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Abstract
Small trusted hardware primitives can improve fault tolerance of Byzantine Fault Tolerant (BFT)
protocols to one-half faults. However, existing works achieve this at the cost of increased commu-
nication complexity. In this work, we explore the design of communication-efficient BFT protocols
that can boost fault tolerance to one-half without worsening communication complexity. Our results
include a version of HotStuff that retains linear communication complexity in each view and a
version of the VABA protocol with quadratic communication, both leveraging trusted hardware to
tolerate a minority of corruptions. As a building block, we present communication-efficient provable
broadcast, a core broadcast primitive with increased fault tolerance. Our results use expander graphs
to achieve efficient communication in a manner that may be of independent interest.
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1 Introduction

The number of faults tolerated by a Byzantine Fault Tolerant (BFT) protocol depends on
the network assumptions between parties, the use of cryptography, and other assumptions.
In particular, it is known that to maintain safety when the system is asynchronous, without
additional assumptions, one cannot tolerate one-third or more Byzantine faults [8]. However,
tolerating fewer than one-third Byzantine faults may not be enough for some applications.
There are two known approaches to increase this fault threshold. The first approach is to give
up safety in asynchrony by assuming synchrony and using some method to limit the ability
of the adversary to simulate honest parties (e.g. assuming a PKI or proof-of-work) [2, 9, 11].
The second approach lets the adversary delay messages but limits its ability to corrupt
by assuming the existence of a trusted hardware. The adversary cannot tamper with this
hardware even if it fully controls the party. At a high-level, the hardware provides non-
equivocation guarantees, essentially transforming Byzantine failures to omission failures and
hence improving the fault tolerance threshold to one-half (e.g., [6, 8, 10]) in partial synchrony
and asynchrony.

In this work, we focus on the use of small trusted hardware primitives to tolerate a minority
Byzantine corruption and stay safe in asynchrony. Specifically, each node is equipped with
hardware that implements the abstraction of an “append-only log,” the contents to which it
can attest using a conventional digital signature with a key that it holds. This capability
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is supported by numerous existing trusted add-ons (TPMs [1], YubiKeys [14], smartcards,
etc.) and is far simpler to implement than secure enclaves for arbitrary computation, as Intel
SGX [7] attempts to do – but arguably fails [5, 13,15,16,17].

The use of such small trusted hardware to boost fault tolerance was explored in A2M [6]
and TrInc [12], which specifically improved PBFT [4]. However, this came at the expense
of an O(n3) communication complexity per view for consensus among n parties, measured
as the (expected) number of words that all honest parties send. On the other hand, in the
standard setting, we have recently seen considerable progress in improving communication
complexity of consensus protocols. In particular, HotStuff [19] achieves O(n) communication
complexity per view under partial synchrony and VABA [3] achieves the optimal O(n2)
communication complexity under asynchrony. A natural question is whether fault tolerance
can be boosted (but communication costs retained) in these protocols using small trusted
hardware. In this abstract, we answer these questions affirmatively for a corruption threshold
t ≤ ( 1

2 − ϵ)n and ϵ > 0.

2 Communication-Efficient BFT with Small Trusted Hardware

We first describe a communication-efficient provable broadcast primitive that will be used as
a building block towards communication-efficient variants of HotStuff and VABA tolerating
t ≤ ( 1

2 − ϵ)n Byzantine faults. We only describe the intuition here; for a detailed explanation,
refer to the full version of the paper [18].

Communication-Efficient Provable Broadcast. In provable broadcast, a designated leader
sends a value to all the parties and obtains a proof that a majority of the parties delivered
this value. For safety, the leader should only be able to obtain a proof for one value, and for
liveness, an honest leader should obtain this value even without participation from faulty
parties. Our goal is to achieve this primitive with linear communication complexity while
having an O(1)-sized proof.

A straightforward approach would be to use the non-equivocation property of the hardware,
i.e., the hardware can only produce a signed attestation for one value at one position in the
log. Thus, intuitively, if n

2 + 1 parties attest to a value at a position, then no other value can
have n

2 + 1 attestations. However, while a party’s attestation from its trusted hardware is
sufficient for safety, receiving such proofs from O(n) parties produces an O(n)-sized proof
sent to the leader. This does not satisfy the O(1)-sized proof requirement. Our solution
relies on parties diffusing the attestations to a constant number of other parties, called their
neighbors, instead of sending the attestations directly to the leader. A party sends a vote to
the leader if it receives attestations from a threshold of its neighbors. This vote can be a
threshold signature share, which can eventually be combined by the leader into an O(1)-sized
voting proof. Why does this work? We connect parties to each other using a constant-degree
expander graph [18]. Informally, to send a (non-attested) vote, a party just needs to verify
that a constant fraction of its neighbors have attested. The expander graph construction
guarantees that even if an ϵn fraction of the parties vote, a majority of the parties must have
attested (ensuring safety). Similarly, to guarantee liveness, the graph can be parameterized
to ensure sufficiently many parties vote if all honest parties attest

Results. Our first result improves HotStuff to tolerate a t ≤ ( 1
2 − ϵ)n corruption while still

retaining its linear communication complexity per view.

▶ Theorem 1 (HotStuff-M, Informal). For any ϵ > 0, there exists a primary-backup based
BFT consensus protocol with O(n) communication complexity per view consisting of n parties,
each having a small trusted hardware, such that t ≤ ( 1

2 − ϵ)n of the parties are Byzantine.
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HotStuff is a primary-backup protocol that progresses in a sequence of views, each having
a designated leader (primary) and consisting of three rounds. HotStuff routes all messages
(votes) through the leader in each of these rounds while keeping the message size O(1) for
a total of O(n) communication per view. Abstractly, this can be viewed as a sequence of
provable broadcasts (though with additional O(1)-sized messages). HotStuff crucially relies
on threshold signatures to aggregate votes of individual parties into an O(1)-sized message;
these signatures act as a proof for parties in subsequent rounds/views to determine whether
they should vote in that round.

To increase the fault tolerance of HotStuff, we replace the steady state of its protocol
with three sequential provable broadcasts led by the leader of the view. However, this alone
does not suffice for safety across views. In particular, while our trusted hardware provides
us with an abstraction of an append-only log that disallows appending different values
at the same position (equivocation), a party can potentially present only selected (older)
entries of the log during a view change. This can potentially result in a safety or liveness
violation. Of course, this could be fixed by always presenting the entire log each time, but
the communication complexity would grow (unbounded) with the number of views. Instead,
we use a combination of techniques including: multiple logs (though only O(1)), one for each
phase of the protocol; tying log positions to view numbers; and using one attestation to
present the end state of all logs.

Our second result improves the VABA protocol of Abraham et al. [3] to tolerate minority
corruption while retaining its O(n2) communication complexity. We show the following:

▶ Theorem 2 (VABA-M, informal). For any ϵ > 0, there exists a validated asynchronous
Byzantine Agreement protocol with O(n2) communication complexity consisting of n parties,
each having a small trusted hardware, such that t ≤ (1/2 − ϵ)n parties are Byzantine.

In each view of VABA, in parallel, each party attempts to drive progress by acting as
a leader in a “proposal promotion” (similar to a view of HotStuff). After n − t proposal
promotions complete, the parties elect one leader randomly and adopt the progress from the
leader’s proposal promotion instance during the view-change step. Depending on whether
the leader completed its proposal promotion, parties decide at the end of the view or try
again in another view.

There are two key challenges in augmenting VABA to tolerate a minority corruption. The
challenges relate to the amount of storage in the small trusted hardware and maintaining
the communication complexity of the VABA protocol. First, in HotStuff-M, only O(1) logs
were used. A straightforward translation would require O(n) logs. If reduced to O(1) logs,
each party needs to send O(n) attestations to other parties during a single round of the
protocol. The challenge relates to the existence of arbitrary message ordering across proposal
promotion instances and the fact that the trusted hardware only supports an append-only
log. Our solution crucially relies on the fact that the parties have the same neighbors across
proposal promotion instances, and thus, even if values from proposal promotion instances are
appended arbitrarily, parties can perform the necessary validation across instances. Second,
the view-change step requires every party to share “progress” from the elected leader’s
proposal promotion instance to all parties. However, due to the concern described earlier,
only a party’s neighbors can validate whether it used the trusted hardware correctly. To
make matters worse, a party or its neighbors can be Byzantine. Fortunately, since parties
are connected using an expander graph, we can bound the number of parties with a majority
of Byzantine neighbors. By careful analysis, we ensure the delivery of the latest state of the
elected leader’s proposal promotion instance to all parties. We explain formal details of these
results in the full version of the paper [18].
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