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ABSTRACT
Recent studies have shown a range of co-residency side channels
that can be used to extract private information from cloud clients.
Unfortunately, addressing these side channels often requires de-
tailed attack-specific fixes that require significant modifications to
hardware, client virtual machines (VM), or hypervisors. Further-
more, these solutions cannot be generalized to future side channels.
Barring extreme solutions such as single tenancy which sacrifices
the multiplexing benefits of cloud computing, such side channels
will continue to affect critical services. In this work, we present
Nomad, a system that offers vector-agnostic defense against known
and future side channels. Nomad envisions a provider-assisted VM
migration service, applying the moving target defense philosophy
to bound the information leakage due to side channels. In design-
ing Nomad, we make four key contributions: (1) a formal model
to capture information leakage via side channels in shared cloud
deployments; (2) identifying provider-assisted VM migration as a
robust defense for arbitrary side channels; (3) a scalable online VM
migration heuristic that can handle large datacenter workloads; and
(4) a practical implementation in OpenStack. We show that No-
mad is scalable to large cloud deployments, achieves near-optimal
information leakage subject to constraints on migration overhead,
and imposes minimal performance degradation for typical cloud
applications such as web services and Hadoop MapReduce.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection – In-
formation flow controls

General Terms
Security

Keywords
Cloud computing; Cross-VM side-channel attacks; VM migration

1 Introduction
Several recent efforts have demonstrated the possibility of informa-
tion leakage via co-residency side channels in shared cloud envi-
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ronments, where VMs from different clients are multiplexed on the
same hardware. Following the early work of Ristenpart et al., [33],
a variety of side channels have already been demonstrated. These
exploit different levels of hardware caches [42, 44], main mem-
ory [36], and OS/hypervisor scheduling effects [42] to extract pri-
vate information from unsuspecting co-resident clients. The set of
known side channels and the efficiency of information leakage con-
tinue to grow over time.

Unfortunately, mitigating side-channel attacks forces cloud prov-
iders and clients into undesirable situations. Each such side channel
requires detailed fixes to hardware, guest VM OS configurations,
and hypervisors (e.g., [32, 37, 34, 23, 45]). This has two practi-
cal problems. First, these require significant changes to existing
deployments and applications. Second, given that the set of side
channels is unknown (and growing), this puts us on an untenable
trajectory of constant hardware/software changes to tackle future
attacks.

Ideally, we want defenses that are (a) general across a broad
spectrum of side-channel attacks and (b) immediately deployable
with minimal or no modifications to existing cloud hardware and
software. At first glance, these goals seem fundamentally at odds
with the multiplexing benefits of cloud computing since the ulti-
mate way to avoid side channels is to eliminate co-residency alto-
gether; i.e., by creating “private” single-client deployments. How-
ever, this reduces the cost savings via statistical multiplexing, which
has been a key driver for cloud adoption.

In this paper, we present Nomad, a system that demonstrates
that it is possible to achieve a general and immediately deploy-
able defense against side-channel attacks without resorting to sin-
gle tenancy. The high-level idea behind Nomad is simple. Rather
than eliminate co-residency altogether, we aim to limit the infor-
mation leakage due to co-residency by carefully coordinating the
placement and migration of VMs. To this end, we envision cloud
providers offering a migration-as-a-service to their clients to mit-
igate co-residency side channels. In this respect, Nomad can be
viewed as an application of the moving target defense philosophy
to mitigate side channels [13].

This approach has several natural advantages. First, by focusing
on the root cause of side channels (i.e., co-residency), Nomad is ag-
nostic to the specific side-channel vector used, and is robust against
unforeseen side channels that meet certain conditions (§4). Second,
it requires no changes to the cloud provider’s hardware, client ap-
plications, and hypervisors and can be deployed “out of the box” as
it requires only changing the VM placement/scheduling algorithms
deployed by the cloud provider.

The key challenges in realizing this vision in practice are (1)
scalability of the placement and migration scheduler and (2) impact
on application performance. For (1), we develop scalable heuristics
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that can handle large-scale cloud deployments. For (2), we use a
proof of concept implementation of Nomad atop OpenStack [5]
and evaluate application performance for Wikibench [6] and Hado-
op MapReduce [2]. We observe that the performance impact on
applications is minimal with Nomad’s default configurations which
can handle several classes of attacks. However, for emerging at-
tacks that rely on fast side channels (i.e., capable of extracting a
key in few minutes), we acknowledge the need for out-of-band
defense.1 Furthermore, many cloud applications have in-built re-
silience which further minimizes impact of Nomad-induced mi-
grations; e.g., web servers run replicas with elastic load balancing
and Big-Data workloads have mechanisms to deal with stragglers
(e.g., [14]).

Contributions and Roadmap: In summary, this paper makes four
contributions:
• We formalize the problem space and characterize different mod-

els of information leakage across two key dimensions: collabo-
ration across adversary VMs and information replication across
a client’s own VMs (§3).
• We identify provider-assisted live migration as a robust defense

against a broad spectrum of co-residency side channels (§4).
• We develop a practical and scalable migration strategy that can

handle large datacenter workloads, which is several orders of
magnitude faster than strawman solutions (§5).
• We develop a practical implementation of Nomad by extending
OpenStack (§7).

In the rest of the paper, we begin with background and related
work in §2. We evaluate Nomad’s scalability and information leak-
age resilience in §8. We discuss potential attacks against Nomad in
§6, and open issues in §9, before concluding in §10.

2 Background and Related Work
In this section, we review recent work on side channel threats in
public clouds and argue why known defenses are not practical. We
also provide a brief overview on prior work on VM live migration.

Side-channel attacks in cloud: Cloud services (e.g., Infrastructure-
as-a-Service) place VMs of different clients on the same physical
machine. This relies on virtual machine monitors (VMM) to pro-
vide isolation between co-resident VMs. Unfortunately, this is in-
sufficient, and recent works (e.g., [33, 36, 29, 41, 37, 42, 27, 21])
have demonstrated the feasibility of adversaries performing cross-
VM side-channel attacks. One of the first use cases of cross-VM
side-channel attacks in cloud was to demonstrate that an attacker
can identify where the target VM is likely to reside by measur-
ing activity burst time of a VM [33]. Other attacks have identified
pages that a VM shares with its co-resident client VMs, reveal-
ing information about the victim’s applications [36] and OS [29].
More fine-grained attacks have exfiltrated cryptographic keys via
Prime+Probe attacks on the square-and-multiply implementation
of GnuPG [42] and sensitive application data on Platform-as-a-
Service (PaaS) clouds [44]. Furthermore, some side channels have
extracted keys by exploiting the memory sharing (i.e., memory
deduplication) on LLC (last-level caches) [41, 20]. Recently, re-
searchers have demonstrated fast side channels. Liu et al., [27]
have shown a fast Prime+Probe attack on LLC by probing only
one cache set, and Irazoqui et al., [21] have recovered the AES key
in 2–3 min by exploiting the use of huge size pages.

1Adjusting the configurations to handle fast side channels (i.e., [27,
21]) comes at a cost of performance degradation. Thus, we recom-
mend the use of other side-channel defenses in conjunction with
Nomad to strengthen the defense (§4).

Proposed defenses against side channels: Given the spate of
attacks, several countermeasures have been proposed at different
levels: hypervisor, guest OS, hardware and application-layer ap-
proaches.

Hypervisor-based approaches include hiding the program execu-
tion time [38] and altering the timing exposed to an external ob-
server [26]. To address the attack of Zhang et al., [42] which ex-
tracted a key by frequently preempting a target VM, Varadarajan
et al., [37] proposed modifying the Xen scheduler to limit the fre-
quency in which an attacker can preempt the victim. Hypervisor-
based defenses can also use statistical multiplexing of shared re-
sources to prevent eavesdropping [32, 23]. In particular, Kim et
al., [23] proposed locking cache lines to prevent preemption by an
attacker and multiplexing the cache lines among VMs such that
each has an access to its own.

Defenses have been suggested inside the client guest OS (e.g. in-
jecting noise into protected processes on L1 and L2 caches [45]), or
at the application level (e.g., partitioning a cryptographic key across
multiple VMs [31]). Other than software-based defenses, defenses
can also be incorporated in hardware designs by applying access
randomization (e.g., [40, 28]) and resource partitioning (e.g., [30]).

At a high level, these proposed approaches suffer from two fun-
damental limitations as (1) they cannot be generalized to different
types of side channels; and (2) these require significant changes to
the hypervisor, OS, hardware, and applications.

VM migration and placement: A key enabler for our work is
VM live migration that has become an invaluable management tool.
These general trends with the advancement of VM live migration
bode well for the adoption of Nomad (e.g., [16, 35, 22, 46]).

VM placement as side-channel defenses: Concurrent to our work
on Nomad, recent efforts also formulate theoretical problem of VM
placement to limit cross-VM side-channel attacks (e.g., [9, 43, 25,
19]). The work closest to Nomad is by Li et al., [25]. In compar-
ison to these efforts, Nomad is a) more scalable (e.g., we can han-
dle tens of thousands machines whereas most of these efforts do
not consider scalability); b) more general in terms of threat model
(e.g., we consider collaboration and replication); and c) makes no
assumption on which clients or VMs are likely threats. Further-
more, these efforts fall short of providing a real implementation;
we demonstrate a practical implementation in OpenStack with
minimal code changes.

3 Problem Overview
In this section, we describe a general model of information leak-
age in public clouds that (a) is independent of the specific types
of side channels; (b) can capture powerful adversaries whose VMs
may collaborate; and (c) incorporates the information replication
characteristics of clients.

3.1 Threat Model
We begin by scoping the adversary goals and capabilities.

Adversary goals and capabilities: We assume that each cloud
client has some private information (e.g., secret keys or private
database records). The goal of the adversary is to extract as much
information as possible. We consider a powerful adversary model
with the following characteristics:
• Arbitrary side channels: The adversary is capable of launching

a wide spectrum (of possibly unknown) side-channel attacks
against other co-resident VMs. We are agnostic to the spe-
cific algorithms or system resources used by these side chan-
nels (e.g., CPU, memory, network, power).
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• Target identification: We assume that the adversary can deter-
mine if/when the target client of interest is co-resident with a
VM it owns; e.g., inspecting the pattern of behavior or using
external probing [33]. As such, we assume detecting the target
incurs zero cost to the adversary.
• Arbitrary client workload: We consider an open system where

the adversary can control its own workload and launch VMs
and terminate them as it chooses.
• Efficient information collation: We assume that the adversary

can accumulate private bits across time (epochs) when it is co-
resident with the target and has some intelligent techniques for
information aggregation. For example, if a client C and adver-
sary A are co-resident at time T1 and T3, but not T2, then we
assume that A can combine the information it has gathered dur-
ing T1 and T3. Note that by assuming such efficient collation,
we consider a stronger adversary model; i.e., in practice a real
adversary may get duplicate/redundant bits across epochs but
we conservatively assume that the adversary gets unique bits
per epoch.
• Unknown adversary: Finally, we assume that the client or the

cloud provider cannot pinpoint a specific client who could be
malicious.

We do, however, impose two constraints on adversaries’ capabil-
ities. First, we assume that the adversary does not have explicit con-
trol over the placement of VMs in the cloud environment. Second,
we assume that while the VMs for the same client may collaborate
in some deployment models, there is no collusion across clients.
With respect to collusion, we assume that there is some non-trivial
cost to creating a new client identifier (e.g., a verified credit card)
so that it is not possible to launch Sybil attacks for collusion [12].
Moreover, in order to formulate arbitrary side-channel attacks, we
abstract away the details of individual attacks, and consider an at-
tack that has a constant leakage rate of K bits per epoch. We ac-
knowledge that different attacks may have different rates or dif-
ferent temporal properties (e.g., K may decrease or increase with
time). Modeling the temporal efficiency of attacks is outside the
scope of this paper.

3.2 Components of Information Leakage Model
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<NR,NC>
<NR,C>
<R,C>

Figure 1: Implication of having Replicated (R) vs. NonRepli-
cated (NR) clients and Collaborating (C ) vs. NonCollaborating
(NC ) adversaries

We identify three key dimensions that affect information leakage
(InfoLeakage) model that we discuss below. We explain these us-
ing the example scenario in Figure 1 where we have two clients:
Blue and Red with 2 and 3 VMs respectively. The figure shows
the placement of their VMs across three epochs across 3 machines
with 2 VM slots per machine.

1. Across time: The total amount of private information leaked
from a client c to c′ is naturally proportional to the total tem-
poral co-residency between their VMs. For instance, in the
Prime+Probe attack by Zhang et al., [42], information leak-
age happens at a rate of few bits per minute and thus the total
leakage will be more if they are co-resident longer. In Figure 1
if we assume a constant leakage rate of K bits per epoch via
some side channel, then B2 will leak 2 × K bits to R1 as they
are co-resident for two epochs (Row 4 of Step 1).

2. Information sharing across adversary’s VMs: Our threat model
allows adversarial client’s VMs to collaborate to increase the
rate of information extraction. For instance, in the context of
Prime+Probe attack [42], adversarial VMs may decide to work
on different parts of the cryptographic key and combine these to
reconstruct the key. Let us revisit the example in Figure 1. As
shown in Step 2, if the Red VMs collaborate then they can ex-
tract more information (marked as C in Step 2 which extracted
3×K bits in contrast to 2×K bits for NC model). Assuming
the same leakage rate of K bits per epoch between a pair of
VMs, we now see that the Red client can extract a total 3×K
bits over the three epochs from each Blue VM (Row 1 and 3 of
Step 2).

3. Information replication of the target: Depending on a client’s
workload, different VMs belonging to a client may carry the
same bits of private information. For instance, consider a repli-
cated web server deployment with all the replicas having the
same private database records. Intuitively, having replicated
client workloads poses higher threat as they can lead to higher
information leakage. Revisiting our example in Figure 1, we
see that the Red VM R1 can potentially extract 3×K bits over
the three epochs in case the Blue VMs are replicas because the
Blue VMs B1 and B2 carry the same information. In contrast,
if B1 and B2 were not replicas, then R1 will have K bits from
B1 and 2×K bits from B2 but these could not be combined as
information are distinct. Note that this can be combined with
the collaboration described above. That is, if R1–3 were also
collaborating, then in aggregate the adversary Red will have
gathered 6×K bits of private information from the tenant Blue
over the three epochs (Row 1 of Step 3).

3.3 Formalizing Information Leakage Model

The above discussion provided an intuitive overview of the differ-
ent dimensions in modeling information leakage. Next, we for-
mally define the information leakage so that it can be used to guide
the placement and migration decisions of the Nomad system.

Preliminaries: Let VM c,i denote VM i belonging to the client c
and VM c′,i′ denote the VM i ′ of a different client c′ (i.e., a poten-
tial adversary). Let CoResc,i,c′,i′(t) be a binary indicator variable
that captures if VM c,i and VM c′,i′ are co-resident at an epoch, t ;
i.e., there exists some machine m on which they both reside at t .
Then, having defined per-epoch co-residency between VM pairs,
we need to summarize this value across time. In order to aggregate
information leakage as a function of co-residency across time, we
consider a sliding window model over the most recent ∆ epochs.
For example, if cryptographic keys are refreshed periodically (say
every few hours), then any bits of information an adversary VM has
gathered the previous day will have no value since the key has been
modified.

Let InfoLeakc,i→c′,i′(t ,∆) denote the information leakage from
VM c,i to VM c′,i′ measured over the sliding window of time [t −

1597



∆, t ]. Formally,

InfoLeakc,i→c′,i′(t ,∆) =
∑

t∈[t-∆,t]

CoResc,i,c′,i′(t) (1)

Then, we can use information leakage at a VM granularity to
construct information leakage at a client granularity over time,
InfoLeakc→c′(t ,∆). This quantity defines information leakage
from a given client c to a different c′ measured at epoch t over the
sliding window of time [t − ∆, t ], and is also a function of client
replication and adversary collaboration.2

Modeling different leakage scenarios: Given these preliminaries,
we can model four possible cases.
1. NonReplicated client; NonCollaborating adversary (〈NR,NC 〉):

If there is no replication and no collaboration, then the infor-
mation leakage for a client will be the maximum per-VM-pair
information leakage across all pairs of clients. Formally,

InfoLeak
〈NR,NC〉
c→c′ (t ,∆) = Max

i
Max
i′

InfoLeakc,i→c′,i′(t ,∆)

(2)
Under the 〈NR,NC 〉 scenario (Figure 1), the Blue client

leaked a total of 2 × K bits to the Red adversary because the
maximum information leakage between any VM pair was 2×K
bits (Row 4 of Step 3).

2. NonReplicated client; Collaborating adversary (〈NR,C 〉):
In this case, for each client VM, there will be a cumulative ef-
fect across the adversary VMs since they can collaborate. How-
ever, the inter-client leakage will be determined by the client
VM that has leaked the most. Formally,

InfoLeak
〈NR,C〉
c→c′ (t ,∆) = Max

i

∑
i′

InfoLeakc,i→c′,i′(t ,∆)

(3)
In our example, under the 〈NR,C 〉 scenario, each Blue client’s
VMs leaked 3×K bits across all Red VMs. Thus, the leakage
from Blue to Red will be 3×K bits (Row 3 of Step 3).

3. Replicated client; NonCollaborating adversary (〈R,NC 〉):
In this case, there will be a cumulative effect across the client
VMs since they have the same information but the inter-client
leakage will be determined by the adversary VM that has ex-
tracted the most information. Formally,

InfoLeak
〈R,NC〉
c→c′ (t ,∆) = Max

i′

∑
i

InfoLeakc,i→c′,i′(t ,∆)

(4)
Revisiting our example, we see that each Red VM (i.e., VMR1,
VMR2, and VMR3) has extracted 3×K , K , and 2×K bits,
respectively, from all Blue client’s VMs. Therefore, the Blue
client, under the non-collaborating scenario of the Red VMs,
has leaked a total of 3×K bits (Row 2 of Step 3).

4. Replicated client; Collaborating adversary (〈R,C 〉): Finally,
when the client is replicated and the adversary can collabo-
rate, we see cumulative effects across both client and adversary
VMs. Formally,

InfoLeak
〈R,C〉
c→c′ (t ,∆) =

∑
i

∑
i′

InfoLeakc,i→c′,i′(t ,∆)

(5)
Revisiting our example, we see that the Blue client leaks a total
of 6×K bits to the Red client (Row 1 of Step 3).

2Note that the information leakage is asymmetric and
InfoLeakc→c′ need not be equal to InfoLeakc′→c .

These equations naturally capture our intuitive explanations from
earlier; the leakage is highest when we have replication and collab-
oration (i.e., 〈R,C 〉) and least when neither occurs (i.e.,〈NR,NC 〉).
When we have either replication or collaboration but not both, the
value will be in between these two extremes.

4 System Overview

Departure

Controller 

Machine

VM

Machine

VM VM

Machine

VM

Migration
Engine

Placement
Algorithm

API Client
Constraints

Deployment
ModelCloud 

Provider

VM

Clients

VM VM

Client APIService API

Move Sets

Service & Client API
VM Workloads

Config.

Move VMs {…}

Figure 2: System overview

In this section, we provide a high-level overview of the Nomad
system which provides a side-channel agnostic mechanism to de-
fend against the information leakage attacks discussed in the pre-
vious sections. Figure 2 shows the overall system architecture of
Nomad.

High-level idea: Recall that we consider a strong adversary model
capable of (a) launching arbitrary (and unforeseen) side channels
and (b) precisely targeting potential victims. Moreover, the client
does not know which other clients might be potential threats. Thus,
every other client is a potential side-channel threat. Our goal is
to provide a mitigation mechanism against this strong threat model
and without any modification to client guest OS, hypervisors, or the
cloud provider’s hardware platforms.

One extreme solution might be for clients to request “single ten-
ancy” solutions (i.e., dedicated hardware). While this may be an
option, it sacrifices the statistical multiplexing gains that are key
for the low costs of cloud computing. That said, this extreme so-
lution does provide some intuition on how we can defend against
arbitrary side channels from arbitrary tenants in the cloud, namely
minimizing co-residency.

Building on this insight, we envision a provider-assisted approach
where cloud clients leverage the provider as a trusted ally via an
opt-in “migration-as-a-service” solution. Our specific contribution
here is in identifying a new security-specific use case for migration
beyond the typical applications for planned maintenance [11].

Having described the high-level idea of Nomad, we now describe
the APIs (i.e., Service API and Client API) of Nomad before de-
scribing the end-to-end workflow.

Service API: As we saw in the previous section (§3), the informa-
tion leakage between a pair of clients depends on the information
sharing capabilities of the adversarial client’s VMs and the infor-
mation replication across the client’s VMs.

Thus, the cloud provider needs to make a decision at deployment
time regarding the type of adversarial and client model it wants to
offer; i.e., decide if it wants 〈NR,NC 〉, 〈NR,C 〉, 〈R,NC 〉, or
〈R,C 〉 model. We assume this decision is made public. Different
cloud providers may choose one or the other depending on their
cost-performance considerations or customer needs or the same
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Sliding Window
Migration Budget
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Workloads Config.

Migration Engine

Set of Moves
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Figure 3: High-level view of the Placement Algorithm

provider may offer varied offerings. Clients who wish to be pro-
tected against a specific model of information leakage based on
their workloads and preferences can choose a cloud provider with
the desired service offering (i.e., R client who wants a guarantee
against NC adversary chooses a provider with 〈R,NC 〉 offering).

Client API: Nomad allows clients to specify their workload con-
straints to help minimize the impact of migrations on client applica-
tions. This API allows clients to specify non-migration constraints
on some VM instances. For example, in the web server case the
front-end load balancer has to have zero down time and similarly
in the Hadoop case the master node has to always be up.

End-to-end workflow: Now, we describe the end-to-end work-
flow of Nomad. Client VMs arrive and depart based on their work-
load requirements. The provider runs a Placement Algorithm with
the goal of minimizing the information leakage across arbitrary
pairs of clients (e.g., ensuring that no specific pair of clients are
co-resident for a significant chunk of time) while also minimiz-
ing disruption to the client applications. To achieve this goal, the
Placement Algorithm takes a few key inputs to decide a placement
policy (Figure 3).
1. API: The Placement Algorithm needs to know 1) Service API

(i.e., the deployment model) to correctly compute the InfoLeak-
age between client-pairs, and 2) Client API to know which VM
instances are “non-movable” when computing VM placements.

2. VM placements and workloads: The current and past VM as-
signments for past ∆ epochs are used to decide next placement
assignments. The Placement Algorithm also takes an input of
VM arrivals/departures since the last epoch. These are used to
update VM-pair co-residency states internally tracked by the
algorithm.

3. Configurations: Configurations such as ∆ (sliding window)
and migration budget are also used in the algorithm.

Using these inputs, the Placement Algorithm computes the VM
assignments for the next epoch. The provider runs a Migration
Engine which takes the logical output of the Placement Algorithm
and periodically re-balances the placement of client VMs across
its provisioned hardware. The period (i.e., duration of an epoch,
D) and configuration parameters such as ∆ determine the security
implications of our system and should be adjusted based on the
state-of-the-art side-channel attacks.

Security implications of Nomad: Having presented the overview
of Nomad, we now explain the security semantics and implications
of the system.

The security implications depend on three parameters: 1) K ,
leakage rate; 2) ∆, number of epochs in a sliding window; and 3)
D , epoch duration. Note that D and ∆ are configured by providers
and K summarizes the capability of the side channels.

In essence, Nomad is resilient against any side channel where
K × ∆ × D ≤ P where P is the Min(time to refresh the secret,

time it takes to extract the secret). Intuitively, this condition means
that an adversary should not be able to recover the secret even if an
adversarial client is co-resident for the entire duration of the sliding
window. Note that K , in reality, refers to abstract rate of leakage,
which is the basic leakage rate for 〈NR,NC 〉 (i.e., single VM case)
and some function of replication and collaboration otherwise. For
clarity, we base our discussion on the 〈NR,NC 〉 case.

These parameters can be configured on knowing the state-of-the-
art leakage characteristics (i.e., K ). To make our discussion more
concrete, we explain using the work of Zhang et al., [42] as an
example, which took 6 hours to extract a 457-bit key giving a leak-
age rate of 1.27 bits per min. Thus, we suggest D = 30 min and
∆ = 10 epochs to ensure that K ×∆×D ≤ P = 6 hours.

We do acknowledge that Nomad is not resilient against fast side-
channel attacks that extract the secret within an epoch (i.e., [21,
27]). Fast side-channel attacks, in principle, could be addressed by
reducing D accordingly (i.e., for side-channel attacks capable of
extracting the key in 2–3 min, we suggest D = 30 sec). However,
decreasing D comes at a cost of performance degradation. Further-
more, the cluster size has to decrease accordingly to handle small
D to ensure that the time to compute the placement is smaller than
D (Figure 5). In this case, we suggest using other side-channel de-
fenses in conjunction with Nomad (i.e., a general side-channel so-
lution) to strengthen defenses against evolving side channels. For
instance, such approaches can be used to 1) reduce K (e.g., inject-
ing cache noise [45] or divide the private keys among several client
VMs [31]); and 2) reduce P by refreshing the key (i.e., secret)
frequently.

Challenges: Having described this high-level view of the Nomad
system, we highlight key practical challenges we need to address
to turn this vision into practice:
• Efficient algorithm: Given the four different models of infor-

mation leakage, we need efficient algorithms that can work
in all four models. For instance, a seemingly natural solu-
tion might be to simply randomize the VM assignments across
epochs. However, as we will see, such naive solutions can actu-
ally be counterproductive (Figure 4 in §8). Finally, we need to
ensure that the provider and the clients do not incur significant
performance penalty due to VM migrations.
• Scalability: Large cloud deployments have roughly tens of thou-

sands servers. Therefore, the Nomad Placement Algorithm must
be capable of scaling to such large deployments. While the
problem can be theoretically formulated as a large constrained
optimization problem, even state-of-art solvers cannot solve a
problem instance with more than 40 machines even after a day
(Table 1 in §8).
• Deployability: Nomad must be incrementally deployable with

minimal changes to the existing production stack and control
platforms and without modifications to client applications.

In the following section, we show how we design efficient and
scalable greedy heuristics that can apply generally to all four de-
ployment options. Then, in §7 we describe how Nomad can be
seamlessly added to a production cloud management system and
discuss our specific experiences with OpenStack. Finally, we
show empirically in §8 with simulated workloads that we can achieve
good bounds on information leakage using a small number of mi-
grations and that the impact on typical cloud workloads (e.g., repli-
cated web services and Hadoop MapReduce) is small.

5 Nomad Placement Algorithm
In this section, we describe the design of the Placement Algorithm
in Nomad. We begin by describing the high-level problem that we
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Algorithm 1 Baseline Greedy Algorithm
1: function GREEDYALGORITHM(CurPlace, Budget, Typesof-

Moves)
2: NumMig = 0, ChosenMove={}
3: MoveSet = InitializeMoves(TypesofMoves,CurPlace)
4: . Return a set of 〈move,cost〉
5: while NumMig ≤ Budget do
6: MoveBenefits=

InfoLeakReduction(MoveSet, curPlace,clientConstraints)
7: . Return a set of 〈move,cost,benefit〉
8: move = PickBestMove(MoveBenefits)
9: ChosenMove.insert(move)

10: NumMig += move.cost()
11: CurPlace = UpdatePlacement(CurPlace,move)
12: MoveSet = UpdateMoves(MoveSet,move)
13: end while
14: Return ChosenMove
15: end function

need to solve and then highlight the scaling limitations of strawman
solutions. Then, we present the main ideas underlying the Nomad
approach that enable a scalable realization.

5.1 Problem Formulation
We begin by describing the abstract problem that the Placement Al-
gorithm needs to solve to provide the context for why this problem
is intractable in practice.

The Placement Algorithm needs to compute the VM placements
every epoch with the goal of minimizing the information leakage
between arbitrary pairs of cloud clients, while ensuring that the
overall cost of doing so (i.e., number of migrations) is low. Specif-
ically, we want to minimize the total information leakage func-
tion subject to some budget on the migration overhead measured
in terms of total number of migrations. We acknowledge that there
are other ways to capture the trade-off between migration overhead
vs. information leakage.

Meeting the security concern should not come at the cost of scal-
ability. Our problem target size (i.e., large public cloud deploy-
ment) is tens of thousands of servers with roughly 4-5 VM slots
per server.3 We envision the Nomad Placement Algorithm running
at the beginning of each epoch, with each epoch lasting several
minutes up to tens of minutes. A reasonable target to compute the
placement assignments for one epoch would be roughly under 1
min. The choice of 1 min for the computation time allows epoch
duration to be as small as few minutes (§4).

Since the cloud provider cannot predict the VM arrivals and de-
partures into the future, we consider a myopic formulation that de-
termines placement for the next epoch given the historical place-
ments over the previous few epochs. We can model this placement
problem subject to migration budget constraints as an integer lin-
ear program (ILP). For completeness, we present the full ILP in
Appendix A. Unfortunately, solving this ILP is intractable and it
takes more than a day to even solve a small problem instance with
just 40 machines (Table 1 in §8). Thus, while the ILP approach is
an exact optimal solution in terms of the leakage subject to fixed
migration budget, it is far from viable in terms of the scalability
requirements. This motivates the need for heuristic approximations
as we describe next.

3While public numbers are hard to get, tens of thousands of servers
seems roughly in the ball park of public deployment instances.

5.2 Baseline Greedy
Given that we are solving a budgeted optimization problem, we re-
sort to a natural greedy algorithm. Algorithm 1 shows our baseline
greedy algorithm.

In the baseline greedy design, we enumerate a set of moves in-
volving VMs. For instance, we can consider all possible n-way
swaps between VMs or consider pair-wise swaps (i.e., Typesof-
Moves = {free-insert, pair-wise swap, . . . , n-way swaps})

Each move has both a cost incurred in terms of number of migra-
tions required to execute the move and the benefit it yields in terms
of the reduction in information leakage. Then, in each iteration
of the greedy algorithm, we pick the best move (Line 8 in Algo-
rithm 1) within the migration budget that gives us the maximum
benefit in terms of reduction in information leakage.

Note that each move conceptually changes the state of the system
and thus the benefit of future moves may decrease or increase de-
pending on the moves we have already made; e.g., moving VM c,i

may mean that all previously considered swaps involving this in-
stance may no longer provide any value. Thus, we explicitly re-
compute the set of allowed moves and the benefit that they yield
(Line 6 and 12 in Algorithm 1).

Unfortunately, even using this greedy algorithm instead of the
ILP solver does not provide the desired scalability; e.g., even run-
ning this on a small 50 node cluster does not meet our 1 min goal.

5.3 Scalable Greedy Algorithm
Next, we describe key ideas of our scalable greedy algorithm to im-
prove scalability. Using a careful run-time analysis, we identified
three key bottlenecks in this baseline greedy algorithm:

1. Calculating the benefit of each move (Line 6): Recomputing
benefit is computationally expensive as the InfoLeakage across
all VM pairs and client pairs have to be computed.

2. Large search space (Line 3): A large search space results from
having many machines and many types of moves (i.e., free-
inserting a VM into an empty slot, pair-wise swaps, etc.,).

3. Updating move after each state change (Line 12): Updating
move sets requires generating all possible moves which leads
to a large input size for the benefit computation (Line 6).

Incremental benefit computation: Recomputing the benefit (Line
6 in Algorithm 1) is a large contributor to high run time of the
baseline greedy. Thus, we use an incremental benefit computa-
tion which computes the delta in the current value of the objective
function by only updating information leakage for set of dependent
client pairs whose InfoLeakage are affected by the move. This elim-
inates the need to compute the entire co-residency pairs across all
VMs when 1) a potential move has been tried to evaluate the benefit
of a move or 2) a move is made.

However, to enable the use of this approach, we need to make
approximations to non-〈R,C 〉 InfoLeakage models which consist
of Max operations. Finding the delta with Max operation requires
the algorithm to iterate over all other inputs to the Max . This is in
contrast to the Sum whose delta only depends on one input’s value
before and after an update. Therefore, we introduce the concept
of “Soft-Max” for 〈NR,NC 〉, 〈NR,C 〉, and 〈R,NC 〉 models to
benefit from the scalability gain by using an incremental benefit
computation as shown below.

1. 〈NR,NC 〉:

InfoLeak
〈NR,NC〉
c→c′ (t ,∆) ≈ eα∗InfoLeakc,i→c′,i′ (t,∆), α > 0

(6)
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2. 〈NR,C 〉:

InfoLeak
〈NR,C〉
c→c′ (t ,∆) ≈ e

α∗
∑
i′

InfoLeakc,i→c′,i′ (t,∆)

, α > 0
(7)

3. 〈R,NC 〉:

InfoLeak
〈R,NC〉
c→c′ (t ,∆) ≈ e

α∗
∑
i
InfoLeakc,i→c′,i′ (t,∆)

, α > 0
(8)

The intuition behind “Soft-Max” is that an exponential function is
a good approximation of the Max operation as the function gives
more weights to larger values. Suppose we consider a sliding win-
dow ∆ of size 5. Then, for the 〈NR,NC 〉 model, the inputs to
InfoLeakc,i→c′,i′(t ,∆) ranges from 0 to 5. Using Equation 6 (for
α = 0.8), the values [0, 1, 2, 3, 4, 5] would map to [0, 2.23, 4.95,
11.02, 24.53, 54.60]. Our scalable greedy algorithm then will nat-
urally see the most benefit in reducing the larger co-residency val-
ues; reducing InfoLeakc,i→c′,i′(t ,∆) from 5 to 4 gives a larger In-
foLeakage reduction than reducing InfoLeakc,i→c′,i′(t ,∆) from 4
to 3.

Search space: We present two key ideas to tackle two causes
(many types of moves and many machines) for a large search space
(Line 3 in Algorithm 1).
1. Hierarchical placement: The high-level idea is to group ma-

chines into clusters (with each cluster consisting of approxi-
mately 1,500 machines) and each client assigned to a cluster.
This design choice builds on the following insight. A move can
only affect clients whose VMs reside in the affected machines.
Suppose a move involves moving a VM c,i from machine 1 to
machine 2. Then, the only InfoLeakage client pairs affected
are clients whose VMs reside in machine 1 and 2 (i.e., only the
co-residency between VM c,i and VMs in machine 1 and 2 are
affected by this move). Therefore, we consider it inefficient to
try the moves across all machines when the number of affected
co-residency pair is bounded.

2. Pruning the move sets: We could potentially consider a move
from a free-insert up to n-way swaps where n is the number of
VMs. However, we limit the types of moves to a free-insert
and pair-wise swaps. Our evaluation on the effect of pruning
the move sets shows significant gain in scalability with little-
to-no loss optimality (Figure 6 in §8).

Lazy evaluation: Third, we identified that the need to recom-
pute the move sets after each move affects scalability (Line 12 in
Algorithm 1). Consider a 1,500 machine per cluster with 4 VM
slots per machine with an expected occupancy rate of 50% (i.e.,
3,000 VMs). Entire move sets then would contain approximately
3, 000×1, 500 +

(
3000

2

)
entries. Therefore, recomputing the entire

move set is inefficient when only a few are affected. To tackle this,
we use lazy evaluation [24]. First, we populate the entire move ta-
ble at the beginning of an epoch. Second, the algorithm traverses
the move set starting from the move that gives the most benefit. If
the claimed benefit from the time that benefit was computed lies
within 95% of the current benefit and a move is feasible, then that
move is made. If not, the move is re-inserted with an updated ben-
efit. We show that lazy evaluation brings little-to-no loss in opti-
mality even for a cluster size of 50 (§8). Note that as a side effect
of providing a client-agnostic defense and considering global co-
residency across all client-pairs, Nomad can utilize the same algo-
rithm for 〈R,NC 〉 and 〈NR,C 〉.

Dealing with heterogeneous resource constraints: In a real cloud
setting, servers are not identical and the resource requirements of
each VM may also vary. In our design of the algorithm, we have

abstracted the server resource constraints as VM slots but this can
easily be extended to consider heterogeneous VM resource require-
ments and server constraints (i.e., vCPU, RAM, Disk, etc.) Re-
source constraints are handled in the Nomad Placement Algorithm
when the scheduler looks for free VM slots. For clarity, we evalu-
ated the algorithm using a homogeneous server configuration (Fig-
ure 6 in §8).

6 Security Analysis
In this section, we describe how Nomad deals with strategic adver-
saries and the potential threats that could arise with the deployment
of Nomad.

Strategic adversary: By construction, Nomad defends against
legacy side-channel adversaries. Here, we focus on strategies of
advanced adversaries who are aware of the Nomad’s algorithms.
Specifically, we identify three possible attack vectors to obtain high
information leakage in spite of Nomad: (1) launch many VMs; (2)
exploit the non-migration constraints of the client-facing API; and
(3) induce a lot of churn. Here, we qualitatively analyze these sce-
narios and defer quantitative results to §8. For brevity, we only
discuss the 〈R,C 〉 model since that has the highest possible leak-
age surface (i.e., it subsumes other models) and argue why Nomad
either renders these vectors ineffective or induces high costs for the
adversary.

• Launch many VMs: An adversarial client can launch a large
number of long-lasting VMs hoping to be co-resident with tar-
get clients. First, we observe that this comes at a high cost for
the adversary; e.g., public clouds such as Amazon EC2 which
charges based on CPU hours [1]. Moreover, Nomad’s goal of
minimizing InfoLeakage will naturally tend to localize VMs of
clients with many VMs (even without explicitly identifying the
adversary client).
• Exploit non-migration constraints of the Client API (§4): To

help legitimate applications with strong dependencies on bot-
tleneck VMs, Nomad’s Client API allows a client to specify
non-migration constraints. An adversary may try to exploit
this feature and request a large percentage of its workloads to
fall under non-migration constraints to avoid the eventual clus-
tering mentioned above. Note that this is a serious threat as
this is legitimate behavior allowed by the API and thus is non-
detectable. Second, an adversary incurs no additional cost in
specifying non-migration constraints. We observe, however,
that Nomad is resilient to this strategy. For “non-movable”
instances, Nomad runs the Placement Algorithm to determine
the initial placement of VM to cause minimal increase to the
overall InfoLeakage. The algorithm will then naturally localize
“non-movable” VMs of a specific client upon “non-movable”
instances’ arrivals.
• Frequent churn: An adversary can induce frequent churn with

VMs arrival/departure. This can exhaust the migration bud-
get of the Placement Algorithm and poses a higher threat than
statically launching the same number of VMs, as it does not
give Nomad Placement Algorithm enough epochs to localize
the adversary VMs. Suppose that such anomalous behavior is
detectable. Then, after the detection, the cloud provider can
dedicate a set of machines which are assigned to the particular
client creating frequent churn. Note that this will not impact le-
gitimate clients who may also exhibit high churn (even though
this is unlikely). However, designing algorithms for detecting
churn is outside the scope of this work and can be done via
well-known anomaly detection techniques [10].
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Potential new threats: We acknowledge the potential new threats
that could arise with the deployment of Nomad.
• New side-channel threats: We acknowledge that deploying No-

mad may have indirect consequences that may strengthen some
side channels. For instance, with Nomad which incurs periodic
migration, memory deduplication(e.g., [36]), if enabled, will
lose its benefits. Therefore, if more aggressive memory dedu-
plication is deployed to preserve memory saving benefits, exist-
ing side channels that rely on memory deduplication (e.g., [41,
20]) may become even stronger. We acknowledge that this is a
limitation of Nomad and studying the implication of migration
on side channels is an interesting direction for future work.
• Other cloud threats: Cross-VM side channels are not the only

risks in cloud environments. For instance, a separate risk in
cloud deployments is a compromised hypervisor. Constantly
migrating VMs may increase the risk of a VM being placed on
a machine with a compromised hypervisor. However, existing
defenses for compromised hypervisors could also be used in
conjunction with Nomad (i.e., [8, 39]). Addressing this threat
is an interesting direction for future work.

7 System Implementation
In this section, we describe our Nomad prototype (using OpenSta-
ck [5]) following the structure in Figure 2. We begin with a high-
level overview of OpenStack before describing how we modified
it to implement Nomad.

OpenStack overview: OpenStack is a popular open-source cloud
computing software platform that is used to deploy Infrastructure-
as-a-Service (IaaS) cloud solutions [5]. At a high level, Open-
Stack controls Compute, Storage, and Network resources. The
key component of interest to us is OpenStack Compute, known
as Nova, which consists of the cloud controller representing a global
state and other compute nodes (i.e., machines). Each compute node
runs a hypervisor, in our case, KVM, which is responsible for man-
aging VMs and executing the migration of VM invoked via the
OpenStack API calls.

Migration choices: OpenStack supports different modes of VM
migration [3]: 1) Non-live migration which shuts down instance for
a period of time to migrate to another hypervisor; and 2) Live mi-
gration which has almost zero instance downtime. To allow for
minimal impact on client application, the natural choice was to use
live migration. Within live migration, there are several implementa-
tion options [3]: shared storage-based live migration, block live mi-
gration, and volume-backed live migration. In general, shared stor-
age and block live migration have better performance that volume-
backed live migration as they avoid copying the entire VM image
from the source compute nodes to the destination. For implementa-
tion convenience in our testbed, we choose the shared storage live
migration option.

Migration Engine: Recall the role of the Nomad Migration En-
gine, which executes the migration of VMs as dictated by the Place-
ment Algorithm. We implement the engine in the Nova-Schedul-
er at the Controller node, which was a natural implementation
choice as Nomad requires having a global view of all the machines
and VM states. We extended the code to implement Migration En-
gine as part of the controller services.

The high-level workflow is as follows. First, when VMs are
launched, the Migration Engine saves the VM ID and the client
ID to its internal client-to-VM mapping. At every epoch, Migra-
tion Engine queries OpenStack’s database to get the VM-to-host
mappings. Then, Migration Engine offloads the job to the Place-
ment Algorithm to compute the VM assignments. Once the algo-

rithm finishes computing the VM placements, the Migration En-
gine executes migrations as dictated by the algorithm.

Recall that one of the goals of Nomad is the minimal modifica-
tion to an existing cloud platform. Our implementation consists of
roughly 200 lines of Python code in the Nova-Scheduler code
and achieves our objectives of minimal modification.

Placement Algorithm: Our implementation of the Placement Al-
gorithm consists of 2,000 lines of custom C++ code. This mod-
ule is invoked every epoch by an API call from the Migration En-
gine. Upon the call from the Migration Engine, which sends the
high-level inputs described in §4, the algorithm computes the VM
assignments and also internally stores co-residency history to be
used in subsequent epochs. All the optimizations described in §5
are implemented as part of the Placement Algorithm.

Finally, we note that the modular design of Nomad with a stan-
dardized interface between the placement algorithm and the Mi-
gration Engine allows us to easily decouple the scheduling logic
from the implementation of the Migration Engine. In our own de-
velopment experience, this “plug-and-play” capability proved quite
useful.

8 Evaluation
In this section, we address the following questions:
(1) How does the information leakage resilience of Nomad’s algo-
rithm compare with strawman solutions?
(2) Does Nomad algorithm scale to large deployments? What are
the benefits of the optimizations from §5?
(3) What is the impact of migrations on real applications in a real-
istic cloud workload?
(4) How resilient is Nomad to smarter adversaries ?

Setup: For (3), we use a local OpenStack Icehouse deployment on
our testbed equipped with 2.50 GHz 64-bit Intel Xeon CPU L5420
processor with 8-cores, 16 GB RAM, 500 to 1000GB disks, and
two network interfaces with 100Mbps and 1Gbps network speed.
Each machine runs KVM on Ubuntu 14.04 (Linux kernel v3.13.0).
For (1), (2), and (4), we evaluated Nomad Placement Algorithm and
other placement strategies using synthetic workloads. The evalua-
tion of Nomad placement algorithm was conducted using varying
cluster sizes with 4 slots each. For our simulation workloads, the
number of customers was the same as the cluster size and the ini-
tial setup consisted of 2 VMs per clients.4 Every epoch a 15% of
new VMs would arrive and 15% of an existing VMs would depart,
creating constant churn every epoch. The migration budget was set
to 15% for testing our solution and an ILP solution. In testing the
end-to-end application performance with Nomad, we used epoch
duration (i.e., D) of 4 min for web-service and 1 min for Hadoop
MapReduce.5

8.1 Information Leakage
We compare the per-client leakage achieved by Nomad vs. three
strawman solutions: (1) Integer Linear Programming, (2) Random
Scheduler, and (3) Static Scheduler. The random scheduler picks
a VM at random and a random slot. The VM picked at random is
inserted to the slot if the slot is empty. If the slot is occupied, the
4Note that the use of 4 slots per server and 2 VMs per client was
bottlenecked by the run-time of the ILP and is not fundamental
limitation of the algorithm.
5Different Ds are used because the job completion time for each
experiment (i.e., Wikibench and Hadoop) differs. Therefore, D
was scaled such that the number of epochs, hence the number of
migrations, in each experiment is roughly the same for both exper-
iments (i.e., D = 4 min for 20 min completion time and D = 1
min for 3–4 min completion time).
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Figure 4: CDF of client-to-client InfoLeakage for different VM placement strategies

Cluster Size
10 20 40 50

ILP 0.48s 7.83 >1 day >1 day
Nomad scheduler 0.00005s 0.002s 0.015s 0.02s

Table 1: Scalability of ILP vs. Nomad

chosen and occupying VMs are swapped. This process of swapping
is run until all the migration budget is exhausted. The static sched-
uler runs an initial randomized placement when VMs arrive but
runs no migration. The ILP (Appendix A) runs the exact optimiza-
tion algorithm using CPLEX [4]. We compare these approaches on
a simulated cluster size of 20 with 4 slots per machine, 20 clients,
with an expected occupancy rate of 50% and 15% arrival and 15%
departure rates per epoch. We chose a small setup since the ILP
does not scale to larger setups.

Figure 4 shows the CDF of inter-client InfoLeakage measured
over a sliding window of 5 epochs for the 4 different InfoLeakage
models. We make two key observations. First, naive random mi-
gration or static placement can result in substantially higher leak-
age. Second, the Nomad Placement Algorithm achieves close-to-
optimal performance w.r.t. the ILP solution.6 Finally, there is one
subtle observation regarding fairness across different clients; i.e.,
do some clients incur more leakage or migration relative to oth-
ers? By intent, the ILP or the Nomad algorithm does not explicitly
take fairness into account. But we find that both ILP and Nomad
achieve good fairness in practice as even the 95th percentile of the
distribution is low.

8.2 Scalability

Nomad vs. ILP: Recall that we chose a greedy heuristic because
of the scaling limitations of the optimal ILP formulation. First, we
compare the scaling properties of Nomad vs. ILP in Table 1. The
result shows that the ILP is fundamentally intractable even for a
small cluster size of 40 machines and that Nomad is several orders
of magnitude faster. Note that this scalability benefit does not com-
promise optimality as we saw in Figure 4 where the optimality loss
of Nomad is negligible.

Scaling to large deployments: Our target computation time for
Nomad was roughly 1 min. Next, we analyze the scalability of
the scheduler to determine the dimensions of the cluster that can
meet this target. Figure 5 shows the scaling properties for different
datacenter sizes. Based on the result, we can determine that a rea-
sonable size of our cluster is 1,500 machines across the different
models.

6Note that both the ILP and Nomad Greedy optimize the total In-
foLeakage. Therefore, it is possible for Nomad Greedy to outper-
form the ILP solution w.r.t. the inter-client InfoLeakage.
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Effect of design choices: The scaling properties of Nomad stem
from three key design decisions in Appendix §5): (1) pruning, (2)
lazy evaluation, and (3) incremental computation. Next, we evalu-
ate the relative benefits of each of these ideas and also confirm that
these do not sacrifice optimality.

To tease apart the relative contributions, we evaluate the impact
of applying these ideas progressively as follows: (1) We begin with
a Baseline Greedy which is a naive implementation of Algorithm 1
that considers three types of moves: free-insert, pair-wise swaps,
and 3-way swaps;7 and (2) We prune the search space to only con-
sider free inserts and pair-wise swaps; (3) We enable lazy evalua-
tion to eliminate the need to re-compute the move table after every
state changes (every move); (4) Last, we enable the incremental
computation to efficiently compute the benefit of each move. Note
that (4) also entails the use of “Soft-Max” of InfoLeakage calcula-
tions for non-〈R,C 〉 models.

Figure 6a shows that these design choices result in negligible
drop in optimality. We could only show the optimality results for
a 50-node cluster because the basic greedy takes several hours to
complete for larger sizes. Figure 6b also shows the increased scal-
ability with each idea enabled and shows that each idea is critical
to provide an order-of-magnitude reduction in compute time. We
also see that the largest decrease comes from the use of incremental
benefit computation.
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Figure 6: Impact of key design ideas in scaling the Nomad
Placement Algorithm and justifying that these do not sacrifice
optimality
7Even adding 3-way moves dramatically increases the run time and
thus we do not consider more complex moves.
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8.3 System and Application Performance
Migration microbenchmark: First, we start with microbench-
marking the time it takes to migrate three instances using shared-
NFS storage live migration (Table 2) [3]. Note that the migration
occurs via 1Gbps network and we envision faster migration in faster
networks.

Ubuntu-Cloud
(512MB RAM, 1.5GB)

Cirros
(512MB RAM, 132MB)

Ubuntu
(2048MB RAM, 7 GB)

Total Migration
Time (s) 0.89 0.97 1.47

Table 2: Total migration time for different images (in s)

As an end-to-end experiment, we also experimented with an ap-
plication benchmark to see the performance impact at the applica-
tion level which combines all CPU, disk I/O and network I/O of
application. We chose two representative workloads: web-server
and MapReduce workloads.

Wikibench evaluation: For web-service application, we choose
Wikibench because it uses a real application (Mediawiki) and web-
site is populated with real data dumps [6]. We took the trace file
from Sept. 2007 and post-processed it such that the request rate is
approximately 10 to 15 HTTP requests per sec.

We conduct an experiment in our 20-node setup. Initial setup
includes launching 4 benign clients and 2 additional clients whom
for the purpose of illustration play a role of an adversary.8 Each of
4 client has the following setup: 1) 3 replicated Wikibench back-
ends 2) 1 proxy to load balance between 3 servers, and 3) a worker
instance sending HTTP GET requests using the Wikibench trace
file. At each epoch, adversarial clients create 15% arrival and 15%
departure churn. In our setup, each benign client requests that the
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Figure 7: Distribution of throughput for Wikibench workload
(with and without Nomad)

client worker and a proxy to be “non-movable.” The experiment
was conducted for 20 min (4 min per epoch, 5 as a ∆) with and
without our system. We present the distribution of the throughput
(i.e., number of completed requests per 10s bin) over the entire run
for each client (Figure 7).

For each client running the Wikibench workload, Figure 7 shows
the distribution of throughput using a box-and-whiskers plot with
the 25th, 50th, and 75th percentiles, and the minimum and 98th
percentile value. We observe relative resilience of our system to
migration as the distribution is largely identical with and without
Nomad. We only observe the decrease in throughput for the lower
tail of the distribution. This plot also shows the fairness across
each client as no particular client is being penalized by incurring
high performance degradation.

8For the purpose of illustration, we introduced the concept of be-
nign and adversarial clients. However, the algorithm makes no as-
sumption on which client is adversarial.

Hadoop evaluation: The second representative workload is Hado-
op Terasort sorting 800MB data. The VM arrival and departure
workloads are identical with that of Wikibench except that the churn
was introduced every minute and the epoch size was set to 1 min.
Each Hadoop client consists of 5 VMs (i.e.,1 master VM and 4
slave VMs). Each client, via the client API, requests that the master
node to be “non-movable”. The results are shown in Figure 8. For
this experiment, we report the distribution of the job completion
time from 100 runs. We consider two types of initial placements
(i.e., random vs. clustered). Clustered initial placement refers to
the setup in which each client is clustered on 2 machines. Thus, for
each client, we report three categories: 1) with Nomad- random ini-
tial placement; 2) without Nomad- random initial placement; and 3)
without Nomad- optimal (i.e., clustered) initial placement. The re-
sults show that Nomad does not impact the job performance. Both
Wikibench and Hadoop experiments demonstrate that: (1) our sys-
tem prototype can handle real workloads in an open system; and
(2) cloud-representative applications are resilient to migration.
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Figure 8: Distribution of job completion time for Hadoop
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8.4 Resilience to advanced adversaries
For brevity, we only focus on the adversary that exploits the non-
migration constraints in the Client API, as the other attacks (i.e.,
launch many VMs or induce churn) are largely disincentivized be-
cause they induce high cost or are detectable. Figure 9 presents the
effectiveness of our system with a strategic adversary that launched
30 non-movable VMs at an epoch 10. The base case (i.e., sim-
ple adversary) refers to an adversary with only 2 VMs, and the
without Nomad system refers to the system that does random ini-
tial placements for all arriving VMs. This result confirms our in-
tuition that Nomad is resilient to strategic adversaries exploiting
“non-migration” constraints of the Client API (§5).
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Figure 9: CDF of client-to-adversary InfoLeakage at an epoch
19 for a sliding window of 5 epochs (cluster size: 200, number
of clients: 200)

9 Discussion
Before we conclude, we discuss four outstanding issues.
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Network impact: Overall network impact of Nomad due to migra-
tion could be a concern. However, we note that modern datacenters
have well-provisioned networks (e.g., 10Gbps full bisection band-
width [17]). Furthermore, Nomad’s migrations are predictable and
amenable to traffic engineering [7]. Furthermore, with techniques
like incremental diffs, the transfer size will be much less than the
base VM memory image with 50% reduction (e.g., [18]). Thus,
we expect minimal network impact from Nomad, especially given
that datacenters handle much larger (tens of GB) flows [17].

Fairness across clients: There are two issues with fairness. The
first is w.r.t. the leakage guarantees that each client achieves and the
second is w.r.t. the migration costs that each client faces. While our
current algorithm does not explicitly take into account fairness ob-
jectives across clients, our analysis and empirical evaluations show
that the greedy algorithm naturally achieves a reasonably fair out-
come. That said, extending the basic algorithm to support fair-
ness goals is an interesting direction for future work. In particular,
defining suitable fairness objectives in a heterogeneous environ-
ment where different clients have varying number of VMs, degrees
of replication, and sensitivity to migration is an interesting direc-
tion for future work. We posit that some concepts like dominant
resource fairness might be useful here [15].

Handling heterogeneous client workloads: Our current Place-
ment Algorithm utilizes a different algorithm for each deployment
model. An interesting extension is designing the Placement Al-
gorithm using a hybrid approach that enables a cloud provider to
handle heterogeneous client workloads given an adversarial model
(i.e., client specifying to be R or NR under C or NC scenario).

Incentives for adoption: We argue that cloud clients who are
security conscious have a natural incentive to opt-in to the No-
mad service to minimize the impact of side channels. Moreover,
the impact of Nomad migrations on the applications for reason-
able epoch duration will likely be small and thus the cost is quite
low. Providers too have a natural incentive to enable Nomad as a
service as it might introduce new monetization avenues; e.g., No-
mad can be offered as an value-added security service for a slight,
additional fee. Furthermore, we believe that this vision of adding
provider-assisted services is naturally aligned with the real-world
economics of cloud computing.

10 Conclusions
Co-residency side channels in public cloud deployments have been
demonstrated to be a real and growing threat. Unfortunately, ex-
isting solutions require detailed changes to hardware/software and
client applications, and/or sacrificing the multiplexing benefits that
clouds offer. Nomad offers a practical vector-agnostic and robust
defense against arbitrary (and future) side channels. Moreover, it
is effective against strong adversary models where client VMs can
collaborate and where we do not even need to pinpoint who the ad-
versary is. The key insight is in leveraging provider-assisted VM
migration as a way to bound co-residency and hence limit informa-
tion leakage across all client pairs. We demonstrated that Nomad
can scale to large cloud deployments and imposes low overhead
on client applications. While there are open questions (e.g., very
fast side channels, heterogeneous guarantees), we believe that the
core idea of Nomad is quite powerful and can complement attack-
specific side channel defenses. Seen in a broader context, Nomad
is a proof point demonstrating a novel cloud provider-assisted se-
curity solution and we believe that this paradigm can more broadly
enable novel and robust defenses against other security problems.
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APPENDIX
A ILP Formulation
In this section, we describe the ILP formulation for the optimization
problem that the Nomad Placement Algorithm needs to solve every
epoch. As discussed earlier, the algorithm takes as input the VM
placement over the last sliding window of epochs and other param-
eters that determine the information leakage. The objective func-
tion is to minimize the total information leakage across all client
pairs.

We use binary indicator variables, dc,i,k(t), to denote the place-
ment assignment of a specific VM instance i of a client c at ma-
chine k in the epoch t . These are the key control variables that we
need to set to determine the optimal placements. Then, it naturally
follows that the inputs to the ILP formulation are these control vari-
ables for the past ∆ epochs to be used in summarizing co-residency
over time. The output would be the placement assignments for the
next epoch.

Equation 9 in Figure 10 states that the total number of VMs as-
signed to a machine should not exceed machine’s capacity. Further-
more, each VM should only have one machine assignment (Equa-
tion 10). Equation 11 models a per-epoch binary co-residence re-
lationship that indicates if 2 VMs are co-resident in a machine k at
epoch t. Intuitively, this is like modeling an AND operation; i.e., if
both VMs have the same machine assignment k, this binary indi-
cator is set to 1. If there exists any machine in which two VMs are
co-resident, then we flag that these two VMs (VM c,i and VM c′,i′ )
are co-resident at an epoch t (Equation 12).

Having determined whether a given pair of VMs are co-resident,
we can summarize the information leakage across the three dimen-
sions, namely over time, over adversary’s VMs, and over client’s
VMs. This models the InfoLeakage between a client pair c and
c’. For brevity, the figure only shows the model for the 〈R,C 〉
case, the summarization involves summation over adversary’s and
client’s VMs.

Minimize
∑
c,c′

InfoLeak
〈R,C〉
c→c′ (t ,∆) such that

∀k, t,
∑
c

∑
i

dc,i,k(t) ≤ Capk (9)

∀c, i, k, t ∈ lifetimec,i,
∑
k

dc,i,k(t) = 1 (10)

∀c, i, c′, i′, c 6= c′, k, t

CoResc,i,c′,i′,k(t) ≥ dc,i,k(t) + dc′,i′,k(t) − 1

CoResc,i,c′,i′,k(t) ≤ dc,i,k(t)

CoResc,i,c′,i′,k(t) ≤ dc′,i′,k(t) (11)

∀c, i, c′, i′, c 6= c′, t,

CoResc,i,c′,i′ (t) ≤
∑
k

CoResc,i,c′,i′,k(t)

CoResc,i,c′,i′ (t) ≥ CoResc,i,c′,i′,k(t) (12)

∀c, c′, c 6= c′, t, InfoLeak
〈R,C〉
c→c′ (t ,∆) =

∑
i

∑
i′

∑
t′∈[t-∆,t]

CoResc,i,c′,i′ (t
′)

(13)

∀c, i, k, t, mvc,i,m(t) = dc,i,k(t)⊕ dc,i,k(t− 1)

mvc,i,m(t) ≤ dc,i,k(t) + dc,i,k(t− 1)

mvc,i,m(t) ≥ dc,i,k(t)− dc,i,k(t− 1)

mvc,i,m(t) ≤ 2− dc,i,k(t)− dc,i,k(t− 1)

∀c, i, t, mvc,i(t) = 0.5
∑
k

mvc,i,m(t) (14)

∀c, t, GlobalMigCost(t) =
∑
c,i

mvc,i(t
′) (15)

∀c, t, GlobalMigCost(t) ≤ PercentBudget
∑
c,i,k

dc,i,k(t) (16)

Figure 10: 〈R,C 〉: ILP formulation for Nomad Placement Al-
gorithm

The ILP formulation is also applicable for three other deploy-
ment models; Equation 13 needs to be changed to reflect the correct
InfoLeakage model.

Now that we have modeled the co-residency across client pairs,
the only remaining factor is the migration cost. To this end, we
introduce another binary indicator that indicates whether a VM has
migrated from a previous epoch t − 1. mvc,i,m(t) is a binary
variable that indicates whether VM c,i was either in machine k in
the previous epoch and is no longer in machine k or vice versa.
This gives an indicator that tells whether a VM has moved away
or moved into this machine k. Intuitively, this is like modeling a
XOR operation (Equation 14). Summing over this variable for each
VM instance givesi the total number of migrations from the previ-
ous epoch (Equation 15). Lastly, Equation 16 models the migration
budget such that the total number of migrations should not exceed
PercentBudget of the total workloads (i.e., total number of VMs
that currently have place assignments).
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