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Abstract—When encountering a packet for which it has no
matching forwarding rule, a software-defined networking (SDN)
switch requests an appropriate rule from its controller; this
request delays the routing of the flow until the controller
responds. We show that this delay gives rise to a timing side
channel in which an attacker can test for the recent occurrence
of a target flow by judiciously probing the switch with forged
flows and using the delays they encounter to discern whether
covering rules were previously installed in the switch. We develop
a Markov model of an SDN switch to permit the attacker to
select the best probe (or probes) to infer whether a target flow
has recently occurred. Our model captures practical challenges
related to rule evictions to make room for other rules; rule
timeouts due to inactivity; the presence of multiple rules that
apply to overlapping sets of flows; and rule priorities. We show
that our model enables detection of target flows with considerable
accuracy in many cases.

I. INTRODUCTION

The move toward software-defined networking (SDN) is one
of the dominant trends in the networking landscape today. As
realized using OpenFlow [3], an SDN switch is managed by
a controller that produces and delivers rules to the switch
to handle packets. For our purposes here, each rule simply
expresses the network interface to which a flow — i.e., packets
sharing the same source and destination addresses and ports —
should be directed. When a switch receives a packet for which
it has no matching forwarding rule, the switch forwards it to
the controller, which will then install a rule for this flow in the
switch. Rules delivered to the switch are cached at the switch
until one of two events occurs [3]: either the switch’s rule
cache fills up and so some rules need to be evicted (typically
using a shortest-time-remaining policy [2]) to make room for
other rules arriving from the controller, or else a rule simply
expires due to not being matched by a flow for the rule’s
timeout duration.

The delay suffered by a flow that matches no rule in the
switch and so is forwarded to the controller is much larger than
the delay suffered by a flow that matches an already cached
rule. Like other caches that support eviction, expiration, or
both, it has been noticed that an SDN switch therefore enables
a timing side-channel attack whereby an attacker can submit
a probe flow (potentially forging the source address) to a
switch and timing the delay it suffers through the switch [9],
[17], [20], [21]. This delay can be measured, for example,
by observing the flow packets emitted from the switch or

by measuring the delay until receiving the response. In this
way, the attacker can determine if a rule covering the probe
flow was already installed in the switch. Previous works (see
Section II) have used this observation to detect the use of SDN
in a network [17] or to reverse-engineer packet-forwarding
logic [9], [20], [21].

In this paper, we introduce a different opportunity to use
this side channel, specifically to perform reconnaissance on
the activity in the network. That is, the timing side channel
described above that reveals the presence or absence of a
rule covering a flow in a given switch can leak information
about what parties communicated recently. In the context of
certain applications, this leakage could be used as a form of
reconnaissance. For example, the attacker could use this timing
attack to detect whether an intrusion-detection system (IDS)
logged a record to a logging site (as some enterprise defenses
are configured to do, e.g., [23]), which might, in turn, reveal
whether the IDS detected an activity that the attacker recently
attempted.

Inferring information from this side channel is complicated
by the fact that rules can overlap — i.e., a flow can be
covered by multiple rules deployed to the switch. In this case,
the switch matches the flow to the highest priority rule that
covers it, where the priority is an attribute of the rule that
the controller conveys to the switch when installing the rule.
This feature clouds the results of the aforementioned timing
channel, since even if the attacker learns that a rule covering
its probe flow was already installed in the switch, it might
not know which specific rule was matched. Consequently,
calculating the best probes to make, and what can be inferred
from them, is a challenge for the attacker.

In this paper we construct a Markov model of the switch
that an attacker can use to determine the probe(s) to best
infer whether a target flow occurred recently in the network.
This model permits the adversary to estimate the probability
distribution over the possible rule cache states, in the face of
rule expirations and evictions. The challenge in constructing
this model is that the number of possible cache states is
massive, and so we construct our model incrementally: we first
build a high-fidelity model that can scale to only a few rules,
but then construct a more approximate model that can scale
substantially better. We then show how the adversary could
use this model to select probe flows to issue to the switch, to
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infer the most that it can about whether a target flow occurred
recently.

To make our model(s) concrete, we detail the attacker’s
calculations under the assumption that each flow’s occurrence
is Poisson distributed. We allow the attacker knowledge of
estimates of the Poisson parameters for flows in the network,
as well as knowledge of the rule set from which the controller
selects rules to deploy to the switch. This rule set might be
exposed to the attacker through previous compromises in the
network and might even be released voluntarily (e.g., as Stan-
ford University has [13]). Similarly, the Poisson parameters
could be inferred through previous compromises of flow logs
or simply through knowledge of the roles of various machines
in the network.

Using Mininet [1] and the Ryu controller [4], we illustrate
that our model can substantially improve flow-level reconnais-
sance via timing side channels over what the attacker could
accomplish with naive attacks alone (i.e., using the target flow
itself as the probe). In the context of rule sets and flow rates
for which a side-channel-based detector is possible, our model
improves the accuracy of these attacks in our tests by only
∼ 2% on average. However, for certain subclasses of rule sets
and flow rates, this improvement can grow to 23% or more,
yielding an average accuracy approaching 85%, when naive
attacks barely reach 62% accuracy. And, because our model
permits the attacker to choose the best probe flows to attempt
from among those probes that are viable for him, our model
enables the attacker to accomplish near-optimal inference even
when using sub-optimal (but still possible) probes.

To summarize, our contributions are as follows:
• We introduce flow reconnaissance attacks using timing

side channels arising from the reactive operation of SDN
switches. To our knowledge, this paper is the first attempt
to leverage this timing side channel to perform flow
reconnaissance in an SDN network.

• We construct a Markov model of an SDN switch to esti-
mate the switch-rule distribution, and propose a method
by which the adversary can use this distribution to
select an optimal probe. Our model captures complexities
related to rule eviction, expiration, and priorities.

• Through experiments on Mininet, we demonstrate that
our proposed model can enable reconnaissance attacks
that, in some cases, are substantially more accurate than
naive flow reconnaissance attacks.

II. RELATED WORK

Timing attacks on SDN networks of the type that motivates
our work were first considered by Shin and Gu [17], who
proposed fingerprinting network forwarding logic by observing
different response times of exchanged packets. Cui et al. [9]
implemented this attack on a real-world testbed and presented
a countermeasure by delaying the first few packets of a
flow. Sonchack et al. [20] demonstrated a more sophisticated
inference attack that an adversary can use to time the controller
even if the injected packets do not induce a reply message.
John et al. [21] extended the work of Sonchack et al. and

explored attacks to infer host communication patterns, ACL
entries, and network monitoring. However, none of these
works take into account the complexities related to rule
eviction and expiration, along with overlapping rules with
various priorities. Compared with these, our paper introduces
the opportunity to leverage this timing attack specifically for
flow reconnaissance and proposes a Markov model to capture
these complexities.

Several papers (e.g., [7], [12]) model hit rates of timeout-
based network caches. In contrast to these models, our model
deals with not only timeout events and cache evictions, but also
rule overlaps and priorities. Considering rule overlaps results
in a substantially more complex model.

More distantly related to our work are various works
studying other security problems impacting SDN or solutions
building from SDN (e.g., [10], [11], [16], [18], [19]). For
instance, a denial-of-service attack on the control plane, and
a corresponding mitigation method, were proposed by Shin
et al. [19]. Hong et al. [11] introduced a network topology
poisoning attack to hijack network connections by exploiting
SDN vulnerabilities. Other than exploiting SDN vulnerabil-
ities, many works enhance SDN security or leverage SDN
to provide more convenient security solutions. For example,
FRESCO [18] is an SDN security framework to facilitate the
modular composition of OpenFlow-enabled security modules.
SPHINX [10] is a framework to detect attacks based on
network flow graphs. Porras et al. [16] presented a security
extension of the control layer to detect and arbitrate conflicts
due to flow rule installations from multiple applications.

III. ATTACK OVERVIEW

Let us recall the rule setup procedure of an SDN network.
When a host sends a flow to the SDN network (step a in
Figure 1), the switch will check whether there is a covering
rule in the flow table and, if so, performs the corresponding
action (step d). If not, the switch forwards the flow to the
controller (step b, c) to query for a new rule setup. This flow
setup delays the first packet of the flow. The adversary could
use this observable delay (specifically, the delay to receive f) to
not only determine whether a rule covering the flow already
existed in the switch table, but also to detect specific other
flows based on the relationships between rules and flows.

A rule in the flow table covers addresses and ports in the
IP header, and has a priority for matching precedence, a set
of associated actions, and a countdown timer for the rule that
stores the amount of time before it expires. If a rule is in the
switch, then a flow must have been matched to it within the
preceding timeout duration for that rule, as otherwise the rule
would have expired.

To conduct this side-channel attack, the attacker must be
able to estimate the delay suffered by its probe packets. There
are several ways to do so (e.g., [9], [20]). One simple method
is to gain a presence on the hosts from which it wants to launch
probes, since it can then easily measure the durations until it
receives the corresponding responses. Or, if the attacker can
compromise a host, it can listen for a response packet to a
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Fig. 1: Example attack

probe that it forges as coming from another host connected to
the same switch port. To time probes which do not evoke
a reply or that the attacker cannot otherwise measure, the
adversary can leverage other techniques (e.g., [6], [20]). For
example, the attacker can simultaneously inject such probe
flows alongside unforged flows into the network, chosen to
match no rules already in the switch (and so to be forwarded
to the controller). By noticing whether the processing of the
unforged flows by the controller interferes with the probe
flows (e.g., the responses to the unforged flows are delayed),
the adversary can determine if the switch already had a rule
covering the probe flows. In this paper, we are agnostic to the
specific method that the attacker uses to estimate the delays
seen by probe packets and simply assume the attacker can do
so reliably.

A. Example Attack

One simple attack is that the attacker sends a flow to the
switch with a spoofed packet header (i.e., changing the source
IP address to a victim’s address). As illustrated in Figure 1,
if the attacker would like to probe whether host A has visited
some web server B, he can just deliver two HTTP request
flows, one with its own IP address as the source (denoted
f1) and the other one with source address that of host A
(denoted f2). If the attacker has not communicated with server
B before, then the time to receive the response (message f) to
flow f1 is tfetch + tsetup, where tfetch is the response time if
a covering rule already exists in the switch and tsetup is the
delay for rule initialization (including the time required for
the communication between the switch and the controller, the
controller processing time, and the time of flow entry insertion
into the switch flow table).

In contrast, the response time for f2 varies according to
whether host A has visited B recently, and thus the value can
be either tfetch or tfetch + tsetup. As tsetup is not negligible,
by comparing the response time for f2 to that for f1, the
attacker can determine whether the rule covering f2 existed in
the switch or not. Since each rule has a timeout policy [3], the

rule1

f1 f2

(a) Coarse rules

rule1

f1 f2

rule2

high

low

priority

(b) Overlapping rules

rule1

f2 f1 f3

rule2

high

low

priority

(c) Optimal flow �= target flow

Fig. 2: Challenges arising from rule overlap, discussed in
Section III-B

presence of the rule covering f2 in the switch indicates that
A visited B during its timeout interval.1

This attack might be used for reconnaissance in many
scenarios. For example, by probing the message exchange
between a user’s host and a particular web server and so
learning whether this user has visited the server recently,
the attacker might infer private information about the user.
Similarly, the attacker could use this attack to probe whether
an intrusion-detection system (IDS) logged a detection record
to a logging database (as some enterprises configure their
malware detectors to do [23]), i.e., by probing for the logging
flow between the IDS system and the database. The result
might allow the attacker to infer whether the IDS detected an
activity the attacker attempted and so the detection capabilities
or policies of the IDS.

B. Challenges

Although this attack seems straightforward, a successful
attack needs to overcome several challenges. Here, we discuss
several factors that the attacker needs to consider.

1) Rule granularity: If the controller uses fine-grained
microflow rules (for example, each rule covers only one
flow [8]),2 the attacker can easily tell which flow occurred
by inferring which rule exists in the switch. However, for
coarser rules that leverage wildcards to cover multiple flows, it
is harder for the attacker to identify the occurrence of the target
flow by purely recognizing the existence of a corresponding
rule, since the presence of other covered flows besides the
target can cause false detections. For example (Figure 2a), if
rule1 covers both f1 and f2, it is not easy to differentiate the
occurrence of target flow f1 from f2 by just sending f1 as a
probe.

1OpenFlow defines two kinds of timeouts, hard timeout and idle timeout.
The former causes the rule to be removed after exactly the given number of
seconds, while the latter expires the rule when it has matched no packets in
the given number of seconds.

2A microflow specifies the exact 32-bit IP addresses and 16-bit ports
without any wildcard.
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2) Rule Overlap: Another complicating factor is rules that
overlap. OpenFlow [3] allows overlapping rules (i.e., two rules
that cover the same flow) with different priorities to coexist in
the switch. Upon arrival of a flow, the flow is matched to the
highest priority rule in the switch, if any. This further clouds
the results of this timing side-channel attack, since even if the
probe matches a rule in the switch, the attacker may not know
exactly which rule was matched. Note that, if a miss happens,
the covering rule with the highest priority will be installed in
the switch.

However, by carefully selecting multiple probes, the ad-
versary may be able to reduce this ambiguity. For example
(Figure 2b), consider two rules rule1 and rule2, where rule1
covers f1, and rule2 covers f1 and f2. Suppose that rule1
has higher priority than rule2. If in an effort to detect the
occurrence of f1, the attacker just sends f1 and measures
a response time indicating that a rule covering f1 is in the
switch, then the adversary still cannot be certain which rule
(rule1 or rule2) was matched. Matching rule2 could be caused
by the previous arrival of flow f2. But, if the adversary sends
both f1 and f2 and observes that f1 matched but f2 missed,
then he can confirm the existence of rule rule1 and absence
of rule2, therefore inferring the previous occurrence of f1.

In fact, the optimal probe may not always be the target flow.
For example (Figure 2c), assume rule1 covers f1 and f2, and
rule2 covers f1 and f3, with rule1 having higher priority than
rule2. If the adversary would like to probe the presence of f1,
then the optimal choice is f2 and not f1: the match of flow
f2 would guarantee the existence of rule1 (which can only be
installed by f1 and f2), while the match of flow f1 will only
indicate at least one of these two rules is in the switch (which
can be caused by any of these three flows).

Such rule dependencies introduce new sources of complex-
ity that make our attack difficult to reason about. Accounting
for these effects and searching for the optimal probes is one
of the central contributions of the model that we develop in
this paper.

3) Limited Cache Size: SDN switches have a limited flow
table size and can only cache a limited number of rules, which
further complicates our attack. For example, if the target flow
occurred but the corresponding rule was evicted by other rules,
then the attacker may get a false negative result. The adversary
thus needs an approach that accounts for the likelihood of such
false negatives.

These challenges require the attacker to construct a model to
describe the switch state by capturing complexities related to
rule evictions, rule expiration and rule dependencies, and also
an approach to optimally choose probes based on the model.

C. Threat Model

The goal of the adversary is to infer the presence of private
communications between computers on a network. We assume
the attacker has a presence on one or more computers in
the same network, and that it can use these hosts to initiate
flows on the network and observe responses to them (or
otherwise measure the delays they suffer). That is, we suppose

that the attacker has a set of flows he can use to launch
the timing attack. We assume that the adversary knows the
network policies (i.e., flow rules) and what flows they cover.
We think this assumption is reasonable; e.g., some networks
have published their network policies online (e.g., [13], [22])
or the attacker can obtain them through previous compromises
or other reverse engineering techniques (e.g., [15]). Moreover,
we allow the attacker to have prior knowledge about the
distribution of flow occurrence (see Section IV-A1 for more
details) and the size of the switch flow entry table (which
the attacker could obtain from the specification of the switch
hardware or through previous attacks [14]).

IV. MODELING AN SDN SWITCH

In order to detect the occurrence of the target flow, the
attacker should first try to construct the state of the switch
flow table using crafted probes. However, as mentioned in
Section III-B, many factors (e.g. rule dependency, rule expi-
ration, and eviction) make it difficult to predict the exact state
of the switch. Therefore, here we devise a model of a switch
that permits him to compute a distribution over the possible
switch states.

The policy enforced by an SDN switch is expressed by a set
Rules of rules. Each rule prescribes an action to be performed
on the flows in a set of flow identifiers (IP header 5-tuples)
that it covers. Since here we are not concerned with the action
prescribed by a rule, we simply consider each rule rule ∈ Rules

to be the set of flow identifiers it covers; we therefore write
f ∈ rule to denote the fact that rule covers flow f.

Multiple rules are allowed to cover a given flow. That is,
it is possible that rulej ∩ rulej′ �= ∅ for distinct rules rulej
and rulej′ ; these rules are said to overlap. Rules are therefore
ordered by priority, such that rules that overlap cannot have
the same priority. When the controller is informed of a flow
f, it responds with the highest priority rule that covers f. We
write rulej > rulej′ to indicate that rule rulej is higher priority
than rule rulej′ . The relation > is a total order.

A rule delivered to a switch is cached at the switch until
it is evicted or expires. The contents of a switch cache are
represented by an element of ((Rules×N) ∪ ⊥)n. That is, the
cache cache[1 . . . n] is an array of length n, the i-th element of
which is a rule/integer pair (cache[i] = (rule, exp) ∈ Rules×
N) or undefined (cache[i] = ⊥). exp is the time remaining
before rule expires. We require that cache[i] = ⊥ implies that
cache[i+1] = ⊥ if i < n, and that if cache[i] = (rulej , ∗) and
cache[i′] = (rulej , ∗), then i = i′. In other words, a rule can
occupy only one location in the cache. In an abuse of notation,
we will sometimes write “rulej ∈ cache” as a shorthand for
“cache[i] = (rulej , expj) for some i and some expj ∈ N”.

A. Basic model

In this section we describe a simple Markov chain that
describes the evolution of the contents of an SDN switch
cache. This model captures the effects of idle timeouts, hard
timeouts, and evictions. In this Markov chain, a state is simply
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a switch cache contents as described above. We denote the �-th
state by cache�.

The transitions out of state cache� represent the possible
events that might occur during the passage of a fixed duration
Δ since entering state cache�. Δ is selected so that the
probability of multiple flows arriving in Δ time is negligible.
To compute Δ (and these transition probabilities), we assume
knowledge of the probability pf that a flow f arrives in a
window of size Δ. Our model assumes that flow arrival events
are independent, even for the same flow identifier f.

The types of state transitions in our model are as follows:

• Flow arrival with covering rule in cache: If a flow
f arrives at the switch for which a covering rule is in
cache�, then the model transitions to cache�′ in which
the covering rule has been moved to the front of the
cache and all timeouts have been adjusted appropriately.
Specifically cache�′ satisfies the following properties,
where rulej is the highest priority rule in cache� that
matches f and is located at index i in cache� (i.e.,
cache�[i] = (rulej , expj)) and where tj denotes the
timeout for rule rulej :

– cache�′ [1] = (rulej , expj − 1) if rulej has a hard
timeout and cache�′ [1] = (rulej , tj) if rulej has an
idle timeout;

– for i′ = 1 . . . i − 1, if cache�[i
′] = (rulej′ , expj′) then

cache�′ [i
′ + 1] = (rulej′ , expj′ − 1); and

– for i′ = i + 1 . . . n, if cache�[i
′] = (rulej′ , expj′) then

cache�′ [i
′] = (rulej′ , expj′ − 1) else cache�′ [i

′] = ⊥.

• Flow arrival with no covering rule in cache: If a
flow f arrives at the switch for which no covering rule
is in cache�, then the model transitions to cache�′ in
which a covering rule has been brought into cache at
the first position; if the cache cache� was at capacity,
then the rule with the smallest remaining time is evicted
and all timeouts on remaining rules have been adjusted
appropriately. Specifically cache�′ satisfies the following
properties, where rulej is the highest priority rule in Rules

that covers f and index i is 1 if cache� was not at capacity
or else is the index of the rule rulej′ in cache� with the
smallest remaining time expj′ among all rules in cache�:

– cache�′ [1] = (rulej , tj);
– for i′ = 1 . . . i− 1, if cache�[i′] = (rulej′′ , expj′′ ) then
cache�′ [i

′ + 1] = (rulej′′ , expj′′ − 1) else cache�′ [i
′ +

1] = ⊥.
– for i′ = i+1 . . . n, if cache�[i′] = (rulej′′ , expj′′) then
cache�′ [i

′] = (rulej′′ , expj′′ − 1) else cache�′ [i
′] = ⊥.

• Timeout: If the timeout value for a rule is zero, then the
rule is removed from the cache. Specifically, let i be the
largest value such that cache�[i] = (∗, 0). Then cache�′

satisfies: for i′ = i+1 . . . n, cache�′ [i′ − 1] = cache�[i
′],

and cache�′ [n] = ⊥.

Figure 3 shows a simple example of our basic model with
three rules rule1, rule2, rule3. rule1 covers f1; rule2 covers both
f1 and f2 (and so rule1 and rule2 overlap); and rule3 covers
f3. As we can see, if no flow occurs, the clock of all the rules

rule3:5
rule1:0

rule3:5

rule3:10
rule1:0

rule3:6
rule1:1

P(null)
rule2:9
rule3:4

rule2:10
rule3:4

rule3:10
rule2:9

rule3:10 rule1:10
rule3:5

1

1 P(f1)

P(f2)
P(f3)
P(null)

P(f1) + P(f2)

P(f3) rule2:10
rule3:5

Fig. 3: Basic model example; in each state, shortest remaining
time rule is at the bottom; null means no flow occurred

in the state will be reduced by one (e.g. [(rule3 : 6), (rule1 : 1)]
to [(rule3 : 5), (rule1 : 0)]). Then, if the counter is zero, the
rule expires with probability one (e.g., [(rule3 : 5), (rule1 : 0)]
to [(rule3 : 4)]). The occurrence of f1 or f2 will transition
the state [(rule2 : 10), (rule3 : 5)] to [(rule2 : 10), (rule3 : 4)],
resetting the clock for rule2 (to its timeout t2 = 10) while the
clock for rule3 is reduced by one. Moreover, if f2 arrives and
rule2 is not in the cache (e.g. [(rule3 : 6), (rule1 : 1)]), rule2
will be installed in the cache and rule1 evicted, since it has
the shortest remaining time. Next, we will elaborate how to
compute the probability of each state transition.

1) Transition probabilities for Poisson arrivals: The time-
out rule takes priority, in the sense that any state cache�
from which a timeout transition is possible (i.e., for which
cache�[i] = (∗, 0) for some i) allows only that transition
(with probability 1). For the other two types of transitions,
the method of computing their probabilities depends on the
arrival distributions of flows.

Here we give an example of how to compute the cor-
responding transition probabilities for a particular model of
flow arrivals, namely one in which the arrival of each flow
(identifier) f is governed by a Poisson process with rate λf .
We permit the attacker to know λf for every flow f; more
realistically, the attacker might only be able to estimate λf

from a known rate λj of covering rule rulej , e.g., by setting
λf = λj/|rulej |.

For state cache� and rule rulej ∈ Rules, let the relevant flow
identifiers for rulej , denoted flowIds�(j), be the set

rulej \
⋃

rulej′∈cache�
rulej′>rulej

rulej′

if rulej ∈ cache�, and

rulej \

⎛
⎜⎜⎜⎝
⎛
⎝ ⋃

rulej′∈cache�

rulej′

⎞
⎠ ∪

⎛
⎜⎜⎜⎝

⋃
rulej′ �∈cache�
rulej′>rulej

rulej′

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

otherwise. These flow identifiers are “relevant” for rulej in
that the other flow identifiers in rulej are superceded by other
rules in cache� or, in the case of rulej �∈ cache�, higher priority
rules not in cache. As such, it makes sense to define the rate

γ�,j =
∑

f∈flowIds�(j)

λfΔ
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as the effective rate for rule rulej when the cache state is
cache�. Similarly, we define

Γ�,j =
∑

f �∈flowIds�(j)

λfΔ

to be the rate at which flows irrelevant to rulej in state cache�
arrive. The transition probability from cache� due to the arrival
of a flow matching rule rulej is then set to(

γ�,je
−γ�,j

)
e−Γ�,j

since one flow relevant for rule rulej arrives with probability
the first factor and no flows irrelevant to rulej arrive with
probability the second factor.

Recall that a Markov chain requires that the probabilities of
transitions leaving each state must sum to one. As such, once
the above probabilities are computed for each rulej ∈ Rules,
they are normalized to sum to one.

2) Scalability: As we will see, the primary challenge in
using this Markov chain computationally is the number of
states. Specifically, the number of states in this model is

∑
Rules′⊆Rules

|Rules′|≤n

⎛
⎝|Rules′|! ·

∏
rulej∈Rules′

(tj + 1)

⎞
⎠

For example, if |Rules| = 10, each rule has a timeout of
tj = 100 steps, and the cache capacity is n = 8, then the
number of states is about 5.9× 107.

B. Compact model

In an effort to reduce the number of states, here we describe
a more compact but approximate model. In this new model,
each state compact� represents the subset of Rules (of size at
most n) that are presently cached, and as such, there are a
total of

n∑
n′=1

(
|Rules|

n′

)

states. In doing so, we eliminate from each state any informa-
tion to implement rule timeouts or evictions. In the remainder
of this section, we describe how we compute probabilities to
model transitions between states that represent the timeout or
eviction of a rule from the cache.

Central to our method of estimating these probabilities is a
method of estimating the probability of a given sequence of
most recent matches to the rules in compact�. In particular,
consider an injective function u : N → N such that u is defined
(i.e., u(j) �= ⊥) if and only if rulej ∈ compact�. For any such
u and rulej ∈ compact�, we interpret u(j) as the number of
steps since rulej was most recently matched (i.e., rulej was
most recently matched at step �− u(j)).

To assign a probability to the most-recent-match sequence
represented by u, it is necessary to define the relevant flow
identifiers for rulej a bit differently than in the previous
section, specifically to account for the temporal sequence of

these most-recent matches. To do so, we define the relevant
flow identifiers for rule rulej ∈ Rules at step �− k to be

flowIds�,u(j, k) = rulej \
⋃

rulej′∈compact�
rulej′>rulej

u(j′)>k

rulej′ (1)

Intuitively, the flow identifiers irrelevant for rule rulej ∈ Rules

at step � − k are those covered by higher-priority rules that
were not matched in step �−k. This yields an effective arrival
rate of flow identifiers relevant for rule rulej ∈ Rules at step
�− k of

γ�,u(j, k) =
∑

f∈flowIds�,u(j,k)

λfΔ

Then, for a fixed u, we define the probability of u, denoted
P (u), as

∏
rulej∈compact�

⎛
⎝γ�,u(j, u(j))e

−γ�,u(j,u(j))

u(j)−1∏
k=1

e−γ�,u(j,k)

⎞
⎠

×
∏

rulej �∈compact�

tj∏
k=1

e−γ�,u(j,k)

if |compact�| < n, and

∏
rulej∈compact�

⎛
⎝γ�,u(j, u(j))e

−γ�,u(j,u(j))

u(j)−1∏
k=1

e−γ�,u(j,k)

⎞
⎠

×
∏

rulej �∈compact�

umax(j)∏
k=1

e−γ�,u(j,k)

otherwise, where umax(j) = tj− min
rulej′∈compact�

(tj′ −u(j′)). In

each case, the top factor estimates the probability that a flow
relevant to each rulej ∈ compact� last arrived u(j) steps ago,
and the bottom factor estimates the probability that no flow
relevant to other rules arrived.

This estimation comes with two caveats, however. First, the
inclusion of rulej′ > rulej as a restriction in the union on
the right side of (1) is correct only if rulej′ was already in
the cache before being matched u(j′) steps ago; otherwise,
this restriction should be removed. Second, we ignore rules
rulej′ ∈ compact� for which u(j′) < u(j), and rules in
Rules \ compact� they may have evicted, since we do not
know whether they were also matched before u(j) steps ago.
Both of these guesses are shortcomings of using a memoryless
(Markov) model.

1) Evictions: When in a state compact� where
|compact�| = n, if a message is received that is not
covered by any rulej ∈ compact�, then some rule must
be evicted to make room for the rule that the controller
sends to the switch. As shown in Figure 4, if current state
is {rule1, rule2, rule3} and rule4 is installed (due to the
occurrence of f4), any of the rules in the state may be
evicted, leading to three possible state transitions with each
rule being exchanged by the new rule. For example, the case
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rule2
rule3
rule4

rule1
rule2
rule3

rule1
rule2
rule4

P(f4 ∧ (rule1 evicted)|
{rule1,rule2,rule3} )

rule1
rule3
rule4

P(f4 ∧ (rule3 evicted)|
{rule1,rule2,rule3} )

P(f4 ∧ (rule2 evicted)|
{rule1,rule2,rule3} )

Fig. 4: Eviction example

in which rule1 is evicted is that the remaining time of rule1
(its initial expiration time t1 minus the time since it was last
matched, assuming it uses an idle timeout) is smaller than
the ones of all the other rules.

In general, we estimate the probability of evicting rulej
conditioned on rulej ∈ compact� as the ratio of two values: the
probability of the joint event rulej ∈ compact� and rulej has
the smallest remaining time in compact�, and the probability
that rulej ∈ compact�. The latter simply corresponds to
placing the condition

u(j) ≤ tj (2)

on u where tj is the total steps for rulej expiration, since
otherwise, rulej would have timed out. That is,

P (rulej ∈ compact�) =
∑

u satisfying (2)

P (u) (3)

The probability of the joint event rulej ∈ compact� and rulej
has the shortest remaining time in compact� can be estimated
by additionally requiring that for any rulej′ ∈ compact�,

tj − u(j) ≤ tj′ − u(j′) (4)

That is,

P

(
rulej ∈ compact� ∧
rulej has the shortest
remaining time

)
=

∑
u satisfying (2) and (4)

P (u) (5)

Then,

P

(
rulej has the shortest
remaining time

∣∣∣ rulej ∈ compact�

)
=

Eqn. (5)
Eqn. (3)

2) Timeouts: Consider the example in Figure 5, where the
current state is {rule1, rule2}. If no flow occurs, then each of
the rules in the state may expire, leading to two possible state
transitions (rule1 expiration or rule2 expiration). Specifically,
the case for only rule1 expiring indicates: rule1 is not matched
(or evicted) for t1 steps, whereas rule2 is matched within the
past t2 steps.

The probability of rulej timing out from compact�, given
that rulej ∈ compact�, is computed similarly to how the
probability of its eviction was computed. The main difference
is that the numerator is now the probability of the joint event
rulej ∈ compact� and rulej has hit its timeout of tj steps. To
estimate this probability, we restrict our attention to functions
u satisfying

u(j) = tj (6)

P(rule1 expires|
{rule1,rule2}) rule1

rule2
rule1rule2

P(rule2 expires|
{rule1,rule2} )

Fig. 5: Expiration example

That is,

P

(
rulej ∈ compact� ∧
rulej should time out

)
=

∑
u satisfying (2) and (6)

P (u) (7)

and, of course, since (6) implies (2), the condition on the
summation can be simplified accordingly. Then,

P

(
rulej should time out

∣∣∣ rulej ∈ compact�

)
=

Eqn. (7)
Eqn. (3)

V. SELECTING THE ATTACKER’S PROBE

In this section, we demonstrate how the adversary can use
the switch model developed in Section IV-B to select optimal
probes for our flow reconnaissance attack.

A. Single query

We start with the simple case where the attacker chooses a
single best probe flow, i.e., one probe flow to best determine
whether a target flow occurred within the last T time steps.
Then, we will extend the strategy to multiple probe flows.

We use an indicator random variable X̂ to represent whether
the target flow f̂ occurred in the last T steps, i.e., X̂ = 1 if f̂
occurred in the last T steps and X̂ = 0 otherwise. The entropy
of X̂ is

H

(
X̂
)
=

∑
x∈{0,1}

P

(
X̂ = x

)
log

1

P

(
X̂ = x

)
A smaller entropy indicates a more skewed distribution of
the flow’s presence, and thus the attacker has more a priori
knowledge about whether f̂ happened or not. In particular,
since we assume that the adversary knows (or can estimate)
the Poisson parameter λ

f̂
of the target flow f̂ , he can calculate

the probability of flow absence as P
(
X̂ = 0

)
= e−λ

f̂
TΔ, and

therefore the entropy H

(
X̂
)

.
The attacker can probe the switch using a timing attack to

reduce the uncertainty about the rules in the switch cache,
as discussed in Section III. To incorporate the knowledge the
attacker gains in this way, we consider the conditional entropy
of X̂ given the results Qf of querying the cache with a specific
flow f (perhaps forged as discussed in Section III). Here, Qf is
an indicator random variable showing whether the attacker’s
flow matched a rule already in the switch cache, which the
adversary can infer from the response time to its flow; i.e.,
Qf = 1 if f matched an already-cached rule, and Qf = 0
otherwise. Then, we consider the conditional entropy

H
(
X̂

∣∣ Qf

)
=

∑
x∈{0,1}
q∈{0,1}

P

(
X̂=x ∧Qf=q

)
log

1

P
(
X̂=x

∣∣ Qf=q
)

The conditional entropy shows how much uncertainty that the
adversary still faces after learning whether its chosen probe
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flow matched a rule in cache or not. Naturally, the adversary
selects the probe flow f to maximize its information gain, i.e.,

IG
(
X̂

∣∣ Qf

)
= H

(
X̂
)
−H

(
X̂

∣∣ Qf

)
To compute the information gain of each possible probe flow

f, we need to compute P (Qf = q) and P
(
X̂ = x

∣∣ Qf = q
)

for each such flow. First, we use our switch cache model to
build a transition matrix A, with each element A[�, �′] being the
probability of compact� transitioning directly to compact�′ , as
computed in Section IV-B. The final distribution of the switch
cache state can be calculated as

IT = A
T I0 (8)

where IT is a vector representing a distribution over the cache
state compactT and I0 is the distribution of the cache state
initially.

Based on the final distribution IT , the attacker can compute
P (Qf = 1) for a candidate probe flow f by adding the
probabilities of all cache states including any rule that covers
f (and P (Qf = 0) by adding probabilities for those that

do not). In addition, P
(
X̂ = 0 ∧Qf = q

)
can be calculated

by repeating this calculation with a matrix A in which the
probability of transitioning from any state by the occurrence
of the target flow f̂ is set to zero and other edges left

unchanged. Finally, P
(
X̂ = 0

∣∣ Qf = q
)
=

P(X̂=0∧Qf=q)
P(Qf=q) and

P
(
X̂ = 1

∣∣ Qf = q
)
= 1− P

(
X̂ = 0

∣∣ Qf = q
)
.

B. Extension to Multiple Probes

We now discuss how to extend the above method to enable
the attacker to compute multiple probe flows f1, . . . , fm. In the
model we consider here, the attacker chooses f1, . . . , fm non-
adaptively. The attacker will choose f1, . . . , fm with largest
information gain IG

(
X̂

∣∣ Qf1 , . . . , Qfm

)
. The computation is

similar to the one described in the previous section, with one
exception: since each probe flow actively changes the switch
cache state, the final distribution IT has to be adjusted incre-
mentally according to the previous probe flows (by introducing
new rule or resetting the timeout clock for a rule).

By selecting a sequence of probe flows, the adversary actu-
ally constructs a decision tree with each layer corresponding
to an attack flow. The leaf nodes of the tree are the decisions
whether the flow f̂ occurred or not according to the conditional
distribution P

(
X̂

∣∣ Qf1 , . . . , Qfm

)
. Building the classifier can

help the attacker not only choose the optimal probe flows, but
also select the target flow with higher information gain.

VI. EVALUATION

In this section, we detail the implementation of our attack
and show that:

• The use of our model improves the accuracy of these
attacks by about 2% on average. However, for certain
subclasses of rule sets and flow rates, this improvement
can grow to 23% or more, yielding an average accuracy
approaching 85%.

• Our model enables the attacker to accomplish near-
optimal inference even when using sub-optimal (but still
possible) probes.

A. Setup

We evaluated our attack in a network setting built by
Mininet [1]. To create the network topology, we used the real-
world Cisco router configurations from Stanford University’s
backbone network [13] as our dataset. We leveraged the
Mininet API and Python to construct the Stanford backbone
topology with 16 switches in total. In addition, we leveraged
the Ryu controller [4] to reactively install rules on switches.

We set the number of rules as |Rules| = 12, the switch cache
size as n = 6, and the number of possible flow identifiers as
16.3 Each flow is identified by a specific source IP address.
Therefore, we created 16 hosts and assigned each one with one
specific IP address (i.e., 10.0.1.0 to 10.0.1.15). These hosts are
connected to the same port of one randomly selected switch
and only allowed to send packets to a common destination
host (connected to another switch) with IP address 10.0.1.16.
(Imagine a client-server architecture.) Moreover, we randomly
selected the Poisson parameter λf for each flow f (i.e., for
each source host) and TTL time for each rule rulej . Specifi-
cally, we selected λf uniformly from the range [0, 1], and tj for
each rulej uniformly from { 1

10Δ�,  2
10Δ�, . . . ,  9

10Δ�,  1
Δ�}.

Each source host ran a background Python script to randomly
select the time to send packets based on the chosen Poisson
parameter and used Scapy [5] to craft and deliver the packets.
Here, the hosts leveraged the ICMP protocol to deliver packets,
which requires the destination host to send back a reply
message. The attacker was set as another host co-located with
the source hosts. It selected the optimal probe as described in
Section V, injected the probe into the network, and measured
the timed to observe the reply message.

To manage the rule deployment, we leveraged the Ryu SDN
controller. Ryu supports wildcard rules using netmasks (i.e.,
rules matching multiple flows). For 16 hosts with contiguous
IP addresses, there are 81 possible rules (involving up to 4-
bit masks). To build the flow-rule relations (i.e., to decide
if f ∈ rulej), we randomly picked 12 rules from all the
81 possible ones based on the uniform distribution. Since
our rules were strictly limited to the ICMP protocol, we
pre-installed a rule instructing the switches to send all the
unmatched ICMP packets to the controller. Therefore, the
controller could reactively install the rules upon the arrival
of new flows. To permit packets used for other protocols
(e.g., ARP, LLDP) to pass through the switches correctly, we
proactively installed a default rule with the lowest priority and
no timeout to flood all packets. We also pre-installed a rule
(also without timeout) that instructs the switch to forward
ICMP echo reply messages to their destinations. Note that,
instead of directly setting the switch flow table size as 6,
here we set it as 9 to reserve three slots for the pre-installed

3Obviously, 16 flow identifiers is far too small for a real network. Rather,
these 16 flows identifiers can represent classes of flows for which the Poisson
parameter λf is the rate of all flows in that class.

436203



rules. Since we used OpenvSwitch [2] and the switch will
not evict the rules without timeouts, our pre-installed rules
cannot be evicted by new incoming ones. Finally, the target
flow f̂ was chosen uniformly from all flows for which the
probability of absence is within a specific range (defined by the
experiment parameters). We refer to the Poisson parameters,
flow-rule relation, and target flow so chosen as a “network
configuration.”

To implement the attack, we first made the hosts randomly
generate packets for a duration of 15 seconds, and then let the
attacker choose its probe flow to be either simply the target
flow or the flow recommended by our methodology described
in Section V. To build our proposed model, we used both
MATLAB R2015a and C++. The input of the attack model is
the flow-rule relation (i.e., which flows are covered by each
rule rulej), the Poisson parameter λf of each flow f, the
switch cache size n, and the TTL time tj of each rule rulej .
Leveraging the techniques described in Section IV-B, the code
first generates the transition matrix A of the network model.
Then, the state probability distribution given an arbitrary
time window can be calculated through Eqn. (8). Based on
the switch state distribution, the attacker can compute the
information gain of each probe flow as discussed in Section V
and select the optimal one. All computations reported here
were performed in a server with 2.3GHz cores and 128GB of
RAM.

In our test platform, the latency for forwarding a packet
that arrived at a switch when a covering rule was already
installed was easily distinguishable from the latency when one
was not. The mean and standard deviation of the attacker’s
observation in the former case (i.e., a covering rule was already
in the switch) were 0.087ms and 0.021ms, respectively, while
the values for the latter case were 4.070ms and 1.806ms.
The attacker could easily differentiate these two cases by
comparing the observed delay with a threshold (e.g., 1ms).

B. Attack Results

Because in some network configurations, even the selection
of an optimal probe flow f provides no real information about
the target flow f̂ , we limited our attention to network config-
urations for which our calculated P

(
X̂ = 0

∣∣ Qf = 0
)
> 0.5

and P
(
X̂ = 1

∣∣ Qf = 1
)
> 0.5. Intuitively, this means that

the optimal flow can serve as a detector for the target flow.
(An attacker would presumably not use our detection method
on a network configuration not meeting this condition.) Under
these conditions, to infer whether the target flow occurred in
the last T =  15

Δ � steps, our model-based attacker made its
decision by calculating the optimal flow f and returning the
result of query f (i.e., Qf). Similarly the naive attacker simply
returned Q

f̂
.

We describe our results by considering two natural cases.
In the first, we limit our attention to configurations in which
the model-calculated optimal flow f �= f̂ , i.e., configurations
in which the model attacker and the naive attacker behave
differently. The results for these network configurations are
shown in Figure 6. Each graph represents 100 random network
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Fig. 6: Accuracy of compact-model attacker on configurations
in which model-calculated optimal probe flow f is not the
target flow. (The second flow queried by the model attacker,
in the two-query case, might be f̂ .) Attack is effective if it
achieves better accuracy than probing f̂ (“naive attacker”).

configurations satisfying this condition. Here, the average
accuracy is defined as the ratio of the total number of true
positive and true negative cases to the overall number of trials.
Each test in the figure was performed 100 times, randomly
generating the network packets every time. Figure 6a shows
the accuracy of each attacker based on the probability of ab-
sence of target flow; as this graph shows, across the spectrum
of possibilities, the model-based attacker outperforms the naive
attacker by roughly 2% on average. The improvements are
somewhat more impressive as the probability of the absence of
the target flow f̂ (in the last T steps) grows. Indeed, Figure 6b
shows the additive improvement in average accuracy allowed
by our model per network configuration, over that provided
by the naive attack. As shown there, our model permits a
15% or larger improvement in average accuracy for about 20%
of network configurations, and for 5% of configurations this
improvement exceeds 35%.

A different view on the effectiveness of our model comes
in Figure 7. Here, we no longer restrict the configurations
considered to those for which the optimal probe f is different
from the target flow f̂ , but instead simply restrict the model
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Fig. 7: Average accuracy of compact-model attacker, when
probing using flow f �= f̂ that provides the highest information
gain, as described in Section V. Attack is effective if it
achieves the same or better accuracy as probing f̂ (“naive
attacker”).

attacker to not query f̂ even if it is the optimal choice. These
experiments thus reflect scenarios in which the attacker is
precluded from selecting f̂ even if f̂ is the optimal choice,
e.g., because forging this flow would raise an alert or because
the attacker is at the wrong vantage point to measure the time
it would take to route f̂ . In these scenarios, our goal is to do
as well as querying f̂ would have been, and as can be seen
in these graphs, our model attacker does so. Moreover, it does
much better than the random attacker who simply chooses
whether the flow occurred based on its a priori probability of
having done so, without making any probes to the network.

VII. DISCUSSION

A. Limitations

Our work demonstrates a novel use of SDN-based timing
side-channel attacks and, through the development and evalu-
ation of a model for SDN switches, shows that these attacks
can be effective. Our work has several limitations, however.

1) Reactive rule deployment: Our model is premised on a
reactive model for pulling rules from the controller; i.e., the
controller deploys rules only in response to a packet forwarded
to it from a switch. However, SDN rule deployment can also
be done proactively, not in response to a particular packet.

2) Consistent rule deployment: We have modeled an SDN
switch to which a controller deploys (only) the highest-
priority rule covering a flow that arrives at the switch and
for which the switch does not already have a rule covering
that flow. Similarly, our model reflects a switch that expires
and evicts rules without attention to their overlap with other
rules. However, some proposals for deploying/removing rules
to/from switches do so more collectively, i.e., managing the
rules in aggregate to ensure a type of consistency [16]. For
example, the eviction of rules with higher priorities might
cause the deletion of overlapping rules with lower priorities.

3) Scalability: Though our compact model (Section IV-B)
that forms the basis for our experiments is considerably more
scalable than our higher-fidelity model (Section IV-A), its
ability to scale to large rule sets remains limited. That said,
our tests reported here, albeit of limited size, have already
revealed interesting facets of rule-set structure that can enable
the attacker to conduct flow reconnaissance.

B. Countermeasures

In this section, we propose several possible defenses against
this attack and list the benefits and downsides.

1) Adding delays: As suggested by Cui et al. [9], switches
can delay the first few packets of each flow, even if the flow
matches an existing rule in the switch, to hide that it did so.
This method is easy to implement, but it increases buffering
and the delay suffered by each flow.

2) Proactive rule setup: The controller can proactively
install all rules on the switch during the setup phase (if there
is capacity). Since the matching rules are always in the switch,
the attacker cannot infer any information through probing.

3) Transform rule structure: Another defense might trans-
form the rule structure by merging or splitting rules, increasing
the uncertainty that the adversary faces after probing (our
Markov model can serve as a tool to measure the information
leakage of the rule structure), while maintaining the same
functionality as the original rule policies. This method may
steer the system toward more coarse-grained rules, raising the
question of the optimal balance between coarse-grained and
fine-grained control.

VIII. CONCLUSIONS

We introduced a novel flow-reconnaissance attack that can
be mounted in SDN networks that use reactive rule installation.
By developing a compact Markov model for an SDN switch
rule cache state, we showed that an attacker can estimate the
distribution over the possible switch states as flows arrive
and depart. Our model tackles practical issues such as rule
expirations, rule evictions, rules that overlap in the flow
identifiers to which they apply, and rule priorities. We showed
that our model can improve on naive flow-reconnaissance
attacks by around 2% on average and up to 23% in some cases,
yielding an overall flow detection accuracy approaching 85%.
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