
Intent-Driven Composition of
Resource-Management SDN Applications
Victor Heorhiadi

University of North Carolina
Chapel Hill, NC, USA
victor@cs.unc.edu

Sanjay Chandrasekaran
Carnegie Mellon University

Pittsburgh, PA, USA
sanjayc@andrew.cmu.edu

Michael K. Reiter
University of North Carolina

Chapel Hill, NC, USA
reiter@cs.unc.edu

Vyas Sekar
Carnegie Mellon University

Pittsburgh, PA, USA
vsekar@andrew.cmu.edu

ABSTRACT
As software-defined networking deployments mature, operators
need to manage and compose multiple resource-management ap-
plications, such as traffic engineering and service chaining. Today
such applications’ resource management algorithms run separately
and composition approaches are output-driven, e.g., running each
application on a statically provisioned slice of the network and then
combining the flow rules output for each slice. Such approaches
result in inefficient resource utilization and unfairness. Instead, we
argue for intent-driven composition, where a unified resource op-
timization formulation is composed from applications’ high-level
intents and the solution to this problem formulation is realized in
the network. We design Chopin1, an intent-driven framework for
composing SDN resource-management applications. Chopin’s de-
sign addresses key robustness challenges with regard to efficiency
and fairness that arise in realizing such an intent-driven approach.
We have integrated Chopin with the ONOS controller and show
that it substantially improves efficiency and fairness over existing
composition approaches.

CCS CONCEPTS
• Networks → Network resources allocation; Network man-
agement;

ACM Reference Format:
Victor Heorhiadi, Sanjay Chandrasekaran, Michael K. Reiter, and Vyas
Sekar. 2018. Intent-Driven Composition of Resource-Management SDN
Applications . In The 14th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT ’18), December 4–7, 2018, Herak-
lion, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3281411.3281431

1Allusion to Frédéric Chopin, a 19th century classical composer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00
https://doi.org/10.1145/3281411.3281431

Composition
Config

Operator

-Objective
-Constraints
-Traffic classes
-Resource costs

Traffic
paths

So
lu
tio
ns

Apps

Chopin

In
te
nt
s

Developer(s)

Control platfrom (e.g., ONOS)

- Coordinated path
selection
- Optimization

So
lu
tio
ns

Apps

Developer(s)

Control platfrom (e.g., ONOS)

Traffic
paths

Current frameworks,
no coordination

(e.g., SOL, Merlin)

Figure 1: Comparison of Chopin framework vs. existing ap-
plication deployment processes.

1 INTRODUCTION
As software-defined networking (SDN) transitions from infancy
into the next stage, we seemore complex deployments withmultiple
network management applications. Organizations have reported
concurrently deploying multiple specialized applications on their
networks [13, 46] and there are also visions of SDN “app stores” [34,
40, 41].

With the growing number and diversity of applications running
in a network, there is an imminent need for systematic approaches
for composing such application instances. While policy composi-
tion has been studied extensively and many solutions are avail-
able [22, 36, 38], composing resource-management applications
remains a hard problem due to the wide range of applications and
their diverse demands (e.g., load balancing, service chaining, power
saving) [18, 29, 37]. Tensions among various types of resources (e.g.,
compute, bandwidth, latency) introduce additional complexity to
SDN application composition, which has not been addressed as
extensively as the policy composition problem.

Existing approaches for composing resource management re-
quirements [4, 5, 22] take an output-driven approach, in which each
application uses its respective standalone optimization algorithm to
generate a candidate solution. An application’s candidate solution
might then be used to influence the resources made available to
another application (e.g., as in ordered optimization) or be com-
bined with outputs of other applications (e.g., statically slicing the
network resources across applications). Some of these approaches
even require applications to be rewritten to implement additional

86

https://doi.org/10.1145/3281411.3281431
https://doi.org/10.1145/3281411.3281431
https://doi.org/10.1145/3281411.3281431
https://www.acm.org/publications/policies/artifact-review-badging/#available

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Heorhiadi et al.

composition logic (e.g., voting [4, 5]), but still produce subopti-
mal outcomes. As such, these output-driven approaches are far
from optimal in terms of resource efficiency and/or fairness across
applications.

In contrast to these existing approaches, we argue for an intent-
driven composition approach as shown in Fig. 1. At a high-level, in-
stead of executing multiple applications and deploying their output
strategies directly to the network, intent-driven composition uti-
lizes applications’ high-level goals (or intents) to directly construct
a unified optimization. An intent-driven approach has multiple
benefits over output-driven composition (§2). First, it can produce
a more resource-efficient solution by modeling the demands of
all applications simultaneously, as opposed to executing applica-
tions separately. Second, it enables the operator to execute flexible
and fair composition of applications, and systematically balance
(possibly competing) objectives of multiple applications. Third, the
applications do not need to be (re)designed to be composition-aware
and need only to specify their own intents.

To this end, we develop Chopin, a framework that enables com-
position of resource-management SDN applications and addresses
each of the challenges mentioned above. To provide expressive and
general intent specifications for a broad spectrum of applications,
Chopin builds on prior work called SOL [21]. SOL is conceptu-
ally similar to other related frameworks such as Merlin [44] and
DEFO [16]. Essentially, these frameworks provide high-level APIs
to express the requirements of various SDN apps—e.g., what kinds
of packet processing need to be implemented and the latency/band-
width requirements of different classes of traffic. For instance, using
SOL we can specify that all HTTP traffic from prefix A to prefix B
(i.e., a given class) needs paths of at most 5 hops (i.e., a performance
requirement) and that this traffic must be processed by a firewall
and an IDS in that order (i.e., packet processing or service chaining
goals).

However, these frameworks, including SOL, are designed to
capture the requirements of only one application at a time. As such,
SOL’s design, and the designs of these other related efforts, do not
support composition, and naively extending them incurs the same
pitfalls of the output-driven composition approaches discussed
above.

Chopin uses the application intents (i.e., written using the
SOL or a similar API) to directly construct a unified optimization,
rather than per-application optimizations. This enables coordina-
tion among application demands without requiring the developers
to create composition-aware applications, and produces a resource-
efficient solution. Doing so also enables Chopin to support multiple
candidate fairness metrics (e.g., [3, 15, 25]), providing flexibility in
how the application objectives are balanced.

To produce an efficient solution at timescales that are sufficiently
responsive to network and traffic changes, Chopin decomposes
the solution generation into two steps: offline pre-processing that
selects a subset of network paths over which to route applica-
tion demand, and an online optimization that balances the traffic
across these paths based on the current demand. While the use
of offline-online decomposition for scalability is similar to prior
efforts [16, 21, 28, 44], subtle issues arise from our need to consider
a set of coexisting applications rather than a standalone applica-
tion. For instance, if all applications greedily pick the same set of

paths in the offline stage, then we could congest the network even
though more optimal solutions are possible. Thus, we need the
offline computation to be coordinated across the set of applications
and tolerant to the variability in traffic demands across these appli-
cations. While this makes the offline computation more complex
than the standalone case in SOL, we develop heuristics to improve
its tractability.

We have implemented a Chopin prototype using Python and a
Chopin service in Java for the ONOS controller (the source code is
publicly available on Github [19]). The results indicate that Chopin
achieves better optimality than naive composition approaches (e.g.,
static resource allocation) by as much as 40%. Chopin also outper-
forms composition based on voting mechanisms [5] in resource
efficiency by a factor of 2. Our heuristics for path selection achieve
an order of magnitude speedup while sacrificing ≈ 1% optimality.

Contributions and Roadmap. To summarize, our contributions
include the following:
• We empirically demonstrate the limitations of composing SDN
resource-management applications using output-driven ap-
proaches (§2);

• We introduce intent-driven composition (§3) as an alternative,
leveraging the applications’ high-level goals available to intent-
based frameworks;

• We achieve scalable composition with the help of traffic clus-
tering and coordinated path selection (§4) and integrate with a
popular SDN platform (§5).
We empirically evaluate our implementation in §6. We follow

with discussion and limitations in §7, related work in §8, and con-
clude in §9.

2 BACKGROUND AND MOTIVATION
In this section, we highlight the limitations of existing output-
driven composition approaches. At a high level, we refer to an
approach as output-driven if the optimization algorithms for each
application are executed separately and their outputs are either
combined or used to influence inputs of other applications. More-
over, the optimization logic of the application is not known to
the orchestration/composition framework. In effect, existing in-
tent frameworks [16, 21, 44] would be forced to use output-driven
composition to support multiple concurrent applications.

As a concrete example, consider Fig. 2. Suppose the network
operator desires to install two different applications: one to balance
the load that web traffic imposes on network links, and another
to ensure that SSH traffic traverses a firewall and, subject to this
constraint, travels minimal-latency paths. For clarity we examine
only traffic traveling between nodes N1 and N5; it is easy to see
that the optimal solution is for App1 to use path N1-N2-N4-N5 and
for App2 to use path N1-N3-N5. We use this example to discuss
common output-driven approaches:

Static allocation [43] divides the resources, and each application
is presented with a view of a topology based on those allocations.
The allocations are computed proportionally to application priority
(e.g., the amount of traffic that belongs to the application). For exam-
ple, in Fig. 3, resources are divided proportionally by traffic volume,
where App1 perceives links to have 2

3 of their physical capacity,

87

Intent-Driven Composition of SDN Applications CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

N1 N2

N3

N4

N5

App1: N1→N5 Web, demand 100KB/s, minimize link load
App2: N1→N5 SSH, demand 50KB/s, minimize latency, req. firewall

100KB/s 100KB/s

100KB/s

50KB/s

50KB/s

Figure 2: Composition scenario: two applications to be de-
ployed and their optimizations to be applied toWeb and SSH
traffic (respectively).

App2 View: N1→N5 SSH, demand 50KB/s, minimize latency, req. firewall

33KB/s 33KB/s

33KB/s

17KB/s

17KB/s

N1 N2

N3

N4

N5

App1 View: N1→N5 Web, demand 100KB/s, minimize link load

67KB/s 67KB/s

67KB/s

33KB/s

33KB/s

Figure 3: Static resource allocation provides an over-
constrained view of links, resulting in a failure to enforce
the firewall policy and sub-optimal latency for SSH traffic.

while App2 perceives links with
1
3 of their capacity. When the opti-

mizations are executed, due to link constraints, 13 of SSH traffic is
forced to take the path N1-N2-N4-N5, which lacks a firewall and is
longer than N1-N3-N5 — resulting in a failed policy enforcement
and suboptimal latency.
Ordered optimization [10] orders the applications and solves
the optimizations in sequence. That is, after the first optimization is
executed, the capacity of the network is adjusted by subtracting the
resources it consumed and the next application’s optimization can
only use the residual capacities. In our example, after App1 is run,
due to link load-balancing, the residual capacity of the network is
identical to that of App2’s view in Fig. 3: links with capacity 17KB/s
and 33KB/s. This capacity is insufficient to correctly route the SSH
traffic. While simply re-ordering the applications can alleviate this
problem, for larger number of applications exploring all possible
orderings to find the best solutions is impractical.
Voting schemes make improvements to the ordered optimization
strategy. Examples include systems such as Corybantic [4] and
Athens [5], which make applications aware of the other applica-
tions and allow them to vote on each others’ resource-management
proposals to negotiate a solution. This places additional burdens
on SDN application developers as the design and implementation
should now be explicitly tailored to be composition-aware. As we
will show in §6, voting approaches can lead to inefficient solutions.

To summarize, existing composition approaches are output-
driven, and produce resource-inefficient and/or unfair results.While
recent work (e.g., [5]) improves upon naive composition approaches,

it requires applications to be aware of all other applications on the
network.

3 CHOPIN OVERVIEW
Chopin composes applications by creating a unified optimization
problem from the application intents, instead of their outputs. Ac-
cess to application intents enables composition with several attrac-
tive features:
• Resource efficiency. By creating a unified optimization, Chopin
can simultaneously compute resource allocation for different
traffic classes managed by different applications. Therefore, tech-
niques that artificially constrain the pool of available solutions
(e.g., static allocation or ordered optimization) are not used and
do not negatively impact the solution.

• Fairness. Multiple applications necessitate multi-objective op-
timizations, moving away from a single notion of optimality.
Fairness can be directly incorporated during the solution gener-
ation stage, as opposed to embedded after solutions have been
computed.

• Transparent composition. The composition process is transparent
to application developers, who write applications in the given
intent framework. Intents are composed without additional de-
veloper effort.

Having explored the benefits of intent-driven composition, we
outline the requirements for system design. Chopin should:
• Enable developers to specify application intents;
• Construct an integrated optimization (i.e., model resource usage,
introduce fairness); and

• Produce the solution quickly enough to respond to network and
traffic changes.

We detail our approach for each requirement below.
Intent specification. The goal of intent specification is to support
different types of applications and model their requirements as an
optimization problem. As observed in prior work [16, 21, 44], the
intents of many network applications can be succinctly captured
by specifying four key properties listed below:
• Types of traffic the application manages (i.e., traffic classes);
• Routing policy (a description of valid routing paths);
• Resource costs and constraints; and
• The objective function (e.g., minimize resource load, maximize
flow).
Multiple types of conflicts may arise between application intents.

We identify three groups of conflicts: (1) Policy conflicts, where
applications want to apply different routing policy to the same
traffic. We assume that policy conflicts between applications are
resolved prior to running Chopin (e.g., with a tool like PGA [36]).
Such resolution results in non-overlapping traffic classes, each with
a unique routing policy. (2) Objective conflicts, where applications
have conflicting global optimization goals; and (3) Resource con-
flicts, where applications assign different costs for a given traffic
class and resource. Chopin focuses on resolution of resource and
objective conflicts (described in detail in §4), with the help of a
framework for intent specification.

Many prior efforts [16, 21, 44] provide an API and can support
a variety of resource-management applications and their intents

88

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Heorhiadi et al.

(e.g., [18, 20, 29, 37, 42]). We use SOL [21] as a starting point be-
cause of our familiarity from prior work; our composition-centric
challenges and insights apply to these other concurrent efforts as
well. However, SOL and other efforts are designed to produce a so-
lution for only one application at a time. Since our goal is to enable
development of composition-unaware applications, we utilize this
API, but design a new way to construct and solve the optimization.

Background on SOL and intent API. SOL’s API presents a way
to specify an assortment of resource-management objectives and
constraints. By adopting network paths (as opposed to links) as the
base unit for resource allocation, the API gains notable expressive
power. More specifically, SOL provides an abstraction for express-
ing a wide range of traffic engineering, service chaining and NFV
applications.

The developers make SOL API calls that specify resource costs
for different traffic classes, define resource-management objectives,
and control network elements (e.g., logically enable/disable links
and nodes). For example, a traffic engineering application requires
only three API calls: 1) define bandwidth as a resource; 2) route all
traffic given a cost value per flow; and 3) minimize bandwidth load.
SOL also supports arbitrary routing policies by filtering network
paths according to a functional predicate. Resource loads are ex-
pressed using path-based constraints. The path-based design allows
significant expressiveness, but introduces new challenges, namely
efficient solving of the optimization. To keep the computation scal-
able despite the large (potentially exponential) number of paths in
the network, SOL optimizes over a small subset of network paths
chosen using heuristics.

Creating and solving an optimization. When constructing the
optimization, Chopin leverages the mathematical representation of
intents available in SOL, but introduces coordination and fairness
among different applications. Given the application intents, Chopin
resolves any resource-cost conflicts; i.e., if multiple applications try
to manage the same traffic, then Chopin conservatively reconciles
any discrepancies in how they measure the costs of that traffic
by choosing the worst-case resource cost (formal definition pro-
vided in §4.1). During construction of the optimization, the network
operator specifies the desired fairness metric for the applications’
objectives and any additional resource constraints that apply to all
applications.

Chopin splits the computation into two stages: offline path selec-
tion and online optimization. In the offline stage, valid routing paths
are generated, and a subset of them are selected for use in the on-
line optimization. Computationally intensive offline pre-processing
keeps the online optimization scalable, which helps adjust to shift-
ing traffic demands, if needed. Unlike the offline/online split utilized
in SOL, Chopin’s offline path selection is coordinated, which means
it is tailored to a given set of applications. To see why coordination
during path selection is necessary, consider the network in Fig. 4:
two applications are required to choose two paths, and they pick
the shortest available, as suggested by a previous path selection
heuristic [21]. While sufficient for each application on its own, the
total capacity of the paths is too low to carry traffic from both
applications.

Similarly, changing network conditions adds greater complexity
to the optimization, exacerbating the problems with offline path

N1 N2

N3

N4

N5

App1: N1→N5 Web, demand 100KB/s, minimize link load
App2: N1→N5 SSH, demand 50KB/s, minimize latency, req. firewall

100KB/s 100KB/s

100KB/s

50KB/s
50KB/s

N6

50KB/s

50KB/s

Figure 4: Naive composition using intent-based framework
has no available solution. Both applications choose shortest
paths (in bold), which are sufficient per application but lack
capacity in a composition scenario.

e1 e2

100KB/s 80KB/s

Total 150KB/s

App1

150KB/s

50KB/s 70KB/sApp2

N1 N2

N3

N4

N5

100KB/s 100KB/s

100KB/s

50KB/s

App1: N1→N5 Web, demand expected 100KB/s, minimize link load
App2: N1→N5 SSH, demand expected 50KB/s, minimize latency, req. firewall
 total. 150KB/s

50KB/s

N6

50KB/s

50KB/s

Figure 5: Traffic shift from time epoch e1 to e2 causes a policy
violation if path N1-N6-N5 is not chosen, despite the total
volume of traffic remaining the same.

selection. Consider the network in Fig. 5, where a traffic volume
shift occurs between time epochs e1 and e2. Despite the total volume
of traffic being the same, App2 cannot route traffic according to
the policy as path N1-N2-N4-N5 does not conform to the policy
and path N1-N6-N5 was not selected during pre-processing. Multi-
application path selection needs to account for such potential traffic
shifts between applications to avoid infeasibility pitfalls.
End-to-end workflow. The full operational workflow is pre-
sented in Fig. 6. Application intents are specified using the provided
API (step ➊). The operator collects the applications to be deployed
and Chopin generates network paths that conform to the applica-
tions’ routing policies. The operator then generates a collection of
traffic matrices, one per epoch (step ➋). The temporal variability
of the traffic matrix across epochs ensures the robustness of the
solution and aids selection of a diverse set of paths. This “provi-
sioning” traffic matrix can be generated from past observations or
using synthetic models (e.g., [47]). The coordinated path selection
(step ➌) selects a set of paths for each application, by composing
the applications and choosing the paths that produce best results
across the per-epoch traffic matrices. Paths are saved for later use
in the online deployment phase. After pre-processing, the operator
proceeds to deploy the applications (step ➍). Chopin constructs an

89

Intent-Driven Composition of SDN Applications CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Offline pre-processing

Path
Generation

Path
store

Apps

Intents

Operator

➊

Traffic
Volum

es

➋

Robust Coordinated
Path Selection➌

Deployment (online)

Optimization➍
Rule

Generation
➎

Figure 6: Chopin workflow: The operator collects applica-
tion intents and traffic demands. Chopin performs robust
path selection, and deploys the applications. (Chopin con-
tributions are highlighted in bold.)

online optimization based on current (measured) network demands
and applies the desired fairness metric. When running the online
optimization, Chopin uses paths chosen during path selection (step
➌) as input to the optimization. The solution is converted to net-
work flows, which are deployed via a network controller (step ➎)
(e.g., [48]).

4 DETAILED DESIGN
In this section we focus on the steps that represent our primary
technical innovations from Fig. 6: step ➍ (unified optimization,
described in §4.2) and then step ➌ (coordinated path selection,
described in §4.3). Unified optimization enables fair composition,
while coordinated path selection enables a resource-efficient so-
lution even in the presence of multiple applications and traffic
variability.

4.1 Preliminaries
Composition is performed by combining application intents. First,
applications’ traffic classes and policies are used to generate valid
network paths. Then, traffic is routed along these paths, consum-
ing network resources as specified by applications’ resource costs.
Resource consumption, in turn, is reflected in the applications’
objective functions. Precise notation follows below.

Traffic classes. A traffic class c is a subset of all traffic arriving at
a designated ingress node c .in, exiting at a designated egress node
c .out, and matching the specification c .flowspec (e.g., specified by
IP 5-tuple). Each class c also has an associated volume estimate in
number of flows per time epoch e , denoted c .vol[e]. We assume that
traffic classes do not overlap, i.e., if C is the set of all traffic classes,
then for any c1, c2 ∈ C, c1∩c2 = ∅. (Non-overlapping classes can be
ensured by simply decomposing traffic into sufficiently fine-granted
classes, e.g., [36].) A traffic matrix TMe for epoch e has the value
at location TMe [in, out]: ∑

c ∈ C : c .in = in
∧ c .out = out

c .vol[e]

Intent-driven CompositionApp1
Intents

App2

Intents
Union of Traffic Classes

Resource costs

Union of Constraints

Fairness (Objectives)

Resource load
constraints

Unified, Online Optimization

Figure 7: Conceptual composition of two applications: Uni-
fied optimization provides resource efficiency. Fairness is
applied to the application objectives. Traffic classes and re-
source costs are used to compute resource load constraints.

Applications. For our purposes, an application App is specified
as a set of traffic classes App .classes ⊆ C that it manages; a set
of permissible paths App .paths[in, out] for carrying traffic classes
c ∈ App .classes such that c .in = in and c .out = out; an average
per-flow amountApp .cost[r] of resource r consumed by traffic asso-
ciatedwith this application; an objective function App .obj specified
in terms of those resource costs and the network topology (e.g., max-
imizing flow, minimizing resource load); and various constraints
that characterize allowable allocations of the traffic in App .classes
to the network. The set App .paths[in, out] is generated in step ➊ of
Fig. 6 to contain the paths that satisfy a predicate specified by the
app developer (as a function that Chopin evaluates on candidate
paths, as in SOL). Each node N on path p ∈ App .paths[in, out] has
a fixed resource-r capacity N .cap[r], specified in the same units as
App .cost[r]. Similarly, each link L on path p ∈ App .paths[in, out]
has a fixed resource-r capacity L .cap[r].

We define the per-flow cost for resource r associated with traffic
class c as the maximum cost specified across all applications for a
given traffic class:

c .cost[r] = max
App : c ∈App .classes

App .cost[r]

This ensures a conservative cost estimation across applications that
manage the same traffic class c .
The allowable paths for c are

c .paths =
⋂

App : c ∈App .classes
App .paths[c .in, c .out]

which we assume to be nonempty.

4.2 Online, Unified Optimization
Chopin achieves fair and resource-efficient composition by cre-
ating a single unified optimization, which allows simultaneous
optimization over multiple criteria (e.g., balancing middlebox load
and link load simultaneously). Fig. 7 provides a conceptual view
for the composition process: a single online optimization is con-
structed from the application’s resource-management intents. A
fairness measure is applied to the applications’ objective functions.
Application-specific constraints are combined unmodified, while
resource load constraints are computed from the traffic classes and
resource costs provided by each application. Fig. 8 describes the
mathematical underpinnings of the optimization. We emphasize

90

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Heorhiadi et al.

maximize
Obj =

∑
i
wi × Appi .obj[E] (1)

subject to, for all e ∈ E,
· · ·

NLoadcN [r, e] =
∑

p∈c .paths:
N∈p

xc,p,e
c .cost[r] × c .vol[e]

N .cap[r]
(2)

0 ≤ xc,p,e ≤ 1 (3)

NLoadN [r, e] =
∑
c∈C

NLoadcN [r, e] (4)

NLoad [r, e] = max
N

NLoadN [r, e] (5)

NLoad [r, e] ≤ NLimit[r] (6)
· · ·

∑
c∈C

∑
p∈c .paths

bc,p ≤ |C | × NumPaths (7)

0 ≤ xc,p,e ≤ bc,p (8)
bc,p ∈ {0, 1} (9)

Figure 8: Core components of the linear programming for-
mulation of the unified optimization. An example resource
load computation is described in Eqn. 2–Eqn. 6, where E is
a singleton set (containing the current epoch index) in the
online optimization and E = {1, . . . ,NumEpochs} in the of-
fline path selection. Offline path selection also adds Eqn. 7–
Eqn. 9.

that for this subsection, the epoch index e is a constant, and E
denotes the singleton set E = {e}. This is relaxed in §4.3.

Resource load and objectives. Resources represent any capacity-
bounded property of links or nodes (e.g., bandwidth, TCAM space,
CPU speed). To standardize resource consumption, all resource-r
loads and objectives are normalized to a standard range of [0, 1],
using the resource-r capacity N .cap[r] per node N and L .cap[r] per
link L . Load on resources is expressed per traffic class using the net-
work paths available for that traffic class. For example, for resources
relevant to nodes, we define the resource-r load NLoadcN [r , e] in-
duced by traffic class c on node N during epoch e by Eqn. 2, where
N ∈ p represents that node N lies on path p and where xc,p,e is a
variable representing the fraction of flows of traffic class c routed
on path p during epoch e . Then, we define the load on a resource r
at node N as the sum of loads imposed by all traffic classes (Eqn. 4),
and require these loads for all nodes to be at mostNLimit[r] (Eqn. 6),
an operator-specified constant. Links are treated similarly.

Objectives represent a global resource-management intent (e.g,.
maximizing spare capacity of links). Chopin supports a number
of predefined objective functions to maximize. Note that because
objectives are normalized, any min optimization can be converted
to a max optimization by using 1 − App .obj as the new App .obj.
For example, a maximization objective that minimizes the load on
node resource r is

App .obj[E] = 1 −max
N

∑
c ∈App .classes

NLoadcN [r , e] (10)

App1 App2 Offline ILP

Union of Constraints

Fairness (Objectives)

Resource load constraints

Union of ConstraintsUnion of Constraints

Resource load constraintsResource load constraints

NumEpochs}Operator

Traffic variability

N
u
m
E
p
o
c
h
s

App1

volume

App2

volume
}

Figure 9: Offline coordinated path selection provides robust-
ness by constructing a unified optimization with sets of con-
straints for each epoch, thus ensuring resource efficiency
and fairness in each epoch.

The combined optimization objective for the composed applications
is computed according to a specified fairness metric (see below)
and maximized, subject to the constraints of all of the applications.
Fairness metrics. To ensure that no single application dominates
the solution, we need some notion of fairness. There are two natural
ways of specifying fairness: (1) as some measure of the individual
objective functions or (2) as ameasure of the consumption of various
network resources such as link bandwidth. We opt for applying
the fairness metrics to the applications’ objectives, for two reasons.
First, the objectives allow for a unified way of enforcing fairness
across applications. Second, mandating fair use of resources can
result in non-linear equations with respect to xc,p,e variables, thus
sacrificing many of the scalability benefits of linear programming
optimizations.

Chopin’s design is general and can supportmany commonly used
fairness metrics defined over the individual application objectives.
• Most linear functions can be directly incorporated into the opti-
mization: For example, weighted combination of objective func-
tions results in a utilitarian solution, shown in Eqn. 1, where
wi is a weight assigned to each application. In our case, we find
it makes sense to automatically assign weights proportional to
the volume of traffic that the application is routing.

• Another common metric is the Rawlsian difference principle for
maximizing the minimum objective [15]:

maximize Obj = min
i

Appi .obj[E] (11)

• Chopin can also (approximately) support proportional fair-
ness [25] defined as:2

maximize Obj =
∑
i
logAppi .obj[E] (12)

• At a slightly higher computational cost (due to their quadratic
nature), the relative mean deviation and variance functions [3]
can be supported.

4.3 Offline, Coordinated Path Selection
A key innovation in Chopin is selecting paths in an offline phase to
ensure that the available paths are (i) rich enough to offer adequate
capacity to support all applications but also (ii) few enough to
permit the online, unified optimization above to be solved fast
enough to ensure responsiveness on network timescales. For this
2Since a log function cannot be directly incorporated into a linear program, Chopin
implements a piece-wise linear approximation [8].

91

Intent-Driven Composition of SDN Applications CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

purpose, we leverage the unified optimization described in §4.2
to construct a path selection integer linear program (ILP). The
resulting ILP chooses paths capable of achieving resource efficiency
under traffic variations (as specified by the operator) by creating a
set of constraints per trafficmatrix epoch (overview shown in Fig. 9).

Formally, this is achieved by augmenting the unified optimization
with additional constraints, shown as Eqn. 7–Eqn. 9 in Fig. 8, and
broadening the optimization to maximize per-application objectives
across epochs E = {1, . . . ,NumEpochs}, i.e., where

App .obj[E] =
1

NumEpochs

∑
e ∈E

App .obj[{e}]

(see Eqn. 1). Eqn. 7 specifies a global limit on the number of paths
used. The cap is computed using a baseline of NumPaths paths per
traffic class, although the final number of paths per traffic class can
deviate from NumPaths to achieve better results. Eqn. 8 ensures
that only chosen paths are allowed to carry flow.
Tractability. The resulting ILP presents tradeoffs between re-
source efficiency and scalability. A larger number of epochs pro-
vides a solution more accommodating to traffic variations and thus
typically yielding better resource efficiency, at the cost of runtime
and memory needed to perform offline path selection. Similarly, an
increase in the network size and number of paths (and thus number
of binary bc,p variables) renders computing a true-optimal solution
intractable. To address these challenges, we propose two scalability
improvements, clustering and relaxed path search, described below.
Clustering speedup. To reduce the problem size, we must re-
duce the number of traffic matrices (epochs), yet do so without
significantly reducing the variability they represent. We exploit
the fact that network traffic volumes (and their synthetic models)
exhibit patterns that we can preserve if we employ a clustering
technique. Hence, we cluster traffic classes across epochs based
on their volumes. Specifically, if ⟨c1, c2, . . .⟩ is a fixed ordering of
the traffic classes, then we cluster the vectors {⟨c1.vol[e], c2.vol[e],
c3.vol[e], . . .⟩}e ∈E. We have experimented with a number of clus-
tering techniques and find that k-means clustering [17] is the most
scalable approach. However, the output of k-means clustering is a
set of centroids that represent the average traffic volumes for each
cluster, causing path selection to not consider the worst-case sce-
nario. This is acceptable in many cases, however for added robust-
ness, alternative solutions are available. First, we can apply a scaling
factor to the computed centroid, which allows over-provisioning.
Alternatively, we can use a different clustering algorithm. For ex-
ample, we also implement a hierarchical clustering algorithm with
Ward’s linkage [49]. Ward’s algorithm allows us to group traffic
volumes based on their similarity into clusters, leaving us with
the possibility of applying a custom reduction function (e.g., max).
That is, given NumClusters groups of traffic classes, we can use
the worst-case volumes from each group instead of the average
volumes.
Relaxed path search. Unfortunately, even with the clustering
described above, solving the ILP remains a challenge. Increases
in the number of paths (due to topology size or number of traffic
classes) quickly makes computing a solution impractical due to
time and memory consumption. Hence, we introduce an iterative
path search approach that does not require solving an ILP.

ONOS

Chopin service

App

➊Topology data

➋Register
event

➌Recompute routes

➍Path
intents

Chopin optimizer

Chopin library
REST APIONOS services

Operator

Composition
Configuration

Figure 10: Integration between Chopin and ONOS. ONOS ap-
plications register with the Chopin service which triggers
a computation using the Chopin optimizer. The solution is
converted to path intents and returned to the application.

After the traffic classes have been clustered, relaxed path search
starts by attempting to compute the solution with a small number
of paths per traffic class (e.g., NumPaths = 5). Each iteration of the
searchwill increase theNumPaths value until the resulting objective
value does not differ significantly from the objective obtained in
the previous iteration (e.g., ∆ ≤ ϵ , where ϵ = 0.05). This indicates
that there is no benefit to adding more paths. Finally, the union of
all flow-carrying paths are saved for the online optimization stage.
A path p is considered flow-carrying if the flow fraction xc,p,e > 0
for at least one epoch e .

The intuition behind iterative search is that multi-path routing is
of limited value for topologies with sufficiently many traffic classes.
This has been analytically shown for routing problems with a sin-
gle resource and objective function [1, 30] and we observe similar
behavior empirically for multi-application, multi-epoch optimiza-
tions. Therefore, we exploit the diminishing returns of adding more
paths to the optimization by iteratively increasing the number of
available paths per traffic class until the objective value no longer
improves. Lastly, the union of flow-carrying paths across epochs
is taken, and provides sufficient degrees of freedom for the online
optimization.

Search heuristics. The success of iterative path search hinges on
the heuristic logic responsible for choosing paths to be added in the
next iteration. A natural approach is to adopt a greedy heuristic (e.g.,
based on path length or edge-disjointness). However, we find that
this heuristic does not perform as expected in the multi-application
scenario. Our view is that multi-objective optimization necessitates
a multi-criteria heuristic. Therefore, our heuristic scores the paths
based on length and “resource-richness”. That is, it favors shorter
paths that maximally augment the resources available to the appli-
cation (based on the applications’ objective functions). This biases
the selection towards lower latency and link consumption (as band-
width is a shared resource among all applications), yet still provides
sufficient freedom to load balance the applications’ resources of
interest.

92

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Heorhiadi et al.

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)
k8 (80)

Ion (125)

Colt (1
53)

Topology

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 o
bj

ec
tiv

e

Voting Chopin

Figure 11: Optimality comparison between Chopin and
Athens-like voting framework.

5 IMPLEMENTATION
Chopin Library. Our library for expressing and solving optimiza-
tions is implemented in Python and can be used for composing opti-
mizations and generating solutions as described in §4. The library re-
quires a linear programming solver; our prototype uses Gurobi [14].
The source code for the library is available on Github [19].
Chopin Optimizer. Atop the library we built the Chopin opti-
mizer, a standalone component capable of receiving composition
requests from an SDN controller (or other applications). The opti-
mizer exposes an HTTP REST API, allowing the integrations to be
built in a multitude of languages and runtimes.
Integration with ONOS. For our prototype, we implemented a
Chopin service in the ONOS controller. Fig. 10 depicts an architec-
tural view of the ONOS component and its interaction with the
Chopin optimizer. The Chopin service is deployed inside ONOS and
receives network data (e.g., states of devices and links) from other
ONOS services (step ➊). A newly deployed application registers
with the service and provides its optimization intents to the Chopin
service (step ➋). The register event starts the re-computation pro-
cess, which utilizes the REST API to communicate with the opti-
mizer, and requests the composition of all applications registered
up to this point (step ➌). The Chopin service parses the solution
received from the optimizer, generates appropriate ONOS path in-
tents, and returns them to the application(s) (step ➍). The service
also allows the administrator to specify global network constraints
that will act across applications.

ONOS controller also allows the Chopin service to trigger re-
computation of traffic allocation based on observed traffic patterns.
That is, if network monitoring suggests a significant deviation from
the last traffic matrix used for optimization, a new optimization
may be triggered.

6 EVALUATION
In this section, we evaluate Chopin using trace-driven simulations.
We describe the following results:
• Resource-efficiency improvements over static allocation and
voting approaches (Fig. 11, Fig. 12);

• Impact of different fairness metrics on the solution (Fig. 13);
• Runtime improvements in scalability of path selection due to
clustering and relaxed path selection (Fig. 14) and low impact
of traffic estimation errors (Fig. 16);

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)
k8 (80)

Ion (125)

Colt (1
53)

Topology

0

10

20

30

40

R
el

at
iv

e
im

pr
ov

em
en

t,
%

Figure 12: Relative improvement in objective functionwhen
using Chopin as opposed to static allocation methods with
shortest paths per application. Averaged across 100 epochs.

• End-to-end validation using the ONOS controller (Fig. 17).
Setup. We chose topologies of various sizes from the Topology-
Zoo dataset [26]; when indicating a topology, we generally include
the number of nodes in the topology in parentheses, e.g., “Abilene
(11)” for the 11-node Abilene topology. We also constructed FatTree
topologies of various sizes [2]. We refer to these as “kX” where
X denotes the arity of the FatTree, as defined in prior work. We
synthetically generated traffic matrices using a modulated gravity
model [39] and introduced a temporal variation between applica-
tions’ traffic volumes using a Dirichlet distribution [23] across 100
epochs. We chose the Dirichlet distribution because it generates
a worst-case variability in traffic shifts between applications (e.g.,
0/100% to 100/0% split between two applications), while maintain-
ing fixed traffic volume across epochs. We also performed tests with
other variability models (e.g., [47]) and observed similar results.

Unless otherwise specified, we used two canonical applications—
a traffic engineering application that minimizes link load and a
service chaining application that minimizes middlebox load. The
applications had no overlapping traffic classes and were composed
using a weighted fairness metric, with the weights proportional
to the volume of traffic that belonged to the application. The ser-
vice chaining application required a chain of two middleboxes —
a firewall and an intrusion detection system. Times below refer
to computation on computers with 2.4GHz cores and 128GB of
RAM, except end-to-end benchmarks, where we used Mininet [31]
to emulate the topologies.

6.1 Resource Efficiency and Fairness
We use trace-driven simulations to evaluate the benefits of using
Chopin for resource efficiency, fairness, and responsiveness by
comparing it to output-driven approaches. We also evaluate the
potential benefits of using Chopin’s coordinated path selection
approach compared to prior work [21].
Comparison to output-driven approaches. We compare
Chopin to two output-driven approaches: naive static allocation
and Athens [5]. We chose Athens because it is arguably the closest
practical work in the resource-management composition space. We
created a simulator that implements the Athens voting protocols
and modified our applications to be aware of all other applications
present. We considered a set of paths and their flow allocations to

93

Intent-Driven Composition of SDN Applications CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)
k8 (80)

Ion (125)

Colt (1
53)

0.6

0.8

1.0

N
or

m
al

iz
ed

 o
bj

et
iv

e

Fairness = Weighted

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)
k8 (80)

Ion (125)

Colt (1
53)

Fairness = Max-Min

Traffic Engineering Service Chaining

Figure 13: Impact of chosen fairness metric on the objective function of each application

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)
k8 (80)

Ion (125)

Colt (1
53)

Topology

10
1

10
2

10
3

Ti
m

e
(s

)

ILP Relaxed

Figure 14: Runtime comparison of the optimal ILP path se-
lection and relaxed selection. Relaxed paths selection is or-
ders of magnitude faster than optimal ILP path selection.

be a “proposal” that is submitted for voting. Each application gener-
ated a selfish proposal (i.e., best for its own objective function) and
submitted it. Votes on the proposals were cast inverse-proportional
to the deterioration of the application’s objective function. Fig. 11
shows the comparison in the global objective function between the
voting approach and Chopin (higher objective is better). Each box
plot in the figure represents a composition strategy executed 100
times (i.e., across 100 epochs), with boxes covering objective values
between the 25th and 75th percentiles and whiskers extending to
min and max values. Chopin outperforms the voting approach by as
much as 60%, and in some cases voting failed to converge entirely
(e.g., Geant and Quest topologies).

Benefits of coordinated path selection. We compared solutions
obtained using shortest paths and solutions produced by Chopin.
Fig. 12 shows the relative improvement over the baseline objective
computed using shortest paths. Bars represent the improvement
averaged across 100 epochs, with error bars indicating the standard
deviation. For all topologies, Chopin produces a more resource-
efficient solution than the naive shortest-path selection strategy.

Impact of fairness metrics on objectives. To explore the effect
of composition fairness on the objective functions of individual
applications, we composed two applications using two different
fairness metrics: weighted fairness (i.e., weighted proportional to
the application traffic volume), and max-min fairness (recall §4.2).
Fig. 13 shows objectives of two applications across different topolo-
gies and fairness metrics. Max-min fairness is arguably the “most

fair”, ensuring equal objectives but not achieving the best load bal-
ancing for either of the applications. In contrast, weighted fairness
maximizes the global objective, but does so at a cost of application
inequality (e.g., favoring the traffic engineering on the k6 topology).
This result highlights that Chopin is flexible and gives the operator
ability to customize the solution, be it in favor of overall network
resource efficiency or fairness.

6.2 Runtime benchmarks

Path selection benchmarks. To show runtime benefits of
Chopin’s path selection, we compare the optimal ILP described
in §4 and relaxed path selection. The ILP is difficult to compute for
all but the smallest topology. Not using the ILP allows orders of
magnitude faster offline path selection (Fig. 14).

Online optimization benchmarks. Finally, we demonstrate that
Chopin’s online component is also scalable. We composed different
combinations of applications (traffic engineering, service chaining,
latency minimization), up to 5 total, using Chopin and static allo-
cation with SOL single-application optimization framework. Both
setups used the same number of paths, 5 per traffic class. Fig. 15
depicts the mean time (across 100 epochs) to construct and solve the
unified optimization (in case of Chopin) or series of optimizations
(in case of static allocation) across a number of topologies, for differ-
ent numbers of applications. The runtimes are similar, and follow
the same patterns across topologies and numbers of applications.
However, Chopin achieves better optimality (recall Fig. 12).

Robustness to estimation error. We also evaluated the impact of
traffic estimation errors on traffic matrix clustering and path selec-
tion. To do so, we generated traffic matrices for different topologies
and used them to perform paths selection as described in §4. We
then introduced noise to the traffic matrices by changing the vol-
umes of each traffic class across different epochs. The noise was
relative to the mean traffic volume of each traffic class and was sam-
pled from a truncated normal distribution (with µ = 0 and σ = 0.2).
Fig. 16 depicts the relative error of using Chopin’s pre-selected
paths compared to the optimal solution (using all paths for each
epoch and perfect knowledge of the traffic matrix) for topologies
where the optimal solution could be computed in reasonable time.
The box plots show the median, 1st and 3rd quartiles, with whiskers
extending to min and max values. The result indicates that in over

94

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Heorhiadi et al.

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)

10
−2

10
−1

10
0

Ti
m

e
(s

)

Number of Applications = 2

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)

Number of Applications = 3

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)

Number of Applications = 4

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Dfn (58)

Number of Applications = 5

Shortest paths Chopin

Figure 15: Mean time to execute a single-epoch optimization. Chopin scales similarly to using SOL in conjunction with static
allocation across topologies and numbers of applications.

Abilene (11)
k4 (20)

Quest (20)

Geant2012 (40)
0

2

4

6

R
el

at
iv

e
er

ro
r,

%

Figure 16: Impact of traffic estimation error on solution qual-
ity

Abilene (11) Quest (20) Geant2012 (40)
0

20

40

60

Ti
m

e
(s

)

Number of applications
2 4 8 12

Figure 17: Time to deploy multiple applications as a func-
tion of number of applications. Includes time for online op-
timization and computing and installingONOS path intents.

half the cases the error was quite small, ≤ 2%, and ranged only up
to around 6% in the worst case.

6.3 End-to-end validation
We set up different topologies using the Mininet emulator and
ONOS controller. We deployed up to 12 applications on each topol-
ogy. Specifically, we use a combination of traffic engineering and ser-
vice chaining applications with partially overlapping traffic classes.
Fig. 17 shows the worst-case time to deploy the applications, mean-
ing each new application triggered a full re-computation for all
traffic classes for all applications. Even the worst-case deployment
(i.e., configuring the network from scratch) maintains network
time-scale responsiveness.

7 DISCUSSION
Expressible applications. At this time, Chopin’s focus is geared
towards resource-management applications. The intent API pro-
vided by SOL [21] is sufficient to support a multitude of such appli-
cations, as it allows a variety of resource-consumption models (e.g.,
per link, node, middlebox, and even path for TCAM constraints).
Applications that utilize an ILP formulation (e.g. [18, 37]) are also
supported.
Interaction with the SDN ecosystem. Applications that do not
perform resource management can easily co-exist with applications
written in Chopin without interference. Resource management
applications outside of the Chopin framework will not get the
coordination benefits, while Chopin applications will coordinate
and perform as intended if the traffic estimation is reasonable.
Discrete ordering of objectives. In some cases the operator
might desire an “if-then” ordering of applications. For example, per-
form load-balancing only after the QoS latency requirements have
been met. Our design philosophy is to avoid such discretization,
in favor of resource-efficiency. However, application ordering can
be modeled by converting objective functions to hard constraints
in the optimization. For example, instead of minimizing latency, a
constraint is added to enforce a maximum-allowable latency.
Choosing fairness. We intentionally allow flexibility for the op-
erator to choose a fairness metric that best suits her needs. As
we showed in §6, the effects of choosing different fairness metrics
are noticeable. However, as a starting point we suggest weighted
fairness, which will maximize network’s resource efficiency as a
whole.
Unpredictable traffic changes. As we discussed in §6, normal
deviations from expected traffic matrices have a low impact on
resource efficiency. However, if the observed traffic pattern differs
significantly from the estimations used in the offline pre-processing
stage, Chopin will still attempt to find an available solution, at the
cost of a larger resource-efficiency gap.
Network reconfiguration. When traffic changes or new appli-
cations trigger online re-optimization, a new solution is gener-
ated from scratch. To avoid disrupting existing network flows,
Chopin can update only the traffic classes where network flows
have changed as a result of the optimization. To reduce such churn
even further, existing techniques can be employed for minimizing
both optimization [21] and flow rule [24] differences.
Limitations Chopin’s algorithms require further augmentation
to perform well on highly unstable networks (e.g., networks with
frequent intermittent link failures). Since a link failure can affect

95

Intent-Driven Composition of SDN Applications CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

one or more paths, operators using Chopin would need to guarantee
sufficient over-provisioning of alternative paths or pre-compute
fast fail-over solutions, if the set of expected failures is known.

8 RELATEDWORK

SDNapplication composition. The closest work to ours that also
focuses on composition of resource-management applications is
Corybantic [4] and its successor Athens [5]. Unlike Chopin, their ap-
proach requires modified, composition-aware applications. Works
such as Covisor [22], Flowvisor [43] and Frenetic [12, 32] focus on
OpenFlow rule composition and packet-level policy chain composi-
tion.While important in the space of composition, these prior works
do not address resource management. PGA [36], Statesman [46],
and PANE [11] focus on resolving policy conflicts between ap-
plications and enforcing network invariants. Policy composition
is orthogonal to resource management, and can be viewed as a
step preceding resource management; e.g., the composed policies
produced by PGA are used to generate sets of valid paths prior
to selection and optimization. Finally, we also note the industry-
proposed projects by ONOS [35] and OpenDaylight [33], which
appear to be policy-focused as well.

Optimization frameworks. SOL [21], Merlin [44], and
DEFO [16] are precursors to our work, and provide the necessary
start for intent-driven composition. However, their designs are fo-
cused on a single-application use case only. We showed that naively
extending these frameworks for multi-application use presents new
challenges, namely lack of fairness and resource-efficiency. Our
work addresses these limitations, proposes a design that separates
application development and deployment concerns, and produces
fair, resource-efficient solutions.

Robust optimization. Robust optimization [7] develops ways of
“protecting” the optimizations against uncertain data. In network-
ing, this takes on the form of network design validation against
failures [9] or (semi-)oblivious routing [6, 27, 28]. Such techniques,
while possibly conservative and computationally intensive, can
be complementary to our work and can be incorporated into the
internals of Chopin. We leave this for future work.

Multi-objective optimization. Extensive literature exists on
multi-objective optimization, covering a number of techniques [10,
45]. The focus of aforementioned works, however, is not on network
optimization and often requires manual intervention. Our work is
specific to automatic composition of networking applications.

9 CONCLUSIONS
A growing number of SDN resource-management applications ne-
cessitates a new way of composing them that guarantees fair and
resource-efficient solutions. Our goal is to provide a system capable
of achieving such composition while abstracting away low-level
composition details from application developers and network op-
erators. In this paper, we presented Chopin — an intent-driven
composition framework for SDN applications. It builds upon the
concepts of intent-driven network optimization to provide fair and
resource-efficient composition. We showed that Chopin achieves
significantly better resource-efficiency than previous output-driven

approaches, can be integrated with modern SDN controllers, and
outperforms uncoordinated approaches to composition.

Acknowledgements
This work was supported in part by NSF grants 1535917 and
1536002.

REFERENCES
[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. 1993. Network flows:

theory, algorithms, and applications. Prentice hall.
[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-

able, commodity data center network architecture. In ACM SIGCOMM Computer
Communication Review, Vol. 38. 63–74.

[3] Anthony B Atkinson. 1970. On the measurement of inequality. Journal of
economic theory 2, 3 (1970), 244–263.

[4] Alvin AuYoung, Sujata Banerjee, Jeongkeun Lee, Jeffrey C Mogul, Jayaram
Mudigonda, Lucian Popa, Puneet Sharma, and Yoshio Turner. 2013. Corybantic:
Towards the Modular Composition of SDN Control Programs. In ACM HotNets.

[5] Alvin AuYoung, Yadi Ma, Sujata Banerjee, Jeongkeun Lee, Puneet Sharma, Yoshio
Turner, Chen Liang, and Jeffrey CMogul. 2014. Democratic resolution of resource
conflicts between SDN control programs. In ACM CoNEXT. ACM, 391–402.

[6] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. 2003.
Optimal oblivious routing in polynomial time. In ACM Symposium on Theory of
Computing. ACM, 383–388.

[7] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. 2009. Robust opti-
mization. Princeton University Press.

[8] Eduardo Camponogara and Luiz Fernando Nazari. 2015. Models and Algorithms
for Optimal Piecewise-Linear Function Approximation. Mathematical Problems
in Engineering (2015).

[9] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. 2017. Robust Validation of
Network Designs under Uncertain Demands and Failures. In USENIX Symposium
on Networked Systems Design and Implementation.

[10] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. 2016. Multi-objective
optimization. In Decision Sciences: Theory and Practice. CRC Press, 145–184.

[11] Andrew Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. 2013. Participatory Networking: An API for Application Control
of SDNs. In ACM SIGCOMM.

[12] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A network programming
language. In ACM SIGPLAN Notices, Vol. 46. 279–291.

[13] Albert Greenberg. 2015. SDN for the cloud, Keynote. In ACM SIGCOMM.
[14] gurobi [n. d.]. Gurobi. http://www.gurobi.com/. ([n. d.]).
[15] Peter J Hammond. 1976. Equity, Arrow’s conditions, and Rawls’ difference

principle. Econometrica: Journal of the Econometric Society (1976), 793–804.
[16] Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence

Filsfils, Thomas Telkamp, and Pierre Francois. 2015. A Declarative and Expressive
Approach to Control Forwarding Paths in Carrier-Grade Networks. In ACM
SIGCOMM.

[17] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979), 100–108.

[18] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. 2010. ElasticTree: Saving
Energy in Data Center Networks. In USENIX Symposium on Networked Systems
Design and Implementation. 19–21.

[19] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K. Reiter, and Vyas Sekar.
2018. Chopin source code repository. https://github.com/progwriter/sol/. (2018).

[20] V. Heorhiadi, S. K. Fayaz, M. K. Reiter, and V. Sekar. 2014. SNIPS: A software-
defined approach for scaling intrusion prevention systems via offloading. In 10th
International Conference on Information Systems Security.

[21] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. 2016. Simplifying software-
defined network optimization using SOL. In USENIX Symposium on Networked
Systems Design and Implementation. 223–237.

[22] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. Covisor: A
compositional hypervisor for software-defined networks. In USENIX Symposium
on Networked Systems Design and Implementation. 87–101.

[23] Norman L Johnson, Samuel Kotz, and N Balakrishnan. 2002. Continuous multi-
variate distributions, volume 1, models and applications. Vol. 59. New York: John
Wiley & Sons.

[24] N Kang, M Ghobadi, J Reumann, and A Shraer. 2015. Efficient Traffic Splitting
on SDN Switches. In ACM CoNEXT.

[25] Frank P Kelly, Aman K Maulloo, and David KH Tan. 1998. Rate control for
communication networks: shadow prices, proportional fairness and stability.
Journal of the Operational Research society 49, 3 (1998), 237–252.

96

http://www.gurobi.com/

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Heorhiadi et al.

[26] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications 29, 9
(October 2011), 1765 –1775. https://doi.org/10.1109/JSAC.2011.111002

[27] Murali Kodialam, TV Lakshman, and Sudipta Sengupta. 2011. Traffic-oblivious
routing in the hose model. IEEE/ACM Transactions on Networking 19, 3 (2011),
774–787.

[28] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, and Robert
Soulé. 2016. Kulfi: Robust traffic engineering using semi-oblivious routing. arXiv
preprint arXiv:1603.01203 (2016).

[29] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, Anja Feldmann, et al.
2014. Panopticon: Reaping the benefits of incremental sdn deployment in enter-
prise networks. In USENIX Annual Technical Conference.

[30] Xuan Liu, Sudhir Mohanraj, Michal Pioro, and Deep Medhi. 2014. Multipath
Routing From a Traffic Engineering Perspective: How Beneficial is It?. In IEEE
International Conference on Network Protocols. 143–154.

[31] mininet [n. d.]. Mininet. http://mininet.org/. ([n. d.]).
[32] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, DavidWalker,

et al. 2013. Composing Software Defined Networks.. In USENIX Symposium on
Networked Systems Design and Implementation, Vol. 13. 1–13.

[33] network-intent [n. d.]. Network Intent Composition. https:
//wiki.opendaylight.org/view/ProjectProposals:NetworkIntentComposition. ([n.
d.]).

[34] Navid Nikaein, Eryk Schiller, Romain Favraud, Kostas Katsalis, Donatos
Stavropoulos, Islam Alyafawi, Zhongliang Zhao, Torsten Braun, and Thana-
sis Korakis. 2015. Network store: Exploring slicing in future 5G Networks. In
International Workshop on Mobility in the Evolving Internet Architecture. ACM,
8–13.

[35] onos-compose [n. d.]. Composition Mode. https://wiki.onosproject.org/display/
ONOS/Composition+Mode. ([n. d.]).

[36] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
2015. PGA: Using graphs to express and automatically reconcile network policies.
ACM SIGCOMM 45, 4 (2015), 29–42.

[37] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
ACM SIGCOMM.

[38] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Modular SDN Programming with Pyretic. ;login: Magazine 38, 5
(2013), 128–134.

[39] Matthew Roughan. 2005. Simplifying the synthesis of internet traffic matrices.
ACM SIGCOMM Computer Communication Review 35 (2005), 4. https://doi.org/
10.1145/1096536.1096551

[40] sdn-app-store 2017. SDN App Store. https://marketplace.saas.hpe.com/sdn.
(January 2017).

[41] Kevin Shatzkamer. 2014. App store portal providing point-and-click deployment
of third-party virtualized network functions. (April 4 2014). US Patent App.
14/245,193.

[42] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. 2012. Making Middleboxes Someone Else’s Problem:
Network Processing as a Cloud Service. In ACM SIGCOMM.

[43] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. 2009. Flowvisor: A network virtualization
layer. Technical Report. OpenFlow Switch Consortium.

[44] Robert Soule, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer, and Nate Foster. 2014. Merlin: A Language for
Provisioning Network Resources. In ACM CoNEXT.

[45] Ralph E Steuer. 1986. Multiple criteria optimization: theory, computation, and
applications. Wiley.

[46] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ah-
san Arefin. 2014. A Network-state Management Service. In ACM SIGCOMM
(SIGCOMM ’14). ACM, New York, NY, USA, 563–574. https://doi.org/10.1145/
2619239.2626298

[47] Paul Tune and Matthew Roughan. 2015. Spatiotemporal traffic matrix synthesis.
ACM SIGCOMM Computer Communication Review 45, 4 (2015), 579–592.

[48] R. Wang, D. Butnariu, and J. Rexford. 2011. Openflow-based server load balancing
gone wild. In Hot-ICE.

[49] Joe H Ward Jr. 1963. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association 58, 301 (1963), 236–244.

97

https://doi.org/10.1109/JSAC.2011.111002
http://mininet.org/
https://wiki.opendaylight.org/view/Project_Proposals:Network_Intent_Composition
https://wiki.opendaylight.org/view/Project_Proposals:Network_Intent_Composition
https://wiki.onosproject.org/display/ONOS/Composition+Mode
https://wiki.onosproject.org/display/ONOS/Composition+Mode
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551
https://marketplace.saas.hpe.com/sdn
https://doi.org/10.1145/2619239.2626298
https://doi.org/10.1145/2619239.2626298

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Chopin Overview
	4 Detailed Design
	4.1 Preliminaries
	4.2 Online, Unified Optimization
	4.3 Offline, Coordinated Path Selection

	5 Implementation
	6 Evaluation
	6.1 Resource Efficiency and Fairness
	6.2 Runtime benchmarks
	6.3 End-to-end validation

	7 Discussion
	8 Related work
	9 Conclusions
	References

