
n-m-Variant Systems: Adversarial-Resistant So�ware
Rejuvenation for Cloud-Based Web Applications

Isaac Polinsky
North Carolina State University

ipolins@ncsu.edu

Kyle Martin
North Carolina State University

kdmarti2@ncsu.edu

William Enck
North Carolina State University

whenck@ncsu.edu

Michael K. Reiter
UNC-Chapel Hill
reiter@cs.unc.edu

ABSTRACT
Web servers are a popular target for adversaries as they are publicly
accessible and often vulnerable to compromise. Compromises can
go unnoticed for months, if not years, and recovery often involves
a complete system rebuild. In this paper, we propose n-m-Variant
Systems, an adversarial-resistant software rejuvenation framework
for cloud-based web applications. We improve the state-of-the-art
by introducing a variablem that provides a knob for administrators
to tune an environment to balance resource usage, performance
overhead, and security guarantees. Usingm, security guarantees
can be tuned for seconds, minutes, days, or complete resistance. We
design and implement an n-m-Variant System prototype to protect
a Mediawiki PHP application serving dynamic content from an ex-
ternal SQL persistent storage. Our performance evaluation shows
a throughput reduction of 65% for 108 seconds of resistance and
83% for 12 days of resistance to sophisticated adversaries, given
appropriate resource allocation. Furthermore, we use theoretical
analysis and simulation to characterize the impact of system param-
eters on resilience to adversaries. Through these e�orts, our work
demonstrates how properties of cloud-based servers can enhance
the integrity of Web servers.

CCS CONCEPTS
• Security and privacy→ Virtualization and security; • Com-
puter systems organization→ Availability; Redundancy.

KEYWORDS
n-Variant Systems; Intrusion Resilience; Cloud Security
ACM Reference Format:
Isaac Polinsky, Kyle Martin, William Enck, and Michael K. Reiter. 2020. n-
m-Variant Systems: Adversarial-Resistant Software Rejuvenation for Cloud-
Based Web Applications. In Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy (CODASPY ’20), March 16–18,
2020, New Orleans, LA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3374664.3375745

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00
https://doi.org/10.1145/3374664.3375745

1 INTRODUCTION
Web servers consist of large code bases that are di�cult to verify
and frequently contain exploitable vulnerabilities. Compromised
servers can go unnoticed for months, if not years [21]. During
this time, adversaries may maliciously modify persistent storage to
persist through reboots (e.g., rootkit) or host malicious content (e.g.,
watering hole attacks). Once a compromised server is discovered, a
time consuming process is performed to identify what �les were
a�ected by the adversary and restore the server to a good state.

Periodically refreshing a server to a known good state can time
bound compromise. This process is commonly known as software re-
juvenation [26]. In fact, cloud environments are particularly amenable
to software rejuvenation, because they frequently boot from read-
only images and use external persistent storage. However, tradi-
tional software rejuvenation cannot tolerate an adversarial threat
model: if a compromised server maliciously modi�es persistent stor-
age, then subsequent reads from persistent storage may automati-
cally re-compromise instances after refresh. Thus, a key challenge
is to ensure that persistent storage is not maliciously modi�ed.

Software Diversity is a promising approach to prevent malicious
changes to persistent storage in a software rejuvenation setting.
Byzantine Fault Tolerance (BFT) [3, 14, 27], n-Variant Systems [18],
and Multi-Variant Execution Environments (MVEEs) [12, 33, 39]
run multiple, functionally identical, but internally diverse, instances
of software independently to detect abnormal behavior, such as
faults or compromise. By comparing writes to storage from each
instance, software diversity can detect and prevent malicious behav-
ior then trigger software rejuvenation to reactively recover a�ected
instances. Meanwhile, periodic refreshing [35] can proactively re-
cover undetected compromised instances. However, these existing
approaches have several limitations when applied to a concurrent
Web server environment. When n-Variant Systems and MVEEs
detect a di�erence between the instances, the entire system goes
o�ine until refreshing is complete. Similarly, BFTs require that
no more than f servers are malicious at any given moment, and
so if f servers are o�ine for refreshing, no security guarantees
can be made and new requests must wait for recovery to complete.
Furthermore, no existing system based on BFT, n-Variant System, or
MVEE can defend against a powerful adversary that discretely com-
promises servers, one-by-one, until su�cient instances are acquired
to modify persistent storage without detection.

In this paper, we propose n-m-Variant Systems for enhancing
the resilience of cloud-based servers. n-m-Variant Systems extend

BFT and MVEE-based software rejuvenation systems by introduc-
ing the variablem, which is a pool of active replicas for each of
the n diverse variants. The introduction ofm provides several key
properties. First,m increases availability by allowing processing
to continue while some replicas are o�ine for refreshing. Second,
m minimizes the need to create many diverse variants, while in-
creasing availability. Third, m simpli�es the diverse computing
architecture when addressing highly concurrent workloads. Finally,
m, combined with our con�gurable refreshing algorithm, provides
a knob that allows an administrator to balance resource usage, per-
formance overhead, and security guarantees. This knob can tune
security for seconds, minutes, days, or complete resistance.

We built a prototype of our n-m-Variant Systems design for web
servers in a cloud environment. To demonstrate feasibility, we in-
strumented two web server stacks with a host agent: Apache on
Linux and IIS on Microsoft Windows. Further, we evaluated our sys-
tem using the Linux prototype hosting Mediawiki, a popular wiki
application. Using Apache JMeter [1] and varying resource con�g-
urations, we show our prototype incurs a throughput reduction of
65% for 108 “seconds of resistance” and 83% throughput reduction
for 12 “days of resistance” when refreshing half of the servers used
in every HTTP request. Finally, we illustrate how an administrator
can tune parameters to balance risk tolerance with performance
overhead and resource cost (e.g., the above calculations show the
overhead assuming 10% of tra�c is malicious).

We make the following contributions in this paper.
• We enhance defense techniques that combine software reju-
venation and software diversity by increasing their availabil-
ity. n-m-Variant Systems introduces the variablem and can
increase the availability of BFT and MVEE systems while
performing recovery actions to defend against a powerful
adversary.

• We provide a theoretical security analysis of n-m-Variant Sys-
tems. Them con�guration provides a knob that increases
the availability of servers while accommodating for greater
security con�gurations. By using the balanced allocation
problem and matching simulations, we model the security
impact of n,m, and the refreshing strategy.

• We demonstrate the feasibility ofn-m-Variant Systems through
empirical analysis. Our prototype for a Mediawiki applica-
tion with a remote SQL database has a 65% reduction in
throughput and a 83% increase in latency for a 2-25-Variant
environment and a 83% reduction in throughput and a 111%
increase in latency for a 4-15-Variant environment.

The remainder of this paper proceeds as follows. Section 2 dis-
cusses background and related work. Section 3 overviews the con-
cept of n-m-Variant Systems. Section 4 describes our design. Sec-
tions 5 and 6 evaluate the security and performance of our prototype.
Section 7 discusses trade-o�s and limitations. Section 8 concludes.

2 RELATEDWORK
Refreshing hardware or software systems to mitigate �aws before
their manifestation is termed software rejuvenation [26] in the �elds
of fault tolerance and reliability. Machida et al. [28] propose using
software rejuvenation to enhance the availability of virtual ma-
chines and virtual machine monitors. Similarly, Rezaei et al. [30]

and Thein et al. [36] argue to periodically refresh systems in a
virtual environment to remove inconsistent states.

In general, software rejuvenation alone cannot be used as a de-
fense mechanism against powerful adversaries. For example, CRIU-
MR [43] uses software rejuvenation to quickly remove malware
from a system, but since it is unable to determine which writes to
storage are malicious, their conservative solution results in benign
writes being reverted when the malware is removed. Therefore,
software rejuvenation must be combined with other techniques to
detect and prevent malicious actions and then reactively recover.
Additionally, these techniques can use proactive recovery to re-
fresh a compromised system before it is detected. Sousa et al. [35]
enhances such proactive recovery techniques with an approach
aiming to keep a minimal number of systems online to ensure the
correct operation of a �rewall. However, their work is tied to wall
clock time and is not suitable for high request Web servers. Brandão
et al. [5] provide an analysis of intrusion-tolerant systems built on
software rejuvenation and state that intrusion is inevitable for sys-
tems that do not recover on each request. In this work, we report
the same �nding, but de�ne a model that �ts our architecture.

Software diversity can be used to detect and prevent malicious
behaviors. Approaches such as MVEEs and Intrusion Tolerant Repli-
cation based on BFT detect abnormal behavior by comparing out-
puts (system calls, server responses, etc.) from diverse systems. If
a divergence between outputs is detected, then these systems can
prevent the action. n-m-Variant Systems is based on n-Variant Sys-
tems [18] and similar MVEEs that usen diversity to process requests
independently. This use of diverse systems was �rst proposed as
n-Version Programming [6, 7, 15] to detect software faults.

Many MVEEs have been proposed: Chun et al. [16] propose an
architecture using virtualization on a single physical host. Salamat
et al. [34] defend against code injection attacks with a user-space
architecture. GHUMVEE [41], ReMon [40], Orchestra [13], and
Volckaert et al. [38] all create architectures for complex threaded-
processes. VARAN [25] seeks to increase performance by avoiding
costly system call lockstepping. DREME [11] defends against SQL
injection attacks by using redundant database variants and diverse
processes. HACQIT [29] uses server diversity (IIS and Apache) to
mediate storage accesses from vulnerable web applications and
introduces replay attack prevention using blacklists. Finally, Gao
et al. [23] and STILO [44] use probabilistic anomaly detection over
system calls to identify misbehaving variants. In addition, Intrusion
Tolerant Replication techniques, speci�cally those based on BFT, are
another way of employing diversity to prevent malicious behavior.
Spire [10], Steward [4], and Base [31] all propose techniques to
tolerate a compromised host until it is recovered. However, the
main drawback of BFT-based approaches is the low number of
compromised hosts BFT protocols can tolerate until an undetected
adversary can compromise the entire system.

We do not aim to replace prior MVEE and BFT-based Intrusion
Tolerant systems but rather to enhance their architectures to in-
crease availability. In previous works, the entire system goes down
when performing recovery actions, which is unacceptable for web
servers. In n-m-Variant Systems there arem replicas of each variant
that can continue processing when a replica goes o�ine. Further,
we prioritize securing dynamic web applications. Prior works have
considered web servers hosting static �les and SCADA systems, but

to the best of our knowledge we are the �rst to propose an architec-
ture for a dynamic web server. There are two notable di�erences
between dynamic servers and the servers targeted in prior works: (1)
generating dynamic content requires more I/O operations, resulting
in more overhead and (2) comparing database writes from repli-
cas to detect malicious writes requires that any non-deterministic
�elds in those writes be reconciled. Finally, we note that creating
diversity is not a contribution of this work. Weatherwax et al. [42]
de�ne guidelines for implementing n-Variant Systems that defend
against particular attacks. Further, works that describe the creation
of diverse replicas [12, 19, 24, 32] are complementary to this work
and can be used by our architecture.

3 OVERVIEW
This work seeks to provide resiliency for cloud-based servers by
periodically refreshing replicas from read-only images to automati-
cally remove persistent threats (e.g., rootkits). A naïve application
of software rejuvenation is not resilient to sophisticated adversaries
that craft and commit exploits into external persistent storage, with
the goal of automatically re-compromising refreshed replicas. This
threat model presents the following research challenges.

• Identifying malicious writes to external persistent storage. Pre-
venting malicious writes to persistent storage prevents re-
freshed replicas from being automatically re-compromised.

• Providing a tunable model for balancing security and resource
overhead. Frequently refreshing replicas incurs resource over-
heads for service providers. Providers should be given guid-
ance on how to provision resources to meet their risk model.

• Providing a high availability environment. Solutions should
provide a highly available Web environment in the face of
compromise and limit the impact on throughput and latency.

We address the �rst challenge by adopting the concept of n-
Variant Systems [18] and extending it to a cloud environment. Con-
sider a Web server that uses an external relational database. Typ-
ically, each HTTP request to the Web server will result in one or
more SQL queries to the relational database. In our model, each
HTTP request from a client is duplicated and sent to n di�erent
server variants. We then compare each of the resulting SQL queries
to ensure that all n variants match, modulo non-deterministic �elds
such as timestamps. If any one SQL query di�ers from the query
produced by the n�1 other variants, the query fails (i.e., preventing
any writes) and the corresponding replicas for all n variants are
refreshed from the good, read-only image.

We address (Section 6.4) the second challenge by combining our
performance evaluation (Section 6.3) with the theoretical analysis
(Section 5). Finally we address the third challenge by introducing a
new variable,m, to the traditional n-Variant architecture described
above. With this variable, a deployment can add additional servers
which all concurrently handle requests. Further,m allows the en-
vironment to continue handling requests if any given server goes
o�ine (e.g., is refreshed as described above). E�ectively,m allows
us to provide high availability and throughput that is not achievable
in traditional n-Variant Systems.

Figure 1 depicts an n-m-Variant System for a Web environment
using an external relational database for persistent storage. HTTP
requests from Web clients terminate at a Scheduling Proxy. The

N-M-Variant Systems Wrapper

Web Application Environment

Internet Scheduling
Proxy

Verfication
Proxy

Web
Server
Replica

Web
Server
Replica

Variant Pool 1

Variant Pool N

Persistent
Storage

Figure 1: n-m-Variant Systems for a Web application.

Scheduling Proxy selects a serving set of replicas, which is one
of the m replicas from each of the n variant pools. The HTTP
request is duplicated and processed by each serving set replica.
All SQL queries from the replicas are captured by the Veri�cation
Proxy. If the SQL queries di�er (modulo non-deterministic �elds),
a malicious write is detected, and all replicas in the serving set
are immediately refreshed. However, if the SQL queries are the
same, the Veri�cation Proxy sends one SQL query to the persistent
storage. The Veri�cation Proxy then duplicates the SQL response
to each replica. When the replicas �nish generating the Web page,
the HTTP responses are returned to the Scheduling Proxy, which
returns one HTTP response to the Web client. Finally, replicas
are periodically refreshed (Section 4.1.3) to mitigate an adversary
who attempts to gradually compromise replicas in an e�ort to be
assigned a serving set with an already compromised replica in each
of the n variant pools.

Threat Model and Assumptions: The goal of the adversary is to
compromise and maintain privileged access to a vulnerable cloud-
basedWeb server. Once compromised, a replica may servemalicious
content to clients or attempt malicious modi�cations to persistent
storage. The goal of this work is to minimize the duration of a
compromised server by preventing malicious changes to persistent
storage. We permit a time-bound period where Web clients are
served malicious pages. We also do not attempt to prevent ex�ltra-
tion of data present at the time of compromise. The adversary is
assumed to be external to the cloud environment and must craft
unprivileged HTTP requests to compromise the server and perform
arbitrary code execution on the Web server, including running
code in kernel, but not the hypervisor. We assume a single mali-
cious HTTP request cannot simultaneously compromise replicas of
di�erent variants. This means vulnerabilities that e�ect the same ap-
plication on diversi�ed hosts (i.e., SQL injection) cannot be stopped;
however leveraging previous MVEE works we can defend Mem-
ory Corruption vulnerabilities or other vulnerabilities that lead to
Remote Code Execution on the Web server. This work assumes
only the base static Web server image is trusted and the running
Web server instance can be compromised during the processing of
any request. The trusted computing base includes the scheduling
and veri�cation proxies, the external persistent storage, the cloud
infrastructure (i.e., management software, hypervisors, hardware,
personnel), and Web application administrators.

4 DESIGN
In order to describe concrete design decisions for n-m-Variant Sys-
tems, we describe our design with respect to a Web application
environment using a relational database for external persistent stor-
age. However, the high-level conceptual approach is more generic.

4.1 Scheduling Proxy
Our n-m-Variant System-based Web application operates on the
granularity of HTTP requests. The Scheduling Proxy, Ps , is the only
interface between Web clients and the n-m-Variant System. When
Ps receives an HTTP request, Rh , it performs the following tasks:
(a) it selects a serving set, S(Rh), for Rh , consisting of one server
replica from each variant pool, i.e., {S1, j1 , S2, j2 , . . . , Sn, jn }; (b) it
duplicates Rh , sending a copy to each server replica S 2 S(Rh);
and (c) it tags each duplicate of Rh with an unforgeable request
identi�er T(Rh) that binds the IP addresses of the server replicas
to the identi�er. We begin with serving set selection.

4.1.1 Serving Set Selection. The serving set, S(Rh), consists of
one server replica from each variant pool. We identify each server
replica as Si, j , where i is the variant pool index, and j is the index
of the replica within variant pool i . Given an n andm con�guration,
it is possible to pre-compute all possible serving sets for faster
selection. In general, an n-m-Variant System hasmn unique serving
sets.

Our threat model assumes that an adversary cannot simultane-
ously exploit all variants with a single request. Therefore, if each
server replica, Si, j , is refreshed after servicing a single request, then
it is not possible for the adversary to incrementally compromise
server replicas and opportunistically wait until a request is served
by n compromised server replicas, one in each pool. Unfortunately,
only using a server replica for a single request requires refresh-
ing on average n server replicas per HTTP request, which is cost
prohibitive in most scenarios. A largerm simply provides a larger
bu�er to handle bursts of requests.

Practical deployments must re-use a server replica, Si, j , for mul-
tiple requests. Section 5 further explores the security implications
of re-use. Our current implementation selects a serving set by ran-
domly selecting one replica from each variant pool. If the selected
replica index, Si, j , is marked for refresh but not yet refreshed, our
algorithm randomly selects another until an available replica is
found. If a serving set cannot be selected, because at least one vari-
ant pool has no available replica (i.e., all are being refreshed), our
system returns HTTP error code 503, Service Unavailable.

4.1.2 Request Processing. The Scheduling Proxy, Ps , intercepts the
HTTP request, Rh , using a HTTP proxy. That is, the Web client’s
HTTP connection is terminated at Ps , and Ps initiates a new HTTP
connection to each replica S 2 S(Rh). HTTP proxies are commonly
used for load balancing. However, unlike load balancing, Ps must
duplicate the HTTP payload into multiple requests. When the repli-
cas return the HTTP response, the HTTP proxy only returns one
HTTP response to the client. Ps currently does not compare the
HTTP responses from the replicas, as our threat model only con-
siders the integrity of the external persistent storage and tolerates
some period of malicious responses to Web clients.

Ps tags each connection to S 2 S(Rh) with an unforgeable re-
quest identi�er. This tag, T(Rh), is read by the server replica host
agent and propagated to the Veri�cation Proxy, P� , as described
in Section 4.2. P� needs T(Rh) to determine which SQL queries
belong to Rh . The unforgeable property is needed to meet our threat
model requirement of the server replica remaining untrusted. A
compromised server may attempt two attacks: (1) Mimicry attacks
where an adversary attempts to send requests to persistent storage
with a falsi�ed identi�er, and (2) replay attacks where an adversary
tries reusing an existing tag. The unforgeable identi�er created at Ps
prevents mimicry attacks and also makes replay attacks extremely
unlikely, as discussed below and in Section 4.3.1.

Communication of the request identi�er from Ps to each server
replica is done by inserting T(Rh) as an IP Option in the IP Header
of the TCP SYN packet. Speci�cally, we use the timestamp option
�eld, which supports up to 40 bytes, containing 36 bytes of usable
storage when accounting for the two bytes used for the IP header
format and two bytes for the timestamp option declaration. The tag,
T(Rh), consists of a 32-bit (4-byte) request identi�er and a 256-bit
(32-byte) HMAC. The 32-bit request identi�er, ID(Rh), is a counter
that increases with each HTTP request received by Ps . The HMAC
computes a hash over ID(Rh) concatenated with the IP addresses
of each S 2 S(Rh). The symmetric key k is only shared by the Ps
and P� . Therefore,

T(Rh) = [ID(Rh) | HMAC(k, [ID(Rh) | IP1 | · · · | IPn])]

for each IPi corresponding to Si 2 S(Rh). This tag is a �xed size
by design and the IP addresses in the serving set do not need to be
explicitly listed in the tag as they can be derived at P� . P� veri�es
the tag by collecting the IP addresses of the server replicas declaring
ID(Rh) and recomputing the hash using the shared key.

Note that the 32-bit request identi�er will roll-over every four
billion HTTP requests. While the adversary may attempt to exploit
request identi�er roll-over to replay a tag, the tag is only valid if the
request is served to server replicas with the exact IP addresses as
the original request. This can be further mitigated by implementing
a validity window that rejects tags received with identi�ers outside
of the current valid range.

4.1.3 Replica Refreshing. The �nal responsibility of the scheduling
proxy is coordinating the refreshing of replicas. Replica refresh-
ing is caused by a) malicious activity detected by the veri�cation
proxy, and b) periodic refreshing of replicas. Since replicas can
simultaneously serve multiple HTTP requests, the design must
decide whether the decision to refresh triggers immediate or de-
layed termination of the replica VM. An immediate termination
will cause collateral e�ects to other HTTP requests, impacting the
comparison at the veri�cation proxy. When the veri�cation proxy
detects malicious activity, our design uses immediate termination.
However, for periodic refreshes, the replica is marked for refresh
but not terminated until all current HTTP requests are processed.
When marked for refresh, a replica will not be served new HTTP
requests. A reasonable timeout (e.g., 10 seconds) can also prevent
adversaries from holding onto replicas for a long period of time.

For periodic refreshing, our current design has the system ad-
ministrator select k > 0 replicas to be refreshed after each HTTP
request is serviced by the system. Since k may be a fraction, the

remainder is always carried forward to the next HTTP request.
Thus on each HTTP request, we add k to a rolling sum, K. If K < 1,
no replicas are refreshed. However if K � 1, bKc replicas are chosen
across the entire set of nm replicas to be refreshed and the remain-
der is carried forward to the next request. Variant pools do not play
a role in the selection of replicas to be refreshed. If the randomly
selected replica is already marked for refresh or has not served any
request since its last refresh, another replica is chosen.

This refreshing strategy maps well to the theoretically grounded
security evaluation presented in Section 5. Further, by tying re-
fresh rate to the request rate we can defend against large bursts
of malicious requests between a set refresh interval; however this
opens up a potential avenue for a denial-of-service attack. Section 7
addresses this issue in more detail.

4.2 Variant Pools
Each variant pool containsm server replicas. n-m-Variant Systems
assumes a single malicious HTTP request cannot simultaneously
exploit multiple variants. We assume variants are created using
existing techniques discussed in Section 2 (e.g., automated soft-
ware diversi�cation [24]) and do not detail the creation of variants.
We chose virtual machines over containers due to their stronger
isolation. We now describe the operation of the untrusted Host
Agent.

UntrustedHost Agent: Each server replica runs an untrusted host
agent that propagates the unforgeable request identi�er, T(Rh),
from the IP options �eld in the received HTTP request to all out-
bound connections created by the servicing process or thread. We
place this logic within the server replica to simplify our proto-
type implementation. While virtual machine introspection from the
trusted hypervisor is possible, signi�cantly more e�ort is needed to
correlate the inbound and outbound connections. Furthermore, the
unforgeable tag eliminates the need to trust the host agent. If a ma-
licious host agent does not include a veri�able tag, the Veri�cation
Proxy, P� , will drop the request.

For each HTTP request, Rh , the host agent must: (1) extract
T(Rh) from the IP options in the IP header of the TCP SYN packet
for the request, (2) identify the process or thread identi�er, PIDa ,
processing Rh , (3) identify the process or thread identi�er, PIDb ,
making the corresponding TCP connection for SQL queries, and
(4) insert T(Rh) in the IP options of the IP header of the TCP SYN
packet of all outgoing connections from PIDb . Note that PIDa may
equal PIDb , or PIDb may be a child (or descendant) of PIDa .

Linux Host Agent: Our Linux host agent is a user space Python
program that uses the Net�lter kernel interface to read and insert
request identi�er tags in network connections. The host agent
intercepts all outbound database tra�c with the TCP SYN �ag set.
It then determines which PID owns the socket for the outbound
request and traverses the PID’s parents until it �nds the PID of the
process handling the inbound request. Using this information, the
host agent can determine the appropriate request identi�er for the
outbound request and inserts it into the IP header.

Windows Host Agent: Our Windows host agent is a kernel mode
driver, written in C, that uses theWindows Filtering Platform (WFP)
to read and insert request identi�er tags in network connections.

The host agent also relies on an IIS HTTP module, written in C#,
and a DLL, written in C, injected into the IIS process to record which
PHP process is spawned to handle each inbound request. Similar
to the Linux host agent, the kernel driver, IIS module, and DLL
allow the host agent to correlate inbound connections to outbound
connections and propagate tags to outbound request IP headers.

4.3 Veri�cation Proxy
The Veri�cation Proxy, P� , prevents malicious writes to the external
persistent storage. To identify malicious writes, P� uses unanimous
voting for writes from all n variants. That is, if any variant diverges,
the write is denied. Furthermore, P� does not attempt to determine
which variant is malicious; all server replicas S 2 S(Rh) are marked
for refresh. This design is security conservative, as n � 1 variants
in the serving set may have been compromised.

To perform voting, P� must be able to compare the write requests
from the n variants in S(Rh). To simplify this comparison, we
assume that each variant is running the same application, and
produces nearly identical SQL queries to write to external persistent
storage. While the SQL queries may not be identical (e.g., timestamp
�elds), it is reasonable to identify non-deterministic �elds. Next we
discuss the primary tasks of P� : (1) determining which queries to
compare and (2) performing the comparison.

4.3.1 Packet Processing. The Veri�cation Proxy, P� , uses a TCP
proxy to intercept network connections destined for the external
SQL server. When replica variant i makes an SQL request, Rs , to
P� , the TCP proxy inspects the IP options of the IP header of the
TCP SYN packet. From here, it extracts the unforgeable request
identi�er tag, T(Rh). Recall that T(Rh) contains the plaintext 32-bit
request identi�er, ID(Rh), but not the list of IP addresses needed
to compute the HMAC. Therefore, P� maintains a queue for each
ID(Rh), storing the SQL query, source IP address, and T(Rh) for
each received Rs . When P� receives an SQL request, Rs , from each
of the n servers, it computes the HMAC and veri�es that T(Rh)
was not forged on any received Rs associated with ID(Rh). If the
tags verify, P� proceeds to verify the SQL query, as described in
Section 4.3.2. If the SQL query veri�cation also succeeds, a single
SQL query is sent to the SQL server. The SQL response is duplicated
and returned to each of the replicas S 2 S(Rh) in the queue.

If either the tag veri�cation or the SQL query veri�cation fails,
P� assumes that one or more of the server replicas is compromised.
If this occurs, the SQL query is not sent to the SQL server. Further,
all server replicas S 2 S(Rh) are marked for immediate refresh.

If P� does not receive all n SQL queries within a prede�ned
timeout period, the queue for ID(Rh) is deleted and the SQL query
is not sent to the SQL server. However, in this case, the server
replicas are not refreshed. Not receiving alln SQL queries before the
timeout may result from slow processing or network connectivity.
Marking all server replicas S 2 S(Rh) for refresh would further
reduce available computation, causing a signi�cant collateral e�ect
for replicas simultaneously servicing multiple HTTP requests.

Note that OpenStack prevents guest machines from spoo�ng
their IP address by default. Therefore, the adversary cannot spoof
its IP address to fool the veri�cation proxy. We assume other cloud
environments have similar anti-spoo�ng defenses in place.

Finally, each HTTP request, Rh , may result in multiple SQL re-
quests, Rs1 . . .Rsi , as theWeb application code queries the database
for various information. Our current implementation assumes that
the SQL queries from each of the n variants are received in the same
order, as was the case for the Mediawiki application used in our
evaluation (Section 6). Theoretically, the order could be recovered
by inspecting the queries themselves; however, the query order may
or may not have a logical impact on the Web application. Therefore,
we leave out-of-order query processing as a topic for future work.

4.3.2 �ery Matching. The Veri�cation Proxy, P� , prevents mali-
cious writes to the external SQL server by comparing SQL queries
from each of the n variants. Once the request identi�er tag is val-
idated (Section 4.3.1), the SQL query string is extracted from the
request, Rs . A naïve approach to query matching is simple string
comparison. In practice, SQL queries contain non-deterministic
�elds, such as timestamps, which are generated by the server replica.
Even with time synchronization, it is unlikely that all n server repli-
cas will generate the same timestamp.

To account for non-deterministic �elds, P� extracts an abstract
syntax tree (AST) from the query. Our implementation uses a Post-
greSQL parsing engine [22], which limits our prototype to Web
applications compatible with PostgreSQL; however, it is feasible
to integrate our system with other databases. Once the AST is ex-
tracted for a given SQL query, P� recursively traverses the tree look-
ing for known non-deterministic �elds. When a non-deterministic
�eld is found, P� replaces the value with a constant value. Once the
traversal is complete, P� collapses the modi�ed SQL query back into
a string and uses string comparisons to perform the �nal match.

This algorithm requires non-deterministic �elds to be known
before deployment. Our prototype uses a policy con�guration �le
to de�ne the non-deterministic �elds for each table in the database
schema. Currently, we leave this policy de�nition as a manual
process, requiring an administrator or developer to identify the
non-deterministic �elds. Fortunately, de�ning this policy is a one-
time e�ort per Web application. For our evaluation we created our
list of non-deterministic �elds by allowing queries with �elds that
did not match to proceed and then writing these �elds to a log. We
then manually analyzed the log �le to de�ne the policy.

Our threat model only considers the integrity of the external
persistent storage. Therefore, our current implementation only ana-
lyzes queries that modify data (i.e., INSERT, UPDATE, and DELETE).
Since SELECT statements do not modify data, P� simply queues
the n SELECT statements to ensure the correct number of queries is
received. No AST processing or string comparisons are performed
for SELECT statements. One exception is when an UPDATE or
INSERT statement includes a SELECT statement as a subquery. In
this case, P� performs traversal and string comparison.

A limitation to this approach occurs when two servers insert
di�erent values (e.g., a timestamp) into the database but only a
single value is truly stored. If the individual servers then perform a
select on this value and compare the retrieved value to the original,
at least one server will fail to pass this check. Fortunately, this case
of extreme defensive programming was not encountered during
testing with Mediawiki (Section 6), and we leave addressing this
issue for future work if there is a need to support this scenario.

5 SECURITY EVALUATION
An adversary is successful when one of its HTTP requests is served
by a serving set containing already compromised replicas, since
then all of the corresponding SQL requests are controlled by the
adversary. In this section, we analyze the probability that an adver-
sary meets this condition given a con�guration of n variants, each
with m replicas. We evaluate this probability in two ways. First,
by modeling n-m-Variant Systems using the well known balanced
allocations problem, we argue that the fraction of compromised
replicas can never get very large. Second, we evaluate concrete
con�gurations using simulations.

A n-m-Variant System randomly refreshes on average k server
replicas per HTTP request (Section 4.1.3). These replicas are selected
from the entiremn replicas and not biased towards a speci�c variant
pool. Our security evaluation is based on adversarial HTTP requests
that compromise replicas. Therefore, we indirectly de�ne k using a
variable b, which de�nes the number of replicas that are randomly
refreshed between adversarial requests. The number b of replica
refreshes per adversarial request might not be immediately evident
to the defender. This value can be estimated from the maximum
fraction� of service requests that can be adversarial and the number
k of server replica refreshes performed per HTTP request, i.e.,
b = k

� . � can, in turn, be estimated from the expected overall HTTP
request rate and the expected adversarial HTTP request rate.

Of course, in practice there may be many benign HTTP requests
that occur between the adversary’s HTTP requests that compromise
a server replica. Furthermore, the adversary may require many
HTTP requests to compromise a server replica, e.g., due to memory
defenses such as ASLR. Such defenses are further enhanced by
the random serving set selection created by n-m-Variant Systems.
However, for simplicity, our discussion assumes each adversarial
HTTP request compromises a single server replica.

Finally, our evaluation ignores the possibility that the adversary
can compromise both one uncompromised replica and, having a
serving set of entirely corrupted replicas, then corrupt the database,
all in a single HTTP request. Allowing for this possibility does not
change our analysis qualitatively but complicates our discussion.
As such, both our theoretical analysis and our simulation results
below assume that with a single adversary request, the adversary
can either corrupt one replica in its serving set or, if that request is
served by a serving set with all corrupt replicas, can compromise
the database. It cannot do both with one request, however.

5.1 Theoretical Analysis
The adversary’s goal is to be assigned a serving set only containing
already-compromised replicas. Assume it has compromised ci repli-
cas of variant i and c =

Õn
i=1 ci replicas in total. The probability of

selecting a compromised server in variant i is ci
m . Therefore, the

probability of selecting a compromised server in all variants is

P (Success) =
n÷
i=1

ci
m


✓ (c/n)

m

◆n

where the rightmost inequality follows because under the constraint
c =

Õn
i=1 ci , the product

Œn
i=1 ci is maximized when each ci = c/n.

Suppose that between serving adversary requests, b � 1 replicas
are chosen uniformly at random from the nm replicas and replaced

 0

 50

 100

 150

 200

 250

10 20 30 40 50 60 70 80 90 100

Ad
ve

rs
ar

y
re

qu
es

ts
 u

nt
il s

uc
ce

ss

Pool size (m)

n=2 n=3 n=4

(a) b = 1

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50 60 70 80 90 100

Ad
ve

rs
ar

y
re

qu
es

ts
 u

nt
il s

uc
ce

ss

Pool size (m)

n=2 n=3 n=4

(b) b = 3

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

10 20 30 40 50 60 70 80 90 100

Ad
ve

rs
ar

y
re

qu
es

ts
 u

nt
il s

uc
ce

ss

Pool size (m)

n=2 n=3 n=4

(c) b = 5

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

10 20 30 40 50 60 70 80 90 100

Ad
ve

rs
ar

y
re

qu
es

ts
 u

nt
il s

uc
ce

ss
Pool size (m)

n=2 n=3 n=4

(d) b = 7

Figure 2: Distribution of the number of adversary requests until success

with rejuvenated versions. Then, the number Xc of compromised
replicas cleansed after serving an adversary query after which
there are c compromised replicas in total (and before serving the
next adversary query) is hypergeometrically distributed, i.e., Xc ⇠
hypergeometric(c ,nm,b). Using a well-known tail-bound for the
hypergeometric distribution [17],

P
�
Xc = 0

�
 e�2b(

c
nm)2

So, if the adversary has compromised a fraction � of the replicas
(i.e., c

nm = � < 1), then at least one compromised replica is cleansed
with probability P

�
Xc � 1

�
� 1 � e�2�

2b , while P (Success)  �n .
We argue that c and therefore � will tend to stay small, with

high probability. Speci�cally, cleansing at least one compromised
replica between adversary queries, with high probability when � is
somewhat large, enables us to leverage known results in balanced
allocations to reach this conclusion. In particular, Azar et al. [9]
considered an experiment in which a set of d bins is chosen from
among a total of n bins uniformly at random, and then a ball is
placed into the least-full bin from among these d . After each such
ball placement, a ball is chosen uniformly from among all balls in
the bins and removed, and then the entire experiment (selection of
d bins, placement of a ball in the least full bin, and then removal
of a random ball) is repeated in�nitely many times. Azar et al.
showed that in the stable distribution, the most-full bin contains
ln lnn
lnd +O(1) balls with high probability [9, Theorem 1.2]. In our

case, each variant is analogous to a bin; each replica compromise
is analogous to a ball; the adversary is allowed to compromise
any not-already-compromised replica in its serving set of size n
(i.e., d = n); and each ball removal is analogous to a rejuvenation.
The most important di�erence between the problem considered
by Azar et al. and ours is that for Azar et al., the removal of a

random ball would, in our terminology, correspond to the certain
rejuvenation of a compromised replica, i.e., P

�
Xc = 1

�
= 1. In our

case, P
�
Xc � 1

�
< 1, but since P

�
Xc � 1

�
grows quickly with � ,

selecting an even modest b is enough to ensure that � tends to stay
small. As such, and because ln lnn

lnd = O(1) when d = n, we can
expect that ci = O(1) with high probability.

5.2 Simulation Analysis
To more concretely illustrate the number b of rejuvenations needed
in various scenarios, we conducted a number of simulations. In
these simulations, the adversary is presented a series of requests to
a (simulated) service, compromising the replica in each request’s
serving set from the pool with the fewest compromised replicas
(and that was not already compromised). The adversary did this
until it obtained a serving set of entirely compromised replicas.
Figure 2 shows the distribution of the number of adversary queries
until adversary success, where each boxplot shows the �rst, second
(median), and third quartiles, and whiskers extend to the 5th and
95th percentiles. Each boxplot was computed from 200 trials.

Figure 2 indicates that n and b both have a substantial impact
on security, as also predicted above analytically, whereas the e�ect
ofm is less pronounced. The e�ect of increasing b can be observed
by noting the growth in the y-axis as b is increased from b = 1 in
Figure 2a through b = 7 in Figure 2d. As b is increased to a larger
fraction ofm, the security improvement implied by increasingm is
muted; e.g., contrast the slope of the median points for a given n
when b = 1 in Figure 2a and those when b = 7 in Figure 2d.

The main lesson from these simulations is that to maximize
security, it is most important to employ as many variants as possible
(i.e., increase n) and to limit the fraction of requests that can be
adversarial (thereby increasing b). The latter might occur naturally,

owing to a substantial legitimate load on the service, or it might
need to be imposed arti�cially, e.g., via rate-limiting techniques
akin to those used for defending against DoS attacks.

6 PERFORMANCE EVALUATION
In this section, we describe the prototype implementation, experi-
mental setup, and conduct a performance evaluation.

6.1 Prototype Implementation
Our prototype implements each component described in Section 4.
The scheduling proxy and veri�cation proxy were both imple-
mented in nearly 2,000 lines of Python code combined. The query
matching module was written in just under 200 lines of code, in ad-
dition to using a PostgreSQL engine in C to parse the query. Finally,
the Linux host agent was implemented in 600 lines of Python code;
the Windows host agent driver in 2,800 lines of C code; the DLL in
330 lines of C code; and the IIS module in 40 lines of C# code. The
proxies and Linux hosts were implemented on Ubuntu Server 16.04
(Xenial) cloud images, and the Windows hosts were implemented
on Windows Server 2012 running IIS 8.0.

Our prototype simulates refreshing using a shim in the schedul-
ing proxy, which makes servers appear o�ine for 1 second after the
refresh invocation. We simulated refreshing because the naïve ap-
proach of reverting to an image snapshot in our OpenStack testbed
took over 20 seconds. Amazon Firecracker [20] is a virtualization
technology built on KVM allowing the deployment of light-weight
“microVMs”. These microVMs provide the same isolation of tradi-
tional VMs but have the performance of containers (i.e., launching
a microVM in 125 ms). However, Firecracker was not available at
the time of implementation and its integration is left for future
work. We believe our simulated refresh is more than conservative.

6.2 Environment
We hosted our test environment in CloudLab [2] using an Open-
Stack Queens bare metal deployment with nine c6320 compute
nodes (28 cores 2.00 GHz, 256 GB RAM, 10 Gb NIC) from the Clem-
son cluster. One compute node was dedicated for each of: database
server, scheduling proxy server, veri�cation proxy server, each
variant pool, and clients generating the tra�c.

The scheduling VM, veri�cation proxy VM, and client VM were
each assigned 56 VCPUs and 64 GB RAM. Three baseline servers
were assigned 50 VCPUS, 40 VCPUs, and 30 VCPUs each with 64
GB RAM. In addition, each of the 100 variant web server VMs were
assigned 2 cores and 4 GB RAM. The number of VCPUs for each
baseline server was chosen to re�ect the number of total VCPUs
in a single variant pool for m = 15, 20, 25. The total number of
VCPUs over all variant pools is a resource cost associated with the
desired n value and not considered when comparing to the baseline
performance. Our proxies require additional resources, but we did
not consider �nding an optimal number of cores for each proxy
that balances resource overhead with performance.

As previously discussed, we created two prototype host agents,
one for an Apache Server running on Ubuntu Server 16.04 and
another for IIS 8.0 web server running on Windows Server 2012.
However, for ease of scaling our evaluation to four variants, our
evaluation uses only the Apache/Ubuntu environment to simulate

four distinct variant environments. The Apache/Ubuntu host agent
had better supported tools for con�guring the hosts and was easier
to scale due to bugs in the Windows implementation causing insta-
bility over long tests. Each server hosted Mediawiki version 1.18.6,
an older version that is compatible with aWikipedia database dump
from October 2007 [37]. Each server was con�gured in the follow-
ing ways: Mediawiki was con�gured to use a PostgreSQL backend;
PHP was con�gured to disable persistent database connections; the
web servers were con�gured to use CGI, disable all caching, and
disable HTTP Keep Alive; and �nally the Mediawiki application
was con�gured and modi�ed to disable all caching in the variant
servers. Unless otherwise stated above or in the experiment descrip-
tions below, all web server performance settings remained at their
default settings.

6.3 Performance Impact of n,m, and k
The security evaluation in Section 5 found thatn andb have substan-
tial impacts on security. Since b is correlated to k , which determines
how many servers are refreshed after each HTTP request, increas-
ing b to increase security also increases the number of refreshes
after each HTTP request. Increased refresh rates cause performance
to su�er, since fewer servers will be available to service incoming
requests. This experiment explores how throughput and latency
are impacted as k varies for di�erent n,m con�gurations.

6.3.1 Experimental Setup. Apache JMeter [1] was con�gured to
request a single web page from the Wikipedia snapshot with 35
concurrent connections for 180 seconds. Since our prototype incurs
overhead on correlating and comparing queries at the veri�cation
proxy, pages that require more queries to load result in larger over-
heads. For this test, the web page was chosen so the number of
queries between the server and the database needed to generate the
web page results in the mean number of queries, among all hosted
pages. This was determined by requesting every page hosted by
the application and recording the number of queries from the web
server to the database needed to generate the page. As a result
the Protected_area page was chosen for this experiment and each
JMeter worker was con�gured to request this page.

Using the above JMeter con�guration, for each chosen n and
m con�guration we ran a test increasing k normalized by n (e.g.,
k
n) from 0 to 1.0 in 0.25 increments. The JMeter test also ran for
30 VCPU, 40 VCPU, and 50 VCPU baseline servers with caching
enabled and caching disabled. For each test, we recorded the number
of successful (HTTP 200) responses per second handled by the web
environment and each response’s latency.

Our analysis only considers the HTTP 200 responses (e.g., good-
put). This is due to con�gurations with higher unavailability ser-
vicing magnitudes more total requests during the experiment and
a fraction of those requests receive HTTP 200 responses. If the
analysis considered the HTTP 503 responses, con�gurations that
produce more HTTP 503 responses would falsely indicate higher
throughput and lower latency. Therefore, we consider our analysis
to be conservative and justly the represent the overhead.

6.3.2 Throughput Results. Our �rst analysis considers the through-
put of the baseline servers and various n,m, and k con�gurations.

Table 1: Throughput and Latency comparison of n-25-Variant environments to the 30 VCPU baselines.
Throughput Latency

Environment⇤ Caching Enabled Baseline Caching Disabled Baseline Caching Enabled Baseline Caching Disabled Baseline
2-25-Variant, kn = 0 -55.95% -54.62% 307.86% 163.69%
3-25-Variant, kn = 0 -60.39% -59.20% 353.64% 193.29%
4-25-Variant, kn = 0 -69.86% -68.95% 497.01% 285.98%
⇤Note the n-m-Variant System environments were con�gured to disable caching. The caching enabled and disabled refers to the baseline server con�guration.

0

5

10

15

20

25

0 0.25 0.5 0.75 1

Th
ro
ug
hp
ut
(R
eq
ue
st
s/
se
co
nd
)

Servers Refreshed Every HTTP Request Normalized By n

2-15-Variant
2-20-Variant
2-25-Variant

3-15-Variant
3-20-Variant
3-25-Variant

4-15-Variant
4-20-Variant
4-25-Variant

Figure 3: Average throughput serving the Protected_area
page as k is varied in each environment.

We observed the throughput for each of the caching and non-
caching baseline environments was barely impacted by the 30, 40,
and 50 VCPU con�gurations. To conservatively report our overhead,
we only compare our environments to the 30 VCPU caching and
non-caching baseline, which observed 57.794 and 56.111 requests
per second respectively. We note the result of adding VCPUs to
the baseline servers and observing no impact on the throughput
is potentially a result of hosting dynamic web pages that require
many SQL queries over the network to a remote database.

Table 1 shows the impact of our n-m-Variant System prototype
without refreshing (kn = 0). For brevity, we will only discuss the
overhead with respect to the cached baseline as there is not a sub-
stantial di�erence in throughput between the two baseline environ-
ments. For them = 25 environments, we observed a 56% reduction
(-32.33 RPS) in throughput for the 2-25 environment and up to a 70%
reduction (-40.37 RPS) in throughput for the 4-25 environment. Fig-
ure 3 depicts the impact of increasing k , which reveals the following
three trends:

Increasing n reduces throughput: As n is increased, throughput
decreases, including a 5 request-per-second drop from n = 3 to
n = 4. This is due to two reasons. First, with more variants, the
veri�cation proxy needs to queue and correlate connections from
more servers in a serving set. Second, the overhead of parsing
and comparing queries at the veri�cation proxy linearly grows
with n. Note this overhead is negligible on a single query, however
since pages require many queries to generate content, the overhead
compounds and results in noticeable performance degradation.

Increasing k reduces throughput: For each n-m con�guration,
lower k values result in a higher number of successful requests per
second. As k is increased and replicas go o�ine more frequently,

0

500

1000

1500

2000

2500

0 0.25 0.5 0.75 1

La
te
nc
y
(m
s)

Servers Refreshed Every HTTP Request Normalized By n

2-15-Variant
2-20-Variant
2-25-Variant

3-15-Variant
3-20-Variant
3-25-Variant

4-15-Variant
4-20-Variant
4-25-Variant

Figure 4: Average latency serving the Protected_area page as
k is varied in each environment.

fewer requests can be handled. Once k
n � 1 the performance con-

verges for each environment. In fact, when k
n = 1 we have a situa-

tion where each server in a serving set is refreshed after it is used
to service a request, and thus it is meaningless to have k > n. This
scenario behaves similar to a system where a serving set is spawned
on demand to service every web request. Notably for k

n = 0.5 we
observe a minimum throughput reduction of 65% for n = 2,m = 25
and a maximum throughput reduction of 83% for n = 4,m = 15. Of
further interest is for k

n = .25 we observe no drop in throughput
for large enough values ofm, i.e.,m = 25.

Increasingm allows higher throughput for higher k: Finally,
increasingm allows an environment to provide a higher throughput
for a given n while increasing k . This is due to the larger number of
possible serving sets that are available to service incoming requests.

6.3.3 Latency Results. Our second analysis considers the latency of
the baselines and various n,m, and k con�gurations. Similar to the
comparison to the baseline in the throughput analysis, we observed
minimal di�erences in latency for the di�erent baseline VCPU
con�gurations and compare the n-m-Variant System environments
to the caching and non-caching 30 VCPU baselines which observed
a 338.19 ms and 523.09 ms latency respectively.

Table 1 shows the overhead of our n-m-Variant System prototype
without refreshing (kn = 0) comparing against caching enabled
and disabled baselines. For them = 25 environments and caching
enabled, we observed a 308% increase (1041 ms) in latency for n = 2
and up to a 497% increase (1681 ms) for n = 4. However, a fairer
comparison is to the caching disabled baseline, since each variant
disabled caching. Comparing to this baseline we see 164% increase
(856 ms) in latency for n = 2 and up to a 286% (1496 ms) increase

Table 2: Equations of trend lines.
n = 2 n = 3 n = 4

Equation � = 14.235e0.2028b � = 25.46e0.3446b � = 41.537e0.5057b

R2 0.9923 0.9903 0.9797

Table 3: Size of windows, expressed in time, for � = 10%.

n k
n = .25 k

n =.5 k
n = .75

2 39 sec. 108 sec. 298 sec.
3 337 sec. 74 min. 16.4 hours
4 108 min. 11.8 days 5.1 years

for n = 4. Figure 4 depicts the impact of increasing k , which reveals
the following two trends:

Increasing n increases latency: Similar to the throughput results,
we see n has an impact on latency, with a 500 ms jump occurring
from n = 3 to n = 4. This is caused by negligible query processing
overhead compounding at the veri�cation proxy as n is increased.
However, unlike in the throughput results, we do not observe a
major impact on latency by increasingm for any givenn, but smaller
m, which result in lower throughput, provide incremental latency
improvements. Notably, for k

n = 0.5 we observe a 83% (435 ms)
increase in latency for the n = 2,m = 25 environment and a 111%
(584 ms) increase in latency for the n = 4,m = 15 environment.

Increasingk decreases latency:Ask is increased and throughput
is decreased (as discussed in 6.3.2), we observed a decrease of latency
in each environment. For example, form = 25 environments when
k
n = 1, the overhead compared to the baseline is much lower than
compared to k

n = 0. When compared to the baseline with caching
enabled, we observed a 118% increase (398 ms) in latency for the
n = 2 environment and up to a 191% (647 ms) increase in latency for
the n = 4 environment. Further, when compared to the baselines
with caching disabled, we observed a 41% increase (213 ms) in
latency for n = 2 and up to a 88% increase (462 ms) for n = 4.

These trends can be explained by the number of concurrent
requests handled by the environment. For example, when k is low
and the throughput is high, the proxies are contending for resources
to process all the independent requests. However, as we increase
k and decrease the throughput, the veri�cation proxy is able to
dedicate more resources to quickly comparing the queries, which
results in quicker responses to clients.

6.4 Tuning Security and Cost
n-m-Variant Systems assume a powerful adversary with exploits for
all n variants and can perform those exploits with a single request
(e.g., ASLR may prevent the latter). We also assume the adversary is
fully aware of the n-m-Variant System defense mechanism and can
strategically form an optimal attack plan (Section 5). In this section,
we describe how n,m, and k impact the period of resistance and
monetary cost of additional VCPUs.

Note that practical cost prevents n-m-Variant Systems from pro-
viding resistance to this powerful adversary in perpetuity. Rather,
n-m-Variant System provides an invaluable delay that allows o�ine
IDS (manually con�rmed or otherwise) to catch up. Furthermore,
less powerful adversaries are even less likely to succeed.

0.1

1

10

100

1000

10000

100000

1x106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ad
ve

rsa
ry

re
qu

es
ts

un
til

su
cc

es
s

α

n = 2, k/n = .25
n = 2, k/n = 0.5
n = 2, k/n = .75

n = 3, k/n = .25
n = 3, k/n = 0.5
n = 3, k/n = .75

n = 4, k/n = .25
n = 4, k/n = 0.5
n = 4, k/n = .75

Figure 5: Number of requests until adversary success.

6.4.1 Period of Resistance. To bridge the theoretical analysis in
Section 5 and the performance analysis earlier in Section 6, we
selected several con�gurations for comparison. Speci�cally, we
consider the threem = 25 environments as they provided the best
throughput for their respective n values. Using n = 2, 3, 4 and
m = 25, we ran simulations from Section 5 for b = 1...15. We then
did a statistical analysis of the median requests-until-compromise
for eachm = 25 con�guration, varying b to �t a line to the curve.

Table 2 shows the resultant equations of the trend lines �t to
each m = 25 con�guration. All trends reported a R2 value over
0.979. Using these equations, we then plot the number of requests
until adversary success, with respect to the percent of malicious
requests (�), for eachm = 25 con�guration and k

n = 0.25, 0.5, 0.75.
Note the equations in Table 2 are in terms of b, the number of
servers refreshed between adversary requests, and so we use the
equality b = k

� to appropriately generate this graph.
Figure 5 shows the number of expected adversarial requests

until success for eachm = 25 con�guration and k
n = .25, .5, and

.75. To reiterate our takeaways from Section 5: (1) n and b (k�)
have the largest impact on the security (2)m has a smaller impact
on the system’s security guarantees (3) if k < n, the adversary
will eventually succeed. However, di�erent con�gurations provide
larger periods of resistance where an adversary will not succeed.
Next we will walk through a simple example to illustrate this point.

Consider a request rate of 10 requests per second and � = 0.1
(e.g., adversary request rate of 1 request per second). We assume
both benign and malicious tra�c rates are constant to simplify the
example. Using these values we now de�ne a period of resistance, in
seconds, by using the y-axis of Figure 5, since the adversary sends 1
request every second and the y-axis represents the median number
of requests until success. Results are summarized in Table 3.

First consider the n = 2. For k
n = .25 the adversary is expected

to succeed in under 40 seconds; for k
n = .5 this time is increased to

108 seconds; and �nally for k
n = .75 it is increased to just under 5

minutes. Now consider n = 3: for k
n = .25 the adversary expects

to succeed in just over 5 minutes; for k
n = .5, it succeeds in about

75 minutes; and �nally for k
n = .75 the adversary takes almost 16.5

hours to succeed. Finally, forn = 4 this trend continues. For k
n = .25

Table 4: Cost ofn-m-Variant System environments compared
to the 30 VCPU non-caching baseline (Section 6.3.2).

n m VCPU Increase Throughput
(RPS) Throughput/VCPUs Resistance⇤

- - - 56.11 1.87 0

2 15 100% 11.94 .199 108 sec.
2 20 166.67% 15.87 .198 108 sec.
2 25 233.33% 19.43 .194 108 sec.

3 15 200% 10.71 .119 74 min.
3 20 300% 13.93 .116 74 min.
3 25 400% 16.88 .112 74 min.

4 15 300% 9.46 .079 11.8 days
4 20 433.33% 12.56 .079 11.8 days
4 25 566.67% 15.26 .076 11.8 days
⇤Median time for kn = 0.5, � = 0.1.

the adversary expects to succeed in 108 minutes, followed by just
under 12 days for k

n = .5, and �nally for k
n = .75 the adversary is

expected to attack without success for over 5 years.
Through this trivial illustration, it is clear to see how much

of a security impact using high n and k has on the environment;
however, this also has the highest impact on performance. Thus to
complete this analysis and allow system administrators to deter-
mine which parameters work best for their environment, we need
to perform a cost analysis of n-m-Variant Systems.

6.4.2 Resource Cost. The security of di�erent environments comes
with a resource cost. For each of the n andm con�gurations we
analyze the increase of VCPUs from the baseline and calculate a
value of Throughput per VCPU (�), which visualizes the cost of
resource duplication as a return on investment (ROI). The increase
of VCPUs in each environment trivially allows an administrator
to calculate the monetary cost overhead of implementing each
con�guration by using current cloud computing costs.

Table 4 summarizes the results of this analysis for each of the
n,m, and k

n = 0.5 con�gurations from Section 6.3.2. Note the �rst
row represents the 30 VCPU non-caching baseline and we included
the resistance of each environment using Table 3. As expected,
the greater the n value the less contribution any VCPU has on
the overall system throughput. However, this results in a much
greater contribution to the period of resistance. Conversely, by
increasingm, the throughput of a given n-m-Variant environment
can be regained with a small decrease in the ROI.

7 DISCUSSION

Denial-of-Service:Any solution reducing throughputmakes denial-
of-service attacks easier. This is true in the case of n-m-Variant
Systems, which return a 503 Service Unavailable response if there
are no open serving sets. Although we enhance the availability of
prior BFT and MVEE works, DoS is still a threat. Note, traditional
DoS mitigation can complement n-m-Variant Systems by alleviating
the impact of attacks. However, n-m-Variant Systems still provide
value to servers with lower request rates, such as an internal server
opposed to a popular publicly accessible web server. In the scenario
of an internal server, the adversary is assumed to have compro-
mised a machine on the network and makes unprivileged requests
to the server from local network. DoS attacks launched from the
local network may be easier for admins to identify and stop.

Application Determinism: Our system cannot handle applica-
tions with speci�c types of non-determinism, which di�er from
non-deterministic database �elds already discussed. For example,
the “Random Page” link in Mediawiki loads a random page from the
server. As the individual replicas select a random page, the queries
will diverge on accesses to di�erent pages. Such non-deterministic
features are currently not supported by n-m-Variant Systems. Note
prior MVEE works (e.g., Orchestra [33]) also encounter this issue,
but solved it by intercepting system calls that have non-deterministic
output (e.g., getrandom), then make the call once and copy the re-
sult to each variant. However, these prior works had the advantage
of residing on a single host, as such we leave the design and inte-
gration of such a mechanism for future work.

Period of Security Resistance: n-m-Variant Systems allows an
administrator to balance security, resource allocation, and perfor-
mance. If the administrator assumes the most powerful adversary
with exploits for all n variants, Section 6.4 demonstrated practical
con�gurations that provide a period of resistance ranging from
seconds, to minutes, to days. With this strong threat model, even a
short period of resistance can provide invaluable defense. For ex-
ample, it can provide time for an o�ine intrusion-detection system
(IDS) to determine that an attempt to compromise replicas is un-
derway, before those compromises can result in a corruption of the
persistent storage. Furthermore, since statistical IDS can raise false
alarms [8], the period can also give time for human investigation.

8 CONCLUSION
This work introduced n-m-Variant Systems, an adversarial-resistant
software rejuvenation framework for cloud-based web applications.
We improved state-of-the-art intrusion-tolerant frameworks with
the introduction of the variablem, which increases the availability
of these systems and allows administrators to tune their environ-
ments to balance resource and performance overhead with security
guarantees obtained. Through theoretical analysis and a perfor-
mance evaluation of our prototype, this work demonstrated the
practicality of the n-m-Variant Systems framework.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation (NSF)
SaTC grants CNS-1330553 and CNS-1330599. Opinions, �ndings,
conclusions, or recommendations in this work are those of the
authors and do not re�ect the views of the funders.

REFERENCES
[1] 2018. Apache JMeter. (sep 2018). https://jmeter.apache.org/
[2] 2019. CloudLab. (jan 2019). https://cloudlab.us/
[3] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2010. Prime: Byzantine

replication under attack. IEEE transactions on dependable and secure computing
(Dec. 2010).

[4] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina
Nita-Rotaru, Josh Olsen, and David Zage. 2010. Steward: Scaling Byzantine Fault-
Tolerant Replication to Wide Area Networks. IEEE Transactions on Dependable
and Secure Computing 7, 1 (Jan 2010), 80–93.

[5] Luìs T. A. N. Brand ao and Alysson Bessani. 2011. On the Reliability and Avail-
ability of Systems Tolerant to Stealth Intrusion. In 2011 5th Latin-American Sym-
posium on Dependable Computing. 35–44.

[6] N. Ashra�, O. Berman, and M. Cutler. 1994. Optimal Design of Large Software-
Systems Using N-Version Programming. 43, 2 (June 1994), 344–350.

[7] A. Avizienis. 1985. The N-Version Approach to Fault-Tolerant Software. IEEE
Transactions on Software Engineering 11 (Dec. 1985), 1491–1501.

[8] S. Axelsson. 2000. The base-rate fallacy and the di�culty of intrusion detection.
ACM Transactions on Information and System Security 3 (Aug. 2000), 186–205.
Issue 3.

[9] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. 1999. Balanced Allocations. SIAM
Journal of Computing 29, 1 (1999), 180–200.

[10] Amy Babay, Thomas Tantillo, Trevor Aron, Marco Platania, and Yair Amir. 2018.
Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid. In
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 255–266.

[11] A. Benameur, N. S. Evans, and M. C. Elder. 2013. Cloud resiliency and security
via diversi�ed replica execution and monitoring. In 6th International Symposium
on Resilient Control Systems.

[12] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 158–168.

[13] D. Bruschi, L. Cavallaro, and A. Lanzi. 2007. Diversi�ed Process Replicas for
Defeating Memory Error Exploits. In 3rd IEEE International Workshop Information
Assurance. 434–441.

[14] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault tolerance. In
Proceedings of the third symposium on Operating systems design and implementa-
tion (OSDI), Vol. 99. 173–186.

[15] L. Chen and A. Avizienis. 1978. N-version programming: A Fault Tolerance
Approach to Reliability of Software Operation. In 8th International Conference on
Fault-Tolerant Computing. 3–9.

[16] B.-G. Chun, P. Maniatis, and S. Shenker. 2008. Diverse Replication for Single-
Machine Byzantine-Fault Tolerance. In USENIX Annual Technical Conference.
287–292.

[17] V. Chvátal. 1979. The tail of the hypergeometric distribution. Discrete Mathematics
25, 3 (1979), 285–287.

[18] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, and J. Hiser. 2006. N-Variant Systems – A Secretless Framework for
Security through Diversity. In USENIX Security Symposium.

[19] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In Proceedings of
the IEEE Symposium on Security and Privacy. 763–780.

[20] Firecracker. 2018. (2018). https://github.com/�recracker-microvm/�recracker
[21] FireEye. 2018. M-Trends 2018: The Trends Behind Today’s Breaches and Cyber

Attacks. (2018). https://www.�reeye.com/content/dam/collateral/en/mtrends-
2018.pdf

[22] Lukas Fittl. 2018. libpg_query. (2018). https://github.com/l�ttl/libpg_query
[23] D. Gao, M. K. Reiter, and D. Song. 2009. Beyond Output Voting: Detecting

Compromised Replicas UsingHMM-Based Behavioral Distance. IEEE Transactions
on Dependable and Secure Computing 6, 2 (2009), 96–110.

[24] Andrei Homescu, Todd Jackson, Stephen Crane, Stefen Brunthaler, Per Larsen,
and Michael Franz. 2017. Large-Scale Automated Software Diversity-Program
Evolution Redux. IEEE Transactions on Dependable and Secure Computing 14, 2
(March-April 2017), 158–171.

[25] P. Hosek and C. Cadar. 2015. VARAN the Unbelievable: An E�cient N-version
Execution Framework. In 20th International Conference on Architectural Support
for Programming Languages and Operating Systems.

[26] Y. Huang, D. Arsenault, and A. Sood. 1995. Software Rejuvenation: Analysis, Mod-
ule and Application. In 25th International Symposium on Fault Tolerant Computing.
381–390.

[27] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems (July

1982), 382–401.
[28] F. Machida, D. Kim, and K. S. Trivedi. 2010. Modeling and Analysis of Software

Rejuvenation in a Server Virtualized System. In 2nd International Workshop on
Software Aging and Rejuvenation.

[29] J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. 2002. The Design and
Implementation of an Intrusion Tolerant System. In 32nd IEEE/IFIP International
Conference on Dependable Systems and Networks. 258–290.

[30] A. Rezaei and M. Shari�. 2010. Rejuvenating High Available Virtualized Systems.
In 5th International Conference on Availability Reliability and Security.

[31] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. 2001. BASE: Using
Abstraction to Improve Fault Tolerance. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP). ACM, 15–28.

[32] Babak Salamat, Andreas Gal, and Michael Franz. 2008. Reverse stack execu-
tion in a multi-variant execution environment. In In Workshop on Compiler and
Architectural Techniques for Application Reliability and Security.

[33] B. Salamat, T. Jackson, A. Gal, and M. Franz. 2009. Orchestra: Intrusion Detection
Using Parallel Execution and Monitoring of Program Variants in User-Space. In
4th ACM European Conference on Computer Systems. 33–46.

[34] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz. 2011. Runtime
Defense against Code Injection Attacks Using Replicated Execution. In IEEE
Transactions on Dependable and Secure Computing, Vol. 8. 588–601.

[35] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves,
and Paulo Verissimo. 2010. Highly Available Intrusion-Tolerant Services with
Proactive-Reactive Recovery. IEEE Transactions on Parallel and Distributed Sys-
tems 21, 4 (April 2010), 452–465.

[36] T. Thein, S. Chi, and J. S. Park. 2008. Improving Fault Tolerance by Virtualization
and Software Rejuvenation. In 2nd Asia International Conference on Modeling &
Simulation.

[37] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009. Wikipedia
Workload Analysis for Decentralized Hosting. Elsevier Computer Networks 53,
11 (July 2009), 1830–1845. http://www.globule.org/publi/WWADH_comnet2009.
html.

[38] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere, Per Larsen,
and Michael Franz. 2017. Taming Parallelism in a Multi-Variant Execution Envi-
ronment. In Proceedings of the Twelfth European Conference on Computer Systems.
270–285.

[39] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2016. Cloning Your Gadgets:
Complete ROP Attack Immunity with Multi-Variant Execution. IEEE Transactions
on Dependable and Secure Computing 13, 4 (2016), 437–450.

[40] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per Larsen,
Bjorn De Sutter, and Michael Franz. 2016. Secure and E�cient Application
Monitoring and Replication. In Proceedings of the 2016 USENIX Conference on
Usenix Annual Technical Conference. 167–179.

[41] S. Volckaert, B. De Sutter, T. De Baets, and K. De Bosschere. 2012. GHUMVEE:
E�cient, E�ective, and Flexible Replication. In 5th International Conference on
Foundations and Practice of Security.

[42] E. Weatherwax, J. Knight, and A. Nguyen-Tuong. 2009. A model of secretless secu-
rity in N-variant systems. In 39th IEEE/IFIP International Conference on Dependable
Systems Networks.

[43] Ashton Webster, Ryan Eckenrod, and James Purtilo. 2018. Fast and Service-
preserving Recovery from Malware Infections Using CRIU. In Proceedings of the
27th USENIX Conference on Security Symposium. 1199–1211.

[44] K. Xu, D. Yao, B. Ryder, and K. Tian. 2015. Probabilistic Program Modeling for
High-Precision Anomaly Classi�cation. In 28th IEEE Computer Security Founda-
tions Symposium.

