
Differentially Private Access Patterns
for Searchable Symmetric Encryption

Guoxing Chen†, Ten-Hwang Lai†, Michael K. Reiter‡, Yinqian Zhang†
†Department of Computer Science and Engineering, The Ohio State University, USA
‡Department of Computer Science, University of North Carolina at Chapel Hill, USA

{chenguo, lai, yinqian}@cse.ohio-state.edu, reiter@cs.unc.edu

Abstract—Searchable encryption enables searches to be per-
formed on encrypted documents stored on an untrusted server
without exposing the documents or the search terms to the
server. Nevertheless, the server typically learns which encrypted
documents match the query—the so-called access pattern—since
the server must return those documents. Recent studies have
demonstrated that access patterns can be used to infer the
search terms in some scenarios. In this paper, we propose
a framework to protect systems using searchable symmetric
encryption from access-pattern leakage. Our technique is based
on d-privacy, a generalized version of differential privacy that
provides provable security guarantees against adversaries with
arbitrary background knowledge.

I. INTRODUCTION

Encryption is often used to protect data stored in in-
completely trusted servers (e.g., public clouds). Searchable
symmetric encryption (SSE) further enables that data to be
searched by its owner and only the matched documents
returned, without disclosing the search terms or the content of
the matched documents to the server. A long line of research
has investigated SSE with improved efficiency, stronger secu-
rity and more flexible functionality [1]–[8]. Typically, with an
SSE scheme, a client first produces an encrypted version of
the database, along with encrypted metadata, to be outsourced
to a cloud server. Later, the client can interact with the server
to perform a search on the encrypted database and retrieve the
encrypted results, which will be decrypted locally.

When a search query is made by the client, however,
the cloud server is typically able to observe which files are
accessed in the encrypted database and returned to the client.
This type of leakage is called access-pattern leakage. To be
used in practice, most existing SSE schemes allow this type
of access-pattern leakage. However, recent studies (e.g., [9],
[10]) have demonstrated that with some a priori knowledge
of the outsourced documents, the adversary is able to recover
the content of the queries with high accuracy.

One solution to access-pattern leakage is oblivious RAM
(ORAM) [11], [12]. An ORAM algorithm allows a client to
hide its access pattern from the remote server by continuously
shuffling and re-encrypting data as they are accessed. To
obliviously access one of n documents in the storage, at least
O(log n) documents need to be accessed [11]. This overhead
makes it impractical to use ORAM to hide the access pattern
for SSE. As pointed out by Naveed [13], the communication

overhead of SSE schemes using ORAM could be larger than
that of simply sending back all data stored in the remote server.

In this paper, we propose to protect SSE schemes against
access-pattern leakage with a form of access-pattern obfusca-
tion (APO). We borrow a statistical privacy definition, differ-
ential privacy [14], to define the desired security guarantee
of such an obfuscation mechanism. Specifically, we adopt
a generalized version of differential privacy, d-privacy [15],
and aim to obfuscate the access patterns of SSE schemes
so that access patterns follow the definition of d-privacy.
In particular, d-privacy implies that the adversary cannot
distinguish between queries using distinct search terms that
induce access patterns that are within specified distance (in
terms of a distance metric d) of one another.

Rather than constructing a new SSE scheme, our framework
simply builds over any given SSE scheme. That is, given a
database, our framework applies obfuscation to the database
and then provides the obfuscated database to the SSE scheme.
When a search query is processed, obfuscated results are
obtained, and then de-obfuscated by our framework.

In sum, the contributions of this paper are as follows:

• We define d-privacy for access patterns of general SSE
schemes.

• We propose a d-private access-pattern obfuscation mecha-
nism that is compatible with existing SSE schemes.

• We implement a prototype of the proposed obfuscation
mechanism.

The paper is organized as follows: Sec. II introduces pre-
liminaries of SSE and the threat model. Sec. III presents the
overview of our proposed access-pattern obfuscation frame-
work. Sec. IV presents our privacy definition for access-
pattern obfuscation, and a d-private mechanism to obfuscate
the access patterns of SSE schemes. Sec. V discusses how
the parameters of the obfuscation framework can be selected
optimally. Sec. VI presents the implementation of a prototype.
Sec. VII details the evaluation and Sec. VIII summarizes the
related work. Finally, Sec. IX concludes the paper.

II. BACKGROUND

A. Searchable Symmetric Encryption

SSE was introduced by Song et al. [1] with a scheme whose
search time is linear in the size of the database. Curtmola et
al. [2] were the first to design an index-based SSE scheme that

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE

achieves sublinear search time. This index-based construction
contributed to various subsequent efficient SSE schemes [3]–
[8]. In this paper, we focus on index-based SSE schemes.

Let D = (D1,D2 · · · ,Dn) denote a collection of n docu-
ments. Let ∆ = {w1, w2, · · · , w‖∆‖} be a set of all possible
keywords. Each document Di is associated with a keyword
list Wi ⊆∆ which consists of all the keywords the document
Di should be indexed with. For most existing SSE schemes,
the keywords are extracted from the content of the document,
typically using keyword extraction algorithms provided by the
SSE implementations.

A symmetric key encryption scheme is a tuple of three
polynomial-time algorithms SKE = (Gen,Enc,Dec) such that
Gen is a probabilistic algorithm that takes as input a security
parameter κ and outputs a secret key K; Enc is a probabilistic
algorithm that takes as input a key K and a message π, and
outputs a ciphertext c; Dec is a deterministic algorithm that
takes as input a key K and a ciphertext c, and outputs π if c
is produced from π under K.

A basic single-server index-based SSE scheme consists of
algorithms for building and searching a secure index, and a
symmetric key encryption scheme for encrypting and decrypt-
ing the documents. Specifically, an index-building algorithm
takes as input a secret key K and a collection D of documents
along with their keyword lists W, and outputs a secure index
I. A document collection D is encrypted as a collection c
of ciphertexts using SKE.Enc. Both I and c are stored in the
remote server. The search algorithm takes as input a query τ
and a secure index I, and outputs a set of indices that point
to the ciphertexts to be returned to the client, where they are
decrypted locally using SKE.Dec. These algorithms are called
during an SSE scheme’s different phases, referred as the setup
phase and the search phase, shown in Fig. 1. A more formal
definition of SSE is provided as follows.

Definition 1. (Searchable Symmetric Encryption (SSE)). An
SSE scheme is a tuple (KeyGen, BuildIndex, Token, Search,
SKE) of four polynomial-time algorithms and a symmetric key
encryption scheme such that,

• (KI ,KD)← KeyGen(1κ) is a probabilistic key generation
algorithm for the client to setup the SSE scheme. It takes a
security parameter κ as input, and outputs a secret key KI

for the secure index, and a secret key KD ← SKE.Gen(1κ)
for the document collection.
• I ← BuildIndex(KI , (D,W)) is a probabilistic algorithm

for the client to build a secure index. It takes as input a
secret key KI , a document collection D along with keyword
lists W, and outputs a secure index I.
• τ ← Token(KI , w) is a (possibly probabilistic) algorithm

for the client to generate search tokens. It takes a secret
key KI and a keyword w, and outputs a search token τ .
• R ← Search(I, τ) is a deterministic algorithm for the

server. It takes as input a secure index I and a search
token τ , and outputs a set R of document identifications.
• c ← SKE.Enc(KD,D) is a probabilistic algorithm for the

client to encrypt the document collection. It takes a secret

Fig. 1: Searchable Symmetric Encryption schemes

key KD and a document D , and outputs a ciphertext c. A
collection c = {c1, c2, . . . , cn} of ciphertexts is produced
by encrypting the documents in D one by one.

• D ← SKE.Dec(KD, c) is a deterministic algorithm for
the client to decrypt a ciphertext of a document. It takes
as input a secret key KD and a ciphertext c, and outputs
a document D .

An SSE scheme is correct if the returned set of indices
contains all indices of the documents that satisfy the query.

The main difference between our SSE definition and others
from the literature [2] is that ours explicitly describes the
keyword lists in BuildIndex while others implicitly assume
the keyword lists are all words extracted from the documents.

While more recent SSE schemes might have additional
algorithms to support improved utility, such as updates [3]
and boolean queries [5], we focus on the above basic setting
in this paper for its generality.

B. Query Recovery Attacks

Almost all existing efficient SSE schemes, except costly
ORAM based schemes [12], leak access patterns, namely,
which documents are returned in response to a query. However,
it has been demonstrated that SSE schemes with access-pattern
leakage are vulnerable to query recovery attacks.

The goal of a query recovery attack is to recover the content
of a query (i.e., the plaintext keyword) issued by the client to
the server. This attack, which was first proposed by Islam et
al. [9], is usually dubbed the IKK attack. In the IKK attack, it
is assumed that the adversary has some a priori knowledge of
the whole document collection. In particular, the IKK attack
assumes that the adversary has the knowledge of a r×r matrix
M that depicts the probability of keyword co-occurrence,
where r is the number of keywords that are known to the
adversary. The value in the (i, j)th cell of matrix M represents
the probability that both the ith and jth keywords appear in
any random document D ∈ D. Note if the adversary can
exactly compute matrix M for the entire document collection,
the effectiveness of the attack can be greatly improved.

After observing the access patterns revealed by l client-
issued queries, the adversary carries out the attack as follows:
An l × l co-occurrence matrix M̂ is computed from the
observed access patterns. This should be a sub-matrix of M .
The best match of M̂ to M can be generated by optimization
methods such as simulated annealing. From the match, a
guess for each query can be made. The authors conducted
evaluations on the Enron email dataset [16]. The queryable

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

keywords were the most common words in the document
collection, after removing a set of stopwords (e.g., “the”,
“is”). Queries were picked from these keywords uniformly at
random. A near perfect (100%) recovery rate was reported
with 500 queryable keywords and 150 unique queries.

Cash et al. [10] improved the IKK attack with the addi-
tional assumption that the adversary also knows the number
of documents in the document collection that matches each
keyword. Instead of using a co-occurrence probability matrix,
the adversary uses a co-occurrence count matrix. Each (i, j)th

cell contains the number of documents containing both ith

and jth keywords. The evaluations on the Enron email dataset
demonstrated a recovery rate of near 100% when the number
of queryable keywords varied from 500 to 7500.

C. Erasure Coding

Erasure coding is widely used in storage systems to tolerate
failures by adding redundancy to stored data. An erasure code
transforms a “message,” such as a document, into a longer
message in a way that the original message can be recon-
structed from the longer message even if parts of the longer
message have been lost. More specifically, for a message of k
symbols, a longer message of m symbols can be generated in
such a way that the original message can be recovered from
any k symbols of the longer message. Such an erasure code
is called a k out of m erasure code.

In this paper, erasure coding works as follows: a document is
equally partitioned into k shards.Then, m−k parity shards are
produced such that the original document can be reconstructed
from any k of these m shards. Note that all these m shards
are of the same size, which is 1

k of the original’s size.

D. Attack Model

The scenario considered in this paper is a user searching
documents, through SSE client software, in an encrypted
database that is stored on a remote server. The adversary in
the scenario is the remote server who is capable of observing
the accessed indices and documents (i.e., the access patterns)
and is curious about the content of the user’s queries.

To be more specific, in this paper, we consider an honest-
but-curious adversary, who has complete knowledge of the
document collection. An honest-but-curious server follows the
pre-defined algorithms run between the server and the client.
It simply passively monitors the storage access patterns and
infers the content of the corresponding queries.

We emphasize that our threat model is different from the
model for private information retrieval (PIR). PIR allows the
content of each uploaded document to be known by the
adversary but aims to prevent the adversary from learning the
content of the queries [17], [18]. In contrast, in our threat
model, each document is encrypted before it is uploaded to the
server. The adversary is unable to figure out which document
a ciphertext is created from. Moreover, the queries of SSE
schemes are tokens generated from the keywords, but most
PIR schemes do not involve keywords.

III. FRAMEWORK FOR ACCESS-PATTERN OBFUSCATION

In this section, we present a framework to obfuscate access
patterns in a principled way. The design goal of our framework
is to provide an access-pattern obfuscation mechanism that is
compatible with existing SSE schemes.

To obfuscate the access patterns, we need to add both
false positives and false negatives to the search results. By
false positives, we mean the server returns some documents
that do not match the query (also called fake documents, or
dummy documents in prior work [9], [10], [19]). By false
negatives, we mean the server does not return some documents
that match the query. While false positives contribute to the
communication overhead, false negatives would violate the
correctness of the SSE scheme.

To handle the correctness issue, we introduce redundancy to
the document collection using erasure codes. Each document
is encoded into multiple shards, and the collection of all
these shards, instead of the original document collection, is
encrypted and outsourced to the remote server. As long as
enough shards of a matched document are returned, this docu-
ment can be successfully decoded and presented to the client.
We use recall rate to represent the percentage of matching
documents that are successfully decoded for a query. We argue
that allowing a probability that some matching documents
may not be returned is essential to achieve a provable privacy
guarantee such as differential privacy, and a fairly high recall
rate, say 99.99%, can be useful in practice already.

Our framework has two phases, in accordance with the setup
phase and the search phase of an SSE scheme. We will detail
these phases in Sec. III-A and Sec. III-B, respectively.

A. Setup Phase

In the SSE setup phase, as described in Sec. II, the SSE
client first extracts keywords from the documents, and then
builds the secure index using the BuildIndex algorithm pro-
vided by the SSE scheme. To work with any SSE implementa-
tions, our design of the access-pattern obfuscation framework
does not make any changes to the BuildIndex algorithm itself,
but rather obfuscates the (D ,W) pairs before using them as
the input of BuildIndex algorithm.

Suppose a k out of m erasure code is used. Fig. 2 illustrates
the access-pattern obfuscation during the setup phase.
1. For each document D , we first use the keyword extraction

algorithm of the SSE scheme to extract a keyword list W ;
2. Erasure coding is applied to create m shards for D . Each

shard is appended with the same keyword list W of D .
3. For newly created shards and their keyword lists, the

access-pattern obfuscation mechanism is applied (detailed
in Sec. IV) so that some shards of the matching documents
will not be returned in response to a query (i.e., false neg-
atives) while some shards of the non-matching documents
will be returned (i.e., false positives).

4. The rest of the setup process of the original SSE scheme is
performed. The encrypted shards are uploaded to the remote
server in a random order to prevent the adversary from

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Fig. 2: Access-pattern obfuscation in the setup phase.

Algorithm 1: Setup APO
Input: A document collection and keyword lists (D,W); Secret keys

(KI ,KD); Parameter m, k
Output: a secure index I and a ciphertext collection c;
initialize (D′, W′) = ({}, {});
for (D ,W) ∈ (D,W) do

D1, . . . ,Dm ← ErasureCode.Enc(m, k,D)
for i ∈ [1, . . . ,m] do

D ′,W ′ ← Func APO(Di,W)
append D ′ to D′, W ′ to W′

I← BuildIndex(KI , (D
′,W′))

c← {c|c ← SKE.Enc(KD,D
′),D ′ ∈ D′}

return (I, c)

trivially figuring out that consecutively uploaded ciphertexts
are shards of the same document.

Due to the use of erasure codes, the number of outsourced
units (originally documents, now shards) increases by m times.
From the view of the client, she has a collection of nc
documents. From the view of the server, he stores n = m×nc
shards. We will use the notation nc and n in the following
sections indiscriminately.

Algorithm 1 shows the algorithm used for access-pattern
obfuscation in the setup phase. The access-pattern obfuscation
function Func APO will be detailed in Sec. IV.

B. Search Phase

In the search phase, the search related algorithms of the
original SSE scheme will be performed first. The returned
shards are decrypted. And the matching documents with
enough shards are reconstructed. Fig. 3 shows this procedure.

1. Given a search keyword w, the default Token algorithm is
applied and the resulting search token is sent to the server.

2. The received shards are decrypted.
3. Shards from the same original documents are grouped

together. Documents with at least k shards are reconstructed
and presented to the client.

Algorithm 2 shows the algorithm used for access-pattern
obfuscation in the search phase.

IV. d-PRIVATE ACCESS-PATTERN OBFUSCATION

A. Formal Definition
Access Patterns. Consider a collection of nc documents,
each of which is encoded into m shards using k out of m
erasure coding. The resulting n = m×nc shards are shuffled,
encrypted, and then stored in the server. We use a n-bit vector
x to represent the access pattern of the shards when processing

Fig. 3: Access-pattern obfuscation in the search phase.

Algorithm 2: Search APO

Input: A search keyword w; Secret keys (KI ,KD); Parameter m, k
Output: Resulting documents D̂;
initialize D̂ = {};
τ ← Token(KI , w)
R← Search(I, τ)
Shardi ← Dec(KD, ci), i ∈ R
Group Shardi of the same original documents together
for each shard group G do

if |G|≥ k then
D ← ErasureCode.Dec(m, k,G)
append D to D̂

return D̂

a query τ , with xi = 1 indicating the i-th shard is accessed
and returned, and xi = 0, not accessed. For example, when
nc = 2, k = 2,m = 3, the server stores 6 encrypted shards.
Suppose the first, third and fourth shards are from the first
original document and the rest are from the other. An access
pattern x = 101100 means the first, the third and the fourth
shards are retrieved. Therefore, the first original document will
be successfully decoded. We will use this case as a running
example in the following discussion. Let X ⊆ {0, 1}n denote
the set of all possible access-pattern vectors.

As mentioned in Sec. III, to obfuscate access patterns, we
need to intentionally induce false positives and false negatives.
Interpreted from the view of an access-pattern vector, we need
to flip some bits of x from 0 to 1 (returning non-matching
shards, i.e., false positives) and flip some bits from 1 to 0 (not
returning matching shards, i.e., false negatives), to obtain an
obfuscated access pattern y. In our running example, suppose
the access-pattern vector x = 101100 is obfuscated into y =
001110. When the query τ is processed, the server returns
two matching shards (the third and fourth) and a non-matching
shard (the fifth). Since k = 2, two shards are enough to decode
the first original document. We will discuss how to choose m
and k to achieve high recall in Sec. V. Here, we focus on how
to obfuscate access patterns with privacy guarantees.

The goal of our privacy definition is to guarantee that for
access patterns that are similar, the obfuscated access patterns
generated from them are indistinguishable. For example, when
x = 111000, x′ = 110100, and an obfuscated access pattern
y = 110001 is observed with high probability, the adversary
cannot tell whether x or x′ was the original access pattern.
We use metrics to measure the similarity of access patterns.

Metrics. A metric on a set X is defined as a function d:
X × X → R, such that d(x, y) = 0 iff x = y; d(x, y) =
d(y, x); and d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X .

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

For example, Hamming distance dh is a metric for n-bit binary
vectors, such that dh(x, y) = |{i | xi 6= yi, i = 1, . . . , n}|.
Mechanisms. Let Y ⊆ {0, 1}n denote the set of all possible
obfuscated access-pattern vectors. An access-pattern obfusca-
tion mechanism probabilistically converts an access-pattern
vector to another access-pattern vector. More precisely, an
access-pattern obfuscation mechanism K from X to Y is a
probabilistic function: K : X → Y
d-Privacy. In this paper, we leverage a generalization of
differential privacy, called d-privacy [15]. The notation d in
d-privacy stands for a metric. We will customize d-privacy to
define the privacy guarantee of our access-pattern obfuscation
mechanism by using the Hamming distance dh.

Definition 2. An access-pattern obfuscation mechanism K :
X → Y gives εdh-privacy, iff ∀x, x′ ∈ X and ∀S ⊆ Y

Pr[K(x) ∈ S] ≤ eεdh(x,x
′)Pr[K(x′) ∈ S]

Here ε is a privacy parameter which is a non-negative real
number. Generally, the smaller ε, the stronger privacy guaran-
tee and usually larger overhead. The intuition of d-privacy is
that similar access patterns (e.g., x, x′ with small Hamming
distance) generate similar obfuscated access patterns. So from
an obfuscated access pattern, it is difficult to infer its original
access pattern. Note that the privacy guarantee is determined
by both the privacy parameter and the distances between the
access patterns to be protected. So for more diverse access
patterns, smaller ε is needed, resulting in larger overhead.

B. Achieving εdh-private APO

Consider flipping each bit of the access pattern indepen-
dently. Specifically, let p denote the probability flipping bit
xi = 1 to yi = 1, i.e., p = Pr[yi = 1|xi = 1]; let q
denote the probability flipping bit xi = 0 to yi = 1, i.e.,
q = Pr[yi = 1|xi = 0].

Define an obfuscation mechanism Kf such that, given an
access pattern x ∈ X , it outputs any y ∈ Y with probability

Pr[Kf (x) = y] = Pr[y|x] =
n∏
i=1

Pr[yi|xi]

where
Pr[yi = 1|xi = 1] = p Pr[yi = 1|xi = 0] = q
Pr[yi = 0|xi = 1] = 1− p Pr[yi = 0|xi = 0] = 1− q

We enforce two constraints on p and q to make the mech-
anism practical:
• Pr[yi = 1|xi = 0] < Pr[yi = 1|xi = 1]: the intuition is

that a non-matching shard should have a lower probability
to be retrieved than a matching shard;

• Pr[yi = 1|xi = 0] < Pr[yi = 0|xi = 1]: the intuition is
that a non-matching shard should have a lower probability
to be flipped than a matching shard.

So we have q < p and q < 1− p.
Now, we prove that Kf achieves εdh-privacy.

Theorem 1. The access-pattern obfuscation mechanism Kf
achieves εdh-privacy, where ε = ln p

q .

Algorithm 3: Func APO
Input: A document shard and its keyword list (Ds,W); Privacy

parameters p, q;
Output: A document shard with its obfuscated keyword list (Ds,W ′);
initialize W ′ = {};
for w ∈∆ do

if (w ∈W and rand() ≤ p) or (w /∈W and rand() ≤ q) then
add w to W ′;

return (Ds,W ′)

Proof. It is equivalent to show that ∀x, x′ ∈ X and ∀y ∈ Y

Pr[Kf (x) = y] ≤ eεdh(x,x
′) Pr[Kf (x′) = y] (1)

We have

Pr[Kf (x) = y]

Pr[Kf (x′) = y]
=

∏
i=1,...,n Pr[yi|xi]∏
i=1,...,n Pr[yi|x′i]

=
∏
xi 6=x′i

Pr[yi|xi]
Pr[yi|x′i]

≤
∏
xi 6=x′i

max

{
p

q
,
q

p
,
1− p
1− q

,
1− q
1− p

}

=

(
p

q

)dh(x,x′)
= eln

p
q dh(x,x

′)

Hence, we have inequality (1).
Algorithm 3 shows the algorithm of access-pattern obfus-

cation for a single document shard.

V. PARAMETER OPTIMIZATION

In this section, we discuss how to select parameters m,
k, p, q. We model it as a optimization problem. Here we
consider the average fraction v of keywords (with regards to
all queryable keywords in the SSE scheme) contained in each
document as a constant. The average fraction of documents
that will be returned for each query is also v if the query
is chosen uniformly at random, since each document will be
returned with probability v for containing that query keyword.

The measurements to be considered are:
• Privacy budget: T1 = εm = m ln p

q . Theorem 1 shows that
ε = ln p

q for p, q such that p > q and p+q < 1. And due to
the use of erasure codes, the Hamming distances between
the access patterns is proportional to m. This should be
reflected in the privacy budget as a multiplier.

• Document storage overhead: T2 = m
k . Each document is

encoded into m shards, each has 1
k of the original’s size,

resulting in m
k times overhead for document storage.

• Index storage overhead: T3 = (p + (1v − 1)q)m. The
number of keyword lists is m times of the original. For
each keyword list, each keyword in it has a probability of
p to appear in its obfuscated list, and any other keyword
will be added with a probability of q. So any keyword is
contained in a obfuscated keyword list with expectation
vp + (1 − v)q. Dividing by v and multiplying by m, we
get the storage overhead for the index, T3.

• Communication overhead: T4 = (p + (1v − 1)q)mk . The
number of shards retrieved is proportional to the total
number of keywords in the index. Each shard is 1

k of the
original document’s size. So the communication overhead
is T4 times of the original.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

• Recall: T5 =
∑m
i=k C

i
mp

i(1− p)m−i. This is the prob-
ability, for any matching document, to have at least k
shards returned. The probabilities of recoverability are
independent for different documents. Hence, the expected
recall, i.e., the percentage of successfully decoded matching
documents is T5.
• Precision: T6 = vT5

vT5+(1−v)
∑m
i=k C

i
mq

i(1−q)m−i . Similarly,
we can get the probability that a non-matching doc-
ument is successfully decoded,

∑m
i=k C

i
mq

i(1− q)m−i.
Weighted by the percentage of matching documents and
non-matching documents, we have the precision T6.

We can see that these six measurements are all nonlinear
functions in m, k, p, q which is undesirable for optimization
problems. Note that for erasure coding, the values of m, k are
always small integers (≤ 256 for the open-source erasure-
coding implementation used in our implementation). So it
is feasible to enumerate the values of m, k, such that 0 <
k < m < 256, and optimize p, q. This makes measurements
T2, T3, T4 linear functions in p, q.

For the privacy budget T1, we propose to set a constant
threshold ε0 that indicates the maximal allowable leakage. So
we have a constraint T1 ≤ ε0, which can be further translated
into a linear constraint for p, q:

p ≤ e
ε0
m q

For the recall T5, we propose to set a lower bound, or
minimal required recall τ0, which should be as close to 1
as possible. So we have a constraint T5 ≥ τ0. However,
given m, k, T5 is still a nonlinear function of p, denoted
as T5(p). We found that T5(p) is monotonically increasing
with p when p ≥ k

m , by proving its counterpart 1 − T5 =∑k−1
i=0 C

i
mp

i(1− p)m−i is monotonically decreasing with p,
which can be easily proved by showing the first derivative of
each term is negative when p ≥ k

m . Hence, we can use binary
search to find p∗ such that T5(p∗) ≈ τ0, so when p ≥ p∗,
T5(p) ≥ τ0 is always satisfied. Note that p ≥ k

m implies
mp ≥ k, where mp is the expected number of returned shards
of a matching document, and k is the minimal number of
shards for successful decoding. This constraint is reasonable
for a high recall. Hence, with a minimal required recall τ0,
we derive two linear constraints for p:

p ≥ k
m p ≥ p∗

For precision T6, we exclude it from our optimization since
the false positive documents could be easily filtered out by
the client. We will give the evaluation results on precision in
Section VII-B for completeness.

Now we can formulate the optimization problem for select-
ing m, k, p, q: Minimize

ω1
m

k
+ ω2

(
p+

(
1

v
− 1

)
q

)
m+ ω3

(
p+

(
1

v
− 1

)
q

)
m

k

subject to

p ≤ e
ε0
m q p > q p+ q < 1 0 < k < m < 256

p ≥ p∗ p ≥ k
m 0 < p, q < 1

where ωi, i = 1, 2, 3, s.t., ω1 + ω2 + ω3 = 1 are weights for
each specific measurement.

The goal is to minimize the weighted sum of different types
of overhead, given privacy and recall requirements. We found
that for given m, k, the minimum can be reached by setting
p = p∗ and q = p∗e−

ε0
m . So we can enumerate values of

m, k, calculate p, q and corresponding weighted overhead sum,
and output the values of m, k, p, q that achieve the minimum
weighted overhead sum.

Interestingly, in the first optimization attempts, we found
that the optimal p was very close to 1. The reason might
be that given a recall requirement, larger p allowed smaller
m and m

k , resulting in smaller overhead. However, such
p makes the obfuscated access pattern very close to the
original access pattern, leading to quite limited effectiveness
of our obfuscation mechanism. Hence, we additionally added
a upper bound to p, i.e., p ≤ p̂. In our evaluation, we set
p̂ = 0.9. Another observation was that the weighted sum of
different types of overhead was quite consistent with most
ωi, i = 1, 2, 3 settings. So we fixed their values such that
ω1 = 0.3, ω2 = 0.1, ω3 = 0.6 in our evaluation.

VI. IMPLEMENTATION

We implemented an access-pattern obfuscation mechanism
as a Java package APOSSE1 to support an open source SSE
library, Clusion [20], which provides Java implementations of
various state-of-the-art SSE schemes. We chose the imple-
mentation RR2Lev of the basic SSE scheme in [21] as our
underlying SSE scheme. For erasure codes, we use an open
source Reed-Solomon Code implementation [22] in Java.

Clusion currently provides only local versions of SSE
implementations. But it does not affect our implementation,
since our proposed obfuscation is done locally in the client
side by design. Clusion provides a keyword extraction method
to generate a Multimap (a data structure from Google Guava
that maps keys to values) that maps each keyword to the names
of documents that contains that keyword. It also provides
BuildIndex, Token and Search algorithms. Note that its Search
algorithm outputs the names of the matching documents.

Specifically, we implemented a Java class APOModules to
achieve access-pattern obfuscation. It has 3 components:

• erasureCodeEncoding, an encoding function that en-
codes each document in the collection using Reed-Solomon
Code. Each shard is named by its original name followed
by the shard number. For example, a document named
“foo” will be encoded into shards with names “foo.0”,
“foo.1”, . . . , “foo.7” respectively, when m = 8.
• obfuscateKeywordLists, an access-pattern obfus-

cation function that takes in a keyword-document
multimap1 and generates an obfuscated keyword-
document multimap2. For each (kw, doc) ∈ multimap1,
it adds each (kw, doc.i), i = 0, . . . ,m− 1, to multimap2
with probability p, and for (kw, doc) /∈ multimap1, it adds
each (kw, doc.i) to multimap2 with probability q.

1https://github.com/donnod/APOSSE

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

• erasureCodeDecoding, a search result decoding func-
tion that collects shards of the query results and decodes
documents with enough shards.

The resulting SSE scheme with access-pattern obfusca-
tion works as follows: when the client provides a docu-
ment collection, the default keyword extraction algorithm
is called to generate a keyword-document multimap1 and
obfuscateKeywordLists is called to get an obfuscated
keyword-document multimap2. multimap2 is provided to
the default BuildIndex algorithm to generate a secure index.
erasureCodeEncoding is called to produce shards of the
document collection. When the client issues a query, a search
token is generated using the default token generation algorithm
and passed into the Search algorithm. A list of shard names
is generated, which is input to erasureCodeDecoding to
recover documents to be presented to the client.

VII. EVALUATION

In this section, we empirically evaluate the effectiveness and
efficiency of our proposed access-pattern obfuscation method.

(a) Baseline IKK attack accuracy,
with recall ≥ 99.99%

(b) Improved IKK attack accuracy,
with recall ≥ 99.99%

(c) Storage and communication
overhead , with recall ≥ 99.9999%
(baseline IKK attacks)

(d) Storage and communication
overhead, with recall ≥ 99.99%
(improved IKK attacks)

Fig. 4: Security and performance evaluation w.r.t. different
attacks, under different privacy budget threshold ε0 settings

A. Security Evaluation

We replicated the IKK attack [9] on the Enron email dataset,
in which 30109 emails from “sent” folders were considered as
the document collection and 500 most common words were
used as keywords. We randomly chose 150 queries to be issued
by the client. The content of 7 of these queries were known to
the adversary (4.67%). The average percentage of keywords
contained in each document is v = 3.61%. Under this setting,
our replicated IKK attack was able to recover 100% of the 150
queries. Next, we considered cases when our access-pattern
obfuscation method was applied.

1) The Baseline IKK Attack: We first replicated the origi-
nal, unmodified IKK attack on obfuscated dataset and access-
patterns. The attacks were effectively mitigated with roughly
1.6× of communication overhead, which is similar to the
padding countermeasures implemented in [9], [10]. However,
we believe these results were due to the adversary’s unaware-
ness of the existence of mitigation methods. To better evaluate
our approach, we further assume the adversary knows the
existence of our defenses, including the parameters, m, k, p, q.
However, we assume the correlation between the shards and
their original documents remains unknown. This is reasonable
when the sizes of shards are the same and the encrypted
shards are outsourced in random order. By simply observing
the obfuscated access patterns of a limited number of queries,
it is very difficult for the adversary to figure out the linkage
between the shards and their original documents. We will relax
this requirement in the next section.

In particular, we considered a baseline IKK attacker whose
strategy is to use the obfuscation parameters and her a priori
knowledge of the document collection to generate a co-
occurrence matrix that could better represent the relationship
between keywords and the obfuscated access patterns. Specifi-
cally, the adversary simulates the obfuscation process multiple
times and computes an average co-occurrence matrix from
these simulated obfuscated access patterns. With this adjusted
co-occurrence matrix, the adversary continues to perform the
rest of the original IKK attack.

The obfuscation parameters were selected to achieve a recall
greater than 99.9999% and the minimal weighted overhead
sum according to Sec. V, under privacy budget threshold ε0
ranging from 50 to 450. The results of the baseline IKK attack
against this obfuscation scheme is illustrated in Fig. 4a, where
the x-axis shows various values of ε0 and the y-axis shows the
accuracy of query recovery. We can see that with ε0 ≤ 200,
the baseline IKK attack can be effectively mitigated.

2) The Improved IKK Attack: Now we consider the cases
when the adversary can successfully figure out which shards
belong to the same documents. This is possible when the
shards of different original documents are different in size, or
when the obfuscated SSE is a dynamic SSE scheme (which
leaks such information when uploading a single document—
thus all its shards—at the same time). The improved IKK
adversary is much stronger as she knows every detail of the
obfuscation (except for the random values generated to flip
bits of access-pattern vectors), which enables her to infer the
original access patterns and calculate a more accurate co-
occurrence matrix.

Specifically, the adversary firstly groups together shards
from each original document and infers the original access
patterns of the document as follows: As each document is
encoded into m shards with the same keyword lists, the
original access pattern of the document is an m-bit vector
with all 0s, denoted as xzeros , or all 1s, denoted as xones . By
observing the obfuscated access pattern of the shards, which
is also a m-bit vector y (with b bits equal to 1), the adversary
applies Bayesian estimation on the original access pattern

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

x ∈ {xzeros , xones} by comparing the posterior probabilities
Pr[xzeros |y] and Pr[xones |y]. Using Bayesian Theorem, we
have

Pr[x|y] = Pr[x] Pr[y|x]
Pr[y]

=
Pr[x] Pr[Kf (x) = y]

Pr[y]

which is equivalent to compare

Pr[xzeros] Pr[Kf (xzeros) = y] = (1− v)qb(1− q)m−b

Pr[xones] Pr[Kf (xones) = y] = vpb(1− p)m−b

Under the same parameter settings used to defeat the
baseline IKK attack, the improved IKK attacks achieved almost
100% attack accuracy. To mitigate this attack, we lowered
the recall requirement from 99.9999% to 99.99% and chose
a lower privacy budget threshold ranging from 17 to 25. The
resulting attack accuracy of this improved IKK attack is shown
in Fig. 4b. We can see that with ε0 ≤ 20, the attack accuracy
can be reduced greatly.

B. Performance Evaluation

We evaluate the performance of our mechanism in three
aspects. First, we calculate the storage and communication
overhead under different parameter settings. Second, we report
the precision of the retrieved documents. Third, we measure
the latency of the SSE due to access-pattern obfuscation.

1) Storage and Communication Overhead: The document
storage, index storage and communication overhead under
different parameter settings of both the baseline IKK attack
and the improved IKK attacks (with the corresponding recall)
are shown in Fig. 4c and Fig. 4d, respectively. In Fig. 4c,
m = 10, k = 3 for ε0 = 50; m = 13, k = 5 for ε0 = 100; and
m = 17, k = 8 for ε0 ≥ 150. p ranges from 0.886 to 0.899
and q ranges from 10−2 to 10−12. To defeat the baseline IKK
adversary, roughly 2× of original communication workload
is enough. In Fig. 4d, m = 6, k = 2 for all simulated ε0
values. p equals to 0.887 and q ranges from 0.052 to 0.014.
To mitigate the improved IKK adversary, roughly 5× ∼ 6×
of original communication workload is needed. To defeat
these two attacks while meeting the recall requirements, the
document storage overhead ranges from 2× to 3×, and the
index storage overhead ranges from 10× to 15×.

Fig. 5: Precision under
different privacy budget
threshold ε0 settings, with
recall rate ≥ 99.99%

2) Precision: In the exper-
iments for defending against
the baseline IKK attack, the
precision exceeded 99.9% for
all parameter settings. For
improved IKK attack, Fig. 5
shows the precision under dif-
ferent privacy budget threshold
ε0 settings, with the recall ≥
99.99%. A precision less than
60% is needed to effectively
defeat the improved IKK attack.
But as the client sees the de-
coded documents in plaintext,
filtering false positives on the client side is straightforward.

TABLE I: Runtime overhead of the obfuscation mechanism

original bIKK iIKK
m N/A 17 6
k N/A 8 2
p N/A 0.89999 0.88703
q N/A 6.997E-6 0.04416
of original (kw, doc) pairs 607837 607837 607837
obfuscation in setup phase N/A 107.97 s 103.92 s
of resulting (kw, doc) pairs 607837 9301129 7071015
index building time 6.09 s 46.09 s 36.77 s
shards encoding time N/A 30.87 s 9.72 s
search time per query 3.91 ms 54.51 ms 38.52 ms
decoding time per query N/A 113.77 ms 104.12 ms

3) Runtime Overhead: We measured the induced access
latency of our obfuscation scheme on a server with Intel
Xeon 2.3GHz E5-2630 processors and 16GB memory. We
run our implementation with Enron email dataset with two
parameter settings, one for each attack (bIKK stands for the
baseline IKK attack and iIKK stands for the improved IKK
attack), and compared the access time with that of the original
SSE schemes. The results are shown in Table I. The search
time per query and decoding time per query is measured by
taking the average of 150 randomly selected queries. Since
our implementation of SSE is a local version, no network
latency was measured. We can see that the runtime overhead
for BuildIndex increases with the index storage (represented by
the resulting number of keyword-document pairs). Since the
setup process will be performed only once, this runtime cost
can be amortized. For search phase, less than 200 milliseconds
is needed to query a large secure index and decode the result.

VIII. RELATED WORK

A. Query Recovery Attacks against SSE

Islam, Kuzu, and Kantarcioglu [9] demonstrated that an
honest-but-curious server could guess the user’s queries when
the content of (almost) the entire database is known. Cash
et al. [10] categorized the leakage into four levels, i.e.,
L1, L2, L3, L4, with L1 being the least leakage (e.g., leaking
only the access patterns). They also improved the IKK attack
to make it more efficient when additional information, i.e., a
prior knowledge of the sizes of search results, is known. Zhang
et al. [23] introduced file-injection attacks against dynamic
SSE schemes, in which an active adversary injects files of her
choice to the dataset and learn the user’s queries by observing
the access patterns of the injected files. Their attack assumes
an active adversary, while our mechanism considers only a
passive adversary.

More distant from the threat model we consider in this
paper, Kellaris et al. [24] generalized the leakage model of
access patterns and communication volumes and proposed
generic reconstruction attacks on systems supporting range
queries. Rather than focusing on file-based access pattern
leakage, Ritzdorf et al. [25] studied block-based access pattern
leakage in deduplicated storage systems.

Besides access-pattern leakage based query recovery attack,
Liu et al. [26] demonstrated that query content could be
recovered when the attacker observes search patterns (whether
two issued queries are searching the same keyword), and

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

has a priori knowledge of the victim’s search habits. In
this paper, we focus on protecting access-pattern leakage.
Though our current framework does not hide search patterns,
the countermeasure proposed by Liu et al. [26] could be
incorporated into our framework easily.

B. Countermeasures
Kuzu et al. [19] proposed to apply differential privacy to

obfuscate the total size of search results. Their scheme requires
two servers: an untrusted server that holds most of the data
and a trusted server that holds the complementary records to
ensure the correctness of search results. Laplace-distributed
noise is added to the total number of retrieved records. In
contrast, we achieve privacy guarantees for access-pattern
leakage, a much stronger threat model, and do so without a
separate, trusted server. Islam et al. [9] proposed a padding
based countermeasure to mitigate the IKK attack. In their
countermeasure, keywords are partitioned into sets, each of
which contains at least α keywords. The access patterns of the
keywords within the same set are padded to be the same. Cash
et al. [10] proposed to inject additional file accesses so that
the number of the accessed files is some multiple of a constant
integer. Our obfuscation mechanism offers more general and
principled defense than padding-based countermeasures.

Garg et al. [12] proposed an ORAM-based SSE scheme to
eliminate access-pattern leakage, but with a communication
cost of O(log(n) log log(n)), which becomes very large when
the number of documents, n, increases. Naveed et al. [13] also
suggested that the communication overhead of ORAM-based
schemes could be larger than that of simply sending back all
data stored in the remote server. In contrast, our proposed
obfuscation mechanism does not incur higher communication
overhead with larger n.

Private information retrieval (PIR) schemes protect the
access patterns to public databases [27]. Single-server PIR
schemes [18] may induce lower communication overhead
than ORAM, but the computation overhead is large—the
entire document collection must be processed. A differentially
private PIR was proposed by Toledo et al. [28], where multiple
non-colluding servers were required. In contrast, our scheme
does not rely on multiple servers. Moreover, PIR considers a
different threat model, which has been discussed in Sec. II-D.

IX. CONCLUSION

Searchable symmetric encryption schemes trade off security
for efficiency by allowing access-pattern leakage. In this paper,
we defined εdh-privacy on access patterns, and proposed an
obfuscation mechanism to achieve this privacy guarantee.
Instead of designing a new SSE scheme, we proposed a
framework that could integrate our obfuscation mechanism
into existing SSE schemes. We implemented a prototype, and
evaluated the effectiveness and performance of our design.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers for their con-
structive comments. This work was supported in part by NSF
grants 1330599, 1718084 and 1566444.

REFERENCES

[1] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in IEEE Symposium on Security and Privacy, 2000.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in ACM CCS, 2006.

[3] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in ACM CCS, 2012.

[4] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in International Conference on Financial Cryp-
tography and Data Security, 2013.

[5] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in CRYPTO, 2013.

[6] M. Naveed, M. Prabhakaran, and C. Gunter, “Dynamic searchable
encryption via blind storage,” in IEEE Symposium on Security and
Privacy, 2014.

[7] B. Raphael, “Sophos - forward secure searchable encryption,” in ACM
CCS, 2016.

[8] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in Eurocrypt, 2017.

[9] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation.” in NDSS,
2012.

[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in ACM CCS, 2015.

[11] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” J. ACM, 1996.

[12] S. Garg, P. Mohassel, and C. Papamanthou, “Tworam: Efficient oblivious
ram in two rounds with applications to searchable encryption,” in
CRYPTO, 2016.

[13] M. Naveed, “The fallacy of composition of oblivious ram and searchable
encryption,” Cryptology ePrint Archive, Report 2015/668, 2015.

[14] C. Dwork, “Differential privacy: A survey of results,” in International
Conference on Theory and Applications of Models of Computation,
2008.

[15] K. Chatzikokolakis, M. Andrs, N. Bordenabe, and C. Palamidessi,
“Broadening the scope of differential privacy using metrics,” in Privacy
Enhancing Technologies, 2013.

[16] Enron dataset. https://www.cs.cmu.edu/%7E./enron/.
[17] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-

tion retrieval,” J. ACM, 1998.
[18] R. Ostrovsky and W. Skeith, A Survey of Single-Database Private

Information Retrieval: Techniques and Applications, 2007.
[19] M. Kuzu, M. Islam, and M. Kantarcioglu, “Efficient privacy-aware

search over encrypted databases,” in ACM Conference on Data and
Application Security and Privacy, 2014.

[20] S. Kamara and T. Moataz. Clusion. https://github.com/orochi89/Clusion.
[21] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and

M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in NDSS, 2014.

[22] Javareedsolomon. https://github.com/Backblaze/JavaReedSolomon.
[23] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong

to us: The power of file-injection attacks on searchable encryption,” in
USENIX Security Symposium, 2016.

[24] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks on
secure outsourced databases,” ACM CCS, 2016.

[25] H. Ritzdorf, G. Karame, C. Soriente, and S. Čapkun, “On information
leakage in deduplicated storage systems,” in ACM on Cloud Computing
Security Workshop, 2016.

[26] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan, “Search pattern leakage in
searchable encryption: Attacks and new construction,” Inf. Sci., 2014.

[27] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in Annual Symposium on Foundations of Computer
Science, 1995.

[28] R. Toledo, G. Danezis, and I. Goldberg, “Lower-cost epsilon-private
information retrieval,” CoRR, 2016, http://arxiv.org/abs/1604.00223.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

