c of attacker-controlled
input variables; a set Vars®i of other input variables; and a set Vars®o of attacker-observable output
variables. The actual parameter values assigned to those variables in an invocation of proc are
given by maps ®s : Vars®s → Vals®s , ®c : Vars®c → Vals®c , and ®i : Vars®i → Vals®i , respectively; e.g.,
®i (ivar) ∈ Vals®i represents the value passed in variable ivar ∈ Vars®i . The attacker-observable
outputs of the procedure are defined by the map ®o : Vars®o → Vals®o . Accordingly, we denote the

1Different from the definition used by Zhou et al. [2018], which is for a software procedure, our proc (®c,®i, ®s) includes both

the software and hardware logic.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:5

procedure

®o ← proc(®c,®i, ®s)

We assume that proc is deterministic; a nondeterministic proc can be rendered deterministic by
providing the random values as inputs, say ®i (‘coins’). A given proc can then be characterized by a
logical postcondition Πproc(®c, ®o,®i, ®s) that constrains how the values in ®o relate to those in ®c, ®i, and

®s in any execution. Without loss of generality, below we assume Vars®s contains a single variable
svar , i.e., Vars®s = {svar}.
The basic idea of the metric developed by Zhou et al. [2018] is to quantify the difficulty the

attacker has in distinguishing between ®s (svar) ∈ 𝑆 and ®s (svar) ∈ 𝑆 ′ for random, disjoint sets 𝑆 , 𝑆 ′,
based on the ⟨®c, ®o⟩ pairs possibly available to it in the two cases, denoted 𝑌𝑆 , 𝑌𝑆′ , i.e.,

𝑋𝑆 =

{
⟨®c, ®o,®i⟩

��� ∃®s : Πproc(®c, ®o,®i, ®s) ∧ ®s (svar) ∈ 𝑆
}

𝑌𝑆 =

{
⟨®c, ®o⟩

�� ∃®i : ⟨®c, ®o,®i⟩ ∈ 𝑋𝑆

}
Zhou et al. [2018] specifically explored the Jaccard distance between 𝑌𝑆 and 𝑌𝑆′ to measure the
difficulty an attacker would have in distinguishing between ®s (svar) ∈ 𝑆 and ®s (svar) ∈ 𝑆 ′. To better

capture the importance of ®i in the leakage, however, they further replaced 𝑌𝑆 ∩ 𝑌𝑆′ with 𝑋𝑆,𝑆′ ,

where2

𝑋𝑆,𝑆′ = 𝑋𝑆 ∪ 𝑋𝑆′

𝑋𝑆,𝑆′ =
{
⟨®c, ®o,®i⟩

��⟨®c, ®o,®i⟩ ∈𝑋𝑆,𝑆′ ∧ ⟨®c, ®o⟩ ∈𝑌𝑆∩𝑌𝑆′
}

In this way, the number of values ®i for ⟨®c, ®o⟩ exposed in 𝑋𝑆,𝑆′ serves as the łweightž of that ⟨®c, ®o⟩
pair. When ⟨®c, ®o,®i⟩ is from

�̃�𝑆,𝑆′ = 𝑋𝑆,𝑆′ \ 𝑋𝑆,𝑆′ (1)

an attacker can distinguish if ®s (svar) is from 𝑆 or 𝑆 ′. Zhou et al. [2018] thus suggested the measure

𝐽𝑛 , where

𝐽 (𝑆, 𝑆 ′) =
���̃�𝑆,𝑆′

�� /��𝑋𝑆,𝑆′
�� = 1 −

��𝑋𝑆,𝑆′
�� /��𝑋𝑆,𝑆′

�� (2)

𝐽𝑛 = avg
𝑆, 𝑆′ : |𝑆 | =

��𝑆′�� = 𝑛
∧ 𝑆 ∩ 𝑆′ = ∅

𝐽 (𝑆, 𝑆 ′) (3)

As discussed by Zhou et al. [2018, Sec. III], when 𝑛 is small, 𝐽𝑛 measures how frequently leakage
occurs, whereas when 𝑛 is large, it measures how much information about the secret leaks, when
leakage occurs.

3.2 Motivating Examples

To see this measure applied to simple programs, consider the two programs with a secret shown
in Fig. 1(a) and Fig. 1(b). The procedure in Fig. 1(a) returns a random value between 0 − −7 or a
fixed value 8 depending on whether ®s (‘secret’) mod 32 < 16 if ®c (‘test’) mod 32 > 15 and returns a
fixed value 9 otherwise. The second procedure in Fig. 1(b) returns the five least significant bits of

®s (‘secret’) & ®c (‘test’). Directly measuring the two procedures using 𝐽𝑛 leads to different leakage
measures, as it should, as shown in Fig. 1(e).

Some sources of information leakage may be inevitable or intentional; e.g., a bank website may
not mask the last four digits of a user’s social security number when displaying it to her browser, and

2Our definition of �̂�𝑆,𝑆′ differs from Zhou et al. [2018], which only requires ⟨®c, ®o,®i ⟩ ∈ 𝑋𝑆 . Ours has the same essential

properties but is symmetric with respect to 𝑆 and 𝑆′ and so is easier to work with.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:6 Ziqiao Zhou and Michael K. Reiter

proc (®c, ®i, ®s)

if (®c (‘test’) mod 32 > 15)

if (®s (‘secret’) mod 32 < 16)
®o (‘result’) ← ®i (‘random’) mod 8

else
®o (‘result’) ← 8

else ®o (‘result’) ← 9

(a) Implicit flow

proc (®c, ®i, ®s)
®o (‘result’) ← ®c (‘test’) & ®s (‘secret’) & 0x1f

(b) Explicit flow

proc (®c, ®i, ®s)
®o (‘result’) ← ®c (‘test’) & ®s (‘secret’) & 0x2f

(c) Different explicit flow

𝛿 (®c,®i,®s)
®△(‘info’) ← ®s (‘secret’) & 0x0f

(d) Declassification policy

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
𝐽 𝑛

or
𝐽𝛿 𝑛

log2 𝑛

Fig. 1(a): 𝐽𝑛
Fig. 1(a): 𝐽 𝛿𝑛

Fig. 1(b): 𝐽𝑛
Fig. 1(b): 𝐽 𝛿𝑛

Fig. 1(c): 𝐽𝑛
Fig. 1(c): 𝐽 𝛿𝑛

(e) Measurement with vs. without declassification

Fig. 1. Motivating examples for declassification (Sec. 3.3) and interpretation (Sec. 4)

so the site intentionally łleaksž that portion to a malicious browser. In the context of the preceding
example, now suppose the leakage of the four least significant bits of the secret is intended (similar

to the SSN example). Since the 𝐽𝑛 curve only reflects the total interference, including the portion

intended to leak (i.e., the four least significant bits), the 𝐽𝑛 curves shown in Fig. 1(e) mislead us to
conclude that Fig. 1(a) is more secure than Fig. 1(b). In truth, they both additionally leak the fifth
least significant bit, which is the only leakage that matters.

3.3 Declassification

To exclude such intended leakage from the analysis, it will be helpful to provide a method to
exempt some identified information leakages specified by the analyst, allowing the analysis to
focus on the leakage that remains. Specifically, our methodology seeks to assess the degree to
which a procedure permits secrets to be distinguished by the attacker using attacker-observable
and declassified information but not by the declassified information alone.

Let ®△ ← 𝛿 (®c,®i, ®s) denote the allowed information exposure (e.g., for a website requiring SSN, ®△
is the last four digits), and let

Πproc,𝛿(®c, ®o, ®△,®i, ®s) ← Πproc(®c, ®o,®i, ®s) ∧ Π𝛿(®c, ®△,®i, ®s)

where Π
𝛿
(®c, ®△,®i, ®s) is a logical postcondition for 𝛿 that relates ®△ to ®c, ®i, and ®s. Then, we can define

the attacker’s accessible set 𝑌𝛿
𝑆
of ⟨®c, ®o, ®△⟩ tuples and allowed accessible set 𝐷𝛿

𝑆
consistent with

chosen secret set 𝑆 by

𝑋𝛿
𝑆 =

{
⟨®c, ®o, ®△,®i⟩

���∃®s : ®s (svar) ∈𝑆 ∧ Πproc,𝛿(®c, ®o, ®△,®i, ®s)
}

𝑌𝛿
𝑆 =

{
⟨®c, ®o, ®△⟩

���∃®i : ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿
𝑆

}
𝐷𝛿
𝑆 =

{
⟨®c, ®△⟩

���∃®o,®i : ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿
𝑆

}
Since the declassified information is allowed to leak, we are concerned only with cases where

the secret is distinguishable by ⟨®c, ®o, ®△⟩ but not by ⟨®c, ®△⟩. Here, we define a set �̃�𝛿
𝑆,𝑆′

to include the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:7

proc(®c,®i, ®s)

®o (ovar) ← ®s (svar) [0 : 3]

(a) An artificial procedure

𝛿𝑖- 𝑗 (®c,®i, ®s)
®△(dvar) ← ®s (svar) [𝑖 : 𝑗]

(b) Declassification policy

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

𝐽 𝑛
o
r
𝐽𝛿 𝑛

log2 𝑛

proc

proc + 𝛿4-7

proc + 𝛿4-5
proc + 𝛿2-5

proc + 𝛿2-3
proc + 𝛿0-3

(c) Measurement with vs. without declassification

Fig. 2. Declassification example

tuples ⟨®c, ®o, ®△⟩ that leak whether the secret is in 𝑆 or 𝑆 ′, assuming ⟨®c, ®△⟩ is equivalent.

𝑋𝛿
𝑆,𝑆′ =

{
⟨®c, ®o, ®△,®i⟩

����� ⟨
®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿

𝑆
∪ 𝑋𝛿

𝑆′

∧ ⟨®c, ®△⟩ ∈ 𝐷𝛿
𝑆
∩ 𝐷𝛿

𝑆′

}
(4)

𝑋𝛿
𝑆,𝑆′ =

{
⟨®c, ®o, ®△,®i⟩

����� ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿
𝑆,𝑆′

∧ ⟨®c, ®o, ®△⟩ ∈ 𝑌𝛿
𝑆
∩ 𝑌𝛿

𝑆′

}
(5)

�̃�𝛿
𝑆,𝑆′ =𝑋

𝛿
𝑆,𝑆′ \ 𝑋

𝛿
𝑆,𝑆′ (6)

Thus, we can use an alternative metric

𝐽𝛿 (𝑆, 𝑆 ′) =
����̃�𝛿

𝑆,𝑆′

��� /���𝑋𝛿
𝑆,𝑆′

��� (7)

𝐽𝛿𝑛 = avg
𝑆, 𝑆′ : |𝑆 | =

��𝑆′�� = 𝑛
∧ 𝑆 ∩ 𝑆′ = ∅

𝐽𝛿 (𝑆, 𝑆 ′) (8)

Returning to the examples in Fig. 1(a) and Fig. 1(b) with declassification of the four least signifi-

cant bits (Fig. 1(d)), the 𝐽𝛿𝑛 curves show the same quantitative leakage (Fig. 1(e)), as they should.
To further illustrate the the impact of declassification, consider the simple procedure shown in

Fig. 2(a). In this procedure, ®s (svar) is an 8-bit value, and proc outputs the lowest 4 bits as ®o (ovar).
The declassification policy shown in Fig. 2(b) allows the 𝑖-th to 𝑗-th bits of ®s (svar) to be released.

We evaluate 𝐽𝛿𝑛 with differently parameterized declassification policies in Fig. 2(c). Specifically,
when the lowest 4 bits (𝑖 = 0, 𝑗 = 3) are declassified, then the additional leakage from proc is nothing,
which is demonstrated by the łproc + 𝛿0-3ž curve. When the declassification policy declassifies
all but the lowest 4 bits (𝑖 = 4, 𝑗 = 7), then the additional leakage by proc is maximized, as shown
by the łproc + 𝛿4-7ž curve. Intuitively, if ®o (ovar) and ®△(dvar) do not overlap (e.g., łproc + 𝛿4-7ž

and łproc + 𝛿4-5ž), then the 𝐽𝛿𝑛 curve should be higher than 𝐽𝑛 , whereas if ®o (ovar) includes all of

®△(dvar) (e.g., łproc+𝛿0-3ž and łproc+𝛿0-1ž), then 𝐽𝛿𝑛 should be lower than 𝐽𝑛 . A hybrid case occurs

when ®o (ovar) includes a portion of ®△(dvar) (e.g., łproc + 𝛿2-5ž), where 𝐽
𝛿
𝑛 is lower than 𝐽𝑛 when 𝑛

is small but becomes larger when 𝑛 is large. This is consistent with the interpretation that 𝐽𝛿𝑛 with
small 𝑛 primarily reflects the number of secret values for which interference occurs [Zhou et al.
2018]; e.g., when 𝑛 = 1, two secret values share bits 0ś1 (and so cannot be distinguished by bits
0ś3 after declassifying bits 2ś5) in 25% of cases, but share bits 0ś3 (and so cannot be distinguished
using them) in only 6.25% of cases. Larger 𝑛, in contrast, better reflects the amount of leakage that
occurs [Zhou et al. 2018]. For example, in a random partition of all 28 values into sets 𝑆 and 𝑆 ′ of
equal size (i.e., 𝑛 = 27), every value for bits 2ś5 is represented in both 𝑆 and 𝑆 ′ with high probability.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:8 Ziqiao Zhou and Michael K. Reiter

In conjunction with the additional bits 0ś1 output in ®o (yielding six bits of the secret value in total),
however, these bits give the attacker greater distinguishing power than do bits 0ś3 alone.

4 INTERPRETING LEAKAGE

Our metric measures the additional interference of a secret with values observable by the attacker,
beyond that implied by declassified information. For this to be useful to an analyst, however, we
need to explain how this leakage occurs. Specifically, while the conditions under which leakage
occurs are already present in the procedure postcondition, it is difficult to understand the formula
without further help (e.g., see Sec. 6.6).

4.1 Motivating Examples for Interpretation

Consider again the motivating examples in Fig. 1(a) and Fig. 1(b). The two procedures own quite
different outputs but still leak the same additional information about the secret after declassification
(i.e., both leak the fifth least significant bit of the secret when ®c (‘test’)’s fifth bit is 1 and nothing
otherwise). To cut through the differences in code style and concrete values, DINoMe derives
the condition when a pair of secrets are distinguishable using paired samples of input. Thus, the
interference rule for both cases becomes |®s (‘secret’) [4] − ®s

′
(‘secret’) [4] | > 0 ∧ ®c (‘test’) [4] = 1.

This rule shows the equivalence of these procedures’ leakages after declassification.
In addition, interpreting leakage can differentiate cases with the same amount of leakage but

different conditions in which that leakage occurs. For example, the procedure in Fig. 1(c), which
reveals the four least significant bits and the sixth bit of the secret when the sixth bit of ®c (‘test’) is 1,
leaks the same amount of information about a different portion of the secret under a different attack
condition. A quantitative leakage measurement with the same four low-order bits declassified
will not distinguish Fig. 1(c) from Fig. 1(b) (see Fig. 1(e)). Through DINoMe’s interpretation, we
provide a slightly different interference rule for Fig. 1(c), however: |®s (‘secret’) [5]−®s

′
(‘secret’) [5] | >

0 ∧ ®c (‘test’) [5] = 1.
Though these motivating examples seem small and readable even when using different coding

styles and output values, real-world code can become difficult to understand, particularly when
spanning different levels of abstraction (e.g., a processor and the code it is executing). It is here
we expect our interpretation of interference to simplify investigating leakage. Learning from the
previous examples, our interpretation should achieve two goals. First, the interference interpretation
for the same functionality should be consistent no matter how the functionality is implemented.
Second, the interference interpretation should distinguish two procedures if they leak information
in different ways, even when they leak the same amount.

4.2 Noninterference and Interference Tuples

Our first step toward providing an intuitive explanation for the leakage that occurs is to train a
binary classifier to classify 4-tuples ⟨®c,®i, ®s, ®s

′
⟩ into those that illustrate leakage occurring (i.e., that

permit the attacker to distinguish ®s (svar) and ®s
′
(svar) from the resulting output ®o) and those that

do not. When using declassification, the interference tuples should only include those where the
secrets can be distinguished using ®c, ®o, ®△ but not using just ®c, ®△.
More specifically, we define the interference set IS based on (6). That is, when the attacker

chooses ®c, if an observable value is feasible for ⟨®i, ®s⟩ for some ®i but is never possible for ⟨®i
′
, ®s
′
⟩ for

any ®i
′
that shares a declassification value with ⟨®i, ®s⟩, then ⟨®c,®i, ®s, ®s

′
⟩ is added to IS:

IS =

{
⟨®c,®i, ®s, ®s

′
⟩
��� ∃®o, ®△ : ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿

𝑆 ∧ ⟨®c, ®△⟩ ∈ 𝐷
𝛿
𝑆′ ∩ 𝐷

𝛿
𝑆′ ∧ ⟨®c, ®o, ®△⟩ ∈ 𝑌

𝛿
𝑆 \ 𝑌

𝛿
𝑆′

}
(9)

where 𝑆 = {®s (svar)} and 𝑆 ′ = {®s
′
(svar)}.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:9

The noninterference set NS should include two types of tuples. For an attacker-chosen ®c, if there
is a observable value ®o that is feasible for an ⟨®i, ®s⟩ pair and an ⟨®i

′
, ®s
′
⟩ pair, tuple ⟨®c,®i, ®s, ®s

′
⟩ belongs

to NS as it is an example where no interference occurs. In addition, for an attacker-chosen ®c, if
there is a declassification value ®△ that is feasible for ⟨®i, ®s⟩ but not ⟨®i

′
, ®s
′
⟩ for any ®i

′
, then ⟨®c,®i, ®s, ®s

′
⟩

should also be added to NS, as ®s and ®s
′
can already be distinguished using the declassified value:

NS =

{
⟨®c,®i, ®s, ®s

′
⟩
��� ∃®o, ®△ : ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿

𝑆
∧ ⟨®c, ®o, ®△⟩ ∈ 𝑌𝛿

𝑆
∩ 𝑌𝛿

𝑆′

}
∪
{
⟨®c,®i, ®s, ®s

′
⟩
��� ∃®o, ®△ : ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿

𝑆
∧ ⟨®c, ®△⟩ ∈ 𝐷𝛿

𝑆
\ 𝐷𝛿

𝑆′

} (10)

where 𝑆 = {®s (svar)} and 𝑆 ′ = {®s
′
(svar)}.

Since NS and IS are large in practical scenarios, enumerating all tuples is generally infeasible.
Instead, we generate samples in each set to train a machine learning model, fromwhich explanations
of the leakage will be extracted (as described below). Doing so with modern SAT solvers, however,
typically results in samples that cover NS and IS unevenly, since solvers generally enumerate the
next solution by simply adding a conflict constraint to block out previous solutions; as a result, the
next solution found is typically close to the previous. Another drawback of using this łblockingž
method to sample is that we cannot parallelize the sampling.
For this reason, we sample from NS and IS using hash-based sampling (cf., Zhou et al. [2018]).

Specifically, we sample a limited number of solutions by adding a random universal hashing
constraint to the formula given to the solver. Due to the hash function’s universality, we can run
multiple samplers in parallel to generate a large number of uniformly distributed solutions. In most

cases, the sizes of the sampled sets N̂S and ÎS differ either due to differences in the sizes of NS and
IS or due to the solving difficulty of one set compared to the other. We associate a sample weight to
each element so the weight of each set is equal in the training process described below.

4.3 Interpretation through a Rule-Based Method

Given N̂S and ÎSÐi.e., ⟨®c,®i, ®s, ®s
′
⟩ tuples labeled according to whether they illustrate noninterference

or interferenceÐwe could train an interpretable machine-learning model and then extract rules to
explain to the user what gives rise to interference. A natural such model to consider is a decision tree.
In a decision tree, each decision node (i.e., interior node) is a predicate on features of a ⟨®c,®i, ®s, ®s

′
⟩

tuple, and its two children correspond to a true or false evaluation of this predicate on a tuple,
respectively. A ⟨®c, ®i, ®s, ®s

′
⟩ tuple is classified by traversing the tree from its root, following the

branch from each decision node corresponding to the result of evaluating the predicate at that node
on the tuple. Each leaf is labeled with an estimate of the probability that a tuple constrained by the
predicates’ evaluations from the root to that leaf is in IS. We will discuss what features we include
in the process of building decision trees in Sec. 4.4, but an example might be individual variables
(e.g., cvar).

A single decision tree can easily grow to be deep and complex, and it can miss some useful
combinations of predicates since each decision predicate is highly influenced by the splits above it
in the tree. To make the decision tree model more powerful in finding useful predicates, we used a
decision-tree ensemble called gradient boosted trees [Friedman 2001]. This process produces𝑚
trees denoted 𝑇1, . . . ,𝑇𝑚 , with associated weights. If we denote by 𝑇𝑗 (⟨®c, ®i, ®s, ®s

′
⟩) the real number

stored at the leaf to which ⟨®c, ®i, ®s, ®s
′
⟩ is assigned by 𝑇𝑗 , then the weighted sum of 𝑇𝑗 (⟨®c, ®i, ®s, ®s

′
⟩)

for 𝑗 = 1, . . . ,𝑚 is an estimate of the probability that ⟨®c,®i, ®s, ®s
′
⟩ ∈ IS.

To interpret tree ensembles, rule-based classifiers (e.g., RuleFit [Friedman and Popescu 2008],
Slipper [Cohen and Singer 1999], Pre [Fokkema 2020]) were introduced to bridge the interpretability
of a decision tree with the modeling power of a tree ensemble. Our toolchain leverages Skope-rules
(https://skope-rules.readthedocs.io/) to generate logical rules from the tree ensemble. Specifically,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

https://skope-rules.readthedocs.io/

141:10 Ziqiao Zhou and Michael K. Reiter

consider any path from the root to a leaf in a tree 𝑇𝑗 , and let 𝜋 𝑗,1, . . . , 𝜋 𝑗,ℓ denote the predicates
along that path that evaluated to true. So, for example, if the first predicate encountered in 𝑇𝑗 , say
ł®c (cvar) = 1ž, evaluated to false, then 𝜋 𝑗,1 = ł®c (cvar) ≠ 1ž. Then, Skope-rules constructs a rule by
conjoining 𝜋 𝑗,1, . . . , 𝜋 𝑗,ℓ , with the caveat that it limits the number of predicates included in any rule
by heuristically pruning them.

Each such rule has a precision and recall, which we evaluate using a validation set held out from

N̂S and ÎS during training. That is, the recall of a rule is the fraction of validation samples held out

from ÎS for which the rule evaluates to true, and its precision is the fraction of validation samples

(from ÎS or N̂S) for which the rule evaluates to true that were held out from ÎS. We further prune
rules by iteratively removing conjuncts from a long rule if the precision of the resulting rule is at
least 95% of the original. We then rank order rules according first to precision, and then according
to recall.

4.4 Feature Engineering

An anchor point A tuple in ÎS A tuple in N̂S

A local linear classifier

More
anchor points

Fig. 3. Finding linear combinations of features near anchor points

The utility of the rule generation
described in the previous section
depends critically on the features
of each ⟨®c, ®i, ®s, ®s

′
⟩ tuple exposed

when training the tree ensemble,
from which the predicates making
up the decision nodes of each tree
are formed. One factor that makes
feature engineering especially criti-
cal here is that the SAT solver used
to produce elements of ÎS and N̂S re-
quires that the conditions defining IS
and NS (i.e., conditions (9) and (10))
be presented to the SAT solver in terms of binary variables only. As such, each solution generated
by the SAT solver is expressed as an assignment to these binary variables. While for some hardware
logic, a binary representation of the relevant variables is most natural, for other types of logic (e.g.,
on integers), it is not. For this reason, we augment each binary solution returned by the SAT solver
(i.e., each ⟨®c, ®i, ®s, ®s

′
⟩ tuple) with additional features.

• Type-aware features: First, we reconstruct features in a type-aware way from their binary
representations. For example, if a variable was initially an integer before being reduced to a
collection of binary variables in the formula presented to the SAT solver, we recover the integer
value from the bit-vector solution and include it as a feature on which the tree ensemble can
trained. With such type-aware features, predicates such as, e.g., ®s (svar) < 15 can be learned in a
search for simple predicates testing only a single feature, i.e., unary predicates.
• Symmetric features: Due to the symmetry of ®s and ®s

′
, an interference rule could be trivially

transformed to another valid interference rule by exchanging ®s and ®s
′
. For example, when a rule

is ®s (svar) [0] = 0 ∧ ®s
′
(svar) [0] = 1, there must be a rule ®s (svar) [0] = 1 ∧ ®s

′
(svar) [0] = 0. Thus,

we create |®s (svar) [𝑖] − ®s
′
(svar) [𝑖]| for each bit 𝑖 in svar .

• Linear combinations of multiple variables: Unary predicates will be unable to naturally
capture some relationships resulting in leakage. For example, if leakage happens only when
®s (svar) > ®c (cvar), permitting only unary predicates will result in a boundary characterized
point-by-point, e.g., ł®s (svar) ≥ 𝜃 ∧®c (cvar) < 𝜃ž where 𝜃 = 1, 2, . . .We thus expanded our feature

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:11

Hardware

Software
Extracting

Πproc (®c,®o, ®i,®s)
Declassifying ®△

N̂S and ÎS
Sampler

Model counter 𝐽 𝛿 computation

Local linear
classifier

Rule-based
classifier

Boosted
tree

Interpretation

Measurement

Fig. 4. DINoMe workflow

set to permit linear combinations of some features (e.g., ®s (svar) − ®c (cvar)), chosen by a linear
classifier.
To accommodate branching in the procedure that results in discontinuities in the boundary

between sample sets ÎS and N̂S, we opted for a local linear classifier (e.g., Fan [1993]; Ribeiro et al.
[2018]). That is, we pick anchor points, around each of which we train a local classifier that best

separates the nearby samples in ÎS and N̂S. (See Fig. 3.) To select anchor points, we first find pairs of

⟨®c, ®i, ®s, ®s
′
⟩ tuples, one from ÎS and one from N̂S, that are neighbors in one feature (i.e., after ranking

all tuples by this feature, the pair are adjacent in the ranking) and then take the pair’s midpoint

tuple as their per-feature means. We select anchors uniformly at random from these midpoints. For

each anchor, we train a linear classifier using the tuples in ÎS and N̂S that are within a threshold
Euclidean distance from the anchor. The linear combination of features used in this linear classifier
is then added as another feature to each ⟨®c, ®i, ®s, ®s

′
⟩ tuple.

5 IMPLEMENTATION

We developed DINoMe
3 for evaluating and interpreting leakage, described in Sec. 3ś4, with an

eye toward applying it to evaluate and understand leakage from hardware designs. Though our
declassification and interpretation methodologies are not limited to hardware designs, we believe
they will be most useful in complicated cases where developers need to understand the interactions
between low-level and high-level code. To capture such cases, we define the procedure proc to be a
hardware design, say written in Verilog, in its initial state but with a predefined program stored in
its memory. DINoMe enables the user to annotate the configuration by marking components of the
hardware state as attacker-controlled (i.e., in Vars®c), attacker-observable (in Vars®o), secret (in Vars®s),
or otherwise unknown to the attacker (in Vars®i). DINoMe workflow for analyzing this łprocedurež
is illustrated in Fig. 4. Our system converts this łprocedure,ž which we continue to denote proc, to
a cycle-accurate logical formula Πproc that characterizes hardware execution of the program and

that relates ®c, ®o, ®i, and ®s. The user can also declare a declassification function 𝛿 that operates on
the hardware state of the system (we will give examples below), from which DINoMe similarly
produces a logical formula Π

𝛿
that characterizes how the declassified information ®△ relates to

inputs ®c, ®i, and ®s in the execution of proc. From Πproc and Π
𝛿
, DINoMe generates 𝐽𝛿𝑛 for varying

𝑛 (see (8)) and, if requested, sample sets ÎS and N̂S from IS (see (9)) and NS (see (10)), respectively.
These sets seed the generation of the rules for interpreting leakage, as discussed in Sec. 4.

Below we discuss particular challenges we encountered when building DINoMe and how we
overcame them. We focus on how to extract Πproc(®c, ®o,®i, ®s) in Sec. 5.1. In Sec. 5.2, we describe how
we calculate our interference measure using projected model counting. Finally, we discuss our

technique for sampling to create ÎS and N̂S in Sec. 5.3.

3https://github.com/DINoMe-Project/DINoMe

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

https://github.com/DINoMe-Project/DINoMe

141:12 Ziqiao Zhou and Michael K. Reiter

5.1 Extracting Πproc(®c, ®o,®i, ®s)

To analyze the leakage from proc, we need an accurate postcondition Πproc(®c, ®o,®i, ®s) for proc. In
practice, generating a postcondition for an arbitrary procedure is not trivial. Especially here, where
our concern is detecting leakage from a processor implementation when running an applicationÐi.e.,
the procedure proc includes numerous cycles of a cycle-accurate implementation of the processor
logic as well as the software logicÐthe postcondition will be quite large.
Our general strategy to construct Πproc(®c, ®o,®i, ®s) in these circumstances is to assemble it one

cycle at a time. Yosys [Wolf [n.d.]] provides a framework to convert the Verilog code for a processor
design to its internal register-transfer level (RTL) intermediate language, optimize or modify the
design using a series of passes, and finally translate the design to targeted formula through its back-
end pass. The SMT2 back-end pass defines a data structure for each hardware module representing
the module’s temporary hardware state, a function to implement the module’s state transition from
one cycle to the next, and an initialization function to initialize the module’s state. To incorporate
the software logic of proc, we compile the software to its hardware-readable assembly and load the
assembly into the instruction memory unit.
To mark the symbolic variables, the analyst defines a configuration file to mark as symbolic

each input parameter of proc (in this case, svar , ivar , and cvar), which can be a software variable
located at a fixed location in the memory unit or a wire/register inside the hardware module. Our
modified SMT2 backend pass in Yosys then tracks the constraints associated with this symbolic

data throughout a cycle execution. Specifically, it outputs a logical postcondition 𝜏proc (®h
𝑡−1

, ®h
𝑡
)

that relates fully symbolized hardware state ®h
𝑡−1

: Vars®h → Vals®h at the end of cycle 𝑡 − 1 to the

hardware state ®h
𝑡
that results from executing cycle 𝑡 . Since the hardware state includes memory

units, registers, etc., 𝜏proc (®h
𝑡−1

, ®h
𝑡
) with fully symbolized ®h

𝑡−1
is too large to naively extend to

cover multiple cycles. We also use the pass to generate initialization logic Ψ
0
proc (®c,®i, ®s, ®h

0
) that

concretely characterizes the first-cycle starting state ®h
0
(upon a reset) except for the configured

symbolic inputs svar , ivar , and cvar .
Using the transition logic, we construct a cycle-accurate postcondition Ψ

𝑇
proc representing the

logic between symbolic inputs and its internal hardware state one cycle at a time, leveraging the
entire hardware state as an łobservablež output of the cycle.

Ψ
𝑇
proc (®c,®i, ®s, ®h

𝑇
) ← Ψ

0
proc (®c,®i, ®s, ®h

0
) ∧

𝑇∧
𝑡=1

𝜏proc (®h
𝑡−1

, ®h
𝑡
)

We finally define Πproc(®c, ®o,®i, ®s) by defining ®o in terms of the sequence of hardware states ⟨®h
𝑡
⟩𝑇𝑡=0

using a formula Γ (⟨®h
𝑡
⟩𝑇𝑡=0, ®o).

Πproc(®c, ®o,®i, ®s) ←Ψ
𝑇
proc (®c,®i, ®s, ®h

𝑇
) ∧ Γ (⟨®h

𝑡
⟩𝑇𝑡=0, ®o) (11)

For example, in cache-based side channels, the observable parameters are whether there is a cache
hit/miss during the execution, which is constructed using the values of the 𝑠2_ℎ𝑖𝑡 register across
the execution (as demonstrated in Sec. 6.3).

Applying a correct combination of techniques to simplify Πproc(®c, ®o,®i, ®s) is critical to scaling the

sampling of IS and NS to create ÎS and N̂S and to count
����̃�𝛿

𝑆,𝑆′

��� and ���𝑋𝛿
𝑆,𝑆′

��� to compute 𝐽𝛿𝑛 . See Zhou

[2020] for a discussion of these simplifications.
To correctly measure leakage, the postcondition for proc must be complete and sound. Complete-

ness means that if ⟨®c,®i, ®s, ®o⟩ is feasible for proc, then ⟨®c,®i, ®s, ®o⟩ satisfies Πproc(®c, ®o,®i, ®s). Soundness

means that if ⟨®c,®i, ®s, ®o⟩ is infeasible for proc, then ⟨®c,®i, ®s, ®o⟩ does not satisfy Πproc(®c, ®o,®i, ®s). Here,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:13

Πproc(®c, ®o,®i, ®s) is derived from the hardware transition logic 𝜏proc . Since 𝜏proc represents how the

next hardware state is derived from the previous hardware state4 and is derived from the actual
hardware design, our postcondition is consistent with the real verilog code, provided that the Yosys
SMT2 backend pass is correct.
In our experiments, we selected 𝑇 to ensure the termination of the execution, based on our

knowledge gained by studying the CPU. A more conservative method would be to track the CPU
pipeline and call the SAT solver each cycle to check whether the last instruction has certainly
committed. We have confirmed that adding more cycles after the termination of the execution does
not affect Πprocmeaningfully, as the additional cycles do not process any valid opcodes and so only
trivially change the hardware state.

5.2 Measurement with Declassification using Projected Model Counting

Using CryptoMiniSAT 5.0 as the basic solver, we implemented a counter to estimate the numerator

and the denominator in the measurement 𝐽𝛿 (𝑆, 𝑆 ′) in (8).

5.2.1 Computing 𝐽𝛿 (𝑆, 𝑆 ′). To compute 𝐽𝛿 (𝑆, 𝑆 ′), we need to count the sizes of �̃�𝛿
𝑆,𝑆′

and 𝑋𝛿
𝑆,𝑆′

.

Directly counting �̃�𝛿
𝑆,𝑆′

is not easy as the set difference operation introduces a łforall" quantifier.

Fortunately, since
����̃�𝛿

𝑆,𝑆′

��� = ���𝑋𝛿
𝑆,𝑆′

��� − ���𝑋𝛿
𝑆,𝑆′

���, it suffices to count 𝑋𝛿
𝑆,𝑆′

and 𝑋𝛿
𝑆,𝑆′

for each sample pair

𝑆 , 𝑆 ′. Intuitively, counting 𝑋𝛿
𝑆,𝑆′

could be expressed as a projected model counting task [Aziz et al.

2015] over ⟨®c, ®o,®i, ®s⟩ in a quantifier-free SAT problem with two copies of Πproc shown in 𝐹 below. 𝐹

is translated to a CNF proposition where it uses 𝑣 bit variables to represent ⟨®c, ®o, ®△,®i⟩ and others
to represent ⟨®s, ®s

′
,®i,®i
′
⟩ and auxiliary variables.

𝐹 ←
(
Πproc(®c, ®o,®i, ®s) ∨ Πproc(®c, ®o,®i

′
, ®s
′
)
)
∧ Π

𝛿
(®c, ®△,®i, ®s) ∧ Π

𝛿
(®c, ®△,®i

′
, ®s
′
)

∧
(
(®s (svar) ∈ 𝑆 ∧ ®s

′
(svar) ∈ 𝑆 ′) ∨ (®s

′
(svar) ∈ 𝑆 ∧ ®s (svar) ∈ 𝑆 ′)

) (12)

Following Zhou et al. [2018], two random, disjoint sets 𝑆 and 𝑆 ′ of expected size 𝑛 are specified

with distinct strings 𝑝, 𝑝 ∈ {0, 1}𝑏 where 𝑛 = |S| /2𝑏 for S being the domain of all possible secret
values, and specifically with the constraint that for a fixed hash function, the hash of each 𝑠 ∈ 𝑆 is
𝑝 and the hash of each 𝑠 ′ ∈ 𝑆 ′ is 𝑝 .

For𝑋𝛿
𝑆,𝑆′

, we can define another projected model counting task over ⟨®c, ®o, ®△,®i⟩ in a quantifier-free

SAT problem 𝐹 shown below. 𝐹 uses the logical postcondition Πproc twice, where the first copy is for

the execution with a secret ®s (svar) ∈ 𝑆 and the second checks for existence of a secret ®s
′
(svar) ∈ 𝑆 ′

leading to a result ®o also possible with ®s. 𝐹 also checks the existence of some secret (denoted by
®s
′′
(svar)) in the secret set 𝑆 ′ leading to the equivalent declassification value ®△ so that we can ensure

the ®s and ®s
′
cannot be distinguished by ®△.

𝐹 ← Π
proc,𝛿
(®c, ®o, ®△,®i, ®s) ∧ ®s (svar) ∈ 𝑆

∧ Πproc(®c, ®o,®i
′
, ®s
′
) ∧ ®s

′
(svar) ∈ 𝑆 ′

∧ Π
𝛿
(®c, ®△,®i

′′
, ®s
′′
) ∧ ®s

′′
(svar) ∈ 𝑆 ′

(13)

5.2.2 Optimizations for Counting �̃�𝛿
𝑆,𝑆′

and 𝑋𝛿
𝑆,𝑆′

. Enumerating all solutions to (12) and (13) using a

solver is intractable. To estimate the number of solutions to each instead, we used the approximate
model counting technique due to Chakraborty et al. [2013], specifically the approach taken by Soos

4Unlike software, hardware code (e.g., verilog) does not use do-while loops within one cycle for which the number of

iterations is determined dynamically. In our case studies, we found that the one-cycle logic for BOOM is correspondingly

simple, enabling the completeness and soundness of 𝜏proc .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:14 Ziqiao Zhou and Michael K. Reiter

E-Solver with 𝐻 and 𝑝 generates ⟨®c,®i, ®s, ®s
′
, ®o, ®△⟩ satisfying

Π
proc,𝛿
(®c, ®o, ®△,®i, ®s) ∧ Π

proc,𝛿
(®c, ®o

′
, ®△,®i

′
, ®s
′
) ∧ ®o ≠ ®o

′
∧ 𝐻 (⟨®c,®i, ®s, ®s

′
⟩) = 𝑝

(16)

F-Solver cancels ⟨®c,®i, ®s, ®s
′
, ®o, ®△⟩ satisfying (16) if there is some®i

′′
satisfying

Π
proc,𝛿

(®c,®o,®△,®i
′′
,®s
′
)

(17)

Fig. 5. Generating examples in ÎS using EF-solver

and Meel [2019]. That is, by specifying a randomly selected hash function �̂�𝑏 : {0, 1}𝑣 → {0, 1}𝑏

and an output 𝑝 ∈ {0, 1}𝑏 as an additional constraint, we can estimate
���𝑋𝛿

𝑆,𝑆′

��� using the average

value of multiple estimations of
���𝑍𝑝

𝑆,𝑆′

��� with some error 𝜖 and confidence 𝛿 (i.e.,
���𝑋𝛿

𝑆,𝑆′

��� ≈���𝑍𝑝

𝑆,𝑆′

��� ×2𝑏).
Similarly, we could estimate

���𝑋𝛿
𝑆,𝑆′

��� using 𝑍𝑝

𝑆,𝑆′
.

𝑍
𝑝

𝑆,𝑆′
=

{
⟨®c, ®o, ®△,®i⟩

��� ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿
𝑆,𝑆′
∧ �̂�𝑏 (⟨®c, ®o, ®△,®i⟩) = 𝑝

}
(14)

𝑍
𝑝

𝑆,𝑆′
=

{
⟨®c, ®o, ®△,®i⟩

��� ⟨®c, ®o, ®△,®i⟩ ∈ 𝑋𝛿
𝑆,𝑆′
∧ �̌�𝑏 (⟨®c, ®o, ®△,®i⟩) = 𝑝

}
(15)

This optimization for model counting will limit the number of calls to the SAT solver by constraining
the number of solutions available, and thus make the counting more scalable for large set size.

Thus, 𝐽𝛿 (𝑆 , 𝑆 ′) is estimated using the average value of 1 −
���𝑍𝑝

𝑆,𝑆′

��� /���𝑍𝑝

𝑆,𝑆′

��� for various 𝑝 , 𝑝 .
Our primary departure from the implementation by Soos and Meel [2019] lies in utilizing

task-specific properties in our counting tasks to reduce redundant effort in solution searching.

Specifically, since 𝑋𝛿
𝑆,𝑆′
⊆ 𝑋𝛿

𝑆,𝑆′
, we ensure that 𝑋𝛿

𝑆,𝑆′
∩ 𝑍

𝑝

𝑆,𝑆′
⊆ 𝑍

𝑝

𝑆,𝑆′
in our counting by defining

�̂�𝑏 (⟨®c, ®o, ®△,®i⟩) to be the 𝑏-bit prefix of �̌�𝑏 (⟨®c, ®o, ®△,®i⟩) for 𝑏 ≤ 𝑏. Then once we have generated

solutions in 𝑍
𝑝

𝑆,𝑆′
, we speed up finding solutions in 𝑍

𝑝

𝑆,𝑆′
for 𝑏 = 𝑏 (and so 𝑝 = 𝑝) by first checking

each solution in 𝑍
𝑝

𝑆,𝑆′
to see if it satisfies 𝐹 (i.e., is in 𝑋𝛿

𝑆,𝑆′
∩ 𝑍

𝑝

𝑆,𝑆′
). Only if insufficient solutions are

found with 𝑏 = 𝑏 is 𝑏 reduced and the solver used to generate additional solutions in 𝑍
𝑝

𝑆,𝑆′
for 𝑝 a

𝑏-bit prefix of 𝑝 .
In Sec. 6, we set the error 𝜖 = 0.4 and confidence 𝛿 = 0.9 in this method to estimate the sizes

of �̃�𝛿
𝑆,𝑆′

and 𝑋𝛿
𝑆,𝑆′

, from which 𝐽𝛿 (𝑆, 𝑆 ′) is estimated using (8). For each set size 𝑛, we compute 𝐽𝛿𝑛
using ≥ 100 hash functions, i.e., implicit selection of pairs 𝑆 , 𝑆 ′ of expected size 𝑛.

5.3 Sampling N̂S and ÎS for Interpretable Learning

Similar to the counting process, to construct N̂S and ÎS, the sampler will select hash functions 𝐻
randomly from a family and output values 𝑝 randomly from its range to solve for tuples ⟨®c,®i, ®s, ®s

′
⟩

for which 𝐻 (⟨®c,®i, ®s, ®s
′
⟩) = 𝑝 (and are in NS or IS, respectively). In the following experiments, we

will generate up to 100,000 solutions for each of N̂S and ÎS, where 70% used for training and 30%
used for validation.

We cannot directly encode set difference, used in (9) and (10), using an equivalent quantifier-free
formula. To implement a sampler to generate solutions in the set difference, we will use one solver
(łE-Solverž) to search for candidate solutions and another (łF-Solverž) cancel candidates; this is
a commonly used algorithm for an SMT solver to solve exist-forall problems (e.g., see Dutertre
[2015]).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:15

Here, we will illustrate sampling IS, while sampling NS is similar. The sampler first uses the
E-Solver to generate feasible solutions ⟨®c,®i, ®s, ®s

′
⟩ (see (16)) that guarantee, for an attacker’s chosen

®c, the observable value ®o derived from ®s with ®i could be different from an observable ®o
′
generated

by ®s
′
with some ®i

′
when the declassified value ®△ is the same. However, it does not guarantee the ®o

is never feasible for ®s. To further test whether the ⟨®c,®i, ®s, ®s
′
⟩ is in ÎS, we use the F-Solver to test

whether ⟨®s
′
,®i
′′
⟩ for some ®i

′′
could generate ®o with ⟨®s,®i⟩ when they share the declassification value

®△, to check whether we need to cancel the solution. That is, ⟨®c,®i, ®s, ®s
′
⟩ satisfying (16) but not (17)

will be included in ÎS.
After generating enough ⟨®c,®i, ®s, ®s

′
⟩ tuples in N̂S and ÎS, the interpretation module trains local

support vector machine (SVM) classifiers [Fan et al. 2008] around each of 50 anchor points, after
ruling out data whose normalized Euclidean distance (i.e., after scaling each attribute to a value
between 0 and 1, use Euclidean distance divided by the number of attributes) is more than 0.2
from the anchor. Then a logistic regression model for NS and IS is learned using a gradient boosted
tree implementation xgboost [Chen and Guestrin 2016]. To generate the interpretable models, we
implemented the rule learner using Skope-rules.

6 CASE STUDIES

In this section, we illustrate DINoMe by describing its application to the BOOM core (https://github.
com/riscv-boom/riscv-boom), an open-source RISC-V core that is susceptible to cache-based side
channels and Spectre attacks. The goal of these case studies is to illustrate our methodology and to
show how it can be useful to system analysts. Our method is also applicable to other side channels,
not only cache-based ones. Analysts can specify the secret to protect and define their side channels
using attacker-controlled and attacker-observable variables but, critically, not the specific attacker
algorithm.
• We applied DINoMe to evaluate cache-based side-channel leakage due to secret-dependent mem-
ory accesses. With different BOOM configurations (i.e., number of cache ways𝑤 and whether

to share memory), the case studies show how 𝐽𝛿𝑛 curves reveal the effects of the configurations
on the leakage. We also implemented and evaluated two possible mitigations, namely Scatter-

Cache [Werner et al. 2019] and PhantomCache [Tan et al. 2020], which reduce but do not

eliminate the cache leakage. Our measurements using 𝐽𝛿𝑛 illustrate which mitigation is better for
a specific BOOM setting.
• We used DINoMe to assess leakage via cache-based side channels from a modular exponentiation
function commonly used in cryptographic algorithms. The rule-based interpretation explains
how to choose attacker-controlled variables and which portion of the secret is leaked.
• We evaluated software code snippets causing speculative execution. This case study demon-
strates how to use declassification to focus on leakage caused by speculative execution (i.e., by
declassifying other leakage to reveal it) and how to generate an efficient interpretable rule set.
We found that some software with a short speculation window is insufficient to cause memory
leakage in the latest version of BOOM.

6.1 BOOM Configurations

In the following experiments, we used pocket-size hardware modules to replace the modules in the
BOOM v2.2.3 configuration. A simplified diagram is shown in Fig. 6. Analyzing artificially small
but otherwise faithful configurations of a system is not uncommon in model checking, for example
(e.g., Ball et al. [2004]; Pnueli et al. [2002]). Specifically, we set the cache line size to bbytes = 64B
and the total L1 data cache size to 1KB (16 cache lines in total). We then varied the cache ways
𝑤 and sets 𝑐 (i.e., subject to 𝑤 × 𝑐 = 16) in Sec. 6.3 but used a fixed setting 𝑐 = 2, 𝑐 = 8 for other

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom

141:16 Ziqiao Zhou and Michael K. Reiter

BOOM Processor

BOOM Core

Symbolized
branch predictor

Symbolized
configurable
L1 D-Cache

L1 I-Cache

Fetch queue

Symbolized
secret data

Symbolized
victim code

Memory

Fig. 6. BOOM configuration

prediction

CFI state

GShare ®c (‘bpd’)

𝑏𝑖𝑑𝑥

untaken

unmatch/match

Instruction address

CFI idx

0 1

Fig. 7. GShare branch predictor’s logical architecture

evaluations. BOOM only provides a configurable associative L1 cache module using a random
replacement policy. To compare different cache designs, we implemented two side-channel-resistant
cache modules, as described in Sec. 6.4. For the main memory, we set the memory size to 4KB and
thus a memory address is only 12 bits. For evaluation purposes, we used the upper half of the
memory address space as instruction memory and the lower half as data memory. To simplify the
following analysis, we removed the page table walker module and assumed virtual addresses were
the same as physical addresses. For the instruction fetch, we set the fetch width to 4 and configured
the L1 instruction cache to a 1KB, 8-set, 2-way cache with a customized prefetching module that
preloaded the software workload at the first cycle.

One feature of BOOM is that it supports speculative execution, with which we will experiment in
Sec. 6.6. Speculative execution leverages a branch predictor, for which we used the GShare branch
predictor. The logical structure of GShare is shown in Fig. 7. When a prediction request arrives
for a branch instruction, the GShare predictor derives a value 𝑏𝑖𝑑𝑥 from the certain bits (denoted
‘idx’ in Fig. 7) in the instruction address and an instruction history register and then uses 𝑏𝑖𝑑𝑥
to index into a table to which we refer as ‘bpd’. Each entry of the ‘bpd’ table includes a label
called ‘CFI’ and a 2-bit ‘state’, of which one bit indicates whether the entry holds a strong or weak
prediction and the other bit holds that prediction (i.e., whether the branch will be taken or not). If
the ‘bpd{𝑏𝑖𝑑𝑥 }.CFI’ value matches the ‘CFI’ portion of the instruction address, then the predictor
uses the ‘bpd{𝑏𝑖𝑑𝑥 }.state’ value to make a branch prediction. The GShare predictor will globally
tune entries based on executions in any user’s domain. Thus, an attacker can easily affect the ‘bpd’
table before victim’s execution, and so we include ‘bpd’ in Vars®c . In our evaluation, we fix the
number of ‘bpd’ entries to 4 so that only 2 bits in the instruction address are used as ‘idx’ while
another 2 bits (=log2(fetch width)) are used as its ‘CFI’ label.
In the following case studies, we added the ‘bpd’ table in the GShare module to Vars®c and

registers in the L1 data cache module including the cache metadata, the replacement state (i.e., the
linear-feedback shift register (LFSR) for the random replacement policy), and the memory-to-cache
mapping (if using a nonfixed mapping) to Vars®i .
In cache-based side channel attacks, ®c and ®o are not directly represented in the hardware state

or in victim’s code, and so it is necessary to define them through an adversary model. We assume
that the adversary has access to 16 memory blocks block1, block2, . . ., blockℓ , . . ., block16 aligned
to cache lines, which is sufficient to control the cache as our L1 data cache consists of only 16
cache lines in our experiments. Specifically, ®c (‘load’) [ℓ] indicates whether the adversary loads (1)
or flushes (0) blockℓ , while ®o (‘hit’) [ℓ] indicates whether the adversary observes a cache hit (1) or
miss (0) when accessing blockℓ . The following section illustrates how to automatically construct
these.

6.2 Defining ®c and ®o for Cache-Based Side Channels

The most common cache-based side-channel attacks are Prime+Probe, Flush+Reload, and their
variants (e.g., see Yarom and Falkner [2014]; Zhang et al. [2012]). In a Prime+Probe attack, the
attacker loads memory blocks to fill (Prime) cache sets, permits the victim computation to run

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:17

for a Prime+Probe interval, and then reads (Probes) these same blocks to determine which were
evicted by the victim computation during the Prime+Probe interval. In a Flush+Reload attack,
the attacker Flushes a shared-memory block from cache and then, after a Flush+Reload interval,
accesses (Reloads) the block to determine whether the block was brought back into the cache by
the victim computation.

acc (®̂c, ®̂i, ®̂s)
li s0, 0x2000000

add s1, s0, ℓ

sll s1, s1, 6

lbu a2, 0(s1)

To model side channel attacks in our framework, it is necessary to
model the effects on the cache of the phases before victim execution
(the Prime and Flush steps) and to define ®o to include the results of
the phases after victim execution (the Probe and Reload steps). To
do so, we assume that the adversary has access to memory blocks
block1, block2, . . ., block𝑚 aligned to cache lines, and we define the
RISC-V assembly routine acc (see above) by which the adversary can

access the block with index ℓ = ®̂c (‘blockIdx’) and empty ®̂s.

Starting from hardware state ®̂h0
ℓ (= ®̂i) that is completely symbolic, we generate the per-cycle

logical postcondition 𝜏acc (®̂h
𝑡−1
ℓ , ®̂h𝑡

ℓ) for each 0 < 𝑡 ≤ 𝑇 as in Sec. 5.1, where we empirically choose

𝑇 = 45.
We use these postconditions in two ways. First, we use them to extract a constraint Γ (⟨®h

𝑡
⟩𝑇𝑡=1, ®o)

that defines the attacker’s observations ®o in terms of the hardware states ⟨®h
𝑡
⟩𝑇𝑡=1 induced by the

execution (see (11)). A naive attempt to do so would be to simply include in ®o the metadata for each
cache line at every step of the execution. However, this would grant too much power to an attacker,
who should not be given access to the tag values and the exact locations of blocks inside a set.
Instead, we permit only a weaker attacker (cf., abstract noninterference [Giacobazzi and Mastroeni

2004]) by defining the constraint Γ (⟨®h
𝑡
⟩𝑇𝑡=1, ®o) that represents the view of cache hits and misses

immediately observable by the adversary, by:

®o (‘hit’) [ℓ] =
©­«
(®̂h0

ℓ = ®h
𝑇
) ∧

(∧𝑇
𝑡=1 𝜏acc (®̂h

𝑡−1
ℓ , ®̂h𝑡

ℓ)
)

∧
(
1 −

∨𝑇
𝑡=0 CacheMiss(®̂h𝑡

ℓ , blockℓ)
) ª®¬

for ℓ = ®̂c (‘blockIdx’). Here, CacheMiss is a BOOM-defined Verilog code snippet that, intuitively,
checks a set of cache lines where blockℓ might reside and returns 1 (in a register called s2_hits)
if none of those cache lines has a valid tag matched with blockℓ (and returns 0 otherwise). In this
way, we characterize the procedure acc using a logical postcondition without manually modeling
CacheMiss.
Second, we permit the attacker to control which of its blocks are loaded into the cache before

the victim runs. Specifically, the predicate Ψ0
proc (®c,®i, ®s, ®h

0
) that controls the initial hardware state

from which the victim executes is modified to constrain which of the attacker’s blocks are present
in cache, as communicated through a reserved variable ‘load’ ∈ Vars®c , for which the ®c (‘load’) is a
bit vector of length𝑚. That is, attacker block blockℓ should be loaded before the victim runs if and

only if ®c (‘load’) [ℓ] = 1. To effect this in Ψ
0
proc (®c,®i, ®s, ®h

0
), we construct Ψ0

proc (®c,®i, ®s, ®h
0
) to include

®c (‘load’) [ℓ] =
©­«
(®̂h0

ℓ = ®h
0
) ∧

(∧𝑇
𝑡=1 𝜏acc (®̂h

𝑡−1
ℓ , ®̂h𝑡

ℓ)
)

∧
(
1 −

∨𝑇
𝑡=0 CacheMiss(®̂h𝑡

ℓ , blockℓ)
)ª®¬

Of course, we rename variables to ensure no conflicts between copies of ®̂h𝑡
ℓ included within the

®c (‘load’) [ℓ] and ®o (‘hit’) [ℓ] constraints.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:18 Ziqiao Zhou and Michael K. Reiter

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽 𝑛

log2 𝑛

𝑐 = 1
𝑐 = 2

𝑐 = 4
𝑐 = 8

𝑐 = 16

(a) Symbolic ®c (‘load’)

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽 𝑛

log2 𝑛

𝑐 = 1
𝑐 = 2

𝑐 = 4
𝑐 = 8

𝑐 = 16

(b) ∀ℓ : ®c (‘load’) [ℓ] = 1

Fig. 8. 𝐽𝑛 for Prime+Probe attacks

6.3 Cache-Based Side Channels

In this section, we evaluate cache-based side channels under different memory isolation and cache
configurations.

proc (®c, ®i, ®s)
li s0, 0x2000010

add s1, s0, ®s (‘secret’)
sll s1, s1, 6

lbu a2, 0(s1)

6.3.1 Without Shared Memory. Here, we target a victim’s RISC-V
assembly proc to access a secret-indexed memory block not shared
with the attacker, by setting the base address in s0 to a value
0x2000010, in contrast to the one used in attacker’s process acc
(see Sec. 6.2). We experimented with different numbers of cache
sets 𝑐 including 𝑐 = 1 (i.e., 16-way, 1-set, fully associative), 𝑐 = 2
(i.e., 8-way, 2-set), 𝑐 = 4 (i.e., 4-way, 4-set), 𝑐 = 8 (2-way, 8-set), and

𝑐 = 16 (i.e., 1-way, 16-set, direct-mapped). As shown in Fig. 8(a), 𝐽𝑛
increases when the number of sets increases. Specifically, there is no leakage (𝐽𝑛 = 0 for all 𝑛) when
𝑐 = 1. Using fewer cache sets, each cache set is shared by more memory blocks, and so an attacker

will have more difficulty distinguishing one execution from others. When 1 < 𝑐 < 16, 𝐽𝑛 decreases
as 𝑛 grows, since the attacker can learn only 𝑙𝑜𝑔2 (𝑐) bits about the secret and thus may be unable
to distinguish secrets in large sets (i.e., large 𝑛).
An example interference rule for IS generated as described in Sec. 4 with the highest precision

(1.00) and a recall ≈ 0.04 in a 2-way, 8-set cache is:{
®s (‘secret’) [2] ≥ 1 ∧ ®s (‘secret’) [1] < 1

∧ ®s (‘secret’) [0] ≥ 1 ∧ ®s
′
(‘secret’) [0] < 1

}
∧

{
®c (‘load’) [5] ≥ 1

∧ ®c(‘load’) [13] ≥ 1

}
(18)

Our approach could not directly represent ®c (‘load’) [ℓ] ≡ ®s (‘secret’) mod 𝑐 . So, the trees in the
model split the dataset based on the cache set index. In this rule, the ®s and ®s

′
conjuncts concretize

the least significant 3 bits of ®s (‘secret’) (i.e., ®s (‘secret’) ≡ 5 mod 8) using ®s (‘secret’) [2] ≥ 1 ∧
®s (‘secret’) [1] < 1∧®s (‘secret’) [0] ≥ 1 and the lowest bit of ®s

′
(‘secret’) (i.e., ®s

′
(‘secret’) ≡ 0 mod 2)

using ®s
′
(‘secret’) [0] < 1. The ®c conjuncts are ®c (‘load’) [5] ≥ 1 and ®c (‘load’) [13] ≥ 1; note that

13 ≡ 5 mod 8. That is, an attacker could load all blocks blockℓ with ℓ ≡ 5 mod 8 into cache to
distinguish a secret ®s (‘secret’) ≡ 5 mod 8 from ®s

′
(‘secret’) mod 8 ∈ {0, 2, 4, 6}.

There were many other top-ranking rules similar to (18), each focusing on one residue class of
the secret value modulo 𝑐 where 𝑐 = 8 and constraining ®c (‘load’) [ℓ] = 1 for all ℓ with that residue
class modulo 𝑐 . Each such rule works for 1

8 of ®s (‘secret’)’s domain and 1
2 of ®s

′
(‘secret’)’s domain,

thus only for 1
8 ×

1
2 ≈ 0.06 of secret pairs. The recall rate 0.04 < 0.06 indicates that priming the

corresponding cache set ensures (i.e., precision = 1.0) the interference but is not necessary to cause
it.

Analogously, we can generate rules for the noninterference set NS, as well. One example with pre-
cision 1.0 (i.e., that ensures noninterference) and recall 0.11 constrains the secret’s least-significant

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:19

possible cache sets

cache line address

physical address

tag offset

M𝑑𝑜𝑚

cache line 1

cache line 0

(a) ScatterCache

possible cache sets

cache line address

physical address

tag offset

Mr
𝑑𝑜𝑚

cache line 1

cache line 0

(b) PhantomCache (r = 2)

Fig. 10. Cache modules in 2-way, 4-set configure

3 bits to be the same for ®s and ®s
′
:

|®s (‘secret’) [2] − ®s
′
(‘secret’) [2] | < 1

∧ |®s (‘secret’) [1] − ®s
′
(‘secret’) [1] | < 1

∧ |®s (‘secret’) [0] − ®s
′
(‘secret’) [0] | < 1

(19)

This analysis illustrates that an attacker can easily distinguish ®s (‘secret’) and ®s
′
(‘secret’) when

priming a cache set used by ®s (‘secret’) or ®s
′
(‘secret’) but not both. It is therefore safe to assume

that the attacker will Prime the cache using all its controlled memory blocks to maximize the

chances for leakage. The 𝐽𝑛 measure under this specific attack is shown in Fig. 8(b). The worst case
will leak all of the 4-bit secret when using high-granularity memory-to-cache mapping, i.e., where
𝑐 = 16.

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽 𝑛

log2 𝑛

𝑐 = 1

𝑐 = 2

𝑐 = 4

𝑐 = 8

𝑐 = 16

Fig. 9. 𝐽𝑛 for Flush+Reload attacks with
symbolic ®c (‘load’)

6.3.2 With Shared Memory. To evaluate the leakage due
to shared memory (i.e., with Flush+Reload attacks),
we allow the attacker to control and observe all mem-
ory blocks used by the victim by setting the base to

0x2000000 in proc instead of to 0x2000010. The 𝐽𝑛 curves
are similar and close to 1 for all settings, indicating that
the leakage does not have much correlation with𝑤 . An
example rule for interference derived using the method-
ology of Sec. 4, having a precision of 1.0 and recall of
≈ 0.04, is

®s
′
(‘secret’) < 2 ∧ ®s

′
(‘secret’) ≥ 1 ∧ ®c (‘load’) [1] < 1 (20)

That is, if ®s
′
(‘secret’) = 1 then ®c (‘load’) [1] = 0 results in interference. Indeed, the other top-ranked

rules for this example (not shown) were roughly 32 similar rules, each one setting ®c (‘load’) [ℓ] = 0
for a specific secret value ®s (‘secret’) = ℓ or ®s

′
(‘secret’) = ℓ . The intuition behind these rules is

that an attacker can precisely detect if ®s (‘secret’) = ℓ by setting ®c (‘load’) [ℓ] = 0 (i.e., Flushing
blockℓ so he can later Reload it), and similarly for ®s

′
(‘secret’). Going further, if an attacker sets

®c (‘load’) [ℓ] = 0 for all ℓ , he can detect the victim’s access to any blockℓ , where 𝐽𝑛 = 1 for all 𝑛.

6.4 Side-Channel-Resistant Cache Designs

To demonstrate the power of DINoMe in comparing different implementations, we evaluate
two cache designs for mitigating side channels, namely ScatterCache [Werner et al. 2019] and
PhantomCache [Tan et al. 2020]. Unfortunately, Verilog specifications of these are unavailable, and
so we implemented two simplified cache modules (which we continue to refer to as ScatterCache
and PhantomCache) in BOOM following their paper designs.
ScatterCache maps a memory block to a cache line using a cryptographic index derivation

function computed using the block’s physical address and a private key. As shown in Fig. 10(a), to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:20 Ziqiao Zhou and Michael K. Reiter

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽 𝑛

log2 𝑛

𝑐 = 1
𝑐 = 2

𝑐 = 4
𝑐 = 8

𝑐 = 16

(a) ScatterCache

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽 𝑛

log2 𝑛

𝑐 = 1, r = 1
𝑐 = 4, r = 1

𝑐 = 4, r = 2
𝑐 = 8, r = 1

𝑐 = 8, r = 2
𝑐 = 16, r = 1

(b) PhantomCache

Fig. 11. Memory sharing enabled with ∀ℓ : ®c (‘load’) [ℓ] = 0 (Flush+Reload attack)

simulate this index derivation without choosing a concrete function, we use a symbolic look-up
table denoted byM𝑑𝑜𝑚 per security domain 𝑑𝑜𝑚 (𝑑𝑜𝑚 = 0 denotes the victim’s domain and 𝑑𝑜𝑚 = 1
denotes the attacker’s) to store the mapping frommemory address to cache line. For security domain
𝑑𝑜𝑚, its access to memory contents at physical address paddr and so with block address baddr =
⌊paddr/bbytes⌋ is mapped to cache lines with way index 𝑘 and set index 𝑗 = M𝑑𝑜𝑚{baddr}{𝑘} for
𝑘 = 0, 1, . . . ,𝑤 − 1. Similarly, for PhantomCache, we used a domain-specific memory-to-cache
mapping (shown in Fig. 10(b)) represented by Mr

𝑑𝑜𝑚
to allow a memory block to use cache lines in

up to r cache sets indexed by Mr
𝑑𝑜𝑚
{baddr}{𝑘} for 𝑘 = 0, 1, . . . , r .5 In the following evaluation, we

have M𝑑𝑜𝑚,M
r
𝑑𝑜𝑚
∈ Vars®i .

6.4.1 RandomMemory-to-Cache Mappings. First, we experimented without memory sharing when
assuming the memory-to-cache mapping is completely unknown to the attacker. We ended up

with 𝐽𝑛 = 0 for all 𝑛 in both ScatterCache and PhantomCache. The attacker cannot tell which
memory blocks are accessed by the victim, as a memory block could be mapped to any cache line
if the mapping is unknown. Thus, we focused on the leakage analysis when memory sharing is
enabled.

Intuitively, Flush+Reload is the best attacker strategy for a normal cache design when memory
sharing is enabled. However, for a new cache design, it may not be clear that it is still the best.
Our leakage rules provide some insight for ScatterCache and PhantomCache. For example, one
top-ranking rule for ScatterCache, with precision ≥ 0.80 and recall of ≈ 0.02, is:

®s (‘secret’) [3] ≥ 1 ∧ ®s (‘secret’) [2] < 1 ∧ ®s (‘secret’) [1] < 1 ∧ ®s (‘secret’) [0] < 1

∧ ®i (M0{8}{1}) ≥ 5 ∧ ®i (M1{8}{1}) ≥ 5 ∧ ®c (‘load’) [8] < 1
(21)

This rule is similar to (20) but with some additional predicates about M0. Specifically, (21) adds
®i (M0{8}{1}) ≥ 5∧®i (M1{8}{1}) ≥ 5 to the rule when setting ®c (‘load’) [8] = 0 (i.e., attacker Flushes
block8) and ®s (‘secret’) = 8, which indicates that the block8 should occupy line 𝑘 = 1 in set 𝑗 = 5 in
both the victim’s and attacker’s domains to ensure leakage about whether ®s (‘secret’) = 8 when the
attacker Reloads block8.

Thus, an attacker should Flush+Reload all blocks that could share cache lines between victim’s
and attacker’s domain to cause more leakage. Since the memory-to-cache mapping is unknown,

an attacker may Flush+Reload all shared memory blocks. The resulting 𝐽𝑛 is shown in Fig. 11(a)

for ScatterCache and Fig. 11(b) for PhantomCache. 𝐽𝑛 is high when 𝑛 is large, indicating the
attacker can precisely determine ®s (‘secret’) when leakage occurs. Our results indicate that lower
cache set granularity leaks more: In Fig. 11(a), 𝑐 = 1 leaks the most, which is similar to the normal
cache. When 𝑐 > 1, the leakage is reduced.

5In contrast to the original paper [Tan et al. 2020], we do not force each memory block to map to r unique cache sets, i.e.,

we do not constrain Mr
𝑑𝑜𝑚
{baddr }{𝑘 } ≠ Mr

𝑑𝑜𝑚
{baddr }{𝑘′ } for 𝑘 ≠ 𝑘′.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:21

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽𝛿 𝑛

log2 𝑛

𝑐 = 1
𝑐 = 2

𝑐 = 4
𝑐 = 8

𝑐 = 16

(a) ScatterCache

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽𝛿 𝑛

log2 𝑛

𝑐 = 1, r = 1
𝑐 = 4, r = 1

𝑐 = 4, r = 2
𝑐 = 8, r = 1

𝑐 = 8, r = 2
𝑐 = 16, r = 1

(b) PhantomCache
Fig. 12. Memory sharing disabled (Prime+Probe attack), ®△(‘info’) ← ®i (M) (or ®i (Mr))

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽𝛿 𝑛

log2 𝑛

𝑐 = 1
𝑐 = 2

𝑐 = 4
𝑐 = 8

𝑐 = 16

(a) ScatterCache

0

0.2

0.4

0.6

0.8

1

0 1 2 3

𝐽𝛿 𝑛

log2 𝑛

𝑐 = 1, r = 1
𝑐 = 4, r = 1

𝑐 = 4, r = 2
𝑐 = 8, r = 1

𝑐 = 8, r = 2
𝑐 = 16, r = 1

(b) PhantomCache

Fig. 13. Memory sharing enabled (Flush+Reload attack), ®△(‘info’) ← ®i (M) (or ®i (Mr))

Overall, with same cache set granularity, 𝐽𝑛 is higher with PhantomCache with r = 2 than
PhantomCache with r = 1 and ScatterCache. This is because setting r = 2 allows one physical
address to be mapped to more cache sets and so gains more chance to share cache lines across
domains.
We also see that 𝐽𝑛 for ‘𝑐 = 8, r = 2’ is close to that for ‘𝑐 = 4, r = 1’, as randomly mapping

to 2 out of 8 sets is similar to mapping to 1 out of 4 cache sets. Our evaluation results suggests
that ScatterCache and PhantomCache eliminate side-channel leakage when there is no shared
memory and largely restrict it when there is shared memory, if the address-to-cache mapping is
random and remains unknown to the attacker.

6.4.2 Declassifying the Memory-to-Cache Mapping. When ®i (M) is unknown to the attacker, our
previous analysis shows that cache-based side channels are mitigated. Werner et al. [2019] also
discussed the possibility of this mapping being disclosed to the attacker, however, through a

profiling procedure. If we declassify ®i (M), the interference 𝐽𝛿𝑛 will increase: Fig. 12(a) shows 𝐽𝛿𝑛
due to Prime+Probe attacks in this case, and Fig. 13(a) shows the impact of this declassification on
Flush+Reload attacks.
Similarly, using ®△(‘info’) ← ®i (Mr), we evaluate PhantomCache’s leakage when the random

mapping is declassified; results are shown in Fig. 12(b) and Fig. 13(b). Comparing Fig. 12(b) and

Fig. 12(a), PhantomCache’s leakage (measured by 𝐽𝛿𝑛) for unshared memory is higher than Scat-

terCache’s when r = 1. The strength of PhantomCache is revealed when r increases, since it
allows memory blocks to map to more than one cache set. Specifically, the leakage for Scatter-
Cache’s ‘𝑐 = 4’ is much less than PhantomCache’s ‘𝑐 = 4, r = 1’ but is similar to PhantomCache’s
‘𝑐 = 4, r = 2’. However, PhantomCache with r = 2 provides weaker protection for Flush+Reload
than PhantomCache with r = 1 and ScatterCache.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:22 Ziqiao Zhou and Michael K. Reiter

6.5 Leaking Exponent in Modular Exponentiation

1: function modexp(b,d)

2: e← 1

3: for 𝑖 ← 𝑛 to 1 do

4: e← e × e mod 𝑀

5: if di ≠ 0 then

6: e← e × b [di]

7: end if

8: end for

9: return e

10: end function

(a) Algorithm

proc (®c, ®i, ®s)

li sp, 0x80000400

li a0 ,1

li a2, 𝑀

li a3, ®s (di)

.oneIteration:

mulw a0,a0,a0

remw a0,a0,a2

beqz a3 ,. NextIteration

sll a5,a3 ,2

add a5,sp,a5

lw a5 ,0(a5)

mulw a0,a0,a5

remw a0,a0,a2

(b) Assembly for one iteration

Fig. 14. Sliding window modular exponentiation. d is the
private key where each di (𝑖 = 1, . . . , 𝑛) is a W -bit value.

The evaluations in Sec. 6.3 and Sec. 6.4
focused on whether the adversary could
detect the victim’s access to a particular
memory block, which is a well-known
vector of information leakage. To further
demonstrate the utility of our framework
in measuring this type of leakage, here we
consider a classic example whereby the se-
cret is not a memory address, but rather is
a cryptographic secret that, due to the al-
gorithm in use, can influence the victim’s
cache footprint.
The particular example we evaluate

here is modular exponentiation as used
in algorithms such as RSA. A textbook im-
plementation of modular exponentiation uses a sliding-window method that is known to leak
information in caches [Bernstein et al. 2017; Zhang et al. 2012]. As shown in Fig. 14(a), the algorithm
leverages some small powers b[k] of a base b (where 𝑘 < 2W − 1) to compute a larger power.
Accesses to those precomputed powers is determined by the window-sized segment di of the private
key d in each loop iteration 𝑖 . First, this procedure will leak via the cache whether di is zero. Second,
since the precomputed elements are addressed by di, an attacker may identify up to log2 𝑐 bits
about di if those precomputed powers map to different cache sets.

To evaluate the one-round leakage of Fig. 14(a), we used the RISC-V assembly shown in Fig. 14(b)

in BOOM with a 2-way, 8-set cache (𝑐 = 8). The 𝐽𝑛 measure shown in Fig. 15(a) indicates that the
amount of leakage for one loop iteration 𝑖 is limited, when W ≤ 4 and so the precomputed b only
uses up to 4 × 24 = 64 bytes (i.e., one cache line). When 4 < W < 8, the side channel will leak more
about di whenW increases. Thus, choosingW = 4 is the best choice to protect the secret in our
cache configuration.

To further diagnose the cause of leakage, we generated the interference rules for W = 1, W = 4,
and W = 8. WhenW = 1, we obtain a single rule with precision and recall of 1.0, namely

®c (‘load’) [0] ≥ 1 ∧ ®c (‘load’) [8] ≥ 1

This has no ®s or ®s
′
related conjuncts, indicating that the 1-bit secret di is fully leaked when an

attacker Primes one cache set. In contrast, whenW = 4, the top rules (precision of 1.0, recall ≥ 0.5)
include some ®s or ®s

′
related conjuncts, constraining the secret value to be zero, e.g.,

®s (di) < 1 ∧ ®c (‘load’) [0] ≥ 1 ∧ ®c(‘load’) [8] ≥ 1

That is, it only leaks whether it is zero or not for a 4-bit secret.
WhenW > 4, however, the most important cause of leakage changes from whether a memory

access happens to which cache set is used by di . For example, when W = 8, one highly ranked rule
(precision of 1.0, recall ≥ 0.04) is

®s
′
(di) [6] < 1 ∧ ®s

′
(di) [5] ≥ 1 ∧ ®s

′
(di) [4] < 1 ∧ ®s (di) [4] ≥ 1

∧ ®c (‘load’) [10] ≥ 1 ∧ ®c (‘load’) [2] ≥ 1
(22)

which indicates that the attacker can distinguish an ®s
′
(di) with ®s

′
(di) [4 : 6] = 2 from an ®s (di) with

®s (di) [4 : 6] ∈ {1, 3, 5, 7} if the attacker Primes cache set 2. Similar to the analysis in Sec. 6.3.1, rules

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:23

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

𝐽 𝑛

log2 𝑛

W = 1
W = 2
W = 3
W = 4

W = 5
W = 6
W = 7
W = 8

(a) Symbolic ®c (‘load’)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

𝐽 𝑛

log2 𝑛

W = 1
W = 2
W = 3
W = 4

W = 5
W = 6
W = 7
W = 8

(b) ∀ℓ : ®c (‘load’) [ℓ] = 1

Fig. 15. 𝐽𝑛 for Modexp in 2-way, 8-set cache

conditionalAccess(offset, arr1.size)

if (offset < arr1.size)

tmp← arr2[(arr1[offset] × 64) & 1023]

declassify(arr1[offset])

(a) Conditional memory access

victimFunc(offset,secret,arr1.size)

arr1[offset]← secret

arr1.size← (arr1.size × 257) mod 256

arr1.size← (arr1.size × 257) mod 256

conditionalAccess(offset, arr1.size)

(b) Bounds check with long dependency

victimFunc(offset,secret)

arr1[offset]← secret

read arr1.size from memory;

conditionalAccess(offset, arr1.size)

(c) Bounds check with short dependency

1 .shortDependency:

2 lbu a0, 0x100(t3)

(d) Short speculation

1 proc (®c, ®i, ®s)

2 .prepareData:

3 li a0, ®i (‘arr1.size’)

4 li a1, ®c (‘offset’)

5 li a2, ®s (‘secret’)

6 //t3 ← arr1.addr

7 //t4 ← arr2.addr

8 add a3, t3, a1

9 sb s2, 0(a3)

10 .complexDependency:

11 li t1 ,0x101

12 li t2 ,0x100

13 mul a4,a0,t1

14 remuw a4,a4,t2

15 mul a4,a4,t1

16 remuw a0,a4,t2

17 .conditionalAccess:

18 bleu a0,a1 ,.end

19 add t3,t3,a1

20 lbu a3 ,0x0(t3)

21 sll a3,a3 ,6

22 and a3,a3 ,0x3ff

23 add a3,t4,a3

24 lbu a4 ,0(a3)

(e) Long speculation

Fig. 16. Speculative execution example. Assembly in (e) is snippet from compilation of pseudocode in (b).
Replacing lines 10ś16 with (d) gives the analogous assembly for the pseudocode in (c).

for W = 8 illustrate that an attacker can reveal the cache set used by the victim (e.g., secret bits
4-6) when priming all cache sets.

6.6 Cache-Based Side Channels in Speculative Execution

Spectre and its variants have received widespread attention in recent years. In a Spectre attack, a
CPU predicts the outcome of a conditional branch and executes instructions based on that prediction
to reduce delays incurred by those instructions if its prediction was correct. However, even if the
prediction is incorrect, then some changes to the hardware state caused by speculative execution
will persist even after the mispredicted computations have been discarded. These changes propagate
information to exploitable cache-based side channels, allowing the attacker to steal it.
To explore such leaks using our framework, we used the software pseudocode in Fig. 16(b)

and Fig. 16(c), each of which accesses an element of array arr2 at a secret index arr1[offset].
The bounds check on offset is dependent on a complex sequence of computations in Fig. 16(b)
and on reading arr1.size from memory in Fig. 16(c). Theoretically, speculative execution may leak

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:24 Ziqiao Zhou and Michael K. Reiter

arr1[offset] through cache-based side channels in both cases if the dependency is not resolved before
speculative execution, i.e., by bringing arr2[(arr1[offset]× 64) & 1023] into cache. Fig. 16(e) shows an
important snippet of RISC-V assembly for Fig. 16(b) running on BOOMwith a 2-way, 8-set cache. To
evaluate the software snippet in Fig. 16(c), we change the block denoted by .complexDependency

(Lines 10ś16) with the .shortDependency in Fig. 16(d). Furthermore, we evaluated a mitigation
similar to lfence [Int 2018], by adding a RISC-V instruction ‘fence r,r’ just after Line 18 in
Fig. 16(e).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

𝐽𝛿 𝑛

log2 𝑛

LongSpec

LongSpec+𝛿

ShortSpec

ShortSpec+𝛿

Fence

Fence+𝛿

Fig. 17. 𝐽
𝛿
𝑛 for Spectre in different procedures

We assume the attacker can control the off-
set value ®c (‘offset’), train the GShare branch
predictor ®c (‘bpd’) shown in Fig. 7, and use
Flush+Reload to observe ®o (‘hit’). The at-
tacker can use the Flush+Reload-style attacks
to precisely determine the index into arr2 if arr2
is shared and thus four bits of arr1[offset]. Note
that the secret value ®s (‘secret’) is assigned to
arr1[offset] as the first step of Fig. 16(c) and
Fig. 16(b). We presume that ®i (‘arr1.size’) is an
attacker-known but not controlled variable;
thus, we include it as one output parameters as well, i.e., ®o (‘arr1.size’) ← ®i (‘arr1.size’).

As shown in Fig. 17, the 𝐽𝑛 measures for ‘ShortSpec’ (denoting Fig. 16(d)) and ‘Fence’ are some-
what similar to that for ‘LongSpec’ (denoting Fig. 16(e))Ðcontrary to what intuition would sug-
gest. This counterintuitive result is due to the fact that leakage from in-bounds array accesses is
also being counted. By declassifying in-bounds array elements (i.e., declassifying arr1[offset] if
®c (‘offset’) < ®i (‘arr1.size’)), we obtain a better picture of when leakage occurs. Specifically, when

measuring the leakage with declassification of in-bounds array elements, 𝐽𝛿𝑛 indicates that both proc
with the short dependency (‘ShortSpec+𝛿 ’) and proc with the fence mitigation (‘Fence+𝛿 ’) do not
leak out-of-boundary memory contents, while the proc with the longer dependency (‘LongSpec+𝛿 ’)
continues to leak secret data and indeed, is just slightly lower than ‘complexDepend’.
In generating interference rules for proc with a long speculation (Fig. 16(e)), the linear feature

𝐿0 = 0.005 × ®s (‘secret’) − 0.003 × ®s
′
(‘secret’) − 0.494 × ®c(‘offset’) + 0.496 ×®i (‘arr1.size’) (23)

≈ 0.5 ×®i (‘arr1.size’) − 0.5 × ®c (‘offset’) (24)

and specifically the conjunct 𝐿0 < 1 appears in many of the top ranked rules. Using the approxi-
mation of 𝐿0 above, 𝐿0 < 1 implies that ®i (‘arr1.size’) < ®c (‘offset’) + 2, and so the offset is indeed
out-of-bounds.
An example rule with precision 1.0 and recall 0.30 is

𝐿0 < 1 ∧ ®c (‘bpd{0}.state’) [1] < 1 ∧ |®s (‘secret’) [2] − ®s
′
(‘secret’) [2] | ≥ 1 (25)

This rule indicates that an attacker can determine the third bit of the secret when the second bit of
the state of the prediction entry ®c (‘bpd{0}.state’) is 0 (‘strongly untaken’) or 1 (‘weakly untaken’).
Analogous rules appear in the list for each of bits 0-2 and 4 of the secret. Other highly ranked rules
(also with precision 1.0 and recall 0.30) are

𝐿0 < 1 ∧ ®c(‘bpd{0}.CFI’) [0] ≥ 1 ∧ |®s (‘secret’) [0] − ®s
′
(‘secret’) [0] | ≥ 1 (26)

𝐿0 < 1 ∧ ®c (‘bpd{0}.CFI’) [1] < 1 ∧ |®s (‘secret’) [3] − ®s
′
(‘secret’) [3] | ≥ 1 (27)

Rule (26) leaks the first bit of the secret when the ‘CFI’ value (i.e., ®c (‘bpd{0}.CFI’)) in the prediction
entry is 1 or 3, and (27) leaks the fourth bit when the ‘CFI’ value is 0 or 1. In these cases, the ‘CFI’

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:25

value does not match the CFI portion of the instruction address (i.e., the address of Line 18 in

Fig. 16(e)), which was 0x80000800 + 0x44 (= 0b0 10 00100), yielding a CFI portion of 0b 10 and
𝑏𝑖𝑑𝑥 of 0b00. Because of the mismatch on CFI value, ®c (‘bpd{0}.state’) is ignored and so speculation
will not execute Lines 19ś24. Though (26) and (27) are specific to the first or fourth bit of the secret,
respectively, analogous rules appear for each of bits 0-3.
The simplicity of these rules stands in stark contrast to the complexity of the Yosys-generated

per-cycle transition logic 𝜏proc (®h
𝑡−1

, ®h
𝑡
), which includes 459,170 bit variables and 1,922,229 clauses

in CNF, or the postconditionΠproc , which still includes 5,413 bit variables and 41,940 clauses. Clearly,
our interpretation rules are vastly simpler for the analyst to consider than these alternatives.
Fig. 18(a) shows the cumulative precision and recall for all leakage rules in this case study.

However, we do not need to use all rules for interpretation, since most rules do not help much with
the cumulative recall. For example, considering only rules that improve cumulative recall by ≥ 1%
gives 12 rules that achieve 0.97 precision and 0.98 recall (Fig. 18(b)).
We have performed this evaluation using earlier BOOM versions and noticed that the out-of-

bounds leakage was partially eliminated in version 2.2.3.6 Since version 2.2.1, the miss handling
(MSHR) module of the L1 cache tracks branch prediction results and discards the pending cache
refill request if a misprediction is detected before the refill commit.

7 PERFORMANCE

In this section, we discuss the runtime performance of DINoMe on the case studies described in
Sec. 6. In DINoMe, we have four important components: an automated logical formula generator
(Sec. 5.1), a model counter (Sec. 5.2), a sampler (Sec. 5.3), and a rule learner (Sec. 4.3). This section
reports the time costs in the first three stages for all case studies we have evaluated. We performed
those experiments on a DELL PowerEdge R815 server with 2.3GHz AMD Opteron 6376 processors
and 128GB memory.

6In BOOM version 2.2.1, the victim program described in Fig. 16(c) also suffers the out-of-bounds leakage and thus has

‘ShortSpec’ close to ‘LongSpec’ and ‘ShortSpec+𝛿 ’ close to ‘LongSpec+𝛿 ’.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80
Number of rules

Recall Precision Cum. recall Cum. precision

(a) Sorted by precision first and then recall

0

0.2

0.4

0.6

0.8

1

0 1 3 4 6 7 9 10 11 12 23 45
Rule Index

Recall Precision Cum. recall Cum. precision

(b) Dropping rules that improve cum. recall by < 1%

(rule index is based on Fig. 18(a).

Fig. 18. Cumulative precision and recall vs. rules

0.1

1

10

100

1000

Cache (𝑐 =1)

Cache (𝑐 =2)

Cache (𝑐 =4)

Cache (𝑐 =8)

Cache (𝑐 =16)

Scatter (𝑐 =1)

Scatter (𝑐 =2)

Scatter (𝑐 =4)

Scatter (𝑐 =8)

Scatter (𝑐 =16)

Phantom (𝑐 =1, r =1)

Phantom (𝑐 =4, r =1)

Phantom (𝑐 =8, r =1)

Phantom (𝑐 =16, r =2)

Phantom (𝑐 =4, r =2)

Phantom (𝑐 =8, r =2)

ShortSpec

ShortSpec+𝛿

LongSpec

LongSpec+𝛿

M
odexp (W

=1)

M
odexp (W

=2)

M
odexp (W

=4)

M
odexp (W

=6)

M
odexp (W

=8)

T
im

e
fo
r
o
n
e
es
ti
m
at
io
n
(s
)

Unshared

Shared

Unshared (∀ℓ : ®c (‘load’) [ℓ] = 1)

Shared (∀ℓ : ®c (‘load’) [ℓ] = 0)

Fig. 19. Time used in one estimation of 𝐽𝛿 (𝑆, 𝑆 ′)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

141:26 Ziqiao Zhou and Michael K. Reiter

0.0001

0.001

0.01

0.1

1

10

Cache (𝑐 =1)

Cache (𝑐 =2)

Cache (𝑐 =4)

Cache (𝑐 =8)

Cache (𝑐 =16)

Scatter (𝑐 =1)

Scatter (𝑐 =2)

Scatter (𝑐 =4)

Scatter (𝑐 =8)

Scatter (𝑐 =16)

Phantom (𝑐 =1, r =1)

Phantom (𝑐 =4, r =1)

Phantom (𝑐 =8, r =1)

Phantom (𝑐 =16, r =2)

Phantom (𝑐 =4, r =2)

Phantom (𝑐 =8, r =2)

ShortSpec

ShortSpec+𝛿

LongSpec

LongSpec+𝛿

M
odexp (W

=1)

M
odexp (W

=2)

M
odexp (W

=4)

M
odexp (W

=6)

M
odexp (W

=8)

T
im

e
fo
r
o
n
e
es
ti
m
at
io
n
(s
)

Unshared-ÎS

Shared-ÎS

Shared (∀ℓ : ®c (‘load’) [ℓ] = 0)-ÎS

Unshared-N̂S

Shared-N̂S

Shared (∀ℓ : ®c (‘load’) [ℓ] = 0)-N̂S

Fig. 20. Time used in generating one tuple in N̂S or ÎS

The time to generate and simplify the logical postcondition is primarily influenced by the number
of RISC-V BOOMcycles represented by that postcondition, as we incrementally compose the formula
cycle by cycle. Computing Πproc required 20-40 minutes for the memory accessing experiments (100

cycles) in Sec. 6.3 and Sec. 6.4; 45 minutes for the modular exponentiation experiments (120 cycles)
in Sec. 6.5; and around 2 hours for the Spectre experiments (150 cycles) in Sec. 6.6. Different from
Zhou et al. [2018], DINoMe assembles the postcondition without path splitting per branch (and so
avoids path explosion) and defers its solving task to a simplification step and final cycle, which
reduces the complexity dramatically.

Fig. 19 shows the runtime to compute one estimate of 𝐽 (𝑆, 𝑆 ′) or 𝐽𝛿 (𝑆, 𝑆 ′) in the model count-
ing process; note the logarithmic y-axis. Specifically, counting for cache-based side channels in
ScatterCache and PhantomCache are much more expensive than others, where one estimate
requires up to 16 minutes. The difficulty in counting for ScatterCache (denoted by ‘Scatter’)
and PhantomCache (denoted by ‘Phantom’) is due to the large size of their counting variables.
For ScatterCache, the memory-to-cache mapping uses 𝑙𝑜𝑔2 (𝑐) ×𝑤 bits per domain per memory
block for 32 memory blocks. Specifically, the 8-way 2-set ScatterCache (denoted by ‘Scatter
(𝑐 = 2)’), uses 512 bits to represent ®i (M), which means the counting process would add hundreds of
XOR constraints to compute one estimate, which greatly increases the difficulty to find a feasible

solution. To obtain the sample sets ÎS and N̂S, the sampling process generates a tuple in ÎS or N̂S
within seconds, as illustrated in Fig. 20.

Our reported results reflect estimations of 𝐽 (𝑆, 𝑆 ′) or 𝐽𝛿 (𝑆, 𝑆 ′) for at least 100 𝑆 , 𝑆 ′ pairs per 𝑛,

and we sampled up to 100,000 tuples in ÎS and N̂S. These estimations and samplings are trivially
parallelizable and so, with horizontal scaling, can be performed in total times approaching those in
Fig. 19 and Fig. 20 to the extent budget allows.

8 LIMITATIONS

Despite the scalability represented by DINoMe specifically for analyzing processor designs, it
still has limitations. First, due to the complexity of hardware logic, generating the postcondition
Πproc(®c, ®o,®i, ®s) for a proc representing both the OS and the application would require more CPU
cycles than the number to which we have been able to scale DINoMe thus far. The DINoMe

workloads described in this paper represent a tradeoff, using a sequence of opcodes with concretized
operations and selected symbolic operands above a partially symbolic hardware specification. To
evaluate with more complicated software, a possible solution is to highly concretize the initial
hardware state (especially for the memory and cache states) or highly concretize the software, at
the cost of possibly missing some potential leakage that remains hidden due to this concretization.
A second limitation of DINoMe, and specifically of its generation of interpretation rules to

explain leakage, is that the interpretation rules may not be complete, for two reasons. First, the
interpretation rules might skip a rule that covers few leakage samples (i.e., with low recall). A
possible way to address this source of incompleteness is to declassify the sources of leakage exposed
in the inference rules that are learned, and then rerun the learning process again. Second, the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:27

conditions that result in leakage might be more complicated than can be learned using decision
trees built using local linear classifiers. Alternative learning methods might be tried, though doing
so while retaining interpretability will be a challenge.

9 CONCLUSION

Scaling high-fidelity, static noninterference measurement to complex computations has been a
challenge since the introduction of noninterference in the 1980s [Goguen and Meseguer 1982]. We
believe that we have advanced the state-of-the-art in this area both generally and specifically for
its application to processor designs. Certain innovations in our DINoMe framework, such as the
cycle-by-cycle construction of the logical postcondition for processor execution, are specific to
processor designs. Others, such as our methods for declassification and interpreting leakage results,
are not. Together, however, they permit the measurement of leakage in complex scenarios, as we
demonstrated through using DINoMe to analyze leakage due to speculative execution in the BOOM
core and of published defenses to mitigate it. Our analysis enables comparisons between defenses
to discover, e.g., the processor and defense parameterizations where one defense outperforms the
other. Though the performance of DINoMe suggests that static measurement of noninterference for
processors is still too time-intensive for highly interactive use, it is fast enough to permit multiple
analysis iterations per day in many cases. And through its improvements in declassification and
interpretability, it substantially facilitates human understanding of its measurement results.

ACKNOWLEDGMENTS

We are grateful to our shepherd, Prof. AndrewMyers, and to the anonymous reviewers for numerous
constructive suggestions for improving this paper. This workwas supported in part by grant 2113345
from the National Science Foundation and by a gift from Intel.

REFERENCES

2018. Intel Analysis of Speculative Execution Side Channels. Technical Report. Intel Corp. https://www.intel.com/content/

www/us/en/architecture-and-technology/intel-analysis-of-speculative-execution-side-channels-paper.html

O. Aciiçmez. 2007. Yet another microarchitectural attack: Exploiting I-cache. In ACM Workshop on Computer Security

Architecture. 11ś18. https://doi.org/10.1145/1314466.1314469

J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. 2016. Verifying constant-time implementations. In 25th

USENIX Security Symposium. 53ś70.

R. A. Aziz, G. Chu, C. Muise, and P. Stuckey. 2015. #∃SAT: Projected Model Counting. In 18th International Conference on

Theory and Applications of Satisfiability Testing (LNCS). 121ś137. https://doi.org/10.1007/978-3-319-24318-4_10

M. Backes, B. Kopf, and A. Rybalchenko. 2009. Automatic discovery and quantification of information leaks. In 30th IEEE

Symposium on Security and Privacy. 141ś153. https://doi.org/10.1109/SP.2009.18

T. Ball, B. Cook, V. Levin, and S. K. Rajamani. 2004. SLAM and Static Driver Verifier: Technology transfer of formal

methods inside Microsoft. In 4th International Conference on Integrated Formal Methods (LNCS), Vol. 2999. 1ś20. https:

//doi.org/10.1007/978-3-540-24756-2_1

A. Banerjee, D. A. Naumann, and S. Rosenberg. 2008. Expressive declassification policies and modular static enforcement.

In 29th IEEE Symposium on Security and Privacy. 339ś353. https://doi.org/10.1109/SP.2008.20

G. Barthe, G. Betarte, J. Campo, C. Luna, andD. Pichardie. 2014. System-level non-interference for constant-time cryptography.

In 21st ACM Conference on Computer and Communications Security. 1267ś1279. https://doi.org/10.1145/2660267.2660283

D. J. Bernstein, J. Breitner, D. Genkin, L. G. Bruinderink, N. Heninger, T. Lange, C. V. Vredendaal, and T. Yarom. 2017. Sliding

right into disaster: Left-to-right sliding windows leak. In 19th International Conference on Cryptographic Hardware and

Embedded Systems (LNCS), Vol. 10529. 555ś576. https://doi.org/10.1007/978-3-319-66787-4_27

S. Blazy, D. Pichardie, and A. Trieu. 2019. Verifying constant-time implementations by abstract interpretation. Journal of

Computer Security 27, 1 (2019), 137ś163. https://doi.org/10.1007/978-3-319-66402-6_16

C. Celio, P. Chiu, B. Nikolic, D. A. Patterson, and K. Asanovic. 2017. BOOMv2: an open-source out-of-order RISC-V core. In

1st Workshop on Computer Architecture Research with RISC-V (CARRV).

S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2013. A scalable approximate model counter. In Principles and Practice of

Constraint Programming (LNCS), Vol. 8124. 200ś216. https://doi.org/10.1007/978-3-642-40627-0_18

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-analysis-of-speculative-execution-side-channels-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-analysis-of-speculative-execution-side-channels-paper.html
https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1007/978-3-319-24318-4_10
https://doi.org/10.1109/SP.2009.18
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1109/SP.2008.20
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1007/978-3-642-40627-0_18

141:28 Ziqiao Zhou and Michael K. Reiter

P. Chapman and D. Evans. 2011. Automated black-box detection of side-channel vulnerabilities in web applications. In 18th

ACM Conference on Computer and Communications Security. 263ś274. https://doi.org/10.1145/2046707.2046737

S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller. 2017. Quantifying the Information Leak in Cache Attacks via Symbolic

Execution. In 15th ACM International Conference on Formal Methods and Models for System Design (Vienna, Austria). New

York, NY, USA, 25ś35. https://doi.org/10.1145/3288758

S. Chattopadhyay and A. Roychoudhury. 2018. Symbolic verification of cache side-channel freedom. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2812ś2823. https://doi.org/10.1109/TCAD.2018.

2858402

C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, and T. Wang. 2018. An Interpretable Model with Globally Consistent

Explanations for Credit Risk. arXiv:cs.LG/1811.12615

T. Chen and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In 22rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 785ś794. https://doi.org/10.1145/2939672.2939785

S. Chong and A. C. Myers. 2004. Security policies for downgrading. In 11th ACM conference on Computer and communications

security. 198ś209. https://doi.org/10.1145/1030083.1030110

W. W. Cohen and Y. Singer. 1999. A simple, fast, and effective rule learner. 16th AAAI Conference on Artificial Intelligence 99

(1999), 335ś342. https://doi.org/10.5555/315149.315320

G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke. 2013. CacheAudit: A tool for the static analysis of cache side channels.

In 22nd USENIX Security Symposium. 431ś446.

B. Dutertre. 2015. Solving exists/forall problems with yices. In Workshop on satisfiability modulo theories.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. 2006. Calibrating Noise to Sensitivity in Private Data Analysis. In 3rd

Theory of Cryptography Conference (LNCS), Vol. 3876. 265ś284. https://doi.org/10.1007/11681878_14

J. Fan. 1993. Local linear regression smoothers and their minimax efficiencies. The Annals of Statistics (1993), 196ś216.

https://doi.org/10.1214/aos/1176349022

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. 2008. LIBLINEAR: A library for large linear classification. Journal of

Machine Learning Research 9, Aug (2008), 1871ś1874. https://doi.org/10.5555/1390681.1442794

A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G.E. Suh. 2017. Verification of a practical hardware security architecture

through static information flow analysis. In 22nd International Conference on Architectural Support for Programming

Languages and Operating Systems. 555ś568. https://doi.org/10.1145/3093337.3037739

M. Fokkema. 2020. Fitting Prediction Rule Ensembles with R Package pre. Journal of Statistical Software 92, 12 (2020), 1ś30.

https://doi.org/10.18637/jss.v092.i12

J. H. Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics (2001), 1189ś1232.

J. H. Friedman and B. E. Popescu. 2008. Predictive learning via rule ensembles. The Annals of Applied Statistics 2, 3 (2008),

916ś954. https://doi.org/10.1214/07-AOAS148

R. Giacobazzi and I. Mastroeni. 2004. Abstract non-interference: Parameterizing non-interference by abstract interpretation.

ACM SIGPLAN Notices 39, 1 (2004), 186ś197. https://doi.org/10.1145/982962.964017

R. Giacobazzi and I. Mastroeni. 2018. Abstract non-interference: a unifying framework for weakening information-flow.

ACM Transactions on Privacy and Security (TOPS) 21, 2 (2018), 1ś31. https://doi.org/10.1145/3175660

K. V. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala. 2019. IODINE: Verifying Constant-Time Execution of Hardware. In

28th USENIX Security Symposium. 1411ś1428.

P. Godefroid, M. Y. Levin, and D. Molnar. 2012. SAGE: Whitebox Fuzzing for Security Testing. Queue 10, 1 (2012), 20ś27.

https://doi.org/10.1145/2090147.2094081

J. A. Goguen and J. Meseguer. 1982. Security policies and security models. In 3rd IEEE Symposium on Security and Privacy.

11ś20. https://doi.org/10.1109/SP.1982.10014

J. W. Gray. 1991. Toward a mathematical foundation for information flow security. In 12nd IEEE Symposium on Security and

Privacy. 21ś34. https://doi.org/10.1109/RISP.1991.130769

X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin. 2019. QIF-Verilog: Quantitative Information-Flow based Hardware

Description Languages for Pre-Silicon Security Assessment. In IEEE International Symposium on Hardware Oriented

Security and Trust. 91ś100. https://doi.org/10.1109/HST.2019.8740840

J. Kelsey. 2002. Compression and information leakage of plaintext. In 9th International Workshop on Fast Software Encryption.

263ś276. https://doi.org/10.1007/3-540-45661-9_21

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, and T. Prescher. 2019. Spectre

attacks: Exploiting speculative execution. In 40th IEEE Symposium on Security and Privacy. 1ś19. https://doi.org/10.1109/

SP.2019.00002

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, S. Genkin, Y. Yarom, and M.

Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space. In 27th USENIX Security Symposium. 973ś990.

P.Malacaria, MHR. Khouzani, C. S. Pasareanu, Q. Phan, and K. Luckow. 2018. Symbolic Side-Channel Analysis for Probabilistic

Programs. In 31st IEEE Computer Security Foundations Symposium. 313ś327. https://doi.org/10.1109/CSF.2018.00030

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

https://doi.org/10.1145/2046707.2046737
https://doi.org/10.1145/3288758
https://doi.org/10.1109/TCAD.2018.2858402
https://doi.org/10.1109/TCAD.2018.2858402
https://arxiv.org/abs/cs.LG/1811.12615
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1030083.1030110
https://doi.org/10.5555/315149.315320
https://doi.org/10.1007/11681878_14
https://doi.org/10.1214/aos/1176349022
https://doi.org/10.5555/1390681.1442794
https://doi.org/10.1145/3093337.3037739
https://doi.org/10.18637/jss.v092.i12
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1145/982962.964017
https://doi.org/10.1145/3175660
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1109/HST.2019.8740840
https://doi.org/10.1007/3-540-45661-9_21
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/CSF.2018.00030

Interpretable Noninterference Measurement and Its Application to Processor Designs 141:29

M. McCall, H. Zhang, and L. Jia. 2018. Knowledge-Based Security of Dynamic Secrets for Reactive Programs. In 31st IEEE

Computer Security Foundations Symposium. 175ś188. https://doi.org/10.1109/CSF.2018.00020

C. Molnar. 2019. Interpretable Machine Learning. https://christophm.github.io/interpretable-ml-book/.

S. Nilizadeh, Y. Noller, and C. S. Păsăreanu. 2019. DifFuzz: Differential Fuzzing for Side-Channel Analysis. In 41st International

Conference on Software Engineering. 176ś187. https://doi.org/10.1109/ICSE.2019.00034

O. Oleksii, T. Bohdan, S. Mark, and F. Christof. 2020. SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In 29th

USENIX Security Symposium.

D. A. Osvik, A. Shamir, and E. Tromer. 2006. Cache attacks and countermeasures: The case of AES. In Topics in Cryptology ś

CT-RSA (LNCS), Vol. 3860. 1ś20. https://doi.org/10.1007/11605805_1

C. Percival. 2005. Cache missing for fun and profit. In BSDCan 2005. https://doi.org/10.1.1.187.8383

Q. Phan and P.Malacaria. 2014. Abstract model counting: A novel approach for quantification of information leaks. In 9th ACM

Symposium on Information, Computer and Communications Security. 283ś292. https://doi.org/10.1145/2590296.2590328

A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. 2002. The small model property: How small can it be? Information and

Computation 178, 1 (2002), 279ś293. https://doi.org/10.1016/S0890-5401(02)93175-5

M. T. Ribeiro, S. Singh, and C. Guestrin. 2016. łWhy should I trust you?ž: Explaining the predictions of any classifier. In 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1135ś1144. https://doi.org/10.1145/

2939672.2939778

M. T. Ribeiro, S. Singh, and C. Guestrin. 2018. Anchors: High-precision model-agnostic explanations. In 32rd AAAI Conference

on Artificial Intelligence. 1527ś1535. https://ojs.aaai.org/index.php/AAAI/article/view/11491

A. Sabelfeld and A. C. Myers. 2003. A model for delimited information release. In 2nd International Symposium on Software

Security ś Theories and Systems (LNCS), Vol. 3233. 174ś191. https://doi.org/10.1007/978-3-540-37621-7_9

A. Sabelfeld and D. Sands. 2009. Declassification: Dimensions and Principles. Journal of Computer Security (2009), 517ś548.

https://doi.org/10.5555/1662658.1662659

S. Sahai, P. Subramanyan, and R. Sinha. 2020. Verification of QuantitativeHyperproperties Using Trace Enumeration Relations.

In 32nd International Conference on Computer Aided Verification (LNCS), Vol. 12224. 201ś224. https://doi.org/10.1007/978-

3-030-53288-8_11

T. Seidenfeld. 1986. Entropy and uncertainty. Philosophy of Science 53, 4 (1986), 467ś491. https://doi.org/10.1086/289336

G. Smith. 2009. On the Foundations of Quantitative Information Flow. In 12th International Conference on Foundations of

Software Science and Computational Structures (LNCS), Vol. 5504. 288ś302. https://doi.org/10.1007/978-3-642-00596-1_21

G. Smith. 2011. Quantifying Information Flow Using Min-Entropy. In 8th International Conference on Quantitative Evaluation

of Systems. 159ś167. https://doi.org/10.1109/QEST.2011.31

Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing Analysis of Keystrokes and Timing Attacks on SSH.

In 10th USENIX Security Symposium.

M. Soos and K. S. Meel. 2019. BIRD: Engineering an Efficient CNF-XOR SAT Solver and its Applications to ApproximateModel

Counting. In 36th AAAI Conference on Artificial Intelligence. 1592ś1599. https://doi.org/10.1007/978-3-030-80223-3_37

Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. 2020. PhantomCache: Obfuscating Cache Conflicts with Localized

Randomization. In 27th Network and Distributed System Security Symposium. https://doi.org/10.14722/ndss.2020.24086

T. Wang, T. Wei, Lin Z, and W. Zou. 2009. IntScope: Automatically Detecting Integer Overflow Vulnerability in x86 Binary

Using Symbolic Execution. In 16th Network and Distributed System Security Symposium. https://doi.org/10.1007/978-3-

642-15497-3_5

Z. Wang and R. B. Lee. 2007. New cache designs for thwarting software cache-based side channel attacks. In 34th International

Symposium on Computer Architecture. 494ś505. https://doi.org/10.1145/1273440.1250723

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard. 2019. ScatterCache: Thwarting Cache Attacks

via Cache Set Randomization. In 28th USENIX Security Symposium. Santa Clara, CA, 675ś692.

C. Wolf. [n.d.]. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

Y. Xiao, Y. Zhang, and R. Teodorescu. 2020. SPEECHMINER: A Framework for Investigating and Measuring Speculative

Execution Vulnerabilities. In 27th Network and Distributed System Security Symposium. https://doi.org/10.14722/ndss.

2020.23105

Y. Yarom and K. E. Falkner. 2014. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack. In 23rd

USENIX Security Symposium. 719ś732.

H. Yasuoka and T. Terauchi. 2014. Quantitative information flow as safety and liveness hyperproperties. Theoretical

Computer Science 538 (2014), 167ś182. https://doi.org/10.4204/EPTCS.85.6

D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. 2015. A Hardware Design Language for Timing-Sensitive Information-Flow

Security. In 20th International Conference on Architectural Support for Programming Languages and Operating Systems

(Istanbul, Turkey). Association for Computing Machinery, New York, NY, USA, 503Ð-516. https://doi.org/10.1145/

2694344.2694372

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

https://doi.org/10.1109/CSF.2018.00020
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1007/11605805_1
https://doi.org/10.1.1.187.8383
https://doi.org/10.1145/2590296.2590328
https://doi.org/10.1016/S0890-5401(02)93175-5
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://ojs.aaai.org/index.php/AAAI/article/view/11491
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.5555/1662658.1662659
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1086/289336
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1109/QEST.2011.31
https://doi.org/10.1007/978-3-030-80223-3_37
https://doi.org/10.14722/ndss.2020.24086
https://doi.org/10.1007/978-3-642-15497-3_5
https://doi.org/10.1007/978-3-642-15497-3_5
https://doi.org/10.1145/1273440.1250723
http://www.clifford.at/yosys/
https://doi.org/10.14722/ndss.2020.23105
https://doi.org/10.14722/ndss.2020.23105
https://doi.org/10.4204/EPTCS.85.6
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1145/2694344.2694372

141:30 Ziqiao Zhou and Michael K. Reiter

K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. 2010. Sidebuster: Automated detection and quantification of side-channel

leaks in web application development. In 17th ACM Conference on Computer and Communications Security. 595ś606.

https://doi.org/10.1145/1866307.1866374

R. Zhang, C. Deutschbein, P. Huang, and C. Sturton. 2018. End-to-End Automated Exploit Generation for Validating

the Security of Processor Designs. In 51st IEEE/ACM International Symposium on Microarchitecture. 815śś827. https:

//doi.org/10.1109/MICRO.2018.00071

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. 2012. Cross-VM side channels and their use to extract private keys. In

19th ACM Conference on Computer and Communications Security. 305ś316. https://doi.org/10.1145/2382196.2382230

Z. Zhou. 2020. Evaluating Information Leakage by Quantitative and Interpretable Measurements. Ph.D. Dissertation. The

University of North Carolina at Chapel Hill.

Z. Zhou, Z.Y Qian, M. K. Reiter, and Y. Zhang. 2018. Static Evaluation of Noninterference using Approximate Model Counting.

In 39th IEEE Symposium on Security and Privacy. 514ś528. https://doi.org/10.1109/SP.2018.00052

Z. Zhou, M. K. Reiter, and Y. Zhang. 2016. A Software Approach to Defeating Side Channels in Last-Level Caches. In 23rd

ACM Conference on Computer and Communications Security. 871ś882. https://doi.org/10.1145/2976749.2978324

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 141. Publication date: October 2021.

https://doi.org/10.1145/1866307.1866374
https://doi.org/10.1109/MICRO.2018.00071
https://doi.org/10.1109/MICRO.2018.00071
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1109/SP.2018.00052
https://doi.org/10.1145/2976749.2978324

	Abstract
	1 Introduction
	2 Related Work
	3 Noninterference and Declassification
	3.1 Background on Noninterference Measure
	3.2 Motivating Examples
	3.3 Declassification

	4 Interpreting leakage
	4.1 Motivating Examples for Interpretation
	4.2 Noninterference and Interference Tuples
	4.3 Interpretation through a Rule-Based Method
	4.4 Feature Engineering

	5 Implementation
	5.1 Extracting proc (, , ,)
	5.2 Measurement with Declassification using Projected Model Counting
	5.3 Sampling and for Interpretable Learning

	6 Case Studies
	6.1 BOOM Configurations
	6.2 Defining and for Cache-Based Side Channels
	6.3 Cache-Based Side Channels
	6.4 Side-Channel-Resistant Cache Designs
	6.5 Leaking Exponent in Modular Exponentiation
	6.6 Cache-Based Side Channels in Speculative Execution

	7 Performance
	8 Limitations
	9 Conclusion
	References

