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ABSTRACT

We present HotStuff, a leader-based Byzantine fault-tolerant repli-

cation protocol for the partially synchronous model. Once network

communication becomes synchronous, HotStuff enables a correct

leader to drive the protocol to consensus at the pace of actual (vs.

maximum) network delay—a property called responsiveness—and

with communication complexity that is linear in the number of

replicas. To our knowledge, HotStuff is the first partially synchro-

nous BFT replication protocol exhibiting these combined properties.

Its simplicity enables it to be further pipelined and simplified into

a practical, concise protocol for building large-scale replication

services.

CCS CONCEPTS

• Software and its engineering→ Software fault tolerance; •

Security and privacy → Distributed systems security.
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1 INTRODUCTION

Byzantine fault tolerance (BFT) refers to the ability of a computing

system to endure arbitrary (i.e., Byzantine) failures of its compo-

nents while taking actions critical to the system’s operation. In

the context of state machine replication (SMR) [35, 47], the system

as a whole provides a replicated service whose state is mirrored

across n deterministic replicas. A BFT SMR protocol is used to en-

sure that non-faulty replicas agree on an order of execution for

client-initiated service commands, despite the efforts of f Byzantine
replicas. This, in turn, ensures that the n− f non-faulty replicas will

run commands identically and so produce the same response for

each command. As is common, we are concerned here with the par-

tially synchronous communication model [25], whereby a known

bound ∆ on message transmission holds after some unknown global
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stabilization time (GST). In this model, n ≥ 3f + 1 is required for

non-faulty replicas to agree on the same commands in the same

order (e.g., [12]) and progress can be ensured deterministically only

after GST [27].

When BFT SMR protocols were originally conceived, a typical

target system size was n = 4 or n = 7, deployed on a local-area net-

work. However, the renewed interest in Byzantine fault-tolerance

brought about by its application to blockchains now demands solu-

tions that can scale to much larger n. In contrast to permissionless

blockchains such as the one that supports Bitcoin, for example,

so-called permissioned blockchains involve a fixed set of replicas

that collectively maintain an ordered ledger of commands or, in

other words, that support SMR. Despite their permissioned nature,

numbers of replicas in the hundreds or even thousands are envi-

sioned (e.g., [30, 42]). Additionally, their deployment to wide-area

networks requires setting ∆ to accommodate higher variability in

communication delays.

The scaling challenge. Since the introduction of PBFT [20], the

first practical BFT replication solution in the partial synchrony

model, numerous BFT solutions were built around its core two-

phase paradigm. The practical aspect is that a stable leader can drive

a consensus decision in just two rounds of message exchanges. The

first phase guarantees proposal uniqueness through the formation

of a quorum certificate (QC) consisting of (n− f ) votes. The second
phase guarantees that the next leader can convince replicas to vote

for a safe proposal.

The algorithm for a new leader to collect information and pro-

pose it to replicas—called a view-change—is the epicenter of replica-

tion. Unfortunately, view-change based on the two-phase paradigm

is far from simple [38], is bug-prone [4], and incurs a significant

communication penalty for even moderate system sizes. It requires

the new leader to relay information from (n − f ) replicas, each re-

porting its own highest known QC. Even counting just authentica-

tors (digital signatures or message authentication codes), conveying

a new proposal has a communication footprint of O(n3) authenti-
cators in PBFT, and variants that combine multiple authenticators

into one via threshold digital signatures (e.g., [18, 30]) still send

O(n2) authenticators. The total number of authenticators transmit-

ted if O(n) view-changes occur before a single consensus decision
is reached is O(n4) in PBFT, and even with threshold signatures

is O(n3). This scaling challenge plagues not only PBFT, but many

other protocols developed since then, e.g., Prime [9], Zyzzyva [34],

Upright [22], BFT-SMaRt [13], 700BFT [11], and SBFT [30].

HotStuff revolves around a three-phase core, allowing a new

leader to simply pick the highest QC it knows of. It introduces

a second phase that allows replicas to “change their mind” after

voting in the phase, without requiring a leader proof at all. This

alleviates the above complexity, and at the same time considerably

simplifies the leader replacement protocol. Last, having (almost)
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canonized all the phases, it is very easy to pipeline HotStuff, and to

frequently rotate leaders.

To our knowledge, only BFT protocols in the blockchain arena

like Tendermint [15, 16] and Casper [17] follow such a simple leader

regime. However, these systems are built around a synchronous

core, wherein proposals are made in pre-determined intervals that

must accommodate the worst-case time it takes to propagate mes-

sages over a wide-area peer-to-peer gossip network. In doing so,

they forego a hallmark of most practical BFT SMR solutions (in-

cluding those listed above), namely optimistic responsiveness [42].

Informally, responsiveness requires that a non-faulty leader, once

designated, can drive the protocol to consensus in time depending

only on the actual message delays, independent of any known up-

per bound on message transmission delays [10]. More appropriate

for our model is optimistic responsiveness, which requires respon-

siveness only in beneficial (and hopefully common) circumstances—

here, after GST is reached. Optimistic or not, responsiveness is

precluded with designs such as Tendermint/Casper. The crux of

the difficulty is that there may exist an honest replica that has the

highest QC, but the leader does not know about it. One can build

scenarios where this prevents progress ad infinitum (see Section 4.4

for a detailed liveless scenario). Indeed, failing to incorporate nec-

essary delays at crucial protocol steps can result in losing liveness

outright, as has been reported in several existing deployments, e.g.,

see [2, 3, 19].

Our contributions. To our knowledge, we present the first BFT

SMR protocol, called HotStuff, to achieve the following two proper-

ties:

• Linear View Change: After GST, any correct leader, once

designated, sends only O(n) authenticators to drive a con-

sensus decision. This includes the case where a leader is

replaced. Consequently, communication costs to reach con-

sensus after GST is O(n2) authenticators in the worst case

of cascading leader failures.

• Optimistic Responsiveness: After GST, any correct leader,

once designated, needs to wait just for the first n − f re-

sponses to guarantee that it can create a proposal that will

make progress. This includes the case where a leader is re-

placed.

Another feature of HotStuff is that the costs for a new leader

to drive the protocol to consensus is no greater than that for the

current leader. As such, HotStuff supports frequent succession of

leaders, which has been argued is useful in blockchain contexts for

ensuring chain quality [28].

HotStuff achieves these properties by adding another phase to

each view, a small price to latency in return for considerably simpli-

fying the leader replacement protocol. This exchange incurs only

the actual network delays, which are typically far smaller than ∆ in

practice. As such, we expect this added latency to be much smaller

than that incurred by previous protocols that forgo responsive-

ness to achieve linear view-change. Furthermore, throughput is not

affected due to the efficient pipeline we introduce in Section 5.

HotStuff has the additional benefit of being remarkably simple.

Safety is specified via voting and commit rules over graphs of nodes.

Themechanisms needed to achieve liveness are encapsulatedwithin

a Pacemaker, cleanly separated from the mechanisms needed for

safety (Section 6).

2 RELATEDWORK

Reaching consensus in face of Byzantine failures was formulated

as the Byzantine Generals Problem by Lamport et al. [37], who

also coined the term “Byzantine failures”. The first synchronous

solution was given by Pease et al. [43], and later improved by Dolev

and Strong [24]. The improved protocol has O(n3) communication

complexity, which was shown optimal by Dolev and Reischuk [23].

A leader-based synchronous protocol that uses randomness was

given by Katz and Koo [32], showing an expected constant-round

solution with (n − 1)/2 resilience.

Meanwhile, in the asynchronous settings, Fischer et al. [27]

showed that the problem is unsolvable deterministically in asyn-

chronous setting in face of a single failure. Furthermore, an (n−1)/3
resilience bound for any asynchronous solution was proven by Ben-

Or [12]. Two approaches were devised to circumvent the impossibil-

ity. One relies on randomness, initially shown by Ben-Or [12], using

independently random coin flips by processes until they happen

to converge to consensus. Later works used cryptographic meth-

ods to share an unpredictable coin and drive complexities down to

constant expected rounds, and O(n3) communication [18].

The second approach relies on partial synchrony, first shown by

Dwork, Lynch, and Stockmeyer (DLS) [25]. This protocol preserves

safety during asynchronous periods, and after the system becomes

synchronous, DLS guarantees termination. Once synchrony is main-

tained, DLS incursO(n4) total communication andO(n) rounds per
decision.

State machine replication relies on consensus at its core to order

client requests so that correct replicas execute them in this order.

The recurring need for consensus in SMR led Lamport to devise

Paxos [36], a protocol that operates an efficient pipeline in which a

stable leader drives decisions with linear communication and one

round-trip. A similar emphasis led Castro and Liskov [20, 21] to

develop an efficient leader-based Byzantine SMR protocol named

PBFT, whose stable leader requires O(n2) communication and two

round-trips per decision, and the leader replacement protocol incurs

O(n3) communication. PBFT has been deployed in several systems,

including BFT-SMaRt [13]. Kotla et al. introduced an optimistic

linear path into PBFT in a protocol named Zyzzyva [34], which was

utilized in several systems, e.g., Upright [22] and Byzcoin [33]. The

optimistic path has linear complexity, while the leader replacement

protocol remains O(n3). Abraham et al. [4] later exposed a safety

violation in Zyzzyva, and presented fixes [5, 30]. On the other hand,

to also reduce the complexity of the protocol itself, Song et al. pro-

posed Bosco [49], a simple one-step protocol with low latency on

the optimistic path, requiring 5f + 1 replicas. SBFT [30] introduces

an O(n2) communication view-change protocol that supports a

stable leader protocol with optimistically linear, one round-trip

decisions. It reduces the communication complexity by harnessing

two methods: a collector-based communication paradigm by Re-

iter [45], and signature combining via threshold cryptography on

protocol votes by Cachin et al. [18].

A leader-based Byzantine SMR protocol that employs random-

ization was presented by Ramasamy et al. [44], and a leaderless
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Protocol

Authenticator complexity

Responsiveness

Correct leader Leader failure (view-change) f leader failures

DLS [25] O (n4) O (n4) O (n4)

PBFT [20] O (n2) O (n3) O (f n3) ✓
SBFT [30] O (n) O (n2) O (f n2) ✓
Tendermint [15] / Casper [17] O (n2) O (n2) O (f n2)

Tendermint
*
/ Casper

* O (n) O (n) O (f n)
HotStuff O (n) O (n) O (f n) !

*
Signatures can be combined using threshold signatures, though this optimization is not mentioned in their original works.

Table 1: Performance of selected protocols after GST.

variant named HoneyBadgerBFT was developed by Miller et al. [39].

At their core, these randomized Byzantine solutions employ ran-

domized asynchronous Byzantine consensus, whose best known

communication complexity was O(n3) (see above), amortizing the

cost via batching. However, most recently, based on the idea in

this HotStuff paper, a parallel submission to PODC’19 [8] further

improves the communication complexity to O(n2).
Bitcoin’s core is a protocol known as Nakamoto Consensus [40],

a synchronous protocol with only probabilistic safety guarantee and

no finality (see analysis in [6, 28, 41]). It operates in a permissionless

model where participants are unknown, and resilience is kept via

Proof-of-Work. As described above, recent blockchain solutions

hybridize Proof-of-Work solutions with classical BFT solutions in

various ways [7, 17, 26, 29, 31, 33, 42]. The need to address rotating

leaders in these hybrid solutions and others provide the motivation

behind HotStuff.

3 MODEL

We consider a system consisting of a fixed set of n = 3f +1 replicas,
indexed by i ∈ [n] where [n] = {1, . . . ,n}. A set F ⊂ [n] of up
to f = |F | replicas are Byzantine faulty, and the remaining ones

are correct. We will often refer to the Byzantine replicas as being

coordinated by an adversary, which learns all internal state held by

these replicas (including their cryptographic keys, see below).

Network communication is point-to-point, authenticated and

reliable: one correct replica receives a message from another correct

replica if and only if the latter sent that message to the former.When

we refer to a “broadcast”, it involves the broadcaster, if correct, send-

ing the same point-to-point messages to all replicas, including itself.

We adopt the partial synchrony model of Dwork et al. [25], where

there is a known bound ∆ and an unknown Global Stabilization

Time (GST), such that after GST, all transmissions between two cor-

rect replicas arrive within time ∆. Our protocol will ensure safety
always, and will guarantee progress within a bounded duration

after GST. (Guaranteeing progress before GST is impossible [27].)

In practice, our protocol will guarantee progress if the system re-

mains stable (i.e., if messages arrive within ∆ time) for sufficiently

long after GST, though assuming that it does so forever simplifies

discussion.

Cryptographic primitives. HotStuffmakes use of threshold sig-

natures [14, 18, 48]. In a (k,n)-threshold signature scheme, there is

a single public key held by all replicas, and each of the n replicas

holds a distinct private key. The i-th replica can use its private key

to contribute a partial signature ρi ← tsigni (m) on messagem. Par-

tial signatures {ρi }i ∈I , where |I | = k and each ρi ← tsigni (m), can
be used to produce a digital signature σ ← tcombine(m, {ρi }i ∈I )
onm. Any other replica can verify the signature using the public

key and the function tverify . We require that if ρi ← tsigni (m)
for each i ∈ I , |I | = k , and if σ ← tcombine(m, {ρi }i ∈I ), then
tverify(m,σ ) returns true. However, given oracle access to oracles

{tsigni (·)}i ∈[n]\F , an adversary who queries tsigni (m) on strictly

fewer thank− f of these oracles has negligible probability of produc-
ing a signature σ for the messagem (i.e., such that tverify(m,σ ) re-
turns true). Throughout this paper, we use a threshold of k = 2f +1.
Again, we will typically leave invocations of tverify implicit in our

protocol descriptions.

We also require a cryptographic hash function h (also called a

message digest function), which maps an arbitrary-length input

to a fixed-length output. The hash function must be collision re-

sistant [46], which informally requires that the probability of an

adversary producing inputsm andm′ such that h(m) = h(m′) is
negligible. As such, h(m) can serve as an identifier for a unique

inputm in the protocol.

Complexity measure. The complexity measure we care about

is authenticator complexity, which specifically is the sum, over all

replicas i ∈ [n], of the number of authenticators received by replica

i in the protocol to reach a consensus decision after GST. (Again,

before GST, a consensus decision might not be reached at all in the

worst case [27].) Here, an authenticator is either a partial signature

or a signature. Authenticator complexity is a useful measure of

communication complexity for several reasons. First, like bit com-

plexity and unlike message complexity, it hides unnecessary details

about the transmission topology. For example, n messages carrying

one authenticator count the same as one message carrying n au-

thenticators. Second, authenticator complexity is better suited than

bit complexity for capturing costs in protocols like ours that reach

consensus repeatedly, where each consensus decision (or each view

proposed on the way to that consensus decision) is identified by a

monotonically increasing counter. That is, because such a counter

increases indefinitely, the bit complexity of a protocol that sends

such a counter cannot be bounded. Third, since in practice, crypto-

graphic operations to produce or verify digital signatures and to

produce or combine partial signatures are typically the most com-

putationally intensive operations in protocols that use them, the

authenticator complexity provides insight into the computational

burden of the protocol, as well.

4 BASIC HOTSTUFF

HotStuff solves the State Machine Replication (SMR) problem. At

the core of SMR is a protocol for deciding on a growing log of

command requests by clients. A group of state-machine replicas

apply commands in sequence order consistently. A client sends

a command request to all replicas, and waits for responses from

(f + 1) of them. For the most part, we omit the client from the
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discussion, and defer to the standard literature for issues regarding

numbering and de-duplication of client requests.

The Basic HotStuff solution is presented in Algorithm 2. The

protocol works in a succession of views numbered with monoton-

ically increasing view numbers. Each viewNumber has a unique

dedicated leader known to all. Each replica stores a tree of pending

commands as its local data structure. Each tree node contains a

proposed command (or a batch of them), metadata associated with

the protocol, and a parent link. The branch led by a given node

is the path from the node all the way to the tree root by visiting

parent links. During the protocol, a monotonically growing branch

becomes committed. To become committed, the leader of a particu-

lar view proposing the branch must collect votes from a quorum of

(n− f ) replicas in three phases, prepare, pre-commit, and commit.

A key ingredient in the protocol is a collection of (n − f ) votes
over a leader proposal, referred to as a quorum certificate (or “QC” in

short). The QC is associated with a particular node and a view num-

ber. The tcombine utility employs a threshold signature scheme

to generate a representation of (n − f ) signed votes as a single

authenticator.

Below we give an operational description of the protocol logic

by phases, followed by a precise specification in Algorithm 2, and

conclude the section with safety, liveness, and complexity argu-

ments.

4.1 Phases

prepare phase. The protocol for a new leader starts by col-

lecting new-view messages from (n − f ) replicas. The new-view

message is sent by a replica as it transitions into viewNumber (in-

cluding the first view) and carries the highest prepareQC that the

replica received (⊥ if none), as described below.

The leader processes these messages in order to select a branch

that has the highest preceding view in which a prepareQC was

formed. The leader selects the prepareQC with the highest view,

denoted highQC , among thenew-viewmessages. Because highQC
is the highest among (n − f ) replicas, no higher view could have

reached a commit decision. The branch led by highQC .node is

therefore safe.

Collecting new-view messages to select a safe branch may be

omitted by an incumbent leader, who may simply select its own

highest prepareQC as highQC . We defer this optimization to

Section 6 and only describe a single, unified leader protocol in this

section. Note that, different from PBFT-like protocols, including

this step in the leader protocol is straightforward, and it incurs

the same, linear overhead as all the other phases of the protocol,

regardless of the situation.

The leader uses the createLeaf method to extend the tail of

highQC .node with a new proposal. The method creates a new leaf

node as a child and embeds a digest of the parent in the child node.

The leader then sends the new node in a prepare message to all

other replicas. The proposal carries highQC for safety justification.

Upon receiving the prepare message for the current view from

the leader, replica r uses the safeNode predicate to determine

whether to accept it. If it is accepted, the replica sends a prepare

vote with a partial signature (produced by tsignr ) for the proposal
to the leader.

safeNode predicate. The safeNode predicate is a core ingre-

dient of the protocol. It examines a proposal messagem carrying

a QC justification m.justify , and determines whether m.node is

safe to accept. The safety rule to accept a proposal is the branch of

m.node extends from the currently locked node lockedQC .node .
On the other hand, the liveness rule is the replica will accept m
if m.justify has a higher view than the current lockedQC . The

predicate is true as long as either one of two rules holds.

pre-commit phase. When the leader receives (n − f ) prepare
votes for the current proposal curProposal , it combines them into

a prepareQC . The leader broadcasts prepareQC in pre-commit

messages. A replica responds to the leader with pre-commit vote

having a signed digest of the proposal.

commit phase. The commit phase is similar to pre-commit

phase. When the leader receives (n − f ) pre-commit votes, it com-

bines them into a precommitQC and broadcasts it in commit

messages; replicas respond to it with a commit vote. Importantly,

a replica becomes locked on the precommitQC at this point by

setting its lockedQC to precommitQC (Line 25 of Algorithm 2).

This is crucial to guard the safety of the proposal in case it becomes

a consensus decision.

decide phase. When the leader receives (n− f ) commit votes, it
combines them into a commitQC . Once the leader has assembled

a commitQC , it sends it in a decide message to all other replicas.

Upon receiving a decide message, a replica considers the proposal

embodied in the commitQC a committed decision, and executes

the commands in the committed branch. The replica increments

viewNumber and starts the next view.

nextView interrupt. In all phases, a replica waits for amessage

at view viewNumber for a timeout period, determined by an auxil-

iary nextView(viewNumber ) utility. If nextView(viewNumber )
interrupts waiting, the replica also increments viewNumber and

starts the next view.

4.2 Data Structures

Messages. A messagem in the protocol has a fixed set of fields

that are populated using theMsg() utility shown in Algorithm 1.m
is automatically stamped with curView , the sender’s current view

number. Each message has a typem.type ∈ {new-view, prepare,

pre-commit, commit,decide}.m.node contains a proposed node

(the leaf node of a proposed branch). There is an optional field

m.justify . The leader always uses this field to carry the QC for the

different phases. Replicas use it in new-view messages to carry the

highest prepareQC . Each message sent in a replica role contains a

partial signaturem.partialSig by the sender over the tuple ⟨m.type ,
m.viewNumber ,m.node⟩, which is added in the voteMsg() utility.

Quorum certificates. A Quorum Certificate (QC) over a tuple

⟨type, viewNumber ,node⟩ is a data type that combines a collection

of signatures for the same tuple signed by (n − f ) replicas. Given
a QC qc, we use qc.type , qc.viewNumber , qc.node to refer to the

matching fields of the original tuple.

Tree and branches. Each command is wrapped in a node that

additionally contains a parent link which could be a hash digest

of the parent node. We omit the implementation details from the
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pseudocode. During the protocol, a replica delivers a message only

after the branch led by the node is already in its local tree. In practice,

a recipient who falls behind can catch up by fetching missing nodes

from other replicas. For brevity, these details are also omitted from

the pseudocode. Two branches are conflicting if neither one is an

extension of the other. Two nodes are conflicting if the branches

led by them are conflicting.

Bookkeeping variables. A replica uses additional local vari-

ables for bookkeeping the protocol state: (i) a viewNumber , initially
1 and incremented either by finishing a decision or by a nextView

interrupt; (ii) a locked quorum certificate lockedQC , initially ⊥,

storing the highest QC for which a replica voted commit; and (iii) a

prepareQC , initially ⊥, storing the highest QC for which a replica

voted pre-commit. Additionally, in order to incrementally execute

a committed log of commands, the replica maintains the highest

node whose branch has been executed. This is omitted below for

brevity.

4.3 Protocol Specification

The protocol given in Algorithm 2 is described as an iterated view-

by-view loop. In each view, a replica performs phases in succession

based on its role, described as a succession of “as” blocks. A replica

can have more than one role. For example, a leader is also a (normal)

replica. Execution of as blocks across roles can be proceeded con-

currently. The execution of each as block is atomic. A nextView

interrupt aborts all operations in any as block, and jumps to the

“Finally” block.

Algorithm 1 Utilities (for replica r ).

1: function Msg(type , node , qc)
2: m .type ← type
3: m .viewNumber ← curView
4: m .node ← node
5: m .justify ← qc
6: returnm
7: function voteMsg(type , node , qc)
8: m ← Msg(type, node, qc)
9: m .partialSig ← tsignr (⟨m .type,m .viewNumber,m .node ⟩)
10: returnm
11: procedure createLeaf(parent, cmd )
12: b .parent ← parent
13: b .cmd ← cmd
14: return b
15: function QC(V )

16: qc .type ←m .type :m ∈ V
17: qc .viewNumber ←m .viewNumber :m ∈ V
18: qc .node ←m .node :m ∈ V
19: qc .sig ← tcombine(⟨qc .type, qc .viewNumber, qc .node ⟩,

{m .partialSig | m ∈ V })
20: return qc

21: function matchingMsg(m, t, v )
22: return (m .type = t ) ∧ (m .viewNumber = v)
23: function matchingQC(qc, t, v )
24: return (qc .type = t ) ∧ (qc .viewNumber = v)
25: function safeNode(node , qc)
26: return (node extends from lockedQC .node) ∨ // safety rule

27: (qc .viewNumber > lockedQC .viewNumber ) // liveness rule

Algorithm 2 Basic HotStuff protocol (for replica r ).

1: for curView ← 1, 2, 3, . . . do
▷ prepare phase

2: as a leader // r = leader(curView )
// we assume special new-view messages from view 0

3: wait for (n − f ) new-view messages:

M ← {m | matchingMsg(m, new-view, curView−1)}

4: highQC ←

(
argmax
m∈M

{m .justify .viewNumber }

)
.justify

5: curProposal ← createLeaf(highQC .node,
client’s command)

6: broadcastMsg(prepare, curProposal, highQC )

7: as a replica

8: wait for messagem from leader(curView )
m : matchingMsg(m, prepare, curView )

9: if m .node extends fromm .justify .node ∧
safeNode(m .node,m .justify) then

10: send voteMsg(prepare,m .node, ⊥) to leader(curView )

▷ pre-commit phase

11: as a leader

12: wait for (n − f ) votes:
V ← {v | matchingMsg(v, prepare, curView )}

13: prepareQC ← QC(V )
14: broadcastMsg(pre-commit, ⊥, prepareQC )

15: as a replica

16: wait for messagem from leader(curView )
m : matchingQC(m .justify, prepare, curView )

17: prepareQC ←m .justify
18: send to leader(curView )

voteMsg(pre-commit,m .justify .node, ⊥)

▷ commit phase

19: as a leader

20: wait for (n − f ) votes:
V ← {v | matchingMsg(v, pre-commit, curView )}

21: precommitQC ← QC(V )
22: broadcastMsg(commit, ⊥, precommitQC )

23: as a replica

24: wait for messagem from leader(curView )
m : matchingQC(m .justify, pre-commit, curView )

25: lockedQC ←m .justify
26: send to leader(curView )

voteMsg(commit,m .justify .node, ⊥)

▷ decide phase
27: as a leader

28: wait for (n − f ) votes:
V ← {v | matchingMsg(v, commit, curView )}

29: commitQC ← QC(V )
30: broadcastMsg(decide, ⊥, commitQC )

31: as a replica

32: wait for messagem from leader(curView )
m : matchingQC(m .justify, commit, curView )

33: execute new commands throughm .justify .node ,
respond to clients

▷ Finally
34: nextView interrupt: goto this line if nextView(curView ) is

called during “wait for” in any phase

35: sendMsg(new-view, ⊥, prepareQC ) to leader(curView + 1)

4.4 Safety, Liveness, and Complexity

Safety. We first define a quorum certificate qc to be valid if

tverify(⟨qc.type , qc.viewNumber , qc.node⟩, qc.sig) is true.

Lemma 1. For any valid qc1, qc2 in which qc1.type = qc2.type
and qc1.node conflicts with qc2.node , we have qc1.viewNumber ,
qc2.viewNumber .
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Proof. To show a contradiction, suppose qc1.viewNumber =
qc2.viewNumber =v . Because a valid QC can be formed only with

n − f = 2f + 1 votes (i.e., partial signatures) for it, there must be

a correct replica who voted twice in the same phase of v . This is
impossible because the pseudocode allows voting only once for

each phase in each view. □

Theorem 2. Ifw and b are conflicting nodes, then they cannot be

both committed, each by a correct replica.

Proof. We prove this important theorem by contradiction. Let

qc1 denote a valid commitQC (i.e., qc1.type = commit) such

that qc1.node = w , and qc2 denote a valid commitQC such

that qc2.node = b. Denote v1 = qc1.viewNumber and v2 =
qc2.viewNumber . By Lemma 1, v1 , v2. W.l.o.g. assume v1 < v2.

We will now denote by vs the lowest view higher than v1 for

which there is a valid prepareQC , qcs (i.e., qcs .type = prepare)

where qcs .viewNumber = vs , and qcs .node conflicts withw . For-

mally, we define the following predicate for any prepareQC :

E(prepareQC ) B(v1 < prepareQC .viewNumber ≤ v2)

∧ (prepareQC .node conflicts withw).

We can now set the first switching point qcs :

qcs B argmin
prepareQC

{
prepareQC .viewNumber |

prepareQC is valid ∧ E(prepareQC )

}
.

Note that, by assumption such a qcs must exist; for example, qcs
could be the prepareQC formed in view v2.

Of the correct replicas that sent a partial result tsignr (⟨qc1.type ,
qc1.viewNumber , qc1.node⟩), let r be the first that contributed

tsignr (⟨qcs .type , qcs .viewNumber , qcs .node⟩); such an r must

exist since otherwise, one of qc1.sig and qcs .sig could not have

been created. During view v1, replica r updates its lock lockedQC
to a precommitQC onw at Line 25 of Algorithm 2. Due to the min-

imality of vs , the lock that replica r has onw is not changed before

qcs is formed. Otherwise r must have seen some other prepareQC
with lower view because Line 17 comes before Line 25, contradict-

ing to the minimality. Now consider the invocation of safeNode

in the prepare phase of view vs by replica r , with a messagem
carrying m.node = qcs .node . By assumption, m.node conflicts

with lockedQC .node , and so the disjunct at Line 26 of Algorithm 1

is false. Moreover,m.justify .viewNumber > v1 would violate the

minimality of vs , and so the disjunct in Line 27 of Algorithm 1

is also false. Thus, safeNode must return false and r cannot cast
a prepare vote on the conflicting branch in view vs , a contradic-
tion. □

Liveness. There are two functions left undefined in the previous

section: leader and nextView. Their definition will not affect

safety of the protocol, though they do matter to liveness. Before

giving candidate definitions for them, we first show that after GST,

there is a bounded durationTf such that if all correct replicas remain

in view v during Tf and the leader for view v is correct, then a

decision is reached. Below, we say that qc1 and qc2 match if qc1
and qc2 are valid, qc1.node = qc2.node , and qc1.viewNumber =
qc2.viewNumber .

Lemma 3. If a correct replica is locked such that lockedQC =
precommitQC , then at least f + 1 correct replicas voted for some

prepareQC matching lockedQC .

Proof. Suppose replica r is locked on precommitQC . Then,

(n− f ) votes were cast for the matching prepareQC in the prepare

phase (Line 10 of Algorithm 2), out of which at least f + 1 were

from correct replicas. □

Theorem 4. After GST, there exists a bounded time periodTf such

that if all correct replicas remain in view v during Tf and the leader

for view v is correct, then a decision is reached.

Proof. Starting in a new view, the leader collects (n − f ) new-

view messages and calculates its highQC before broadcasting a

preparemesssage. Suppose among all replicas (including the leader

itself), the highest kept lock is lockedQC = precommitQC ∗. By
Lemma 3, we know there are at least f +1 correct replicas that voted
for a prepareQC ∗ matching precommitQC ∗, and have already

sent them to the leader in their new-view messages. Thus, the

leader must learn a matching prepareQC ∗ in at least one of these

new-view messages and use it as highQC in its prepare message.

By the assumption, all correct replicas are synchronized in their

view and the leader is non-faulty. Therefore, all correct replicas will

vote in the prepare phase, since in safeNode, the condition on

Line 27 of Algorithm 1 is satisfied (even if the node in the message

conflicts with a replica’s stale lockedQC .node , and so Line 26 is

not). Then, after the leader assembles a valid prepareQC for this

view, all replicas will vote in all the following phases, leading to

a new decision. After GST, the duration Tf for these phases to

complete is of bounded length.

The protocol is Optimistically Responsive because there is no

explicit “wait-for-∆” step, and the logical disjunction in safeNode

is used to override a stale lock with the help of the three-phase

paradigm. □

We now provide simple constructions for leader and nextView

that suffice to ensure that after GST, eventually a view will be

reached in which the leader is correct and all correct replicas re-

main in this view for Tf time. It suffices for leader to return some

deterministic mapping from view number to a replica, eventually

rotating through all replicas. A possible solution for nextView is to

utilize an exponential back-off mechanism that maintains a timeout

interval. Then a timer is set upon entering each view. When the

timer goes off without making any decision, the replica doubles the

interval and calls nextView to advance the view. Since the interval

is doubled at each time, the waiting intervals of all correct replicas

will eventually have at least Tf overlap in common, during which

the leader could drive a decision.

Livelessness with two-phases. We now briefly demonstrate an

infinite non-deciding scenario for a “two-phase” HotStuff. This ex-

plains the necessity for introducing a synchronous delay in Casper

and Tendermint, and hence for abandoning (Optimistic) Respon-

siveness.

In the two-phase HotStuff variant, we omit the pre-commit

phase and proceed directly to commit. A replica becomes locked

when it votes on a prepareQC . Suppose, in view v , a leader pro-
poses b. It completes the prepare phase, and some replica rv votes



HotStuff: BFT Consensus with Linearity and Responsiveness PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

for the prepareQC , say qc, such that qc.node = b. Hence, rv be-

comes locked on qc. An asynchronous network scheduling causes

the rest of the replicas to move to view v + 1 without receiving qc.
We now repeat ad infinitum the following single-view transcript.

We start view v + 1 with only rv holding the highest prepareQC
(i.e. qc) in the system. The new leader l collects new-view messages

from 2f + 1 replicas excluding rv . The highest prepareQC among

these, qc ′, has viewv −1 and b ′ = qc ′.node conflicts with b. l then
proposes b ′′ which extends b ′, to which 2f honest replicas respond

with a vote, but rv rejects it because it is locked on qc, b ′′ conflicts
with b and qc ′ is lower than qc. Eventaully, 2f replicas give up

and move to the next view. Just then, a faulty replica responds to

l ’s proposal, l then puts together a prepareQC (v + 1,b ′′) and one

replica, say rv+1 votes for it and becomes locked on it.

Complexity. In each phase of HotStuff, only the leader broad-

casts to all replicas while the replicas respond to the sender once

with a partial signature to certify the vote. In the leader’s message,

the QC consists of a proof of (n − f ) votes collected previously,

which can be encoded by a single threshold signature. In a replica’s

response, the partial signature from that replica is the only au-

thenticator. Therefore, in each phase, there are O(n) authenticators
received in total. As there is a constant number of phases, the overall

complexity per view is O(n).

5 CHAINED HOTSTUFF

It takes three phases for a Basic HotStuff leader to commit a proposal.

These phases are not doing “useful” work except collecting votes

from replicas, and they are all very similar. In Chained HotStuff, we

improve the Basic HotStuff protocol utility while at the same time

considerably simplifying it. The idea is to change the view on every

prepare phase, so each proposal has its own view. This reduces the

number of message types and allows for pipelining of decisions.

A similar approach for message type reduction was suggested in

Casper [1].

More specifically, in Chained HotStuff the votes over a prepare

phase are collected in a view by the leader into a genericQC . Then

the genericQC is relayed to the leader of the next view, essentially

delegating responsibility for the next phase, which would have

been pre-commit, to the next leader. However, the next leader does

not actually carry a pre-commit phase, but instead initiates a new

prepare phase and adds its own proposal. This prepare phase for

viewv +1 simultaneously serves as the pre-commit phase for view

v . The prepare phase for view v + 2 simultaneously serves as the

pre-commit phase for viewv +1 and as the commit phase for view

v . This is possible because all the phases have identical structure.
The pipeline of Basic HotStuff protocol phases embedded in a

chain of Chained HotStuff proposals is depicted in Figure 1. Views

v1,v2,v3 of Chained HotStuff serve as the prepare, pre-commit,

and commit Basic HotStuff phases for cmd1 proposed in v1. This
command becomes committed by the end of v4. Views v2,v3,v4
serve as the three Basic HotStuff phases for cmd2 proposed in

v2, and it becomes committed by the end of v5. Additional pro-
posals generated in these phases continue the pipeline similarly,

and are denoted by dashed boxes. In Figure 1, a single arrow de-

notes the b .parent field for a node b, and a double arrow denotes

b .justify .node .

Hence, there are only two types of messages in Chained HotStuff,

a new-view message and generic-phase generic message. The

generic QC functions in all logically pipelined phases. We next

explain the mechanisms in the pipeline to take care of locking and

committing, which occur only in the commit and decide phases of

Basic HotStuff.

Dummy nodes. The genericQC used by a leader in some view

viewNumber may not directly reference the proposal of the pre-

ceding view (viewNumber − 1). The reason is that the leader of a

preceding view fails to obtain a QC, either because there are con-

flicting proposals, or due to a benign crash. To simplify the tree

structure, createLeaf extends genericQC .node with blank nodes

up to the height (the number of parent links on a node’s branch)

of the proposing view, so view-numbers are equated with node

heights. As a result, the QC embedded in a node b may not refer

to its parent, i.e., b .justify .node may not equal b .parent (the last
node in Figure 2).

One-Chain, Two-Chain, and Three-Chain. When a node b∗

carries a QC that refers to a direct parent, i.e., b∗.justify .node =
b∗.parent , we say that it forms a One-Chain. Denote by b ′′ =
b∗.justify .node . Node b∗ forms a Two-Chain, if in addition to form-

ing a One-Chain, b ′′.justify .node = b ′′.parent . It forms a Three-

Chain, if b ′′ forms a Two-Chain.

Looking at chain b = b ′.justify .node , b ′ = b ′′.justify .node ,
b ′′ = b∗.justify .node , ancestry gaps might occur at any one of the

nodes. These situations are similar to a leader of Basic HotStuff

failing to complete any one of three phases, and getting interrupted

to the next view by nextView.

If b∗ forms a One-Chain, the prepare phase of b ′′ has suc-

ceeded. Hence, when a replica votes for b∗, it should remember

genericQC ← b∗.justify . We remark that it is safe to update

genericQC even when a One-Chain is not direct, so long as it is

higher than the current genericQC . In the implementation code

described in Section 6, we indeed update genericQC in this case.

If b∗ forms a Two-Chain, then the pre-commit phase of b ′

has succeeded. The replica should therefore update lockedQC ←
b ′′.justify . Again, we remark that the lock can be updated even

when a Two-Chain is not direct—safety will not break—and indeed,

this is given in the implementation code in Section 6.

Finally, if b∗ forms a Three-Chain, the commit phase of b has

succeeded, and b becomes a committed decision.

Algorithm 3 shows the pseudocode for Chained HotStuff. The

proof of safety given by [50] is similar to the one for Basic HotStuff.

We require the QC in a valid node refers to its ancestor. For brevity,

we assume the constraint always holds and omit checking in the

code.

Algorithm 3 Chained HotStuff protocol.

1: procedure createLeaf(parent, cmd, qc)
2: b .parent ← branch extending with blanks from parent to height

curView ; b .cmd ← cmd ; b .justify ← qc; return b

3: for curView ← 1, 2, 3, . . . do
▷ generic phase

4: as a leader // r = leader(curView )
5: wait for (n − f ) new-view messages:

M ← {m | matchingMsg(m, new-view, curView−1)}
//M includes the previous leader new-viewmessage, if received
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Figure 1: Chained HotStuff is a pipelined Basic HotStuff where a QC can serve in different phases simultaneously.

· · · · · ·cmd QC cmd QC cmd QC cmd QC cmd

b : v3 b ′ : v4 b ′′ : v5 b∗ : v6 v8

Figure 2: The nodes at views v4,v5,v6 form a Three-Chain. The node at view v8 does not make a valid One-Chain in Chained

HotStuff (but it is a valid One-Chain after relaxation in the algorithm of Section 6).

// while waiting in previous view

6: genericQC ←

(
argmax
m∈M

{m .justify .viewNumber }

)
.justify

7: curProposal ← createLeaf(genericQC .node,
client’s command, genericQC )

// prepare phase (leader-half)

8: broadcastMsg(generic, curProposal, ⊥)

9: as a replica

10: wait for messagem from leader(curView )
m : matchingMsg(m, generic, curView )

11: b∗ ←m .node ; b′′ ← b∗ .justify .node ;
b′ ← b′′.justify .node ; b ← b′.justify .node

12: if safeNode(b∗, b∗ .justify) then
13: send voteMsg(generic, b∗, ⊥) to leader(curView )

// start pre-commit phase on b∗’s parent
14: if b∗ .parent = b′′ then
15: genericQC ← b∗ .justify

// start commit phase on b∗’s grandparent
16: if (b∗ .parent = b′′) ∧ (b′′.parent = b′) then
17: lockedQC ← b′′.justify

// start decide phase on b∗’s great-grandparent
18: if (b∗ .parent = b′′) ∧ (b′′.parent = b′) ∧

(b′.parent = b) then
19: execute new commands through b , respond to clients

20: as a leader // pre-commit phase (leader-half)

21: wait for (n − f ) votes:
V ← {v | matchingMsg(v, generic, curView )}

22: genericQC ← QC(V )
// for liveness, the message here counts as (n − f ) at Line 5

23: as the next leader

24: wait for messagem from leader(curView )
m : matchingMsg(m, new-view, curView )

▷ Finally
25: nextView interrupt: goto this line if nextView(curView ) is

called during “wait for” in any phase

26: sendMsg(new-view, ⊥, genericQC ) to leader(curView + 1)

6 IMPLEMENTATION

HotStuff is a practical protocol for building efficient SMR systems.

Because of its simplicity, we can easily turn Algorithm 3 into an

event-driven-style specification that is almost like the code skeleton

for a prototype implementation.

As shown in Algorithm 4, the code is further simplified and gen-

eralized by extracting the liveness mechanism from the body into a

module named Pacemaker. Instead of the next leader always waiting

for a genericQC at the end of the generic phase before starting

its reign, this logic is delegated to the Pacemaker. A stable leader

can skip this step and streamline proposals across multiple heights.

Additionally, we relax the direct parent constraint for maintaining

the highest genericQC and lockedQC , while still preserving the

requirement that the QC in a valid node always refers to its ancestor.

The proof of correctness is similar to Chained HotStuff and we also

defer it to the appendix of [50].

Data structures. Each replica u keeps track of the following

main state variables:

V [·] mapping from a node to its votes.

vheight height of last voted node.

block locked node (similar to lockedQC ).

bexec last executed node.

qchigh highest known QC (similar to genericQC ) kept by

a Pacemaker.

bleaf leaf node kept by a Pacemaker.

It also keeps a constant b0, the same genesis node known by all cor-

rect replicas. To bootstrap, b0 contains a hard-coded QC for itself,

block ,bexec ,bleaf are all initialized to b0, and qchigh contains the

QC for b0.

Pacemaker. APacemaker is amechanism that guarantees progress

after GST. It achieves this through two ingredients.

The first one is “synchronization”, bringing all correct replicas,

and a unique leader, into a common height for a sufficiently long

period. The usual synchronization mechanism in the literature [15,

20, 25] is for replicas to increase the count of ∆’s they spend at

larger heights, until progress is being made. A common way to

deterministically elect a leader is to use a rotating leader scheme
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in which all correct replicas keep a predefined leader schedule and

rotate to the next one when the leader is demoted.

Second, a Pacemaker needs to provide the leader with a way

to choose a proposal that will be supported by correct replicas.

As shown in Algorithm 5, after a view change, in onReceive-

NewView, the new leader collects new-view messages sent by

replicas through onNextSyncView to discover the highest QC to

satisfy the second part of the condition in onReceiveProposal for

liveness (Line 18 of Algorithm 4). During the same view, however,

the incumbent leader will chain the new node to the end of the

leaf last proposed by itself, where no new-view message is needed.

Based on some application-specific heuristics (to wait until the pre-

viously proposed node gets a QC, for example), the current leader

invokes onBeat to propose a new node carrying the command to

be executed.

It is worth noting that even if a bad Pacemaker invokesonPropose

arbitrarily, or selects a parent and a QC capriciously, and against any

scheduling delays, safety is always guaranteed. Therefore, safety

guaranteed byAlgorithm 4 alone is entirely decoupled from liveness

by any potential instantiation of Algorithm 5.

Algorithm 4 Event-driven HotStuff (for replica u).

1: procedure createLeaf(parent, cmd, qc, height )
2: b .parent ← parent ; b .cmd ← cmd ;

3: b .justify ← qc; b .height ← height ; return b
4: procedure update(b∗)
5: b′′ ← b∗ .justify .node ; b′ ← b′′.justify .node
6: b ← b′.justify .node

// pre-commit phase on b′′

7: updateQCHigh(b∗ .justify)
8: if b′.height > block .height then
9: block ← b′ // commit phase on b′

10: if (b′′.parent = b′) ∧ (b′.parent = b) then
11: onCommit(b)
12: bexec ← b // decide phase on b
13: procedure onCommit(b)
14: if bexec .height < b .height then
15: onCommit(b .parent); execute(b .cmd)

16: procedure onReceiveProposal(Msgv (generic, bnew , ⊥))
17: if bnew .height > vheight ∧ (bnew extends block∨
18: bnew .justify .node .height > block .height) then
19: vheight ← bnew .height
20: send(getLeader(), voteMsgu (generic, bnew , ⊥))
21: update(bnew )

22: procedure onReceiveVote(m = voteMsgv (generic, b, ⊥))
23: if ∃⟨v, σ ′⟩ ∈ V [b] then return // avoid duplicates

24: V [b] ← V [b] ∪ { ⟨v,m .partialSig ⟩ } // collect votes

25: if |V [b] | ≥ n − f then

26: qc ← QC({σ | ⟨v ′, σ ⟩ ∈ V [b]})
27: updateQCHigh(qc)

28: function onPropose(bleaf , cmd, qchigh )

29: bnew ← createLeaf(bleaf , cmd, qchigh, bleaf .height + 1)
// send to all replicas, including u itself

30: broadcast(Msgu (generic, bnew , ⊥))
31: return bnew

Algorithm 5 Code skeleton for a Pacemaker (for replica u).

// We assume Pacemaker in all correct replicas will have synchronized

leadership after GST.

1: function getLeader // . . . specified by the application

2: procedure updateQCHigh(qc′
high

)

3: if qc′
high

.node .height > qchigh .node .height then

4: qchigh ← qc′
high

5: bleaf ← qchigh .node

6: procedure onBeat(cmd )

7: if u = getLeader() then

8: bleaf ← onPropose(bleaf , cmd, qchigh )

9: procedure onNextSyncView

10: sendMsg(new-view, ⊥, qchigh ) to getLeader()

11: procedure onReceiveNewView(Msg(new-view, ⊥, qc′
high

))

12: updateQCHigh(qc′
high

)

Algorithm 6 update replacement for two-phase HotStuff.

1: procedure update(b∗)
2: b′ ← b∗ .justify .node ; b ← b′.justify .node
3: updateQCHigh(b∗ .justify)
4: if b′.height > block .height then block ← b′

5: if (b′.parent = b) then onCommit(b); bexec ← b

Two-phase HotStuff variant. To further demonstrate the flexi-

bility of the HotStuff framework, Algorithm 6 shows the two-phase

variant of HotStuff. Only the update procedure is affected, a Two-

Chain is required for reaching a commit decision, and a One-Chain

determines the lock. As discussed above (Section 4.4), this two-

phase variant loses Optimistic Responsiveness, and is similar to

Tendermint/Casper. The benefit is fewer phases, while liveness

may be addressed by incorporating in Pacemaker a wait based on

maximum network delay.

Evaluation. Due to the space limitation, we defer our evaluation

results to the longer paper [50]. There, we compare our implemen-

tation to BFT-SMaRt [13], a state-of-the-art implementation based

on a two-phase PBFT variant. We show that even though three-

phase HotStuff has an additional phase for its responsiveness and

uses digital signatures universally (where BFT-SMaRt only uses

MACs for votes), it still achieves similar latency, while being able

to outperform BFT-SMaRt in throughput. It also scales better than

BFT-SMaRt.
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