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ABSTRACT
Smartphone apps today request permission to access a mul-
titude of sensitive resources, which users must accept com-
pletely during installation (e.g., on Android) or selectively
configure after installation (e.g., on iOS, but also planned for
Android). Everyday users, however, do not have the ability to
make informed decisions about which permissions are essen-
tial for their usage. For enhanced privacy, we seek to leverage
crowdsourcing to find minimal sets of permissions that will
preserve the usability of the app for diverse users.

We advocate an efficient ‘lattice-based’ crowd-management
strategy to explore the space of permissions sets. We con-
ducted a user study (N = 26) in which participants explored
different permission sets for the popular Instagram app. This
study validates our efficient crowd management strategy and
shows that usability scores for diverse users can be predicted
accurately, enabling suitable recommendations.
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INTRODUCTION
Users of mobile devices such as smartphones and tablets are
able to install apps from online marketplaces that feature mil-
lions of apps.1 These apps can potentially access various sen-
sors (e.g., accelerometer, microphone, GPS, and camera) and
user data (e.g., contact information and photos). In general, it
is difficult for the operating system (such as Android or iOS)
to ascertain whether an app is making legitimate or nefarious
uses of the sensors or data. Instead, during the installation
1http://www.appbrain.com/stats/number-of-android-
apps/, http://toucharcade.com/2014/06/02/new-ios-8-
app-store-features/
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of an app, the Android operating system displays all the re-
quested permissions, which the user either approves or denies
as shown in Figure 1a. On iOS, users initially install apps and
then are able to selectively enable or disable privacy sensitive
permissions as shown in Figure 1b. Google has been experi-
menting with a similar feature (“App Ops”) that allows users
to selectively disable specific permissions, but it has not yet
been released officially.2

 (a) Android
 

(b) iOS

Figure 1. Control panels related to application permissions.

Ideally users would determine the fewest permissions needed
for an app to support their regular usage of the app (i.e., the
‘principle of least privilege’ [14]). For example, Angry Birds
requests access to location, but may work well for most users
if access to location is disabled. While several research pro-
posals have been made to allow more granular control or de-
tect anomalous uses of such sensors (Bugiel et al. [2] provide
a comprehensive overview of related work on Android OS
security), it remains unclear how users can decide which per-
missions are useful for the functioning of the app. Felt et
al. [4] proposed an automated technique to determine which
permissions are not used by an app, but they did not address
the relative importance of each permission that is used by the
app. While users can provide feedback through ratings and
comments on App marketplaces like Apple’s App Store and
the Google Play Store, no feedback or ratings are available
on various configurations (i.e., with various combinations of
2https://www.eff.org/deeplinks/2013/12/google-
removes-vital-privacy-features-android-shortly-
after-adding-them/
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permissions disabled) of the app. Indeed, there are too many
possible configurations of an app, and it is not clear if it feasi-
ble to provide meaningful feedback about all configurations.

We advocate a crowdsourced approach that leverages humans
to efficiently assess various security configurations for an app
and identify app configurations that strike tradeoffs between
privacy and usability suitable to each user. After gaining fa-
miliarity with an app, each crowd member would volunteer
to utilize a small number of configurations for that app over
a test period. Based on the usability scores of configurations
given by a specific user, similar crowd members would be
identified and then used to recommend configurations suit-
able to that user. We envision that our system can be easily
integrated into popular app marketplaces such as the Apple
App Store and the Google Play Store. Instead of rating only
one configuration of an app, smartphone users would test and
rate different configurations of apps. Then our system would
recommend appropriate configurations to users based on their
similarities to other users in the marketplace, i.e., the crowd.

The proposed approach, however, poses challenges. First, as
the number n of permissions requested by an application in-
creases, the number of possible permission sets increases ex-
ponentially (2n). Thus a scalable approach is needed to col-
laboratively explore the permission space. Second, even if
these configurations can be collaboratively explored, it is not
clear whether suitable recommendations can be made to a di-
verse set of users. A permission set that is acceptable to some
users may not be acceptable to others. Finally, unobtrusively
deploying and assessing configurations would benefit from
measures of ‘usability’ that do not involve user intervention.

Research questions. This research seeks to leverage crowd-
sourcing to efficiently find a set of permissions for each user
installing an app that strikes an acceptable balance between
app usability and user privacy (by finding the permissions that
are infrequently used by users or permissions that users do
not mind losing). More specifically, we seek to answer the
following research questions:

R1: Can we use crowdsourcing scalably to explore security
configurations of an app? Using crowdsourcing, we seek
to obtain users’ perspectives on the usability of the app
when certain combinations of permissions are disabled.
Based on the intuition that usability scores cannot gen-
erally increase when additional permissions are removed,
we develop a ‘lattice-based’ approach to prune the search
space of permission sets and evaluate its efficacy.

R2: Can we recommend suitable permission sets based on
the crowd’s ratings? We would like to predict the suitabil-
ity of various app configurations for users based on ratings
obtained from the crowd (other users). In particular we ex-
plore whether collaborative filtering can be used to make
such predictions effectively.

R3: What proxies can be used to determine the usability of
an app without asking users for ratings explicitly? We seek
to find if we can ascertain the ‘usability’ of an app in au-
tomated ways, such as measuring the time spent by a user

using an app or logging any problems s/he encounters. Au-
tomated measures require fewer user interruptions and so
could permit a less obtrusive exploration of the state space.

Our contributions. Before the suggested crowdsourcing strat-
egy can be applied in general, we seek to validate our lattice-
based approach and the viability of making accurate predic-
tions of usability scores. As a first step, we perform a user
study (N = 26) on one specific, but popular, app (Instagram).
Participants tried different configurations of this app in which
each configuration had specific permissions removed. Partic-
ipants reported their feedback about each configuration and
answered exit surveys at the end of the study.

We found that: 1) as more permissions were removed, the
reported usability scores dropped (or did not increase) sig-
nificantly, validating the lattice-based approach; 2) based on
usability scores given by the crowd, we can predict partici-
pants’ individual ratings for various subsets of permissions,
and thus make suitable recommendations; and 3) to measure
usability, instead of asking users for explicit feedback, other
attributes such as the usage time of an app and the number of
problems encountered are suitable proxies for usability.

RELATED WORK

Crowdsourcing
Crowdsourcing has been used in many studies related to An-
droid privacy and security. Amini et al. [1] developed App-
Scanner, which analyzes and learns application behaviors to
find privacy-related issues. In their crowdsourcing step, they
ask users for their reactions to behaviors uncovered by their
tool. Crowdsourcing was also used by Lin et al. [10] to
capture users’ expectations about privacy-related behaviors
of Android applications. They used their findings to design
a technique to inform Android users about the way permis-
sions are used by an application. However, it may not be
clear to users how removing certain permissions may affect
the usability of the app. In our crowdsourcing step, instead of
only asking users about their expectations, we provide them
with different configurations of applications (with different
permissions removed) and get users’ feedback based on their
experience with those configurations.

Studying the Effects of Permission Removal
Since users do not have fine-grained control over what spe-
cific permissions they grant apps in Android, researchers have
proposed systems to give users the ability to do so. For exam-
ple, Nauman et al. [12] modified Android with an advanced
application installer that enables users to allow or deny each
individual permission requested at installation. Rather than
asking users to evaluate permissions at installation, we in-
stead ask them to evaluate an application with selected per-
missions disabled. We then use their feedback as a basis
for performing collaborative filtering to benefit other users.
Moreover, our method of disabling permissions does not
modify Android.

There are also studies about the effects on applications’ per-
formance after removing permissions. Notably, Kennedy et
al. [9] proposed a system that removes permissions from An-
droid applications to determine which removed permissions



cause the app to crash. Their system, however, focuses on an
automated process for evaluating the run-time effects of re-
moving permissions and does not assess the impact on users
based on real-world usage, as we do.

App Ops, a feature in Android v4.3, allowed users to selec-
tively disable permissions for apps on their phones. However,
Google removed this feature in the next update, reporting that
it was experimental and could cause apps to behave in un-
expected ways. For our approach, we assume the apps be-
ing explored have reasonable exception handling. We expect
that App Ops-like functionality will eventually be released for
Android (as it is already available in iOS) and that most apps
will handle permissions restrictions gracefully.

Users’ Perspectives about Permissions
Felt et al. [5, 6] and Kelly et al. [7] showed that the current
way of displaying permissions is not clear to users and not
effective at informing them about the potential risks of in-
stalling an app. Kelly et al. [8] thus proposed a more effective
way to display the permissions and found it to be helpful for
users to make better decisions with respect to their privacy.
Rather than asking users directly if they think a specific per-
mission is needed, we let users test app configurations with
some permissions removed and report their feedback. We
expect a combination of these approaches would be useful,
whereby useful suggestions through crowdsourcing can im-
prove information provided in the installation interface.

Collaborative Filtering
Recommender systems are used to predict ratings and to cre-
ate personal recommendations in various domains. By apply-
ing statistical methods and knowledge discovery techniques,
it is possible to recommend products based on user prefer-
ences [15]. Collaborative filtering is a recommendation tech-
nique that is used for predicting a user’s ratings for unknown
products based on the user’s previous ratings and aggregating
other (similar) users’ ratings. Two common techniques for
collaborative filtering are ‘user-based’ collaborative filtering
and ‘item-based’ collaborative filtering. In user-based col-
laborative filtering, a user’s rating for any particular item is
predicted from ratings by similar users for that item [13]. In
item-based collaborative filtering, ratings for an item are pre-
dicted from ratings for similar items [16]. In this paper, we
incorporate the idea of user-based collaborative filtering into
the mobile app privacy domain and use it for predicting the
suitability of various permission sets.

APPROACH
In this section, we describe our proposed crowdsourcing ap-
proach, usability metrics, and recommender system. More-
over, we present the hypotheses that we test in our user study.

Lattice Based Approach for Crowd Management
We propose an approach whereby crowd members strategi-
cally explore the various permission sets of an app in a way
that is scalable with the number of permissions requested by
the app. Our main hypothesis here is that as the set of per-
missions removed grows, the ‘usability’ of the app does not

increase. (We defer the discussion about how exactly we mea-
sure ‘usability’ to the next subsection.) Intuitively, if a set
of permissions is made more restrictive, we expect the num-
ber of features of the app to also be reduced and thus result
in a lower or equal rating.3 For example, if a user thinks
that a specific app is unusable when location permission is
removed, s/he is likely to think the same (or worse) if the lo-
cation and camera permissions are removed together. This
intuition suggests an approach of a structured exploration of
the permission space as we formalize next.

The permission space can be represented by a lattice struc-
ture. Consider a lattice structure as shown in Figure 2 for an
app that requests four permissions. The nodes in the lattice
represent the sets of removed permissions. The null vertex
represents the original app where there are no permissions re-
moved, so it is not shown in the figure. Each level in the lat-
tice going upwards represents an increasing number of per-
missions removed. So, the first level represents nodes with
one permission removed, the second level has nodes with two
permissions removed, and so on.

{1} {2} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{3}

score: 4.5 score: 5 score: 4.2 score: 3

score: 4.2

score: 4

score: 2.5

Threshold= 4
: pruned from the 1st level
: pruned from the 2nd level

Level 1

Level 2

Level 3

Level 4

Figure 2. The lattice structure where each node represents specific per-
missions that are removed.

We suggest the following crowd-based exploration strategy:
First, the crowd explores the first level in the lattice and the
average usability score is calculated for each node. If the
scores of any of these nodes fall below a certain threshold,
their ancestors can be pruned and not explored because the
scores are expected to be non-increasing. For example, if we
consider the lattice in Figure 2, after testing all four nodes
in the first level, the node {4} has a score below the thresh-
old. So, we prune all of this node’s ancestors. This leaves us
with fewer nodes to test as we proceed upwards. After testing
the nodes {1,2},{1,3} and {2,3}, we may find that the av-
erage score for {1,3} falls below the threshold, so we prune
its ancestor {1,2,3}. This approach enables us to explore the
3Of course, this is not true as a rule. For example, removing one per-
mission alone might cause the app to consistently crash, though in
addition removing a second permission might prevent the app from
ever attempting to use the first (and so from crashing). Though an ar-
tificial example, it shows that removing permissions need not mono-
tonically decay the usability of the app. That said, recall that we
assume apps will handle the removal of permissions gracefully; pre-
sumably this should already be true for iOS apps and will increas-
ingly become so for Android apps once App Ops is (re)released.



permission space efficiently and find suitable configurations
of permissions based on the crowd’s reports, i.e., nodes {1,2}
and {2,3} in our example. This technique can be more ef-
ficient than exploring the whole space, especially when the
number n of permissions is large.

Before this strategy can be applied in practice, it is important
to ascertain whether the presumed lattice-based relationship
of usability scores holds. As a first step, we evaluate the fol-
lowing hypothesis for a specific application (Instagram):

H1: The usability scores of the nodes in the lattice are non-
increasing as we proceed upwards in the lattice and remove
more permissions.

Measuring Usability
In this paper we use the term “usability” to refer to how ‘ac-
ceptable’ users consider an application to be when some of its
advertised functionality has been intentionally restricted. We
obtain this ‘ground truth’ information by asking participants
about their level of acceptance of using a configuration of the
app (until the next major app update) with specific features
disabled. We also ask them to rate the different configurations
compared to the original app in which no permissions are re-
moved. In our envisioned crowdsourcing system, we seek to
measure the usability of an app indirectly without user inter-
vention by using indirect measures that can serve as a proxy
for usability. Those measures include the time spent using an
app and whether there are problems found while using it.

Therefore, we have the hypotheses mentioned below. We also
test whether the ‘ratings’ provided by users agree with the
‘acceptability’ scores (lending validity to using ‘acceptabil-
ity’ as a ground-truth measure):

H2: Under the assumption that the original app is perceived
as usable by users, a user’s rating of a customized con-
figuration of the app as better or worse than the original
is a good predictor for the whether the user finds the cus-
tomized configuration acceptable.

H3: The time spent using a customized configuration of the
app can be used as a proxy to measure its usability. This
means that participants who use a particular configuration
longer than another configuration find the former configu-
ration more acceptable.

H4: Whether users find problems in a customized configura-
tion of an app can be used as a proxy to measure its usabil-
ity. Participants who identify more problems in a configu-
ration of an app will rate it as less usable than a configura-
tion for an app where fewer problems are encountered.

Recommender System
Our goal is to leverage the crowd-based exploration of the
permission subsets to recommend a suitable one for a particu-
lar user. We advocate a ‘user-based collaborative filtering’ ap-
proach [13] to recommend permission subsets to users based
on their similarity (of ratings) to other users in the crowd.

The user-based collaborative filtering computes the predicted
ratings for user u ∈ U on all ‘items’ ∈ I where the items
represent permission subsets that u did not try. The algorithm
first identifies the most similar users to u based on similarity

in their ratings for the common items that they have tried.
Those users are denoted by k-nearest neighbors where k is
the number of those similar users. The predicted rating for
user u on any item j ∈ I is then computed as [3]:

pu,j = r̄u +

∑
v∈Neighbors(u) s(u, v)(rv,j − r̄v)∑

v∈Neighbors(u) |s(u, v)|

where r̄u is the mean rating for user u (across all items rated
by that user), Neighbors(u) is the list of u’s similar users,
rv,j is the usability rating of user v for permission set j (a
positive integer in our case), and s(u, v) is the ‘similarity’
between user u and his neighbor v. This formula calculates
the difference between each neighbor v’s rating for item j and
v’s mean rating for all items, takes the weighted mean of this
difference across neighbors (using a similarity measure as the
weight), and then applies this difference to u’s mean rating.
We give an example in the Findings section (see Table 3).

The similarity measure s(u, v) can be computed, e.g., using
the ‘cosine similarity’ of the users’ rating vectors, which is
shown in the formula bellow. ru and rv are users’ u and v
ratings vectors and the unknown ratings are replaced by 0.

s(u, v) =
ru · rv
‖ru‖ ‖rv‖

=

∑n
i=1 ru,irv,i√∑n

i=1 r
2
u,i

√∑n
i=1 r

2
v,i

We propose a specialized approach based on the lattice struc-
ture. For example, we may want to recommend as restrictive
a permission set as possible (higher up in the lattice, which
means enhanced privacy) as long as the usability score does
not fall below a certain threshold. Furthermore, the lattice-
based structure can be leveraged to improve the accuracy of
our predictions given the relationship between nodes in the
lattice. As hypothesized in H1, as we remove more permis-
sions, the usability scores of the apps are non-increasing. So,
if the predicted score of any node in the lattice is greater than
any of its children scores, we set the predicted score for that
node to the minimum score of the children nodes. For exam-
ple, as we can see from the lattice depicted in Figure 2, node
{1, 2} has two children {1} and {2}. If the predicted score
for node {1, 2} is 5.5, our algorithm sets it to 4.5 which is the
minimum score of node {1} = 4.5 and {2} = 5. We refer
to this approach as the “clamping technique”, since the rec-
ommended score is clamped to the highest value allowable by
the user’s own scores in the lattice.

We evaluate how accurately the suggested collaborative filter-
ing approach can be used to predict usability scores for users,
and thus the viability of a crowdsourcing-based approach for
identifying configurations of applications that balance usabil-
ity and privacy for individual users.

STUDY METHODOLOGY

System Implementation
To answer our research questions, we conducted a user study
in which we focused on Instagram, which is a popular social
networking and photo/video sharing Android app. Through-
out the paper, we refer to Instagram as the “test app”. In the



study, participants installed an Android app called “the rat-
ings app”, to provide them with different configurations of
the test app and collect their feedback on each configuration.

Choice of the test app. The test app, Instagram, is a
photo/video sharing and social networking app. We chose
this specific app because it is one of the popular free Android
apps in the Google Play store. Besides being popular, the test
app requests several permissions categorized as “dangerous”
(according to Android’s classification),4 providing access to
sensitive user data such as their location and the camera. As
permissions in Android apps are divided into four different
levels depending on their risk level, we focus on the permis-
sions in the ‘dangerous’ level. Permissions on this category
are displayed to users upon installation of an app and need to
be approved to complete the installation process [5]. In our
study, we focused on four such permissions providing access
to: (1) location, (2) contacts, (3) camera, and (4) microphone.

Customization of the test app for exploration. We used the
Android-apktool5 to unpack the test app’s Android applica-
tion package file (apk file) and access the app’s manifest file.
The manifest file includes the list of requested permissions.
We then created different customized configurations of the
test app by removing one or more permissions from the man-
ifest file and then recompiling and repackaging the apk files.
We did not have access to the the test app’s code itself, and
we made no modifications to the application code.

We created all possible configurations of the app by removing
one or more of the four permissions listed above. This gave
us a total of 15 customized configurations of the test app. The
configurations are shown in Figure 4.

 

user@gmail.com 

Figure 3. The ratings app home
screen

The ratings app. When par-
ticipants installed the rat-
ings app on their phones,
they were prompted to in-
stall one of the customized
configurations of the test
app after they removed the
original app. After in-
stalling a customized con-
figuration of the test app,
participants had two days to
use it; a timer displayed the
time left to request the next
configuration of the test app
as shown in Figure 3. Also,
participants were allowed
to ask for a different configuration of the test app at any
time before the timer ended, but with a $0.50 deduction from
their overall compensation. Moreover, the amount of money
earned in the study was displayed by the ratings app as shown
in Figure 3. As such, our compensation scheme (described in
more detail in the Study Procedure Section) motivated partic-
ipants to think carefully before requesting a new configura-
tion.
4http://developer.android.com/guide/topics/
manifest/permission-element.html
5https://code.google.com/p/android-apktool/

Collecting participants’ feedback. At the end of the two-day
period for exploring a configuration of the test app, partic-
ipants received notifications to both their phones and email
to remind them to visit the ratings app and request the next
configuration of the test app. When participants requested a
new configuration by clicking on the reset button, a survey
dialog sought their feedback about the configuration that they
just used. The survey questions are shown in the Appendix,
which we summarize here:

Q1. We asked participants about whether they encountered
problems in the configuration they just used.

Q2. We listed the disabled features (based on the removed
permissions) and asked participants to rate, on a 7-point
Likert scale, how acceptable they found this configuration
(if they had to use it until the next major app update).

Q3. We asked participants to rate the test app’s configuration
compared to the original one in which there were no per-
missions removed.

Q4. We asked participants to estimate the amount of time
they used that configuration of the test app.

After answering the questionnaire, participants were given a
different configuration of the test app and the timer was reset.

Back-end. When participants asked for a different configu-
ration of the test app, the ratings app connected to a remote
server in which participants’ answers to the questionnaire de-
scribed above were recorded and a customized configuration
of the test app was retrieved. One of the customized config-
urations was chosen at random while making sure that it was
not previously used by the requesting participant. We also set
a threshold for the number of times that each configuration
was tested to make sure that we did not end up with some con-
figurations used much more than others. Moreover, to make
sure that participants actually used the provided configuration
of the test app, the Ratings App kept track of whenever par-
ticipants used the test app on their phones. This information
was recorded at the back-end.

Design Rationale
Minimizing learning effects. The collaborative filtering ap-
proach generates recommendations by analyzing multiple rat-
ings from each participant. Thus we needed each participant
to test multiple app configurations, as they would in a real
system. To minimize learning effects due to repeated explo-
ration by the same participant, we randomized the app config-
urations, and their order, tested by each participant. Thus par-
ticipants could not predict whether subsequent configurations
would be more (or less) restrictive, and which permissions
would be removed.

Managing participant workload. In collaborative filtering,
more ratings from a single user generally produce better rec-
ommendations for that user (e.g., getting better movie rec-
ommendations from Netflix as the viewer watches and rates
more movies). We did not want to induce fatigue in our par-
ticipants (e.g., assigning too many configurations to each par-
ticipant) and wanted to ensure that participants had enough
time to explore each configuration to make an informed de-
cision. Based on a pilot study with two undergraduate stu-
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dents, we determined that 5 configurations over 10 days was
a reasonable workload to meet both goals, and we devised a
compensation scheme as discussed in the next section based
on this workload. We note that in our exit survey, 20 out of
26 participants said they felt they had enough time to explore
each of their assigned configurations.

Study Procedure
Enrollment. Participants were required to be at least 18 years
old, to have lived in the United States for at least five years,
to have an Android phone with a data plan, and to already be
using Instagram. Qualified participants reported to our lab to
enroll in the study. They were informed of the purpose and
process of the study. After consenting, participants installed
the ratings app. We provided two demo configurations of the
test app, allowing participants to familiarize themselves with
the ratings app and the study process. We then instructed the
participants to contact us after completing the study.

Ethical considerations. Our study was IRB-approved, and
Indiana University’s General Counsel approved our modifica-
tion of Instagram’s manifest file based on a ‘Fair Use’ analy-
sis of its license agreement.

End of study questionnaire. At the end of the study, partici-
pants were given a questionnaire that asked for their technical
backgrounds, demographics, and feedback. It also included
questions related to assessing privacy attitudes.

Compensation and incentive scheme. Study participants were
paid up to $25 upon the completion of the study. The study
was designed to last approximately 10 days and participants
earned $2 per day. However, this amount could be affected in
the following situations:

• If the participant was supposed to reset the test app at the
end of the two-day period but did not do so for a whole day,
s/he did not earn the $2 for that day. We used this as an in-
centive to motivate participants to continue trying different
configurations of the test app throughout the study.
• If the participant reset the test app before the end of the

two-day period in which s/he was to use the test app, $0.50
was deducted from his/her overall balance. We used this
penalty to make participants think twice about whether the
current configuration was tolerable. So, if a participant was
trying to use a feature that had been disabled, whether s/he
asked for a new configuration and lost $0.50 or waited de-
pended on how important this feature was to him/her.

At the end of the study, if no money was deducted from the
participant’s balance, s/he earned $20. An extra $5 was added
if s/he answered the end-of-study questionnaire, which re-
sulted in a maximum compensation of $25.

FINDINGS

Participants
We recruited our participants from Bloomington, IN, USA
(a college town that is home to Indiana University) by using
flyers, online university classifieds advertisements, and stu-
dent mailing lists. The study lasted for two months (Feb–Mar
2014). Overall, 30 participants enrolled in our study, 4 of

{1} {2} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{3}

M :3.73  
SD:1.86 
#u:11

M :4.89  
SD:1.59 
#u:9

M :5.63 
SD:1.44 
#u:9

M :3.22  
SD:2.04 
#u:9

M :4.78  
SD:1.47 
#u:9

M :3.7  
SD:1.68 
#u:10

M :2.2 
SD:1.33 
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M: mean
SD: standard deviation
#u: no of user who tested this 
version

1: RECORD_AUDIO
2: READ_CONTACTS
3: ACCESS_FINE_LOCATION
4: CAMERA

Level 2
M: 3.20 

SD:1.67 #u:53

Level 3
M: 2.63 

SD:1.80 #u:35

Level 4
M: 2 

SD:1.41 #u:11

Level 1
M: 4.34 

SD:2.00 #u:38

Figure 4. The lattice structure where each node represents specific re-
moved permissions. The red arrows indicate slight increases in scores
which are not statistically significant.

which did not complete the study (testing fewer than 5 con-
figurations) so we removed their ratings. Therefore, in our
analysis, we considered the 26 participants who finished the
study and we ended up with a total of 137 ratings. In our sam-
ple, most of the participants (22 participants) tested 5 config-
urations of the test app, 3 participants tested 6 configurations
and 1 participant tested 9. For the participant who tested 9,
he/she repeatedly received a configuration with the camera
permission removed and thus requested more configurations
than most. Each configuration of the test app was rated by at
least 8 participants and at most 11 participants.

Among these 26 participants, 15 were females (57.7%) and
11 were males (42.3%). All but one were students. Seven
(26.9%) were Informatics or Computer Science majors, while
the rest came from diverse, non-technical majors.

Analysis of the Lattice Structure
Figure 4 shows the average acceptance score (M), standard
deviation (SD), and number of participants (#u) per test app
configuration as well as aggregated per level in the lattice.
Our main hypothesis about the acceptance scores (as a us-
ability measure)—i.e., that they are generally not increasing
as we remove more permissions—is evidenced in Figure 4.
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Figure 5. Scatter plot showing the
effects on acceptance scores as we
remove more permissions.

Figure 5 also shows that
as we remove more per-
missions, the acceptance
scores tend to decrease
or stay the same. The
big circles in Figure 5
indicate whether the par-
ticipant encountered a
problem or not (Q1 in
the survey).

To test our first hypoth-
esis (H1), we consid-
ered using a multi-level
model such as the linear mixed effects model which takes into



account the effects of having users contributing multiple data
points. However, the homoscedasticity assumption is violated
in our data because the variances of the acceptance scores of
different permission subsets are not equal; therefore, we used
non-parametric tests. Our conclusions hold using both the lin-
ear mixed effects model and the non-parametric tests but we
report the latter because they are typically more conservative,
making fewer assumptions.

We first ran a Kruskal-Wallis test, which is a non-parametric
one-way (single factor) ANOVA. This test shows if there is
a statistically significant difference between variables but it
does not provide information about the nature of the differ-
ence (increase or decrease). To examine the difference, we
ran a follow-up post hoc test. We ran the non-parametric ver-
sion of the t-test called the Wilcoxon rank-sum test and since
this is a post-hoc test that involves multiple comparisons, we
used the Benjamini-Hochberg method to adjust the p-values
from the test to control the false discovery rate. The result of
Kruskal-Wallis test (χ2 = 21.48, df = 3, p < 0.001) indicates
that there is significant difference in participants’ acceptance
scores due to the number of permissions removed. The re-
sults of the Wilcoxon rank-sum post-hoc test are shown in
Table 1 where the parameter W and the p-value assess the
significance of the difference (the decrease) between the vari-
ables (# of permissions removed).

Table 1 shows that as more permissions are removed, the ac-
ceptance scores decline significantly until 4 permissions are
removed (at which point there is no significant difference in
the scores compared to removing 3 permissions). This means
that as we go from level 3 to 4, the acceptance values are
neither increasing nor decreasing significantly. One reason
could be that we have few data points for level 4, where we
have only one node compared to the other levels. Given that
the significant difference between levels indicates a signifi-
cant decrease, we can reject the null hypothesis and accept
our first hypothesis (H1) that the acceptance scores are non-
increasing as we remove more permissions.

Comparison of #
permissions removed W p-value

Adjusted
p-value

1 vs. 2 1336.0 0.009** 0.015*
1 vs. 3 990.0 < 0.001*** 0.002**
1 vs. 4 349.0 0.001** 0.002**
2 vs. 3 1143.0 0.024* 0.029*
2 vs. 4 423.5 0.017* 0.025*
3 vs. 4 233.5 0.275 0.275

Statistical significance: *** p < 0.001, ** p < 0.01, * p < 0.05

Table 1. Wilcoxon rank-sum results for the statistical significance of the
decrease in acceptance scores as we remove more permissions.

In addition to the Kruskal-Wallis test, we performed a correla-
tion analysis using Spearman’s Rank Coefficient, which mea-
sures the tendency for two variables to increase or decrease
together. While the p-value tells us the significance of the
correlation between the variables, ρ tells us whether the vari-
ables are monotonically increasing or decreasing and the de-
gree of monotonicity. Testing the acceptance score versus the

number of permissions removed, we found a significant neg-
ative relationship (ρ = −0.39, p < 0.001), indicating that as
more permissions are removed, the participants’ acceptance
scores decline; this supports the results of the previous test.

Special cases. Though we have shown that the acceptance
scores are non-increasing as we move upward in the lattice,
there are some exceptions in our data, shown by dashed red
edges in Figure 4. However, based on Wilcoxon rank-sum
tests, these increases are not significant (p > 0.05).

Lattice pruning approach. As this is an exploratory study,
we focused on four permissions to be able to explore all sub-
sets of permissions (all nodes in the lattice). We thus could
test whether we can use the proposed pruning strategy on the
lattice instead of testing all nodes in the lattice individually.
Based on our questionnaire, an acceptability score of 4 can
be chosen as the usability threshold, which means any node
with acceptance value below 4 is not acceptable and thus its
ancestors can be pruned. While we have tested only one spe-
cific app, these results point to the viability of a lattice-based
approach for crowd management. This particular lattice sug-
gests that configurations that disable access to {contacts},
{location}, and {contacts, location} are promising configura-
tions that trade off usability and privacy for Instagram. More-
over, after the first level, only the {contacts, location} config-
uration would have been explored by the strategy.

Rating and Acceptance Scores
In the Methodology section, we summarized the survey ques-
tions that we asked participants after using each configura-
tion of the test app. While in Q2 we asked about the par-
ticipant’s acceptance of using the app knowing that specific
features were disabled, in Q3 we asked participants to rate
the used configuration compared to the original app. Both
questions measure, in different ways, how much participants
like the app they used. Our data indicates that there is agree-
ment between the two variables which means that the higher
the rating, the higher the acceptance score. We used Spear-
man’s Rank Correlation test to see if acceptance level (Q2)
can substitute for rating (Q3) in analyses (hypothesis H2). We
found a statistically significant positive relationship between
the variables (ρ= 0.84, p < 0.001), and so we can accept H2.

Usability Proxies
To test our hypotheses regarding whether proxies can be used
to indirectly determine the usability/acceptability of an app,
we analyzed the relationships among the other variables and
the acceptance score. Those variables are the time that partic-
ipants reported using a specific configuration of the app and
whether participants found a problem related to the disabled
permissions in the app. Those variables correspond to survey
questions Q4 and Q1. Figure 6a shows the relationship be-
tween the acceptance score (y-axis) and the total usage time
(x-axis), and Figure 6b shows the relationship between the
acceptance score (y-axis) and whether participants found a
problem or not (x-axis). We can see in the figures that partic-
ipants who reported using the app as much or more than the
original app (total usage values 2 and 3) tended to give higher
acceptance scores than those who reported using it less (total



Variable Spearman’s
Rank Test

Wilcoxon
Rank-Sum Test

Dependent Independent ρ p-value W p-value

Acceptance (Q2) Usage (Q4) 0.47 < 0.001*** 993 < 0.001***
Acceptance (Q2) Problem (Q1) −0.64 < 0.001*** 4290 < 0.001***

Usage (Q4) Problem (Q1) −0.49 < 0.001*** 3619 < 0.001***
Statistical significance: *** p < 0.001, ** p < 0.01, * p < 0.05

Table 2. Statistical significance results of the relationship between the
other usability proxies.

usage value 1). Also, finding a problem affected the scores
negatively and caused participants to give lower acceptance
scores.

To test the significance of these findings, we ran both the
Wilcoxon rank-sum and Spearman’s Rank Coefficient tests.
The results (Table 2) suggest significant relationships be-
tween the variables. The first row indicates a significant
positive relationship between the usage time and acceptance
score, i.e., the higher the usage time, the higher the accep-
tance score. The second row shows a negative relationship:
whenever participants encountered problems, the acceptance
scores declined. Since both relationships are statistically sig-
nificant (p < 0.001), we can accept both H3 and H4.

Moreover, we analyzed the relationship between the usage
time and finding a problem as shown in Figure 6c. We found
a negative significant relationship between them as shown in
the last row of Table 2. This indicates that whenever a prob-
lem was encountered, the usage time declined significantly.

Predicting User Ratings
We tested the collaborative filtering algorithm described ear-
lier on 137 ratings from 26 participants who, on average,
rated five configurations of the test app. We used the accep-
tance score, which was recorded on a 7-point Likert scale, as
the usability measure. To calculate accuracy, we iteratively
considered one of the participants’ ratings as unknown and
tried to predict it. Then we compared the predicted rating
with the known (ground-truth) rating, specifically calculating
the mean absolute error (MAE) and root mean square error
(RMSE) of the collaborative filtering algorithm.

Before presenting our results, we first provide a concrete ex-
ample from our dataset. Table 3 shows ratings for one par-
ticipant (‘active user’) for whom the rating for node {1,2} is
being predicted. The ‘Actual’ column shows the participant’s
actual ratings for various configurations, including the rating
for {1,2} in parentheses, which is treated as the ground truth.
In the ‘Nearest Neighbors’ column, we show the ratings of
the two closest neighbors of the active user based on their
cosine similarity of the rating vectors with the active user.
Note that this metric normalizes participants’ scores, and so
Neighbor 1 is close to the active user despite having generally
higher scores. The last column of Table 3 shows the predicted
rating for node {1, 2}. The predicted rating accounts for vari-
ations in the average ratings for individual users and in this
case results in a prediction of 3.97. Applying the clamping
technique, we set the prediction to 3 because 3.97 is greater
than the rating value for the child node {1} in the lattice struc-
ture. In this example clamping yields better results.

Node
Nearest

Neighbors
Active User

Neighbor 1 Neighbor 2 Actual Prediction

{1} 7 3 3
{2} 6
{4} 1
{1, 2} 6 4 ? (2) 3
{1, 3} 3 3
{2, 4} 2 2
{3, 4} 2
{1, 3, 4} 2
{2, 3, 4} 1

Table 3. Example of the prediction algorithm

# of Nearest Neighbors
Actual Clamping

MAE RMSE MAE RMSE

1 1.402 2.098 1.312 1.974
2 1.375 2.072 1.301 1.987
3 1.317 1.968 1.250 1.896
4 1.301 1.925 1.236 1.845
5 1.285 1.894 1.222 1.820
6 1.273 1.872 1.207 1.794

Table 4. Accuracy of the prediction algorithm

The accuracy of our prediction is shown in Table 4. Based on
our data set, we can predict the ratings using up to six nearest
neighbors; for more than six neighbors the accuracy does not
improve significantly. We can see that the MAE decreases as
the number of neighbors increases. We anticipate that if we
have larger data set then we can increase the number of near-
est neighbors, which may result in better MAE and RMSE.

We compared the accuracy of our predictions with the grand
average (mean of all ratings) (MAE=1.63, RMSE=2.13), and
item averages (mean of each item’s ratings) (MAE=1.397,
RMSE=1.925). Our algorithm with the clamping technique
performs better than both baselines. Thus we conclude that
collaborative filtering presents a viable approach for predict-
ing the acceptability of different permission sets for this app,
and is suitable for recommending acceptable configurations
to users for various privacy levels (e.g., predicting scores for
this app with multiple permissions removed).

DISCUSSION AND LIMITATIONS
We now discuss the limitations of our study and directions for
future work.

Sample size. Our study’s size (26 participants) was adequate
to test various hypotheses with statistical significance but pre-
cluded others. For example, we wanted to study whether pri-
vacy attitudes affected usability scores and could be used to
improve recommendations. We hope to study such effects in
a larger study, possibly by recruiting participants online.

Population. We leveraged a local population since our exper-
iment involved an in-person visit to our lab for installation of
the ratings app and training, which we thought was prudent to
ensure understanding of our compensation scheme. As a re-
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Figure 6. Scatter plots showing the relationships between the other usability proxies a) total usage time and acceptance scores, b) finding a problem in
the app and acceptance scores, and c) finding a problem and total usage time.

sult, all participants but one were university students. While
our results do not extend to the general population, only 25%
of our participants were technical majors and thus our sam-
ple was diverse in this sense. Future work may investigate if
age is an important factor and, if so, examine crowdsourced
exploration based on age groups.

Scalable exploration of different apps. Our study involved
only one app (Instagram), which limits the generalizability of
our findings. In the future we would like to compare results
across various classes of apps such as social media, games,
and utilities. While we expect the general pruning strategy to
work (based on H1), the lattice may be very large for some
apps. To improve scalability, we may monitor which permis-
sions are utilized by the user under normal operation (for ex-
ample, using the approach by Felt et al. [4]), and then use our
crowdsourced approach for subsets relevant to those permis-
sions. Another possibility is to structure the exploration of an
app based on knowledge gained from the exploration of an-
other app. If similar users have already been identified, these
users can be tasked to explore more diverse configurations, as
common configurations are expected to add less information.

Installation process. On Android, users can view the permis-
sions requested by an app during installation. Whether a par-
ticipant read these permissions was unknown to us, thus pos-
sibly introducing a confound where not all participants were
aware of the permission set and so were biased differently in
their assessments. So, we ordered the survey questions such
that participants were first asked to report any problems en-
countered in the app (Q1) and then informed of the removed
permissions and asked to rate the app (Q2). Participants thus
reflected upon their actual usage of the app immediately be-
fore rating it. Our analysis shows a strong correlation be-
tween the problems participants encountered with configura-
tions and their ratings for those configurations, thus indicating
their ratings were based largely on their experience.

Incentivizing the crowd. We envision our approach inte-
grated into popular App marketplaces where app ratings can

be enhanced to show the top recommended configurations for
users. Though recruiting and motivating crowd participation
to rate apps with some permissions disabled is not our focus
in this paper, we expect that the reciprocal benefits that partic-
ipation might offer could be a basis for doing so. Popular App
marketplaces already demonstrate that users are motivated to
rate apps for such reciprocal benefits.

Failure modes. Apps can behave in various ways when per-
missions are selectively disabled, ranging from crashes to
gracefully handling errors. Our approach is primarily relevant
to apps that gracefully handle any resulting errors. However,
we note that combinations of permissions that render an App
useless will be quickly identified by a handful of users and
‘pruned’ from further exploration. Thus, our approach need
not inconvenience a large number of users even for apps that
do not handle permission removals gracefully.

Accuracy of the recommendations. Some users may expe-
rience problems unrelated to the removed permissions. In
our study we observed six such data points; removing these
would have improved the MAE of our recommendations by
1.5%. In a real deployment, errors encountered by users could
be analyzed for relevance to the particular configuration (e.g.,
by observing software exceptions). Moreover, like any other
recommendation system, malicious users could provide fake
ratings in favor of or against specific configurations. For ex-
ample, Mukherjee et al. [11] analyzed and proposed models
for detecting fake product reviews. Although detecting such
ratings is out of the scope of this paper, removing those rat-
ings would increase the accuracy of the recommendations.

CONCLUSION
Through a preliminary user study we have shown that it is fea-
sible to apply crowdsourcing as a technique to collectively ex-
plore various security configurations of apps and find config-
urations that make suitable tradeoffs between privacy and us-
ability for a diverse set of users. While others have proposed
complementary techniques that rely on automated analyses or
seeking opinions of permission settings from the crowd, we



posit that considering opinions based on actual usage of var-
ious configurations would facilitate better recommendations
to users. However, as the space of all possible permission set-
tings grows exponentially with the number of permissions, it
is imperative to follow a thoughtful crowd-management strat-
egy; a goal of this work was to validate our lattice-based strat-
egy for crowd management. Given our promising results, we
thus advocate for further, and larger scale, research for crowd-
sourced exploration of security configurations.
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APPENDIX
Here we list the survey questions in the ratings app. In these
questions, we referred to a configuration of the test app with
some permissions removed as a “version” of the test app, as
we feared that “configuration” might confuse participants.

Q1. Were there any features that did not appear to work in
this version of the test app? • Yes • No
If (Yes), please provide examples of features that did not work
(select all that apply): • Location based features • Camera
based features • Microphone based features • The app could
not access my contacts • Others:[ ]
Q2. The following features were removed from the test app
for this version: • Camera • Location
Would you find it acceptable to use the test app with these
features disabled until the next major app update from
the test app- 1) Totally unacceptable 2) Unacceptable
3) Slightly unacceptable 4) Neutral 5) Slightly accept-
able 6) Acceptable 7) Perfectly Acceptable
Q3. How would you rate this version of the test app compared
to the original one? 1) Much worse 2) Somewhat worse
3) About the same 4) Somewhat better 5) Much better
Q4. How often did you use this version of the test app since
you installed it on INSTALLATION DATE? a) Not at all
b) Less than I normally use the test app c) About as much
as I normally use the test app d) More than I normally use
the test app
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