
SBFT: a Scalable and Decentralized Trust
Infrastructure

Guy Golan Gueta (VMware Research) Ittai Abraham (VMware Research) Shelly Grossman (TAU)

Dahlia Malkhi (VMware Research) Benny Pinkas (BIU) Michael K. Reiter (UNC-Chapel Hill)

Dragos-Adrian Seredinschi (EPFL) Orr Tamir (TAU) Alin Tomescu (MIT)

Abstract—SBFT is a state of the art Byzantine fault tolerant
state machine replication system that addresses the challenges
of scalability, decentralization and global geo-replication. SBFT
is optimized for decentralization and is experimentally evaluated
on a deployment of more than 200 active replicas withstanding
a malicious adversary controlling f = 64 replicas.

Our experiments show how the different algorithmic ingre-
dients of SBFT contribute to its performance and scalability.
The results show that SBFT simultaneously provides almost 2x
better throughput and about 1.5x better latency relative to a
highly optimized system that implements the PBFT protocol.

To achieve this performance improvement, SBFT uses a
combination of four ingredients: using collectors and threshold
signatures to reduce communication to linear, using an optimistic
fast path, reducing client communication and utilizing redundant
servers for the fast path.

SBFT is the first system to implement a correct dual-mode view
change protocol that allows to efficiently run either an optimistic
fast path or a fallback slow path without incurring a view change
to switch between modes.

I. INTRODUCTION

Centralized systems often provide good performance, but

have the drawback of being a single point of failure [78].

Economically, centralized systems tend to create monopoly

rents and hamper innovation [31]. The success of decentralized

systems like Bitcoin [64] and Ethereum [81] have spurred

the imagination of many to the significant potential value to

society of systems that decentralize trust in a scalable manner.

While fundamentally permissionless, the economic friction

of buying and then running a Proof-of-Work mining rig entails

inherent economies of scale and induces unfair advantages to

certain geographical and political regions. These effects cause

miners to be strongly incentivized to join a small set of large

mining coalitions [58].

In a 2018 study, Gencer et al. [37] show that contrary to

popular belief, Bitcoin and Ethereum are less decentralized

than previously thought. Their study concludes that for both

Bitcoin and Ethereum, the top < 20 mining coalitions control

over 90% of the mining power. The authors conclude: “These

results show that a Byzantine quorum system of size 20 could

achieve better decentralization than Proof-of-Work mining at a

much lower resource cost”. This comment motivates our study

of BFT replication systems that can scale to many replicas and

are optimized for world-scale wide area networks.

BFT replication is a key ingredient in consortium

blockchains [8], [42]. In addition, large scale BFT de-

ployments are becoming an important component of public

blockchains [21]. There is a growing interest in replacing

or combining the current Proof-of-Work mechanisms with

Byzantine fault tolerant replication [18], [34], [41], [75], [80].

Several recent proposals [4], [38], [45], [62], [66] explore

the idea of building distributed ledgers that elect a committee

(potentially of a few hundreds of nodes) from a large pool of

nodes (potentially thousands or more) and have this smaller

committee run a Byzantine fault tolerant replication protocol.

In all these protocols, it seems that to get a high security

guarantee, the size of the committee needs to be such that it

can tolerate at least tens of malicious nodes.

Scaling BFT replication to tolerate tens of malicious nodes

requires to re-think BFT algorithms and re-engineer them for

high scale. This is the starting point of our work.

A. SBFT: a Scalable Decentralized Trust for Blockchains.

The main contribution of this paper is a BFT system that

is optimized to work over a group of hundreds of replicas

in a world-scale deployment. We evaluate our system, SBFT,

in a world-scale geo-replicated deployment with 209 replicas

withstanding f=64 Byzantine failures. We provide experiments

that show how the different algorithmic ingredients of SBFT

increase its performance and scalability. The results show that

SBFT simultaneously provides almost 2x better throughput

and about 1.5x better latency relative to a highly optimized

system that implements the PBFT [22] protocol.

Indeed SBFT design starts with the PBFT [22] protocol

and then proceeds to add four key design ingredients. Briefly,

these ingredients are: (1) going from PBFT to linear PBFT; (2)

adding a fast path; (3) using cryptography to allow a single

message acknowledgement; (4) adding redundant servers to

improve resilience and performance. We show how each of the

four ingredients improves the performance of SBFT. As we

discuss in detail, each ingredient is related to some previous

work. The main contribution of SBFT is in the novel and

correct combination of these ingredients into a robust system.

Ingredient 1: from PBFT to linear PBFT. Many previ-

ous systems, including PBFT [22], use an all-to-all message

pattern to commit a decision block. A simple way to reduce

an all-to-all communication pattern to a linear communication

pattern is to use a collector. Instead of sending to everyone,

each replica sends to the collector and this collector broadcasts

to everyone. We call this version linear PBFT. By using

threshold signatures [19], [20], [68], [73] one can reduce the

outgoing collector message size from linear to constant.

568

2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-0057-9/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN.2019.00063

Zyzzyva [48] used this pattern to reduce all-to-all com-

munication by pushing the collector duty to clients. SBFT

pushes the collector duty to replicas in a round-robin manner.

Moving the coordination burden to the replicas is more suited

to a blockchain setting where there are potentially many light-

weight clients with limited connectivity. In addition, SBFT

uses threshold signatures to reduce the collector message size

and the total computational overhead of verifying signatures.

SBFT also uses c + 1 collectors (instead of one) to improve

fault tolerance and handle c slow or faulty collectors (where c
is typically a small constant). In our experiments we found that

setting c ≤ f /8 is a good heuristic for up to a few hundreds

of replicas.

Ingredient 2: adding a fast path. As in Zyzzyva [48],

SBFT allows for a faster agreement path in optimistic ex-
ecutions: where all replicas are non-faulty and the network

is synchronous. No system we are aware of correctly incor-

porates a dual-mode that allows to efficiently run either a

fast path or a slow path. Previous systems suggested a dual-

mode protocol, but getting a correct protocol proved trickier

than one thinks [2], [3]. We believe SBFT implements the

first correct and practical dual-mode view change. Refined-

Quorum-Systems [40], a fast single shot Byzantine consensus

protocol, does provide a correct dual-model but its protocol for

obtaining liveness seems to require exponential time computa-

tion in the worst case (and is just single-shot). Azyzzyva [11],

provides a fast path state machine replication protocol and

allows to switch to a slow path, but does not allow running

both a fast path and a slow path concurrently. Switching

between modes in Azyzzyva requires a lengthy view change

protocol. In contrast, SBFT can seamlessly switch between

paths and adjust to network/adversary conditions (without a

view change).

Ingredient 3: reducing client communication from f+1
to 1. Once threshold signatures are used then an obvious

next step is to use them to reduce the number of messages a

client needs to receive and verify. In many previous solutions,

including [14], [22], [48], each client needs to receive at

least f+1=Ω(n) messages, each requiring a different signature

verification for request acknowledgement (where f is the

number of faulty replicas in a system with n = 3 f +1 replicas).

When there are many replicas and many clients, this may add

significant overhead. SBFT adopts the approach of [70], in the

common case, each client needs only one message, containing

a single public-key signature for request acknowledgement.

Using this single message improvement SBFT can support

extremely thin clients and can scale efficiently to support many

clients.

SBFT reduces the per-client linear cost to just one message

by adding a phase that uses an execution collector to aggregate

the execution threshold signatures and send each client a single

message carrying one signature. Just like public blockchains

(Bitcoin and Ethereum), SBFT can use a Merkle tree to

efficiently authenticate information that is read from just one

replica.

SBFT uses Boneh–Lynn–Shacham (BLS) signatures [17]

which have security that is comparable to 2048-bit RSA

signatures but are just 33 bytes long. Furthermore, threshold

signatures [16] are much faster when implemented over BLS

(see Section III).

Ingredient 4: adding redundant servers to improve
resilience and performance. SBFT is safe even if there are

f Byzantine failures, but the standard fast path works only if

all replicas are non-faulty and the system is synchronous. So

even a single slow replica may tilt the system from the fast

path to the slower path. To make the fast path more prevalent,

SBFT allows the fast path to tolerate up to a small number c
(parameter) of crashed or straggler nodes out of n = 3 f +2c+1
replicas. This approach follows the theoretical results that have

been suggested before in the context of single-shot consensus

algorithms [57]. SBFT only falls back to the slower path if

there are more than c faulty replicas.

B. Evaluating SBFT’s scalability.

We implemented SBFT as a scalable BFT engine and

a blockchain that executes EVM smart contracts [81] (see

Section VII). All our experimental evaluation is done in a

setting that withstands f = 64 Byzantine failures in a global

Wide Area Network deployment.

We are not aware of any other permissioned blockchain

system that can be freely used and deployed in a world-scale

WAN with 200 replicas and can withstand f = 64 Byzantine

failures. To create a baseline, we spent several months sig-

nificantly improving, fixing and hardening an existing PBFT

code-base in order to make it reliably work in our experimental

setting. We call this implementation scale optimized PBFT and

experimentally compare it to SBFT.

We first conduct standard key-value benchmark experiments

with synthetic workloads. We start with a scale optimized

PBFT and then show how adding each ingredient helps

improve performance.

While standard key-value benchmark experiments with syn-

thetic workloads are a good way to compare the BFT engine

internals, we realize that real world blockchains like Ethereum

have a very different type of execution workload based on

smart contracts.

We conduct experiments on real world smart contract work-

load in order to measure the performance of a more realistic

blockchain setting. Our goal is not to do a comparison of a

permissioned BFT system against a permissionless proof-of-

work system, this is clearly not a fair comparison. We extracted

roughly 500,000 smart contract executions that were processed

by Ethereum during a two months period. Our experiments

show that in a world-scale geo-replicated deployment with

209 replicas withstanding f=64 Byzantine failures, we obtain

throughput of over 170 smart contract transactions per second

with average latency of 620 milliseconds. Our experiments

show that SBFT simultaneously provides almost 2x better

throughput and about 1.5x better latency relative to a highly

optimized system that implements the PBFT protocol.

We conclude that SBFT is more scalable and decentralized

relative to previous BFT solutions. Relative to state-of-art

proof-of-work systems like Ethereum, SBFT can run the same

smart contracts at a higher throughput, better finality and

latency, and can withstand f = 64 colluding members out

569

of more than 200 replicas. Clearly, Ethereum and other proof-

of-work systems benefit from being an open permissionless

system, while SBFT is a permissioned blockchain system. We

leave the integration of SBFT in a permissionless system for

future work.

Contributions. The main contribution of this paper is a BFT

system that is optimized to work over a group of hundreds

of replicas that can support the execution of modern EVM

smart contract executions in a world-scale geo-distributed

deployment. SBFT obtains its scalability via a combination of

4 algorithmic ingredients: (1) using a collector to obtain linear

communication, (2) adding a fast path with a correct view

change protocol, (3) reducing client communication using col-

lectors and threshold signatures, (4) adding redundant servers

for resilience and performance. Clearly, some aspects of the

the ingredients mentioned above have appeared in some form

in previous work. Nevertheless, SBFT is the first to correctly

weave and implement all these ingredients into a highly

efficient system. Moreover, SBFT is the first deployment that

uses a correct dual-mode view change protocol.

II. SYSTEM MODEL

We assume a standard asynchronous BFT system model

where an adversary can control up to f Byzantine nodes

and can delay any message in the network by any finite

amount (in particular we assume a re-transmit layer and allow

the adversary to drop any given packet a finite number of

times). To obtain liveness and our improved results we also

distinguish two special conditions. We say that the system is

in the synchronous mode, when the adversary can control up

to f Byzantine nodes, but messages between any two non-

faulty nodes have a known bounded delay. Finally we say that

the system is in the common mode, when the adversary only

controls c ≤ f nodes that can only crash or act slow, and

messages between any two non-faulty nodes have a known

bounded delay. This model follows that of Parameterized FaB

Paxos [57].

For n = 3 f + 2c + 1 replicas, SBFT obtains the following

properties:

(1) Safety in the standard asynchronous model (adversary

controlling at most f Byzantine nodes and all network delays).

This means that any two replicas that execute a decision block

for a given sequence number, execute the same decision block.

(2) Liveness in the synchronous mode (adversary controlling

at most f Byzantine nodes). Roughly speaking, liveness means

that client requests return a response.

(3) Linearity in the common mode (adversary controlling

at most a constant c slow/crashed nodes). Linearity means

that in an abstract model where we assume the number of

operations in a block is O(n), the number of clients is also

O(n), and c = O(1) then the amortized cost to commit an

operation is a constant number of constant size messages. In

more practical terms, linearity means that committing each

block takes a linear number of constant size messages and

that each client sends and receives receives just one message

per operation.

III. MODERN CRYPTOGRAPHY

We use threshold signatures, where for a threshold pa-

rameter k, any subset of k from a total of n signers can

collaborate to produce a valid signature on any given message,

but no subset of less than k can do so. Threshold signatures

have proved useful in previous BFT algorithms and systems

(e.g., [6], [7], [20], [73]). Each signer holds a distinct private

signing key that it can use to generate a signature share. We

denote by xi(d) the signature share on digest d by signer i.
Any set J of k valid signature shares {xj(d) | j ∈ J, |J | = k}
on the same digest d can be combined into a single signature

x(d) using a public function, yielding a digital signature x(d).
A verifier can verify this signature using a single public key.

We use threshold signature schemes which are robust, meaning

signers can efficiently filter out invalid signature shares from

malicious participants.

We use a robust threshold signature scheme based on

Boneh–Lynn–Shacham (BLS) signatures [17]. BLS signatures

are built using pairings [43] over elliptic curve groups of

known order. Compared to RSA signatures with the same

security level, BLS signatures are substantially shorter. BLS

requires 33 bytes compared to 256 bytes for 2048-bit RSA.

Creating and combining RSA signature shares via interpo-

lation “in the exponent” requires several expensive opera-

tions [73]. In contrast, BLS threshold signatures [16] allow

straightforward interpolation “in the exponent” with no addi-

tional overhead. Unlike RSA, BLS signature shares support

batch verification, allowing multiple signature shares to be

validated at nearly the same cost of validating only one

signature [16].

We assume a computationally-bounded adversary that can-

not do better than known attacks as of 2019 on the crypto-

graphic hash function SHA256 and on BLS BN-P254 [15]

based signatures. We use a PKI setup between clients and

replicas for authentication.

IV. SERVICE PROPERTIES

SBFT provides a scalable fault tolerant implementation of

a generic replicated service (i.e., a state machine replication
service). On top of this we implement an authenticated key-
value store that uses a Merkle tree interface [61] for data

authentication. On top of this we implement a smart con-

tract layer capable of running EVM byte-code. This layered

architecture allows us in the future to integrate other smart

contract languages by simply connecting them to the generic

authenticated key-value store and allow for better software

reuse.

Generic service. As a generic replication library, SBFT

requires an implementation of the following service interface

to be received as an initialization parameter. The interface

implements any deterministic replicated service with state,

deterministic operations and read-only queries. An execution

val = execute(D, o) modifies state D according to the opera-

tion o and returns an output val. A query val = query(D, q)
returns the value of the query q given state D (but does not

change state D). These operations and queries can perform

arbitrary deterministic computations on the state.

570

The state of the service moves in discrete blocks. Each block

contains a series of requests. We denote by Dj the state of

the service at the end of sequence number j. We denote by

reqj the series of operations of block j, that changes the state

from state Dj−1 to state Dj .
An authenticated key-value store. The basic service we

implement is a key-value store. In order to support efficient

client acknowledgement from one replica, we augment our

key-value store with a data authentication interface. As in

public permissionless blockchains, we use a Merkle tree in-

terface [61] to authenticate data. To provide data authentication

we require an implementation of the following interface: (1)

d = digest(D) returns the Merkle hash root of D as digest.

(2) P = proof (o, l, s,D, val) returns a proof that operation o
was executed as the lth operation in the series of requests in

the decision block whose sequence number is s, whose state

is D and the output of this operation was val. For a key-

value store, proof for a put operation is a Merkle tree proof

that the put operation was conducted as the lth operation in

the requests of sequence number s. For a read only-query q,

we write P = proof (q, s,D, val) and assume all such queries

are executed with respect to Ds (the state D after completing

sequence number s). For a key-value store, proof for a get
operation is a Merkle tree proof that at the state with sequence

number s the required variable has the desired value. (3)

verify(d, o, val, s, l, P) returns true iff P is a valid proof that

o was executed as the lth operation in sequence number s and

the resulting state after this decision block was executed has

a digest of d and val is the return value for operation o (and

similarly verify(d, q, val, s, P) when q is a query). For a key-

value store and a put operation above, the verification is the

Merkle proof verification [61] rooted at the digest d (Merkle

hash root).
A smart contract engine. We build upon the replicated

key-value store a layer capable of executing Ethereum smart

contracts. This layered architecture allows us in the future to

integrate other smart contract languages by simply connecting

them to the generic authenticated key-value store and allow

for better software reuse. The EVM layer consists of two main

components: (1) An implementation of the Ethereum Virtual

Machine (EVM), which is the runtime engine of contracts; (2)

An interface for modeling the two main Ethereum transaction

types (contract creation and contract execution) as operations

in our replicated service. Ethereum contracts are written in a

language called EVM bytecode [81], a Turing-complete stack-

based low-level language, with special commands designed for

the Ethereum platform. The key-value store keeps the state

of the ledger service. In particular, it saves the code of the

contracts and the contracts’ state. The fact that EVM bytecode

is deterministic ensures that the new state digest will be equal

in all non-faulty replicas.

V. SBFT REPLICATION PROTOCOL

We maintain n = 3 f + 2c + 1 replicas where each replica

has a unique identifier in {1, . . . , 3 f + 2c + 1}. A replica with

identifier i stores three secrets σi, τi, πi that are used in the

three threshold signature schemes: σ with threshold (3 f+c+1),

τ with threshold (2 f + c + 1), and π with threshold (f + 1).

We adopt the approach of [22], [65] where replicas move

from one view to another using a view change protocol. In a

view, one replica is a primary and others are backups. The

primary is responsible for initiating decisions on a sequence

of decisions. Unlike PBFT [22], some backup replicas can

have additional roles as Commit collectors and/or Execution

collectors. In a given view and sequence number, c + 1 non-

primary replicas are designated to be C-collectors (Commit

collectors) and c+1 non-primary replicas are designated to be

E-collectors (Execution collectors). These replicas are respon-

sible for collecting threshold signatures, combining them and

disseminating the resulting combined signature. For liveness,

a single correct collector is needed. We use c + 1 collectors

for redundancy in the fast path (inspired by RBFT [10]). This

increases the worst case message complexity to O(cn) = O(n)
when we assume c is a small constant (for n ≈ 200 we set

c = 0, 1, 2, 8 with f = 64). In practice we stagger the collectors,

so in most executions just one collector is active and the others

just monitor in idle.

Roughly speaking, the algorithm works as follows in the

fast path (see Figure 1 for n = 4, f = 1, c = 0):

(1) Clients send operation request to the primary.

(2) The primary gathers client requests, creates a decision

block and forwards this block to the replicas as a pre-prepare
message.

(3) Replicas sign the decision block using their σ (3 f +c+1)

threshold signature and send a sign-share message to the C-

collectors.

(4) Each C-collector gathers the signature shares, and com-

bined them to create a succinct commit proof (full-commit-
proof) for the decision block and sends it back to the replicas.

This single message commit proof has a fixed-size overhead,

contains a single (combined) signature and is sufficient for

replicas to commit.

Steps (2), (3) and (4) require linear message complex-

ity (when c is constant) and replace the quadratic message

exchange of previous solutions. By choosing a different C-

collector group for each decision block, we balance the load

over all replicas.

Once a replica receives a commit proof it commits the

decision block. The replica then starts the execution protocol:
(1) When a replica has finished executing the sequence of

blocks preceding the committed decision block, it executes

the requests in the decision block and signs a digest of the

new state using its π (f + 1) threshold signature, and sends a

sign-state message to the E-collectors.

(2) Each E-collector gathers the signature shares, and creates

a succinct full-execute-proof for the decision block. It then

sends a certificate back to the replicas indicating the state is

durable and a certificate back to the client indicating that its

operation was executed.

This single message has fixed-size overhead, contains a

single signature and is sufficient for acknowledging individual

clients requests.

Steps (1) and (2) provide single-message per-request ac-

knowledgement for each client. All previous solutions required

a linear number of messages per-request acknowledgement

571

for each client. When the number of clients is large this is

a significant advantage.

By choosing a different E-collector group for each decision

block, we spread the overall load of primary leadership, C-

collection, and E-collection, among all the replicas.

Primary

C-Collector

E-Collector

Replica

Client
Request

Pre-prepare Sign-share Full-commit-
Proof

Sign-state

Execute-ack

Full-execute-
proof

Fig. 1. Schematic message flow for n=4, f=1, c=0.

A. The Client

Each client k maintains a strictly monotone timestamp t
and requests an operation o by sending a message 〈“request”,

o, t, k〉 to what it believes is the primary. The primary then

sends the message to all replicas and replicas then engage in

an agreement algorithm.

Previous systems required clients to wait for f + 1 replies

to accept an execution acknowledgment. In our algorithm the

client waits for just a single reply 〈“execute-ack”, s, val,
o, π(d), proof (o, l, s,D, val)〉 from one of the replicas, and

accepts val as the response from executing o by verifying

that proof (o, l, s,D, val) is a proof that o was executed as the

lth operation of the decision block that resulted in the state

whose sequence number is s, the return value of o was val,
the digest of Ds is d. This is done by checking the Merkle

proof verify(d, o, val, s, l, proof (o, l, s,D, val)) = true and that

π(d) is a valid signature for Ds (when o is long we just send

the digest of o).

Upon accepting an execute-ack message, the client marks o
as executed and sets val as its return value.

As in previous protocols, if a client timer expires before

receiving an execute-ack, the client resends the request to all

replicas (and requests a PBFT style f + 1 acknowledgement

path).

B. The Replicas

The state of each replica includes a log of accepted mes-

sages sorted by sequence number, view number and message

type. The state also includes the current view number, the last

stable sequence number ls (see Section V-F), the state of the

service D after applying all the committed requests. We also

use a known constant win that limits the number of outstanding

blocks.

Recall that each replica has an identity i ∈ {1, . . . , n} used to

determine three signatures shares: σi for a 3 f +c+1 threshold

scheme, τi for a 2 f +c+1 threshold scheme, and πi for a f +1
threshold scheme. All messages between replicas are sent via

authenticated point-to-point channels (in practice using TLS

1.2).

As detailed below, replicas can have additional roles of

being a primary (Leader), a C-collector (Commit collector)

or an E-collector (Execution collector).

The primary for a given view is chosen in a round robin

way as a function of view. It also stores a current sequence

number

The C-collectors and E-collector for a given view and

sequence number are chosen as a pseudo-random group (of

size c + 1) from all non-primary replicas, as a function of the

sequence number and view1. For the fall back Linear-PBFT

protocol we always choose the primary as the last collector.

The role of a C-collector is to collect commit messages

and send a (combined) signature back to replicas so they

have a certificate that the block was committed. The role of

an E-collector is to collect execution messages and send a

(combined) signature back to replicas and clients so they all

have a certificate that their request is executed.

C. Fast Path

The fast path protocol is the default mode of execution. It is

guaranteed to make progress when the system is synchronous

and there are at most c crashed/slow replicas.

To commit a new decision block, the primary starts a three

phase protocol: pre-prepare, sign-share, commit-proof. In the

pre-prepare phase, the primary forwards its decision block

to all replicas. In the sign-share phase, each replica i signs

the requests using σi and sends it to the C-collectors. In the

commit-proof phase, each C-collector generates a (combined)

signature of the decision and sends it to all replicas.

Pre-prepare phase: The primary accepts 〈“request”, o, t, k〉
from client k if the operation o passes the static service

authentication and access control rules. Note that this is a state

independent test which can be changed via a reconfiguration

view change.

Upon accepting at least b ≥ batch client messages (or

reaching a timeout) it sets r = (r1, . . . , rb) to be the client

requests block and broadcasts 〈“pre-prepare”, s, v, r〉 to all

3 f + 2c + 1 replicas where s is the current sequence number,

and v is the view number. The parameter batch is set via the

adaptive algorithm described in Section VII.

Sign-share phase: A replica accepts 〈“pre-prepare”, s, v, r〉
from the primary if (1) its view equals v; (2) no previous

“pre-prepare” with the sequence s was accepted for view v;

(3) the sequence number s is between ls and ls + win; (4) r
is a valid series of operations that pass the authentication and

access control requirements.

Upon accepting a pre-prepare message, replica i computes

h = H(s | |v | |r), where H is a cryptographic hash function

(SHA256). It then signs h by computing a verifiable threshold

1Randomly choosing the primary and the collectors to provide resilience
against a more adaptive adversary is doable, but is not part of the current
implementation

572

signature σi(h) and sends 〈“sign-share”, s, v, σi(h)〉 to the set

of C-collectors C-collectors(s, v).
Commit-proof phase: a C-collector for (s, v) accepts a

〈“sign-share”, s, v, σi(h)〉 from a replica i if (1) its view equals

view; (2) no previous “sign-share” with the same sequence s
has been accepted for this view from replica i; (3) the verifiable

threshold signature σi(h) passes the verification.
Upon a C-collector accepting 3 f + c + 1 distinct sign-share

messages it forms a combined signature σ(h), and then sends

〈“full-commit-proof”, s, v, σ(h)〉 to all replicas.
Commit trigger: a replica accepts

〈“full-commit-proof”, s, v, σ(h)〉 if it accepted

〈“pre-prepare”, s, v, r, h〉, where h = H(s | |v | |r) and σ(h)
is a valid signature for h. Upon accepting a full-commit-proof

message, the replica commits r as the requests for sequence

s.

D. Execution and Acknowledgement
The main difference of our execution algorithm from pre-

vious work is the use of threshold signatures and single

client responses. Once a replica has a consecutive sequence

of committed decision blocks it participates in a two phase

protocol: sign-state, execute-proof.
Roughly speaking, in the sign-state phase each replica i

signs its state using πi , its f + 1 threshold signature, and

sends it to the E-collectors. In the execute-proof phase, each

E-collector generates a succinct execution certificate. It then

sends this certificate back to the replicas and also sends each

client a certificate indicating its operation(s) were executed.
Execute trigger and sign state: when all decisions up

to sequence s are executed, and r is the committed request

block for sequence s, then replica i updates its state to Ds by

executing the requests r sequentially on the state Ds−1.
Replica i then updates its digest on the state to

d = digest(Ds), signs d by computing πi(d) and

sends 〈“sign-state”, s, πi(d)〉 to the set of E-collectors

E-collectors(s).
Execute-proof phase: an E-collector for s accepts a

〈“sign-state”, s, πi(d)〉 from a replica i if πi(d) passes the

verification test.
Upon accepting f + 1 sign-state messages, it com-

bines them into a single signature π(d) and sends

〈“full-execute-proof”, s, π(d)〉 to all replicas. Replicas that

receive full-execute-proof messages verify the signature to

accept.
Then the E-collector, for each request o ∈ r at position l

sends to the client k that issued o an execution acknowledge-

ment, 〈“execute-ack”, s, l, val, o, π(d), proof (o, l, s,D, val)〉,
where val is the response to o, proof (o, l, s,D, val) is a proof

that o was executed and val is the response at the state whose

digest is from Ds and π(d) is a signature that the digest of

Ds is d.
The client, accepts 〈“execute-ack”, s, l, val, o, π(d), P〉 if

π(d) is a valid signature and verify(d, o, val, s, l, P) = true.
Upon accepting an execute-ack message the client marks o

as executed and sets val as its return value. If the client timer

expires, then the client re-tries requests and asks for a regular

PBFT style acknowledgement from f + 1 replicas.

E. Linear-PBFT
This is a fall-back protocol that can provide progress when

the fast path cannot make progress. This protocol is an adapta-

tion of PBFT that is optimized to use threshold signatures and

linear communication, avoiding all-to-all communication by

using the primary as collector in the intermediate stage and as

a fallback collector for commitment collection and execution

collection. To guarantee progress when the primary is non-

faulty, we use c + 1 collectors and stagger the collectors so

that the c+1st collector to activate is always the primary. The

worst case communication is O(cn) which is O(n) when c is a

constant (say c = 2). In particular choosing c = 0 for the fall

back protocol would guarantee O(n) messages (one can still

have more collectors in the fast path).
In linear-PBFT, instead of broadcasting messages to all

replicas, we use the primary as a single collector (or use c+1
collectors for a small constant c ≤ 2) to combine the threshold

signatures into a single signature message. This reduces the

number of messages and public key operations to linear, and

makes each message contain just one public-key signature. We

call this operation broadcast-via-collector: each replica sends

its message only to the c+1 collectors, each collector waits to

aggregate a threshold signature and then sends it to all replicas.
Sign-share phase: we modify the sign-share message of

replica i to include both σi(h) (needed for the fast path) and

τi(h) (needed for the Linear PBFT path).
Trigger for Linear-PBFT: A C-collector (including the

primary) that received enough signature shares (via sign-share

messages) to create τ(h) but not to create σ(h) waits for a

timeout to expire before sending a prepare message to all:

〈“prepare”, s, v, τ(h)〉. This timer controls how long to wait

for the fast path before reverting to the PBFT path. We use an

adaptive protocol based on past network profiling to control

this timer.
Prepare phase: Replica i accepts 〈“prepare”, s, v, τ(h)〉 if

(1) its view equals v; (2) no previous “prepare” with sequence

s has been accepted for this view by i; (3) τ(h) passes its

verification. Replica i sends 〈“commit”, s, v, τi(τ(h))〉 to all the

collectors.
PBFT commit-proof phase: A C-collector (including

the primary) that received enough signature shares to cre-

ate τ(τ(h)) sends a full-commit-proof-slow message to all:

〈“full-commit-proof-slow”, s, v, τ(τ(h))〉.
Commit trigger for Linear-PBFT: If a replica

receives 〈“full-commit-proof-slow”, s, v, τ(τ(h))〉 and

〈“pre-prepare”, s, v, r, h〉 it verifies that h = H(s | |v | |r)
then commits r as the decision block at sequence s.

F. Garbage Collection and Checkpoint Protocol
A decision block at sequence s can have three states:

(1) Committed - when at least one non-faulty replica has

committed s; (2) Executed - when at least one non-faulty

replica has committed all blocks from 1 to s; (3) Stable -

when at least f + 1 non-faulty replicas have executed s.
When a decision block at sequence s is stable we can

garbage collect all previous decisions. As in PBFT we pe-

riodically (every win/2 slots) execute a checkpoint protocol

in order to update ls the last stable sequence number.

573

To avoid the overhead of the quadratic PBFT checkpoint

protocol, the second way to update ls is to add the following re-

striction. A replica only participates in a fast path of sequence

s if s is between le and le + (win/4) where le is the last exe-

cuted sequence number. With this restriction, when a replica

commits in the fast path on s it sets ls := max{ls, s−(win/4)}.

G. View Change Protocol

The view change protocol handles the non-trivial com-

plexity of having two commit modes: Fast-Path and Linear-

PBFT. Protocols having two modes like [11], [40], [48], [57]

have to carefully handle cases where both modes provide

a value to adopt and must explicitly choose the right one.

SBFT implements a new view change protocol that maintains

both safety and liveness while handling the challenges of two

concurrent modes. SBFT’s view change has been carefully

implemented, rigorously analyzed and tested.

View change trigger: a replica triggers a view change when

a timer expires or if it receives a proof that the primary is faulty

(either via a publicly verifiable contradiction or when f + 1
replicas complain).

View-change phase: Each replica i maintains a variable ls
which is the last stable sequence number. It prepares values

xls, xls+1, . . . , xls+win as follows. Set xls = π(dls) to be the signed

digest on the state whose sequence is ls. For each ls < j ≤
ls + win set xj = (lmj, f mj) to be a pair of values as follows:

Set lmj to be τ(τ(h j)) if a full-commit-proof-slow was

accepted for sequence j; otherwise set lmj to be (τ(h j), vj)
where vj is the highest view for sequence j for which 2 f +c+1
prepares were accepted with hash h j in view vj ; otherwise set

lmj := “no commit“.

Set f mj to be σ(h j) if a full-commit-proof was accepted

for sequence j; otherwise set f mj to be (σi(h j), vj) where vj
is the highest view for sequence j for which a pre-prepare

was accepted with hash h j at view vj ; otherwise set f mj :=
“no pre-prepare”.

Replica i sends to the new primary of view v + 1 the

message 〈“view-change”, v, ls, xls, xls+1, . . . , xls+win〉 where v is

the current view number and xls, . . . , xls+win as defined above.

New-view phase: The new primary gathers 2 f +2c+1 view

change messages from replicas. The new primary initiates a

new view by sending a set of 2 f +2c+1 view change messages.

Accepting a New-view: When a replica receives a set I of

|I | = 2 f +2c+1 view change message it processes slots one by

one. It starts with ls, the highest valid stable sequence number

in all view-change messages, and goes up to ls+win. For each

such slot, a replica either decides it can commit a value, or

it adopts it as a pre-prepare by the new primary, according to

the algorithm below.

If a replica receives σ(�) or τ(τ(�))), it decides it. Else, it

adopts a safe value:

Safe values: A prepare y is safe for a sequence slot if

the only safe thing for the new primary to do is to propose

y for the sequence slot in the new view. Roughly speaking,

as in PBFT req∗ will simply be the value associated with the

prepare message with the highest view v∗ (if it exists). If there

are f + c + 1 pre-prepare messages for a view that is higher

than v∗ then req′ will be the unique value associated with the

maximal such value (if it exists). If req′ exists then y adopts

its value. Otherwise if req∗ exists then y adopts its value.

Otherwise y adopts a special no-op operation.

More precisely, computing y given I is done as follows:

Set ls to be the highest last stable value lsi sent in I such

that i sent π(dlsi) which is correct (this is a proof that lsi is a

valid checkpoint). Fix a slot j within the range [ls..(ls+win)].
Let X = {xi}i∈I be the set of values by the members I for the

slot. As each x ∈ X is a pair, we project (split) X into two

sets X = (LX,FX). If a member in I sent values only up to

a lower sequence position, then we can simulate as if these

missing values are x = (“no commit“, “no pre prepare“).
If FX contains σ(h) or LX contains τ(τ(h)), then let y be

h and commit once the message is known; otherwise

(1) If LX contains at least one τ(h), then let τ(h∗) be the

τ signature with the highest view v∗ in LX and let req∗ be

the corresponding value. Formally: v∗ = max{v | ∃(τ(h), v) ∈
LX, h = H(j | |v | |req)}, req∗ = {req | ∃(τ(h), v∗) ∈ LX, h =
H(j | |v∗ | |req)}. Otherwise, if LX contains no (τ(h), v) then set

v∗ := −1.

(2) We say that a value req′ is fast for v if there exists

f +c+1 messages in FX and for each such message (σi(h), v) ∈
FX it is the case that h = H(j | |v′ | |req′) and v′ ≥ v. Let v̂ be

the highest view such that there exists a value req′ that is fast
for v. If its unique, let ˆreq be the corresponding fast value

for v̂. Formally: f ast(req′, v) = 1 iff ∃M ⊂ FX, |M | =
f + c + 1, ∀(σi(h), v′) ∈ M, h = H(j | |v′ | |req′) ∧ v′ ≥ v, now

define v̂ = max{v | ∃req′ | f ast(req′, v) = 1}, ˆreq = {req′ |
f ast(req′, v̂) = 1}. If no such v̂ exists or if for v̂ there is more,

than one potential value ˆreq then set v̂ := −1.

(3) If v∗ ≥ v̂ and v∗ > −1, then set y := 〈“pre-prepare”, j, v+
1, req∗,H(j | |v + 1| |req∗)〉.

Otherwise if v̂ > v∗, then set y := 〈“pre-prepare”, j, v +
1, ˆreq,H(j | |v + 1)| | ˆreq)〉.

Otherwise set y := 〈“pre-prepare”, j, v + 1, “null”,H(j | |v +
1| |“null”)〉, where “null” is the no-op operation.

VI. SAFETY AND LIVENESS

Theorem VI.1. If any two non-faulty replicas commit on a
decision block for a given sequence number then they both
commit on the same decision block.

Conceptually, the proof approach is simple: fix a slot and

consider the first view for which some non-faulty replica has

committed some value req and prove that in any later view the

only possible value chosen by the view change is req. Roughly

speaking, if some non-faulty replica committed via the Linear-

PBFT path, then just like PBFT, any view change quorum will

be safe since it will include a prepare message for req∗ = req
that will have maximal view v∗. If some non-faulty replica

committed via the fast path, then any view change quorum will

be safe since it will include f +c+1 pre-prepare messages for

req′ = req of high enough views to be the unique maximum

(or an even higher prepare message will exist, but via induction

this will be for req as well).

The fact that our view change protocol takes the maximum

view over the two paths (and gives view preference to the

574

Linear-PBFT path) is key for providing safety. The full version

of the safety proof appears in the extended version of this

paper [39].

SBFT is deterministic so it lacks liveness in the asyn-

chronous mode, due to FLP [36]. As in PBFT [22], liveness

is obtained by striking a balance between making progress in

the current view and moving to a new view. SBFT uses the

techniques of PBFT [22] tailored to a larger deployment: (1)

exponential back-off view change timer; (2) replica issues a

view change if it hears f +1 replicas issue a view change; (3)

a view can continue making progress even if f or less replicas

send a view change. Finally, SBFT uses c+1 collectors to make

progress in the fast path. In the common path, we ensure that

one of the collectors is the primary.

A non-faulty primary needs simply to wait for at most n− f
messages to be accepted to make progress both in the common

path and in the view change. Hence not only is our protocol

clearly deadlock free, it is also reactive [33], meaning that

after GST (Global Stabilization Time; i.e., when the system

moves to the common mode) it makes progress at the speed

of the fastest n − f replicas and does not need to wait for the

maximum network delay.

We still need to show that progress is made after GST

with a non-faulty primary. Again, this is a relatively standard

argument and follows from the fact that in the common mode

the primary is also a collector.

Finally, we note that the liveness of the view change

protocol follows from the following pattern: the primary makes

a decision based on signed messages (its proof) and then

forwards both the decision and the signed messages (its proof)

so all replicas can repeat exactly the same computation.

VII. SBFT IMPLEMENTATION

SBFT is written in C++11. It is designed as a generic

library that can be used to represent various distributed state

machines. In particular, it can be used to represent and manage

the Ethereum state machine.

Cryptography Cryptographic primitives (RSA 2048,

SHA256, HMAC) are implemented using the Crypto++ li-

brary [30]. To implement threshold BLS, we use RELIC [9],

a cryptographic library with support for pairings. We use the

BN-P254 [15] elliptic curve, which provides the same security

as 2048-bit RSA (i.e., 110-bit security) even with recent devel-

opments on discrete-log attacks [12], [60]. To reduce latency

associated with combining threshold BLS based shares (in

the collectors) we parallelized the independent exponentiations

and use a background thread. In the fast path, as long as no

failure is detected, we use a BLS multi-signature (n-out-of-n
threshold) which requires less computation than BLS threshold

signatures. We implemented a mechanism to automatically

switch to and from multi-signatures and threshold signatures

based on recent history.

Dynamic Timeouts The timeouts are dynamically learned

and adjusted by measuring the actual behavior of the system.

For example, the timeout that is used to start the Linear-PBFT

path is based on the average time (and standard deviation) it

takes to successfully complete the fast path. Another example

is the client re-transmission timeouts – these timeouts are

based on the average execution time of the requests (from

the client’s perspective). This approach enables SBFT to

automatically ajust to different network environments (such

as those mentioned in Section VIII).

Parallelism and Batching In SBFT, several decision blocks

can be processed in parallel. This approach enables handling

new client requests without waiting for the completion of

previous ones. The maximum number of decision blocks that

can be processed in parallel is win = 256.

We use adaptive learning heuristics that dynamically modify

the size of the parameter batch which represents the minimum

number of client operations in each decision block (batch is

used in Section V-C). The goal of our heuristics is to optimize

both latency and throughput. It is based on three parameters:

(i) recPar represents the maximal recommended parallelism

of the system (recPar is part of SBFT’s configuration); (ii)

maxPending represents the maximum number of (different)

pending client requests in the recent history; and (iii) curPar
is the number of decision blocks that are currently processed.

The value of batch is determined as follows: if curPar = 0
then batch = 1, otherwise batch = maxPending ÷ recPar.

This heuristics ensures that the system will never wait for

new requests when no decision block is being processed. And

when curPar > 1, the system will strive to divide the client

requests between recPar decision blocks.

State Transfer Similarly to the original PBFT implementa-

tion, SBFT synchronizes the state of stale replicas by using a

state transfer mechanism. This mechanism is designed to fetch

the missing parts of the state from other replicas and uses a

Merkle tree based data structure for identifying the differences.

Blockchain smart contract implementation The EVM

implementation used is based on cpp-ethereum [29]. We

integrated storage-related commands with our key-value store

interface and use RocksDB [71] as its back-end.

VIII. PERFORMANCE EVALUATION

We evaluate SBFT by deploying 200 replicas over a wide

area geo-distributed network. All experiments are configured

to withstand f = 64 Byzantine failures. Following [26], SBFT

uses public-key signed client requests and server messages.

At the time of the experiments, we could not find other BFT

implementations that (1) were freely available online; and (2)

could reliably work on a real (not simulated) world-scale WAN

and withstand f = 64 failures. The freely available code for

PBFT could not scale and was not updated in the last 10 years.

The code for Zyzzyva [48] contains a serious safety violation

[2] and does not contain a state transfer module. Both ByzCoin

[45], [77] and Omniledger [46] have GitHub repositories

but have only reported simulation results. Other projects like

Algorand [38] have only simulations and no open source code.

Moreover these systems focus on permisionless models using

proof-of-work or proof-of-stake, not the permissioned model.

Comparing SBFT to these systems is future work (once there

is a freely accessible version, robust enough to be readily

deployed and support EVM smart contracts).

575

T
h

ro
u

g
h

p
u

t
(o

p
er

at
io

n
s/

se
co

n
d

)

4 32 64 128 192 256
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

·104
ba

tc
h=

64
no failures

4 32 64 128 192 256
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

·104
8 failures

4 32 64 128 192 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104
64 failures

4 32 64 128 192 256
0

100

200

300

400

500

600

700

800

no
ba

tc
h

4 32 64 128 192 256
0

100

200

300

400

500

600

700

4 32 64 128 192 256
0

50

100

150

200

250

300

350

Number of clients

PBFT Linear-PBFT Linear-PBFT+Fast Path SBFT (c=0) SBFT (c=8)

Fig. 2. Throughput per clients for key-value store benchmark on Continent scale WAN.

L
at

en
cy

(m
il

li
se

co
n

d
s)

0 10,000 20,000 30,000

200

300

400

500

ba
tc

h=
64

no failures

0 10,000 20,000 30,000
200

400

600

8 failures

0 5,000 10,000 15,000

1,000

2,000

64 failures

0 200 400 600 800

200

300

400

no
ba

tc
h

0 200 400 600 800

300

400

500

0 200 400

500

600

700

Throughput (operations/second)

PBFT Linear-PBFT Linear-PBFT+Fast Path SBFT (c=0) SBFT (c=8)

Fig. 3. Latency vs throughput for key-value store benchmark on continent scale WAN.

Our goal is to experiment and report on a real world WAN

deployment that persists transactions to disk and executes real

world EVM smart contracts.

We therefore spent several months significantly improving,

fixing and hardening an existing PBFT code-base in order to

make it reliably work in our experimental setting. We call

this implementation scale optimized PBFT. We implemented

scale optimized PBFT by extending and improving the orig-

inal PBFT codebase. In particular, we changed the crypto-

graphic primitives to modern primitives from the Crypto++

library [30], changed the communication to be based on TCP

for WAN support, fixed several scalability bottlenecks, and

added the SBFT optimizations described in Section VII.

We note that Sousa et al [74] use an implementation of

PBFT called BFT-SMaRt [14]. However, it seems that the

WAN deployment reported in [74] scales only to f ≤ 3 in a

576

LAN and f = 1 for WAN. Our baseline scale optimized PBFT

is tuned to provide better scalability. Moreover BFT-SMaRt

does not seem to natively support running EVM contracts.

In our experiments we start with the scale optimized PBFT

implementation and then show how each of the 4 ingredients

improves performance as follows: (1) linear PBFT reduces

communication and improves throughput at the cost of latency;

(2) adding a fast path reduces latency; (3) using cryptography

to allow a single message acknowledgement improves per-

formance when there are many clients; (4) adding redundant

servers to improve resilience improves the latency-throughput

trade-off.

For micro-benchmarks, we run a simple key-value ser-

vice. For our main evaluation, we use real transactions from

Ethereum that are executed and committed to disk (via

RocksDB). We take half a million Ethereum transactions,

spanning a time of two months, which included ∼ 5000
contracts created.

We compare the following replication protocols:

(1) PBFT (the baseline): A scale optimized implementation

of PBFT.

(2) Linear-PBFT (adding ingredient 1): A modification of

PBFT that avoids quadratic communication by using a collec-

tor.

(3) Fast Path + Linear PBFT (adding ingredients 1 and 2):

Linear-PBFT with an added fast-path.

(4) SBFT with c=0 (adding ingredients 1,2, and 3): Linear-

PBFT with an added fast-path and an execution collector that

allows clients to receive signed message acknowledgements.

(5) SBFT with c=8 (adding all 4 ingredients): Adding redun-

dant servers to better adapt to network variance and failures.

Continent-scale WAN. In this scenario, we spread the

replicas and clients across 5 different regions in the same

continent. In each region we use two availability zones and

in each zone we deploy one machine with 32 VCPUs, Intel

Broadwell E5-2686v4 processors with clock speed 2.3 GHz

and connected via a 10 Gigabit network.

We deployed more than one replica or client into a sin-

gle machine. This was done due to economic and logistic

constraints. One may wonder if the fact that we packed

multiple replicas into a single machine significantly modified

our performance measurements. To assess this we repeated our

experiments once with 10 machines (1 per availability zone,

each machine had about 20 replica VMs) and then with 20

machines (2 per availability zone, each machine had about 10

replica VMs). The results of these experiments were almost the

same. We conclude that the effects of communication delays

between having 10 or 20 machines have marginal impact in

a world-scale WAN. Not surprisingly, our experiments show

that in a world-scale WAN, performance depends at least on

the median latency and that having 10−20% of replicas with a

much lower latency does not modify or increase performance.

World-scale WAN. In this scenario, we spread the replicas

and clients across 15 regions spread over all continents. In

each region we deploy one machine (we also tested running

two machines per region with similar results).

Measurements Key-Value store benchmark: each client

sequentially sends 1000 requests. In the no batching mode,

each request is a single put operation for writing a random

value to a random key in the key-value store. In the batching
mode, each request contains 64 operations. This models our

measured smart contract batching. Replicas execute operations

by persisting their state. Replicas that fall behind re-sync using

the state transfer protocol (see Section VII and [23]). We ran

these experiments on a continent-scale WAN.

Smart-Contract benchmark: we use 500,000 real transac-

tions from Ethereum to test the SBFT ledger protocol. Replicas

execute each contract by running the EVM byte-code and

persisting the state on-disk. Each client sends operations by

batching transactions into chunks of 12KB (on average about

50 transactions per batch). We ran these experiments on both

a continent-scale WAN and a world-scale WAN.

Evaluating with replica failures Our performance evaluation

is conducted with 0, 8 and 64 replica failures. We model a

failed replica as being non-responsive. We conducted extensive

tests to verify that malicious replica activities are essentially

converted to a non-responsive behaviour.

Key-Value benchmark evaluation. The results of the key-

value benchmark are shown in Figures 2 and 3. We first

observe that compared to our scale optimized PBFT, the linear-

PBFT protocol provides better throughput (2k per sec vs 1.5k

per sec) when the system is under load (128 to 256 clients)

with batching. Smaller effects appear also in the no batching

case. We conclude that reducing the communication from

quadratic to linear by using a collector significantly improves

throughput at some cost in latency.

Adding a fast path to linear-PBFT significantly increases

throughput to 2.8k per sec. As expected, the fast path improves

both latency and throughput in the no failure executions, but

does not help when there are failures.

Adding an execution collector allows clients to receive just

one message (instead of f + 1). This significantly improves

performance (latency throughput trade-off) in all scenarios (no

failures and with failures). This shows that the communication

from servers to clients is a significant performance bottleneck.

Finally, by parameterizing SBFT for c = 8 we show the

effect of adding redundant servers. Not surprisingly, this makes

a big impact when there are f = 8 failures. In addition, we see

significant advantages in the f = 0 and f = 64 cases. This is

probably because adding redundancy reduces the variance and

effects of slightly slow servers or staggering network links.

Smart-Contract benchmark evaluation. In the continent-

scale WAN experiment, SBFT measured 378 transaction per

second with a median latency of 254 milliseconds. In the same

setting our scale optimized PBFT obtained just 204 transaction

per second with a median latency of 538 milliseconds. We

conclude that in the continent-scale SBFT simultaneously

provides 2x better latency and almost 2x better throughput.

In the world-scale WAN experiments, SBFT obtained 172

transaction per second with a median latency of 622 millisec-

onds. Scale optimized PBFT obtained 98 transaction per sec-

ond with a median latency of 934 milliseconds. We conclude

that in a world-scale, SBFT simultaneously provides almost

2x better throughput and about 1.5x better latency.

We note that just executing these smart contracts on a single

computer (and committing the results to disk) without running

577

any replication provides a 840 transaction per second base line.

We conclude that adding a continent-scale WAN 200 node

replication, SBFT obtains a 2x slowdown relative to the base

line. Adding a world-scale WAN 200 node replication, SBFT

obtains a 5x slowdown relative to the base line.

View-Change overhead. To evaluate the overhead of the

view change protocol (without being affected by its timeouts),

we run the smart-contract benchmark and change the view

every 60 seconds. In the continent-scale experiment, SBFT

obtained 369 transaction per second with a median latency of

257 milliseconds (less than 2.5% overhead). In the world-scale

experiment, the results are 165 transactions per second with a

median latency of 672 milliseconds (around 4% overhead).

IX. RELATED WORK

Byzantine fault tolerance (BFT) was first suggested by

Lamport et al. [50]. Rampart [69] was one of the first systems

to consider BFT for state machine replication [49]. SBFT

is based on many advances aimed at making BFT practical.

PBFT [22], [23] and the extended framework of BASE [72]

provided many of the foundations, frameworks, optimizations

and techniques on which SBFT is built. SBFT uses the

conceptual approach of separating commitment from execution

that is based on Yin et al. [82]. Our linear message complexity

fast path is based on the techniques of Zyzzyva [47], [48] and

its theoretical foundations [57]. Our use of a hybrid model that

provides better properties for c ≤ f failures is inspired by the

parameterized model of Martin and Alvisi [57]. Up-Right [25]

studied a different model that assumes many omission failures

and just a few Byzantine failures. Visigoth [67] further ad-

vocates exploiting data center performance predictability and

relative synchrony. XFT [55] focuses on a model that limits the

adversary’s ability to control both asynchrony and malicious

replicas. In contrast, SBFT provides safety even in the fully

asynchronous model when less than a third of replicas are

malicious. Prime [5] adds additional pre-rounds so that clients

can be guaranteed a high degree of fairness. SBFT provides

the same type of weak fairness guarantees as in PBFT; we

leave the question of adding stronger fairness properties to

SBFT for future work.

A2M [24], TrInc [51], Veronese et al. [79], Hybster [13]

use secure hardware to obtain non-equivocation. They present

a Byzantine fault tolerant replication that is safe in asyn-

chronous models even when n = 2 f + 1. CheapBFT [44]

relies on an FPGA-based trusted subsystem to improve fault

tolerance. Troxy [52] additionally uses secure hardware to

reduce client overhead. SBFT does not make assumptions on

secure hardware and as such is bounded by the n ≥ 3 f + 1
lower bound [35].

Our use of public key cryptography (as opposed to MAC

vectors) and threshold signatures follows the approach of [20]

(also see [6], [7], [26]). We heavily rely on threshold BLS

signatures [16], [17]. Several recent systems mention they plan

to use BLS threshold signatures [46], [59], [76], [77].

An alternative to the primary-backup based state machine

replication approach is to use Byzantine quorum systems [56]

and make each client a proposer. This approach was taken by

QU [1] and HQ [28] and provides good scalability when write

contention is low. SBFT follows the primary-backup paradigm

that funnels multiple requests though a designated primary

leader. This allows SBFT to benefit from batching which is

crucial for throughput in large-scale multi-client scenarios.

Recent work is aimed at providing even better liveness

guarantees. Honeybadger [63] is the first BFT system that

leverages randomization to circumvent the FLP [36] impos-

sibility. Honeybadger and more recently BEAT [32] provide

liveness even when the network is fully asynchronous and

controlled by an adversarial scheduler. SBFT follows the

DLS/Paxos/viewstamp-replication paradigm [33], [49], [53]

extended to Byzantine faults that guarantees liveness only

when the network is synchronous.

Algorand [38] provides a permissionless system that can

support many thousands of replicas and implements a BFT

engine that chooses a random dynamic committee of roughly

2000 active replicas. However, Algorand’s scalability was only

evaluated in a simulation of a wide area network. Even under

best case no-failure simulation conditions, Algorand seems to

provide almost 100x slower latency (60 seconds) relative to

SBFT (600 milliseconds). SBFT is experimentally evaluated

in a real world-scale geo-replicated wide area network deploy-

ment, executing real smart contracts, maintaining full state and

testing scenarios with failures.

FastBFT [54] shares many of the properties of SBFT.

It also focuses on a linear version of PBFT and a single

message client acknowledgement. FastBFT decentralizes trust

in a scalable way, but it relies on secure hardware and es-

sentially centralizes its security assumptions by relying on the

security of a single hardware vendor. FastBFT’s performance

is evaluated only on a local area network. SBFT does not

assume trusted hardware and does not rely on any single

hardware vendor.

X. CONCLUSION

We implemented SBFT, a state-of-the-art Byzantine fault

tolerant replication library and experimentally validated that

it provides better performance for large deployments over a

wide-area geo-distributed deployment. SBFT performs well

when there are tens of malicious replicas, its performance

advantage increases as the number of clients increases.

Our experiments show that each one of our algorithmic

ingredients improves the measured performance. For about

two hundred replicas SBFT simultaneously provides almost

2x better throughput and about 1.5x better latency relative to

a highly optimized system that implements the PBFT protocol.

We have shown that SBFT can be robustly deployed with

hundreds of replicas and withstand tens of Byzantine failures.

We believe that the advantage of linear protocols (like SBFT)

over quadratic protocols will be even more profound at higher

scales. Measuring real deployments of thousands of replicas

that withstand hundreds of Byzantine failures is beyond the

scope of this work. An open source version of SBFT can be

found on Github as VMware’s project Concord [27]. The open

source version is designed to support a wide range of dis-

tributed applications, and it includes additional optimizations

and various software engineering extensions.

578

REFERENCES

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,
Michael K. Reiter, and Jay J. Wylie. Fault-scalable Byzantine fault-
tolerant services. In Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, SOSP ’05, pages 59–74, New York, NY,
USA, 2005. ACM.

[2] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Ramakrishna
Kotla, and Jean-Philippe Martin. Revisiting fast practical byzantine fault
tolerance. CoRR, abs/1712.01367, 2017.

[3] Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin.
Revisiting fast practical byzantine fault tolerance: Thelma, velma, and
zelma. CoRR, abs/1801.10022, 2018.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander
Spiegelman. Solidus: An incentive-compatible cryptocurrency based on
permissionless Byzantine consensus. CoRR, abs/1612.02916, 2016.

[5] Yair Amir, Brian A. Coan, Jonathan Kirsch, and John Lane. Prime:
Byzantine replication under attack. IEEE Trans. Dependable Sec.
Comput., 8(4):564–577, 2011.

[6] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane,
Cristina Nita-Rotaru, Josh Olsen, and David Zage. Steward: Scaling
Byzantine fault-tolerant replication to wide area networks. IEEE Trans.
Dependable Sec. Comput., 7(1):80–93, 2010.

[7] Yair Amir, Claudiu Danilov, Jonathan Kirsch, John Lane, Danny Dolev,
Cristina Nita-Rotaru, Josh Olsen, and David John Zage. Scaling
Byzantine fault-tolerant replication to wide area networks. In 2006
International Conference on Dependable Systems and Networks (DSN
2006), 25-28 June 2006, Philadelphia, Pennsylvania, USA, Proceedings,
pages 105–114. IEEE Computer Society, 2006.

[8] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed
Cocco, and Jason Yellick. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In EuroSys, pages 30:1–30:15.
ACM, 2018.

[9] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient Library for
Cryptography. https://github.com/relic-toolkit/relic.

[10] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quema. RBFT:
Redundant Byzantine Fault Tolerance. In The 33rd International
Conference on Distributed Computing Systems (ICDCS), 2013.

[11] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. The next 700 bft protocols. ACM Trans.
Comput. Syst., 32(4):12:1–12:45, January 2015.

[12] Razvan Barbulescu and Sylvain Duquesne. Updating key size estima-
tions for pairings. Cryptology ePrint Archive, Report 2017/334, 2017.
http://eprint.iacr.org/2017/334.

[13] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hybrids on steroids:
Sgx-based high performance bft. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys ’17, pages 222–237, New
York, NY, USA, 2017. ACM.

[14] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State
machine replication for the masses with bft-smart. In Proceedings of the
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’14, pages 355–362, Washington, DC,
USA, 2014. IEEE Computer Society.

[15] Jean-Luc Beuchat, Jorge E. González-Dı́az, Shigeo Mitsunari, Eiji
Okamoto, Francisco Rodrı́guez-Henrı́quez, and Tadanori Teruya. High-
Speed Software Implementation of the Optimal Ate Pairing over Barreto–
Naehrig Curves, pages 21–39. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[16] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature scheme.
In Yvo G. Desmedt, editor, Public Key Cryptography — PKC 2003:
6th International Workshop on Practice and Theory in Public Key
Cryptography Miami, FL, USA, January 6–8, 2003 Proceedings, pages
31–46, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[17] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. J. Cryptol., 17(4):297–319, September 2004.

[18] Vitalik Buterin. Minimal slashing conditions. https://medium.com/
@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c, 2017.

[19] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup.
Secure and efficient asynchronous broadcast protocols. In Proceedings
of the 21st Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’01, pages 524–541, London, UK, UK, 2001.
Springer-Verlag.

[20] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles
in Constantinople: Practical asynchronous Byzantine agreement using
cryptography (extended abstract). In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC
’00, pages 123–132, New York, NY, USA, 2000. ACM.

[21] Christian Cachin and Marko Vukolic. Blockchain consensus protocols
in the wild. CoRR, abs/1707.01873, 2017.

[22] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI ’99, pages 173–186, Berkeley, CA, USA,
1999. USENIX Association.

[23] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461,
November 2002.

[24] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatow-
icz. Attested append-only memory: Making adversaries stick to their
word. In Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP ’07, pages 189–204, New York,
NY, USA, 2007. ACM.

[25] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo
Alvisi, Mike Dahlin, and Taylor Riche. Upright cluster services.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 277–290, New York, NY, USA,
2009. ACM.

[26] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and
Mirco Marchetti. Making Byzantine fault tolerant systems tolerate
Byzantine faults. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, NSDI’09, pages 153–
168, Berkeley, CA, USA, 2009. USENIX Association.

[27] concord-bft. https://github.com/vmware/concord-bft, 2018.
[28] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues,

and Liuba Shrira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages 177–
190, Berkeley, CA, USA, 2006. USENIX Association.

[29] cpp-ethereum. http://www.ethdocs.org/en/latest/ethereum-clients/
cpp-ethereum/.

[30] Crypto++ library 5.6.4. http://www.cryptopp.com/, 2016.
[31] Chris Dixon. Why decentralization matters. https://medium.com/

@cdixon/why-decentralization-matters-5e3f79f7638e, 2018.
[32] Sisi Duan, Michael K. Reiter, and Haibin Zhang. Beat: Asynchronous bft

made practical. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 2028–2041,
New York, NY, USA, 2018. ACM.

[33] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

[34] Ethereum Enterprise Alliance. https://entethalliance.org/.
[35] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy im-

possibility proofs for distributed consensus problems. Distrib. Comput.,
1(1):26–39, January 1986.

[36] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-
possibility of distributed consensus with one faulty process. J. ACM,
32(2):374–382, April 1985.

[37] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and
Emin Gün Sirer. Decentralization in bitcoin and ethereum networks.
Financial Crypto, 2018.

[38] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. Algorand: Scaling byzantine agreements for cryptocur-
rencies. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 51–68, New York, NY, USA, 2017. ACM.

[39] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,
Benny Pinkas, Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir,
and Alin Tomescu. SBFT: a scalable decentralized trust infrastructure
for blockchains. CoRR, abs/1804.01626, 2018.

[40] Rachid Guerraoui and Marko Vukolic. Refined quorum systems.
Distributed Computing, 23(1):1–42, 2010.

[41] Hyperledger. https://www.hyperledger.org/.
[42] Istanbul bft (ibft), 2017.
[43] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In

Proceedings of the 4th International Symposium on Algorithmic Number
Theory, ANTS-IV, pages 385–394, London, UK, UK, 2000. Springer-
Verlag.

[44] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon
Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and
Klaus Stengel. Cheapbft: Resource-efficient byzantine fault tolerance.
In Proceedings of the 7th ACM European Conference on Computer

579

Systems, EuroSys ’12, pages 295–308, New York, NY, USA, 2012.
ACM.

[45] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford. Enhancing bitcoin security and
performance with strong consistency via collective signing. CoRR,
abs/1602.06997, 2016.

[46] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 583–598. IEEE, 2018.

[47] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative Byzantine fault tolerance. In
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007.
ACM.

[48] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative Byzantine fault tolerance. ACM
Trans. Comput. Syst., 27(4):7:1–7:39, January 2010.

[49] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[50] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,
July 1982.

[51] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda.
TrInc: Small trusted hardware for large distributed systems. In Pro-
ceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’09, pages 1–14, Berkeley, CA, USA, 2009.
USENIX Association.

[52] Bijun Li, Nico Weichbrodt, Johannes Behl, Pierre-Louis Aublin, Tobias
Distler, and Rüdiger Kapitza. Troxy: Transparent access to byzantine
fault-tolerant systems. In DSN, pages 59–70. IEEE Computer Society,
2018.

[53] Barbara Liskov and James Cowling. Viewstamped replication revisited.
Technical Report MIT-CSAIL-TR-2012-021, MIT, July 2012.

[54] Jian Liu, Wenting Li, Ghassan O. Karame, and N. Asokan. Scal-
able byzantine consensus via hardware-assisted secret sharing. CoRR,
abs/1612.04997, 2016.

[55] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko
Vukolic. XFT: Practical fault tolerance beyond crashes. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 485–500, Berkeley, CA, USA, 2016.
USENIX Association.

[56] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. In
Proceedings of the Twenty-ninth Annual ACM Symposium on Theory
of Computing, STOC ’97, pages 569–578, New York, NY, USA, 1997.
ACM.

[57] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus.
IEEE Trans. Dependable Secur. Comput., 3(3):202–215, July 2006.

[58] Jon Matonis. The bitcoin mining arms race: Ghash.io and the 51% issue.
http://www.coindesk.com/bitcoin-mining-detente-ghash-io-51-issue/,
2014.

[59] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W.
Felten, and Michael J. Freedman. CONIKS: Bringing key transparency
to end users. In 24th USENIX Security Symposium (USENIX Security
15), pages 383–398, Washington, D.C., 2015. USENIX Association.

[60] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with
Assessing the Impact of NFS Advances on the Security of Pairing-Based
Cryptography, pages 83–108. Springer International Publishing, Cham,
2017.

[61] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In A Conference on the Theory and Applications of Crypto-
graphic Techniques on Advances in Cryptology, CRYPTO ’87, pages
369–378, London, UK, UK, 1988. Springer-Verlag.

[62] Silvio Micali. ALGORAND: The efficient and democratic ledger. CoRR,
abs/1607.01341, 2016.

[63] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of bft protocols. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages
31–42, New York, NY, USA, 2016. ACM.

[64] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:
//www.bitcoin.org/bitcoin.pdf/, 2009.

[65] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed systems. In
Proceedings of the Seventh Annual ACM Symposium on Principles of
Distributed Computing, PODC ’88, pages 8–17, New York, NY, USA,
1988. ACM.

[66] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in
the permissionless model. IACR Cryptology ePrint Archive, 2016:917,
2016.

[67] Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate,
Flavio Junqueira, and Rodrigo Rodrigues. Visigoth fault tolerance. In
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 8:1–8:14, New York, NY, USA, 2015. ACM.

[68] HariGovind V. Ramasamy and Christian Cachin. Parsimonious asyn-
chronous byzantine-fault-tolerant atomic broadcast. In Proceedings of
the 9th International Conference on Principles of Distributed Systems,
OPODIS’05, pages 88–102, Berlin, Heidelberg, 2006. Springer-Verlag.

[69] Michael K. Reiter. The rampart toolkit for building high-integrity
services. In Selected Papers from the International Workshop on Theory
and Practice in Distributed Systems, pages 99–110, London, UK, UK,
1995. Springer-Verlag.

[70] Michael K. Reiter and Kenneth P. Birman. How to securely replicate
services. ACM Trans. Program. Lang. Syst., 16(3):986–1009, May 1994.

[71] Rocksdb. http://rocksdb.org/.
[72] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using

abstraction to improve fault tolerance. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, SOSP ’01, pages
15–28, New York, NY, USA, 2001. ACM.

[73] Victor Shoup. Practical threshold signatures. In Proceedings of the 19th
International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’00, pages 207–220, Berlin, Heidelberg, 2000.
Springer-Verlag.

[74] J. Sousa, A. Bessani, and M. Vukolic. A byzantine fault-tolerant ordering
service for the hyperledger fabric blockchain platform. In 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 51–58, June 2018.

[75] João Sousa, Alysson Bessani, and Marko Vukolic. A Byzantine fault-
tolerant ordering service for the hyperledger fabric blockchain platform.
CoRR, abs/1709.06921, 2017.

[76] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford. Scalable bias-resistant distributed randomness. In
2017 IEEE Symposium on Security and Privacy, pages 444–460, May
2017.

[77] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping authorities ”honest or bust”
with decentralized witness cosigning. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 526–545, May 2016.

[78] Nick Szabo. Trusted third parties are security holes. http://
nakamotoinstitute.org/trusted-third-parties/, 2001.

[79] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,
Lau Cheuk Lung, and Paulo Verissimo. Efficient Byzantine fault-
tolerance. IEEE Trans. Comput., 62(1):16–30, January 2013.

[80] Marko Vukolic. The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication. In Jan Camenisch and Dogan Kesdogan, editors,
iNetSeC, volume 9591 of Lecture Notes in Computer Science, pages
112–125. Springer, 2015.

[81] Gavin Wood. Ethereum: A secure decentralized generalized transaction
ledger. http://bitcoinaffiliatelist.com/wp-content/uploads/ethereum.pdf,
2014. Accessed: 2016-08-22.

[82] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi,
and Mike Dahlin. Separating agreement from execution for Byzantine
fault tolerant services. In Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’03, pages 253–267, New
York, NY, USA, 2003. ACM.

580

