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ABSTRACT
In response to the critical challenges of the current Internet
architecture and its protocols, a set of so-called clean slate
designs has been proposed. Common among them is an
addressing scheme that separates location and identity with
self-certifying, flat and non-aggregatable address components.
Each component is long, reaching a few kilobits, and would
consume an amount of fast memory in data plane devices
(e.g., routers) that is far beyond existing capacities. To
address this challenge, we present Caesar, a high-speed and
length-agnostic forwarding engine for future border routers,
performing most of the lookups within three fast memory
accesses.

To compress forwarding states, Caesar constructs scalable
and reliable Bloom filters in Ternary Content Addressable
Memory (TCAM). To guarantee correctness, Caesar detects
false positives at high speed and develops a blacklisting
approach to handling them. In addition, we optimize our
design by introducing a hashing scheme that reduces the
number of hash computations from k to log(k) per lookup
based on hash coding theory. We handle routing updates
while keeping filters highly utilized in address removals. We
perform extensive analysis and simulations using real tra�c
and routing traces to demonstrate the benefits of our design.
Our evaluation shows that Caesar is more energy-e�cient
and less expensive (in terms of total material cost) compared
to optimized IPv6 TCAM-based solutions by up to 67% and
43% respectively. In addition, the total cost of our design is
approximately the same for various address lengths.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
communications; C.2.6 [Internetworking]: Routers
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Future Internet Architecture; Bloom Filters; Border Routers

1. INTRODUCTION
Aiming at providing a more secure, robust, and flexible

Internet, the networking research community recently has fo-
cused on developing new architectures for the next-generation
Internet. For example, AIP [12] introduces accountability
at the IP layer, thus enabling simple solutions to prevent
a wide range of attacks. XIA [21] supports an evolvable
Internet by providing the capability to accommodate poten-
tially unforeseen diverse protocols and services in the future.
MobilityFirst project aims at developing an e�cient and
scalable architecture for emerging mobility services [9].
All of these proposals share two important features of

their addressing schemes: each address is decoupled from its
owner’s network location and permits its owner to crypto-
graphically prove its ownership of the address. The separa-

tion feature enables improved mobility support and multi-
homing. The cryptographic aspect facilitates authentication
and authorization of control and data messages. However,
on the down side, both features require addresses to be in-
herently long and thus take up significant memory space due
to a lack of hierarchical structure to support aggregation.
For instance, in the design of MobilityFirst [9], each address
component can be a few kilobits in size. Not surprisingly, it is
expected to have forwarding tables on the order of gigabytes
in future Internet architecture designs [21]. Such addressing
schemes make the design and implementation of high-speed
border routers challenging as detailed below.

First, memory provisioning becomes more di�cult com-
pared to existing network elements. The future Internet will
experience a tremendous surge in the number of addressable
end-points. Recent studies [8, 6] have predicted that the
number of connecting devices and active address prefixes will
jump to 50 billion and 1.3-2.3 million, respectively, by the
end of 2020. On the other hand, the current rapid growth of
the number of address prefixes (i.e., about 17% per year) is
the root of many existing problems for operators, who have
to continuously shrink the routing and forwarding tables of
their devices or upgrade to increasingly more expensive data
planes [13].

Second, power consumption of border routers is expected
to increase substantially. Most of high-speed routers and
switches utilize a specialized fast memory called Ternary
Content Addressable Memory (TCAM) due to its speed and
in particular its parallel lookup capabilities. TCAM is the
most expensive and power-hungry component in routers and
switches. It requires 2.7 times more transistors per bit [11]
and consumes an order of magnitude more power [35] com-
pared with the same size of SRAM. Therefore, increased
address length imposes substantial cost and power consump-
tion in particular on high-speed border routers with TCAM.
Although software-based solutions might seem viable, their
forwarding speed cannot compete with TCAM-based routers
that can support up to 1.6 billion searches per second under
typical operating conditions [3].

Third, the critical-path fast memory components of high-
speed routers are small in size, and their capacity does
not increase at a rate that would accommodate the large
addresses of future Internet designs in the foreseeable future.
Moore’s law is only applicable to slow memories (i.e., DRAM)
but not to fast memories [4]. As a matter of fact, we have
observed that the TCAM capacity of the state-of-the-art high-
speed routers has remained mostly unchanged for several
years. As a result of limited memory, network operators still
have di�culties in dividing the memory space between IPv4
and IPv6 addresses [7].
To address these challenges, recent research has o↵ered

scalable routing tables [29] and forwarding engines (e.g.,



storage-based [25] and software-based [21]) for the new ad-
dressing schemes. Unfortunately, these solutions have limited
performance due to the approach of storing addresses into
slow memories. Also, due to a lack of address compression, ef-
ficiency and scalability of their proposed schemes are inversely
proportional to the length of addresses. The same limita-
tion also makes a large body of research in IP lookup [27],
which optimizes longest prefix matching, ill-suited for flat
and non-aggregatable addresses.

This paper presents Caesar, a high-speed, memory-e�cient,
and cost-e↵ective forwarding and routing architecture for
future Internet border routers. At a high level, Caesar lever-
ages Bloom Filters [14], a probabilistic and compact data
structure, to group and compress addresses into flexible and
scalable filters. Filters1 have been used in designing routers
for both flat (e.g., [33, 20]) and IP (e.g., [15, 31]) addresses.
These designs are optimized for small-scale networks (e.g.,
layer two networks) and do not provide guaranteed forward-
ing speed and full correctness. Therefore, Caesar focuses
on improving performance, memory footprint, energy usage,
and scalability of routers deployed at future Internet domain
borders. In particular, we make the following contributions:
• We propose a new method for grouping self-certifying
addresses into fine-grained filters. The grouping scheme
minimizes route update overhead and supports diverse
forwarding policies. We also design the first high-speed
forwarding engine that can handle thousands of filters
and forward almost all incoming packets within three fast
memory accesses.

• We design a backup forwarding path to ensure the cor-
rectness of forwarding. Our approach leverages the multi-
match line of TCAM to detect false positives at high speed.
We also introduce a blacklisting mechanism that e�ciently
caches RIB lookup results to minimize the frequency of
accessing slow memory. In contrast, previous work either
accesses slow memory several times per packet [15] or
randomly forwards packets [33] when false positives occur.

• We strategically leverage counting filters [18] to support
address removal while keeping the memory usage benefits
of standard filters for high-speed forwarding. To achieve
the best of both worlds, for each standard filter in TCAM,
we construct a “shadow” counting filter in slow memory
and always keep standard filters highly utilized in address
removal and insertion procedures.

• Based on hash coding theory [36], we propose a hash
computation scheme for filters to reduce the number of
computations from k to log(k) per lookup (k is the number
of hash functions for a filter). We show that the lookup
processing overhead can be reduced by up to 70% com-
pared to the flat scheme. Also, our scheme requires at
most 1.16 log(k) hash computations for finding k di↵erent
positions in a small filter while the flat scheme needs up
to 1.5 k computations.

• We perform analysis and extensive simulations using real
routing and tra�c traces to demonstrate the benefits of our
design. Caesar is more energy-e�cient and less expensive
(in terms of total material cost) compared to optimized
IPv6 TCAM-based solutions (e.g., [34]) by up to 67%
and 43% respectively. In addition, the cost of our design
remains constant for various address lengths.

1We use “filter” as a shorthand for Bloom Filter throughout
this paper.

2. BACKGROUND AND MOTIVATION
Caesar’s focus is on the generalized future Internet archi-

tecture. As illustrated in Fig 2a, the generalized architecture
is comprised of a set of independent accountable domains

(IADs). An IAD represents a single administration that owns
and controls a number of small accountable domains (ADs).
For example, an AD can be a university or an enterprise
network. In this model, each end host uses a global identifier
(GID) to attach to ADs. In addition, a logically centralized
name resolution service stores GID  ! AD mappings to in-
troduce new opportunities for seamless mobility and context
aware applications.

Packet forwarding at borders? The architecture has
di↵erent routing and forwarding mechanisms compared to
today’s Internet. In particular, borders routers sitting at the
edge of ADs build forwarding states or mappings between
destination ADs and next-hop ADs. Formally, when a border
router of AD

i

receives a packet destined to AD
d

: GID
d

, it
forwards the packet, through a physical port, to a next hop
AD on the path to AD

d

. The same procedure occurs until
the packet reaches a border router of AD

d

. Finally, based on
GID

d

, it is sent to an internal router where the destination
end host is attached. In this procedure, AD addresses are
cryptographically verifiable and thus they are long and non-
aggregatable. The length of addresses is typically between
160 bits [12] and a few kilobits [9] leading to forwarding tables
on the order of gigabytes [21]. In the future, larger address
lengths are expected to counter cryptanalytic progress.

Why Bloom filters? Caesar employs filters to compress
the forwarding states, i.e., AD to next hop AD mappings,
in the border routers. However, Caesar can be extended to
support forwarding schemes with more components in its
other pipelines (e.g., XIA [21]). It also supports various stan-
dard forwarding policies (e.g., multi-path and rate-limiting).
A filter is a bitmap that conceptually represents a group.
It responds to membership test queries (i.e., “Is element
e in set E?”). Compared to hash tables, filters are a bet-
ter choice. First, they are length-agnostic, i.e., both long
and short addresses take up the same amount of memory
space. Second, a filter uses multiple hash values per key or
address, thus leading to fewer collisions. In the insertion
procedure, a filter computes k di↵erent and uniform hash
functions (h1, h2, . . . hk

) on an input and then sets the bits
corresponding to the hash values to 1. In a membership test,
a similar procedure is followed; if all the bits corresponding
to hash results have the value of 1, it reports the element
exists otherwise the negative result is reported.

2.1 Caesar Design Goals and Challenges
Using filters for minimizing fast memory consumption

poses several design challenges that are unique to the future
Internet scale and Caesar’s role as a high-speed border router,
which make our work di↵erent from previous designs using
similar techniques (e.g., [20, 33, 31, 17]).

Challenge 1: Constructing scalable, reliable and
flexible filters. Compared to the future Internet scale, a
data center or enterprise network is very small in size with
orders of magnitude fewer addresses. In such single-domain,
small-scale networks, designing filters to compress forwarding
states of flat addresses (e.g., layer two (MAC) addresses) is
straight-forward. One widely used approach is to construct
multiple filters in each switch, each storing destination ad-
dresses reachable via the same next-hop port on the shortest



path (e.g., see [33, 20, 17]). Based on this approach, each
switch generates and stores a few very large filters in terms
of bit length and constituent members (addresses) since the
number of ports on a switch is limited.
We argue this filter construction is very coarse-grained

and thus not su�ciently scalable and flexible to be used
in Caesar, because our target network consists of multiple

independent domains and has a higher scale. First, there can
be millions of AD addresses in the future Internet, putting
tremendous pressure on the forwarding plane. It is neither
scalable nor reliable to store hundreds of thousands of AD
addresses into each filter. This is because even a single bit
failure in the filter bitmap can risk correctness by delivering
a large portion of tra�c to wrong next-hop ADs. Second,
AD addresses are from various administrative domains, each
of which can publish extensive routing updates. Because of
storing many addresses into a few large filters, the above
approach interrupts or “freezes” packets in the forwarding
pipeline at a higher rate in response to each update. This
is because modifying a filter requires inactivating the entire
bitmap for consistency. For these reasons, the design of
Caesar benefits from fine-grained filter construction with
higher scalability and flexibility.

Challenge 2: Providing guaranteed high-speed for-
warding. Caesar’s goal is to achieve a forwarding rate simi-
lar to that of high-speed border routers (e.g., 100s of millions
of packets per second). However, compressing addresses into
filters creates a bottleneck in the processing pipeline. To
run a membership test on a filter, we need to compute k
hash functions and access the memory k times in the worst
case. Previous designs do not provide hash computation
optimization and also access filters naively (e.g., [15, 20]).
Thus they have limited peak forwarding speeds, on the order
of a few hundred kpps (e.g., [33]), even for fewer than a
hundred filters. This is orders of magnitude smaller than
Caesar’s objective. Also, instantiating more filters to support
fine-grained policies makes existing designs more ine�cient.

Challenge 3: Avoiding Internet-wide false posi-
tives. One key limitation of compression using filters is
occasional false positives; that is, a filter incorrectly rec-
ognizes a non-existing address as its member due to hash
collisions. In this case, all positions that correspond to hash
values of the address have been set to 1 by insertions of
other addresses. For a filter, there is an inherent tradeo↵
between the memory size and false positive rate. A filter
naturally generates fewer false positives as memory footprint
increases. For Caesar, false positives can result in Internet-
wide black holes and loops, thus disrupting essential Internet
services. To address this problem, multiple solutions have
been proposed (e.g., [24, 33]) that either are very slow, incur
domain-level path inflation or o↵er partial correctness. Cae-
sar cannot borrow them because, as a border router, it must
provide deterministic correctness at high speed.

Challenge 4: Updating filters and maximizing their
utilization. Routing and forwarding tables might need to
be updated. Supporting updates poses two challenges to
Caesar. First, a routing message can lead to address with-
drawal from filters. However, removing an address from
a standard filter inevitably introduces false negatives. An
address is mapped to k positions, and although setting any
of the positions to zero is enough to remove the address, it
also leads to removing any other addresses that use the same
position. Second, even with supporting address removal, the

total utilization of filters and the compression rate can be
negatively impacted if many addresses are removed from a
filter and distributed into other filters.
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Figure 1: Caesar Architecture. The backup path result is
selected when MM (multi-match) flag is high.

2.2 Caesar Architecture Overview
Caesar benefits from two logical data structures: a routing

information base (RIB) and a forwarding information base
(FIB). The RIB maintains all paths to destinations ADs;
the FIB is used to match ingress packets to outgoing links.
Similar to modern hardware routers, Caesar implements the
RIB and FIB using slow and fast memories respectively.

Caesar has a novel FIB design as illustrated in Fig 1, which
consists of two forwarding paths or pipelines. Each pipeline
performs a di↵erent series of actions on the input packet,
but they both run in parallel. The vast majority of packets
go through the primary path that leverages our scalable and
flexible filters constructed in TCAM (Sec 3). The backup

path is built from the fast memory and handles uncommon
cases where the primary path is not reliable due to false
positives in the filters thus rarely is less e�cient when it
accesses the RIB (Sec 4). In other words, the primary path
ensures the common-case high-speed forwarding while the
backup path guarantees the correctness.
Caesar minimally extends the RIB to support routing

updates and keep filters of the primary path highly utilized
in such events; it also optimizes the computational overhead
of hash functions to remove a potential processing bottleneck
(Sec 5). Our design provides a practical solution that can be
implemented by existing hardware (e.g., SDN switches) with
guaranteed performance. More importantly, our design can
be replicated to support specific future forwarding schemes
(e.g., XIA [21] having more address components and the
backward compatibility feature).

3. PRIMARY FORWARDING PATH
We first describe our design of the primary forwarding

path. A simple approach to compressing forwarding states is
to group all destination addresses reachable through the same
outgoing interface into a filter (e.g., Bu↵alo [33]). In this
section, we first discuss how our high-speed filters minimize
data path interruptions, improve the reliability, and allow
rapid false positive handling compared to the simple method
(Sec 3.1). Then we describe how we dynamically instantiate
filters and perform parallel membership tests (Sec 3.3)
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Figure 2: Caesar’s scalable and reliable filter construction in border router R.

3.1 Scalable and Reliable Filters
As shown in Fig 2b, Caesar’s control logic stores forward-

ing states into multiple fine-grained filters in the data path,
presenting a new abstraction. Each filter encompasses a
group of destination AD addresses and is mapped to forward-
ing actions or instructions. To forward an incoming packet,
the data path in parallel performs membership tests on filters
and then learns how to deliver the packet to outgoing ports.
At the control plane, Caesar introduces two primary proper-
ties to group and store destination AD addresses into filters.
AD addresses that have the same properties at the same time
get an identical group membership, and consequently are
encoded into the same logical filter. Caesar’s control plane
is also flexible to define additional properties to form various
groups. The primary properties are as follows (the design
rationale will be clarified in subsections 3.1.1 and 3.1.2):
• Location property separates destination ADs that are

advertised and owned by the same IAD from the others.
• Policy property separates destination ADs that are un-
der the same forwarding policy, which is determined by
the Caesar’s control plane, from the others.
Caesar’s control logic continuously determines the FIB

entries, and forms groups and constructs filters based on
the local properties. Then, it couples each filter to the

forwarding policy of the group. For simplicity, we focus on a
basic forwarding policy below, even though Caesar supports
more complex policies (e.g., rate-limiting). For a destination
AD address, Caesar’s basic policy or next-hop information

includes all (next-hop AD, outgoing port) pairs that are
selected by the control plane for forwarding ingress tra�c
destined for the AD. For multi-path forwarding, the next-hop
information simply consists of multiple such pairs.

Example. In a multi-path scenario, filters of border router
R are shown in Fig 2b. Based on the Caesar’s control logic
outputs, destination ADs with the same policy and location
properties are filled with the same pattern, each representing
an address group (Fig 2a). Then the groups are stored into
five filters in the Caesar’s data path (Fig 2b). In this example,
tra�c to each of the addresses AD4 and AD5 is desired to
be forwarded on multiple paths. For input packets, the data
path runs parallel membership tests on the filters to retrieve
the next-hop information at high speed (Sec 3.3). We save
memory from two aspects. First, we hash each long address

into a few positions within a small filter. Doing so consumes
significantly less memory than storing the original address
does. Second, we reduce the memory usage of the next
hop information by decreasing the number of FIB entries.
Caesar further minimizes the overhead of maintaining next-
hop information (Sec 3.4).

3.1.1 Why Separation by Forwarding Policy?
At the high level, the policy property isolates destination

AD addresses under the same forwarding actions from the
others, and allows us to guarantee data path correctness. For
any action or policy supported in the data path of Caesar
routers (e.g., rate limiting, ACLs, or next-hop information),
the policy property ensures each address is only inserted
into one group and thus leads to disjoint filters. This is a
key design decision that allows our false positive detection
procedure to work at high speed (will be detailed in Sec 4.1).

Multi-match uncertainty problem. Existing address
grouping approaches used in previous filter-based routers
mostly store an address into multiple filters and inevitably
make the reasoning about membership tests both hard and
slow (e.g., [20, 31, 15, 33]). For example, Fig 2c shows how
Bu↵alo [33] establishes a simple approach to construct one
filter per outgoing port, which is referred as “simple grouping
method” in this paper. Bu↵alo su↵ers from an uncertainty in
its data path operations in multi-path forwarding scenarios
as follows. Assume we are interested in splitting incoming
tra�c destined for an AD address into multiple outgoing
links. The simple grouping method installs the AD address
into multiple filters, each assigned to one of the egress links.
For example, Bu↵alo inserts AD4 and AD5 into filters 2 and
3 in Fig 2c to perform load balancing. This potentially equiv-
ocates the lookup operation output. If there are multiple
matching filters, it is impossible to immediately distinguish
between two states: 1) true multiple matches in the multi-
path forwarding; and 2) multiple matches due to one or more
false positives.

Current solutions. There are two solutions in the liter-
ature for mitigating the multi-match uncertainty problem
in filter-based routers and switches. The first category of
solutions accesses the RIB stored in slow memory and checks
all candidates sequentially [15, 31] when multiple matches
happen in a lookup. The other category of solutions forwards
packets randomly without further checking or randomize fil-



ters [33, 28]. Because of insu�cient performance and poor
correctness, Caesar constructs disjoint filters, each of which
is coupled and mapped to the entire forwarding actions of
the group (e.g., all specified next-hop pairs in multi-path
scenarios) in its data path. For instance, in Fig 2b, Caesar
stores AD4 and AD5 only into the filter IAD12 that is as-
sociated with both next-hop pairs as its forwarding actions.
Therefore, Caesar expects exactly one matching filter from
the lookup operation. Note if there are other policies or
actions in addition to next-hop pairs, we can aggregate them
in a similar way to build up disjoint filters.

3.1.2 Why Separation by Location?
As shown in Fig 2, the location property isolates destina-

tion AD addresses of di↵erent IADs into separate logical
groups and makes constructed filters flexible and reliable. It
minimizes processing interruption and performance degra-
dation when the control plane updates a forwarding state
in the FIB once it receives route updates or locally enforces
new forwarding policies.
First, given there can be millions of AD addresses in

the future Internet, the location-based isolation systemati-

cally ameliorates the reliability challenges by making defined
groups small in size and shrinking filters in width substan-
tially. Therefore a small portion of the Caesar’s FIB becomes
“frozen” when a desired filter is inactivated during its bitmap
update, or when a bit failure occurs in a bitmap. How-
ever, existing designs that use the simple filter construction
method (e.g., Bu↵alo [33]) can disrupt tra�c forwarding to
many destinations and are prone to more failure. This is
because they store millions of addresses into a few very large
filters.

One can use other properties to make groups more specific
and smaller, but the location-based separation also limits side
e↵ects of Route flapping events, which have been identified by
other work [16]. In the future Internet context, these events
occur because of a hardware failure or misconfiguration in a
border router of an IAD. In this case, the router advertises
a stream of fluctuating routes for ADs in its owner IAD
into the global routing system. However, Caesar’s data
plane keeps the majority of filters protected from any bitmap
modification in response to such route updates, except those
filters built for that problematic IAD.
Second, the location-based isolation allows Caesar to en-

force business-specific policy e�ciently. For example, Cae-
sar’s control plane can dynamically stop forwarding tra�c to
ADs in a specific IAD (e.g., due to political reasons [32]) with-
out interrupting tra�c forwarding to other AD addresses.

3.2 Memory Technology for Filters
In practice, the number of filters generated based on the

two primary properties can be high. This is because Caesar
constructs more specific and fine-grained address groups. We
approximate the worst case number of filters that might
be constructed in our forwarding engine. To achieve our
performance requirement, the approximation is used to find
the best memory technology for filter implementation.
Let d denote the total number of IADs throughout the

Internet. Also, let p be the total number of di↵erent for-
warding policies that can be defined by the control plane of
a Caesar router. Then the number of filters is O(dp). For
example, 2M filters are generated for p = 20 and d = 105 in
the worst case. This poses performance challenges because

Caesar must test filters very fast to achieve a high forwarding
rate (e.g., 100s of millions of packets per second (Mpps) [2]).

SRAM is the fastest memory technology in terms of access
delay (about 4ns based on Table 1). However, it can provide
high-speed forwarding rates only when it stores a small
number of filters, and the performance dramatically degrades
to a few kpps even when a few hundred filters are tested
in a lookup [33]. This is because the memory bandwidth
is limited (even for multi-port SRAMs) and there is a lack
of parallelism in accessing multiple filters, each requiring k
memory accesses in a membership test in the worst-case (k
is the number of hash functions). Therefore serialization and
contention become intensified as many fine-grained filters are
instantiated.
To overcome the above limitations, we propose to realize

filters using TCAM due to its three advantages over SRAM.
First, it supports parallel search operation that can be used
to lookup filters in one clock cycle (Sec 3.3). Second, we can
intelligently leverage one of its flags to handle false positives
(Sec 4). Third, it has less implementation complexity com-
pared to the approach of using distributed SRAM blocks [23].

3.3 Parallel Lookup of Filters
As shown in Fig 1, Caesar encodes filters that are heteroge-

neous in bit width and constituent members in TCAM data
entries to attain its desired forwarding rate. TCAM is an
associative memory that is made up of a number of entries.
All data entries have an identical width, which is statically
configurable by combining multiple entries. For example, a
TCAM with a base width of 64 bits can be configured to
various widths such as 128, 256, and 512 [10]. As shown in
Fig 3, each bit of the memory and input register can be set
to either 0, 1, or * (don’t-care). To search a key, TCAM in
parallel compares the content of the input register, which
contains a search key, with all memory entries in one clock
cycle. When there are multiple matches, it returns the index
of the matching entry with the highest priority. Typically,
an entry at a lower address has higher priority.

Heterogeneous filters. Since each IAD manages a dif-
ferent number of ADs, top tier IADs that form the core of
the future Internet can own a lot more ADs compared to
others. Hence the grouping properties can produce heteroge-
neous filters from three aspects: for a filter, the number of
inserted addresses, the filter bit width, and the number of
hash functions (in the insertion and test procedures) can be
di↵erent from the others. We can show it is possible to store
such heterogeneous filters in TCAM. For example, we can
extend short-width filters by filling the don’t-care values into
di↵erent positions, but the memory space is wasted and the
filter management becomes complex in terms of the insertion
and membership test procedures.

Caesar memory allocation strategy. To avoid the low
utilization and memory management overhead, we construct
equal-sized filters that have identical bit width (w) and
use the same k-hash functions. Caesar defines a global
maximum capacity for filters by which it restricts the number
of ADs in them. This maximum capacity, n

max

, can be
configured by the router’s bootstrap program. By defining
the maximum capacity, we can limit false positives in practice,
and theoretically calculate an upper bound on their rate.
Instead of storing all addresses of a group into a large filter,
Caesar allocates, releases, and combines equal-sized filters
depending on the size of a group that might change over



time due to address insertion and removal into the data
path (details in Sec 5.2). In the evaluation, we conduct
experiments to study how di↵erent n

max

and w values a↵ect
the trade-o↵ between the filter utilization and false positive
rate (Sec 6.2). Below, for simplicity, we focus on the lookup
procedure in the primary path when n

max

and w values are
given.

11000100010

00101100010

Input Register A 

TCAM A

10100010010

10001010001

{a1, a2}
{a3, a4}
{a5, a6}
{a7, a8}

a5

1***1******

(a) Option 1

**000*000*0

00*0**000*0

*0*000*00*0

*00*00*000*

Input Register B

TCAM B

{b1, b2}
{b3, b4}

{b7, b8}
{b5, b6}

b2

10010000000

(b) Option 2
Figure 3: Two options for a parallel membership test in
TCAM when there is no false positive and k is 2

Caesar’s parallel filter lookup. Assume Caesar’s TCAM
contains a set of w-bit disjoint filters, each storing at most
n
max

destination AD addresses. Each equal-sized filter oc-
cupies a memory entry, as shown in Fig 3. We design two
options in Caesar to perform parallel filter lookups. Suppose
we would like to retrieve the basic forwarding policy or the
next-hop pairs of an incoming packet destined for AD

key

.
First, k hash functions (H={h1, h2, . . . hk

}) are computed on
AD

key

. In the first option (Fig 3a), we set all the positions
of the input register that do not correspond to H (i.e., not
set by any of the k hash functions) to the don’t-care value,
and set all other positions to 1. When the search is issued,
the TCAM locates the target filter by matching 1s in one
clock cycle. In the second option (Fig 3b), we set all the
positions of the input register that correspond to H to 1, and
set all other positions to 0. When we issue the search, the
TCAM locates the filter whose positions that correspond to
H have the don’t-care value. Finally, we retrieve the next-hop
information mapped to the matching filter to continue the
packet processing.

Design implications. The first di↵erence between the
two options is how filters are represented in the TCAM.
In the second option, all 1s within standard filters need to
be changed to don’t-cares. The second di↵erence is about
the number of writes to the input register bits. Assume
the input register has the default value of 0, the second
option requires setting only k positions in the input register
while the first option needs to modify all w bits to 1s or *s.
Although the power to toggle the memory and input register
bits can be very small in practice, one can benefit from one
of the options to perform hardware-specific optimizations for
write-intensive workloads. Note that the encoding options
do not change the false positive rate or incur false negatives.
Also, unlike IP routers that keep address prefixes sorted in
decreasing prefix-length order to implement the longest prefix

matching algorithm, the order of entries does not matter
Caesar, except in uncommon cases where there are matches
of multiple entries due to false positives. In this case, there
is no unique ordering with which we can deterministically
mask all false positives, so the backup forwarding path is
triggered (Sec 4).

3.4 Reducing Next-Hop Fast Memory
Because routers usually have a limited number of (next-hop

AD, outgoing port) pairs, often many filters with di↵erent
location properties are mapped to the same next-hop infor-
mation (e.g., AD8 and AD1 in Fig 2). We can eliminate the
memory redundancy in storing next-hop information and
make Caesar’s data path more agnostic to the address length.
At a cost of an extra fast memory access per lookup, we
can store all di↵erent next-hop information into a separate
fast memory space (i.e., SRAM C in Fig 1), and then map
each filter to a pointer (NH) pointing that memory. Each
NH-pointer can be realized by using only one byte in most
cases because of limited number of ports on a router. This
approach minimizes the fast memory overhead, in particular
when TCAM contains a large number of filters. A similar
technique can be applied when other forwarding actions or
policies are supported in addition to (next-hop AD, outgoing
port) pairs for filters.

Primary path performance implication So far, we
have encoded AD addresses into the primary path such that
the next-hop information can be retrieved in at most three
memory access, each taking about 4ns delay based on Table 1.
With using faster TCAMs [3], the primary path can support
up to 1.6 billion filter searches per second under typical
operating conditions

4. BACKUP FORWARDING PATH
We now describe the backup forwarding path and introduce

a blacklisting mechanism to handle false positives as shown
in Fig 1.

4.1 High-Speed False Positive Detection
The grouping properties lead to disjoint filters in the pres-

ence of di↵erent forwarding policies in a Caesar router. There-
fore, we expect one matching filter in each parallel lookup
and thus do not need to deal with the multi-match uncer-
tainty problem (Sec 3.1). Caesar deterministically interprets
any multiple matching filters as an event that indicates the
primary path is no longer reliable, and the processed packet
might be forwarded to an incorrect next hop. Caesar intel-
ligently detects such events using Multi Match (MM) line

of state of the art TCAMs, a flag indicating that there are
multiple matching entries. In every lookup, the primary path
is used if and only if the MM line output is low (see Fig 1).
We describe the details as follows.
• The low MM line ensures that the index of the matching

entry reported by the TCAM is the (only) correct filter. In
other words, the destination address of the incoming packet
is encoded in the TCAM without ambiguity. Therefore, the
packet is processed based on the correct next-hop pointer
(NH

primary

) through the primary path.
• If the MM line is high, the true matching filter is at the ith

position and there is at least a filter at position j 6= i that
has returned false positive. If j < i, the reported index
is not correct, otherwise the error is masked by the true
matching filter that has higher priority (lower address).



However, distinguishing between these two cases is not
possible, so the backup forwarding path is triggered.

4.2 Blacklisting Mechanism
The backup forwarding path delays at most the first packet

in a flow that is destined for an AD on which the primary
path encounters multiple matches. There are two components
in the backup path (see Fig 1):
• The Blacklist Memory is a very small, high-speed, and
SRAM-based hash table that maps the hash value of an
AD to its correct next-hop pointer (NH). In addition,
each entry has an expiration or idle time that helps keep
the hash table small and minimize potential collisions. An
entry is deleted from the blacklist memory if it is not used
for a predetermined period of time.

• The False Positive Resolver (FPR) is a component that
creates entries in the Blacklist memory. It accesses the RIB
that is stored in a hash table in slow memory, and retrieves
the correct next-hop information, i.e., all (next-hop AD,
port) pairs, in constant time.

Backup path. Given the above components, the backup
path works as follows (Fig 1). In parallel to the primary path,
the backup path proactively retrieves the next-hop pointer
NH

backup

from the blacklist memory for every incoming
address AD

d

. If the primary path activates the MM line,
Chooser picks NH

backup

from the backup path, otherwise
it selects NH

primary

from the primary path. If the MM
line is high and NH

backup

does not exist in Blacklist, the
backup path delays forwarding and waits for FPR to retrieve
the mapping from the RIB. FPR then updates Blacklist to
avoid delaying subsequent packets belonging the same flow
as well as future flows to the same destination AD. Finally,
the NH

backup

is sent to Chooser in this case.
Backup path performance implication. The backup

path is as performant as the primary path almost always
for three reasons. First, for optimally configured filters, the
backup path result is rarely used because the multi-match
rate is very small in theory and for actual workloads. We
show this by analysis and evaluating two extreme cases
of blacklisting (Sec 6). Second, when a multi-match rarely
occurs, the results of the backup and primary paths are ready
at the same time since the Blacklist memory mostly hits.
Third, a Blacklist miss occurs for the first packet of a flow
in the worst case (when the idle time is minimum). In such
a case, the processing takes more time due to accessing slow
memory. Caesar can minimize this by employing two known
techniques. Given only next-hop pointers are needed to be
retrieved, we can implement an e�cient and summarized
RIB to minimize the delay to one slow memory access (about
20ns). Also, we can minimize the miss rate by establishing a
multi-level Blacklist approach similar to hierarchical caching
schemes.

Security implication. From the security perspective, it
is di�cult for an attacker to trigger the backup path and to
infer what ADs use this path for two reasons. The inference
of k hash functions and filter organization, changing over
time, is very hard. Second, the observed delay caused by the
slow memory access is very small and happens infrequently.

5. FORWARDING OPTIMIZATIONS
The parallel paths can process almost all packets within

three fast memory accesses and o↵er deterministic correct-

ness. However, the hash computation must be optimized
to guarantee the entire performance. Although there are
solutions for building uniform hashing (e.g., [26]), the com-
putation overhead is still an unsolved issue [22]. Related
designs (e.g., [33, 15, 20, 17]) have not taken into account
this overhead. Our key idea is to exponentially minimize
the number of hash computations, and then run them in
parallel similar to state-of-the-art routers (Sec 5.1). Caesar
also handles route updates and optimizes the filter utilization
(Sec 5.2).

5.1 Scalable Hash Computation
We leverage a simple but e↵ective technique to reduce

the number of hash computations. Our approach is based
on hash coding theory [36] with its basic property. If we
have two di↵erent and uniformly distributed hash values
f(x) and g(x) for input key x, we can construct hash value
h(x) = f(x)� g(x) that is also from a uniform distribution.
The main intuition is that XOR is a uniform operation that
generates both 0 and 1 with the same probability for random
inputs (i.e., 0 and 1 are equally likely to appear). This
property is also applied to n-bit inputs in practice. For
example, SSL computes the MD5 and SHA-1 of its inputs
and combines them to avoid cryptanalytic attacks.

Hierarchical hash computation. Caesar recursively
employs the property to faster generate hash values in the
lookup and update procedure of small filters (e.g., 288-bit),
which have specific characteristics compared to large filters
(will be clarified below). Given k1 di↵erent hash values from
uniform distributions, H = {h1, h2, h3, · · ·hk1}, any non-
empty subset of H is a candidate for constructing a new
uniform hash value by performing the XOR operation among
its members. Because H has 2k1 � 1 non-empty subsets,
we can build 2k1 � k1 � 1 new uniform hash values. This
dramatically improves the hash computation performance.
For instance, four di↵erent uniform hash values in H =
{h1, h2, h3, h4} give us G = {h1�h2, h1�h3, h1�h4, . . . h1�
h2 � h3 � h4} that consists of 11 uniform hash values by
performing only 11 XOR operations.

Internal correlation. Theoretically, the correlation be-
tween recursively-constructed hash values does not lead to
more false positives as long as the seed set satisfies the
uniformity and diversity requirements. In practice, even
cryptographic hash functions might not completely satisfy
the uniformity. In this case, we have observed negligible
(positive and negative) di↵erence values between the flat and
hierarchical hash computation schemes in terms of false pos-
itive and multi-match rate, making this scheme practically
useful.

Small filters and internal collision. Caesar’s focus is
on very small filters, which is di↵erent from a similar usage
of the core property in previous work [31]. Particularly, our
results show small filters require k hash values of an address
to be di↵erent in contrast to large filters. However, k hash
functions might generate fewer than k di↵erent hash values
in practice. Therefore, we proactively compute su�cient
extra hash values for each address, which we refer it as
internal collision avoidance. In this case, we have observed
the hierarchical scheme has substantially lower computational
overhead compared to the standard flat scheme (complete
details in Sec 6.2.4).



5.2 Optimized Route Update Support
To handle control plane messages that change forwarding

states, Caesar should be able to remove any address from an
old filter, and insert it into a new filter. However, a standard
filter does not support graceful address removal.
We leverage counting filters [18] to realize this operation.

In a counting filter, each position is extended from a single-
bit (as in a standard filter) to an s-bit counter. To in-
sert/remove an address, the value of each of the k positions,
each corresponding to a hash value of the address, is incre-
mented/decremented instead of being set/unset. Similarly,
the membership test checks the positions to see if all of them
have non-zero values or not. To integrate counting filters
into Caesar, a trivial solution is to directly put them into
TCAM, but this increases the TCAM memory usage as well
as the complexity of the parallel lookups. Instead, Caesar
keeps a counting filter in slow memory for each standard
filter in TCAM. Caesar does not access the counting filters
to perform forwarding, but only uses them to assist updating
standard filters.
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Figure 4: Address removal and insertion in filters when k
and n

max

are 2, and thus s = blog2(nmax

)c+ 1 = 2

Insertion and zero overflow. To store an address in
the data path, Caesar first learns its group based on the pri-
mary properties (Sec 3.1). Then it determines the insertion
position of the address in the TCAM based on its group.
If the specified group is old, multiple filters already have
been assigned to old members of the group in the TCAM.
In this case, Caesar balances the load among existing filters
of the group with a simple greedy approach. It selects an
available position or filter with the minimum utilization ratio,
n
i

/n
max

(n
i

is the number addresses in the filter). Otherwise
Caesar assigns a new position to the group and the address.
The specified position is also recorded in the RIB to support
removing the address without false negatives later.

After determining the position, we first insert the address
into the corresponding counting filter and then the standard
filter in a simple procedure (as shown in Fig 4). When
a counter changes from zero to non-zero, we change the
corresponding bit in the standard filter from zero to one
for option 1 (Fig 4a) and from zero to the don’t care (*)
for option 2 (Fig 4b). Unlike previous usage of counting
filters (e.g., [18]), our counting filters can be configured to
avoid overflows by setting s = blog2(nmax

)c+1 because each
standard filter contains at most n

max

addresses (Sec 3.3).
Removal and high filter utilization. To remove an

address, we first retrieve the its position (in TCAM) from the
RIB, which is necessary to avoid generating false negatives.

As shown in Fig 4, we then remove the address from the
counting filter at the position by decrementing the counters,
each of which maps to a hash value of the address. If any of
the counters becomes zero, we set the corresponding bit in
the standard filter to zero in the both options. In the address
removal procedure, Caesar checks the utilization ratio of the
a↵ected standard filter. If the ratio is below a predetermined
threshold, Caesar tries to combine the filter with other filters
allocated to the same group. This is necessary to reduce
the number of filters in the TCAM (We adjust the counting
filters accordingly).

6. EVALUATION
In this section, we first perform a cost-accuracy analysis

(Sec 6.1) and then do extensive simulations using multiple
workloads (Sec 6.2) to study Caesar from di↵erent aspects.

6.1 Cost-Accuracy Analysis
We provide a simple approximation showing the inherent

trade-o↵ between false positives of filters in the primary path
and the total cost of Caesar. Note Caesar correctly processes
all packets and false positives only a↵ect the amount of tra�c
handled in the backup path. Similar to AIP and XIA [12],
we assume each AD corresponds to an IP prefix in today’s
Internet but with larger size. The current number of active
address prefixes is about 481k and we envision 1M ADs to
accommodate a reasonable growth rate [6].

False positive estimation. Intuitively, the false positive
rate in the parallel filter lookup procedure for a destination
AD address depends on two factors. First, the position of
the true filter containing the address. Second, the fill factor
(i.e., the ratio of bits with the value 1) of all the filters
above the true filter. The fill factor of filter i is a function
of the number of inserted addresses in the filter (n

i

), the
width of entries (w), and the number of hash functions (k).
Caesar does not insert more than n

max

addresses in each
filter, so we can derive a theoretical upper bound on the
maximum false positive rate (FP) of filter i, given n

i

and w

are fixed, by FP (i) 6
⇣
1� e

�kn

max

w

⌘
k

. In this equation, k

can be computed optimally for given n
max

and w, k
opt

=
9w/13n

max

. We omit the detailed derivation for simplicity.
Assuming all addresses are accommodated into E entries
and a given packet matches any entry with the probability
of 1/E, the maximum expected false positive rate in parallel
filter lookups can calculated by Eq. 1.

E[false positive rate] 6 (E � 1)
2

⇣
1� e

�kn

max

w

⌘
k

(1)

The same approach can be used to derive the maximum

expected multi-match rate in parallel filter lookups, which
results in Eq. 2.

E[multi-match rate] 6 (E � 1)
⇣
1� e

�kn

max

w

⌘
k

(2)

Table 1: Fast memory reference price
Memory Capacity Delay Price Company Cost/ MB

SRAM 9MB 3-4ns $90 Cypress $10
TCAM 2.5MB 3-4ns $390 Broadcom $156

Cost estimation. Now, we turn into estimating the total
material cost. Our prices have been quoted by Cypress and



Broadcom for a TCAM and an SRAM working at 250 MHz as
shown in Table 1. As expected, the TCAM is more expensive
compared to the SRAM. Let C

TCAM

and C
SRAM

denote
the cost per-bit of TCAM and SRAM respectively. Assume
Caesar has h next-hop pairs and addresses are q-bit long.
Then, Eq. 3 gives an estimation of the total cost of a Caesar
router excluding the blacklist memory which is expected to
be small, while also ignoring the RIB and counting filters
which use inexpensive DRAM. The first term is the TCAM
cost, and the second term includes the cost of SRAM A and
C (see Fig 1).

Total Cost = EwC
TCAM

+ (log(h)E + hq)C
SRAM

(3)

Based on Table 1, Fig 5a illustrates the total cost of Caesar
for h = 64, q = 1kb, and variable n

max

and w. We assume
filters are fully utilized (i.e., E = #ADs/n

max

). We also
estimate the total costs of optimized TCAM-based IPv4 and
IPv6 routers (e.g., [34]) to be $604 and $2,389 respectively.
For the same parameters and the optimal k values, Fig 5b
depicts the maximum expected false positive rate in parallel
filter lookups.
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Figure 5: Cost-accuracy analysis

Finding 1. Caesar can be substantially less expen-
sive compared to TCAM-based IPv6 routers. We
observe there are several interesting options that provide a
reasonable accuracy for the filters with a feasible total cost.
For n

max

= 4 and w = 288, the maximum expected false
positive rate is around 10�10 and the total cost is $1, 340.
In this case, Caesar is about 43% less expensive than the
IPv6 router while our addresses are 8X longer than the IPv6
addresses.

Finding 2. The total cost of Caesar is constant for
very long addresses. To analyze the sensitivity of our
design to the AD address length, we compare the cost of
Caesar router with TCAM-based IP router. Fig 6 shows that
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Figure 6: Address length vs. total cost of TCAM-based IP
routers and Caesar routers with w = 288, n
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= 4

the total cost of our design is roughly constant even for very
long addresses. In contrast, the total cost of IP routers in-
creases linearly as addresses become longer (assuming future
IP addresses can be longer to support new services).

6.2 Extensive Trace-Driven Simulation
We now evaluate Caesar under real workloads. Because ex-

isting prototyping platforms such as NetFPGA lack su�cient
TCAM, we implement an accurate packet-level simulation
framework in C/C++ (with 2500 LoCs) and “mix and match”
various datasets. We measure the multi-match rate, percent-
age of delayed flows, e↵ects of grouping properties on the
memory utilization, e�ciency of the hierarchical hash com-
putation scheme, and energy consumption.

Table 2: Experiment statistics
Experiment Total # forwarded Monitoring
/Snapshot # ADs packet duration(s)

Jan 1, 2008 149842 12481172 25
Jan 1, 2009 162102 12849066 31
Jan 1, 2010 180470 16516240 41
Jan 1, 2011 205361 25459705 52
Jan 1, 2012 234483 28460868 55
Jan 1, 2013 255424 16662799 42

Total 112 M 246s

6.2.1 Dataset and Methodology
We simulate the future Internet architecture using public

datasets in six snapshots between 2008 and 2013 to consider
the growth rate of IADs and ADs. In our simulation, IAD
and AD correspond to today’s AS and IP prefix respectively.
We select only address prefixes of length 24 to feed experi-
ments with flat addresses. To consider high entropy of future
addresses, we replace them with their corresponding hash
value, which is computed using the SHA1 algorithm. To
represent the business agreements among IADs, we utilize
CAIDA inferred relations between ASes [1] and leverage
RIBs and update traces of Route Views [5] to generate the
FIBs based on the path length metric. We replay the packets
in tra�c traces collected from backbone links [1] and use
a recent power model [10] to measure the dynamic power
consumptions in the experiments. For each pair of n

max

and
w, we compute the optimal k and then construct filters based
on the primary properties. For the space reason, we show the
results for a single Caesar at the border of IAD 7726 when
w is 144 and n

max

is between 2 and 6. The other Caesar
routers and other settings follow a similar trend. Table 2 lists
the number of ADs and forwarded packets by this Caesar
router, and the duration of traces in each snapshot. Although
the monitoring duration is relatively short, the coverage of



destination addresses is high and su�cient for our evaluation
purpose. In total, the Caesar router forwards 112M packets,
and upon receiving each route update message, it runs the
best route selection procedure and updates filters if necessary.
The average rate of route update messages varies between
88.2 and 277.1 across di↵erent snapshots.

6.2.2 Multi-Match Rate and Memory Consumption
We first measure the multi-match rate in the primary path.

This rate indicates the amount of tra�c that is forwarded
by the backup path regardless of whether it is delayed by a
slow memory access to the RIB due to the blacklist memory
miss or it is delivered without any delay. Table 3 presents
the multi-match results and the memory usage of filters in
30 configurations.

Finding 3. Caesar can forward most of the tra�c
through the primary path within three fast memory
accesses. As expected, Table 3 shows the multi-match rate
in each snapshot exponentially increases as n

max

increases.
Although predicting the exact multi-match rate is impossi-
ble, we observe di↵erent snapshots have the same order of
magnitude of the multi-match rate for a fixed n

max

. This
indicates we can practically control the order of magnitude
of the multi-match rate in Caesar routers. In the case that
n
max

is 2, we observe that the multi-match rate is zero thus
the MM line never goes high. This means all the packets are
forwarded through the primary path, mainly due to using
more hash functions.
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Figure 7: Determining n

max

. (a) Average filter utiliza-
tion ratio of filters for w = 144 across all snapshots. (b)
Distribution of ADs in IADs in the first and last snapshots.

Finding 4. To find a reasonable n
max

, both the
memory utilization and multi-match rate are deter-
mining factors. Based on Table 3, two important reasons
suggest that we should keep n

max

smaller than 5 for w = 144.
First, we observe the multi-match rate increases several or-
ders of magnitude, from -2 to 0, when n

max

changes from 4
to 5. Second, the memory utilization rate (i.e., the di↵erence
between the memory footprint of two consecutive n

max

val-
ues) becomes smaller as n

max

increases. Now the question is
why the memory utilization rate decreases. Fig 7b shows the
distribution of ADs in IADs between five years. Also, Fig 7a
illustrates the average utilization of filters in TCAM, which
is defined as

P
E

i=1 ni

/(n
max

E), across all snapshots for each
n
max

value. From these two figures, we observe the memory
utilization rate reduces because the average utilization of
filters goes below 75% for n

max

values larger than 4 that is
because about 77% of IADs own fewer than 5 ADs.

6.2.3 Energy Consumption Breakdown
We now measure the total dynamic energy consumption

of Caesar and compare it to optimized TCAM-based IPv4
and IPv6 solutions (e.g., [34]). TCAM is the most power

consuming component among di↵erent memory technologies
in routers by several orders of magnitude. Therefore, we
can ignore the energy consumptions in the other memory
components of Caesar. The dynamic energy used in each
search operation depends on many factors and parameters
but is used in three high level architectural components [10]:
• Match lines that are charged in every lookup, and then

except the lines that match input address, the others are
discharged. The energy for this operation is proportional
to the sum of match lines capacitance (i.e., the ability to
store charge).

• Select lines that are driven to allow the comparison be-
tween input address and entries to happen. The energy
used to drive select lines usually increases as the size of
TCAM increases.

• Priority encoder that needs some power to work and
the required energy depends on the number of filters (E),
and is independent of the width of filters (w).
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Figure 8: Total search energy breakdown for w = 144.
Finding 5. Caesar consumes 67% less total energy

compared to TCAM-based IPV6 routers while the
addresses are substantially longer. Fig 8 illustrates the
total energy consumption break down across the TCAM com-
ponents for the snapshot 2012 (others have similar results)
for w = 144, variable n

max

, and 65nm CMOS technology.
We repeat the similar experiments for the IP routers. We
observe the total energy consumption of Caesar for n

max

= 4
is only 1% higher than the IPV4 router and 67% less than
the IPV6 router while addresses in Caesar are very longer.

6.2.4 Hierarchical Hash Computation Scalability
We now compare the hierarchical and flat hash computa-

tion schemes from two aspects.
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Finding 6. The hierarchical scheme needs smaller
number of hash computations for handling internal



Table 3: Multi-match rate and TCAM memory consumption for w = 144 and variable n
max

.
n
max

k
optimal

k
Caesar

Multi Match Rate(%)[w=144] TCAM Memory Footprint(MB)[w=144]
2008 2009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013

2 49 6 0 0 0 0 0 0 1.46 1.58 1.75 1.98 2.25 2.46
3 33 6 0.0002 0 0.0001 0 0.0001 0.0003 1.05 1.13 1.26 1.42 1.6 1.76
4 24 5 0.033 0.05 0.032 0.035 0.032 0.001 0.85 0.92 1.02 1.14 1.29 1.41
5 19 5 1.84 1.35 4.47 6.06 6.78 9.34 0.73 0.79 0.88 0.98 1.1 1.2
6 16 5 14.69 14.22 18.71 25.68 29.94 38.82 0.66 0.71 0.79 0.88 0.98 1.08

Table 4: E↵ects of permanent and per-flow blacklisting approaches
n
max

#Delayed Flows[Per-flow Blacklisting, w=144] #Delayed Flows[Permanent Blacklisting, w=144]
2008 2009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013

2 0 0 0 0 0 0 0 0 0 0 0 0
3 3 0 23 0 2 1 1 0 2 0 1 1
4 923 903 764 1371 885 2067 141 30 145 261 245 115
5 32209 20282 25670 45888 110984 47815 3359 628 3096 6303 6040 2978
6 271902 175575 284606 656360 457918 308102 21366 4559 28789 47024 50039 21231

collisions. Although filters use k di↵erent hash values to
insert and test an address, k hash functions might generate
fewer than k di↵erent hash values in practice, which we call
it internal collisions. In small filters, we have observed such
collisions can increase the multi-match rate by up 50%. This
is because the number of buckets in small filters is limited,
and the correlation among the k hash values computed for
a given address is stronger in practice. To control internal
collisions, we proactively compute extra hash values for each
address in the insertion and test procedures. In this way,
we obtain su�cient di↵erent hash values in both the flat
and hierarchical schemes. We measure the computational
overhead of the two schemes in terms of number of hash
computations, and aggregate the results across all snapshots
and configurations. For a given k, the hierarchical scheme
requires at most 1.16 log(k) hash computations while the flat
scheme needs at most 1.5 k hash computations to generate k
di↵erent values. This indicates our scheme performs well for
small filters because an extra di↵erent hash value in the seed
set can double the total number of di↵erent hash values.

Finding 7. The hierarchical scheme substantially
reduces hash computation processing overhead. We
also measure the computational overhead of the two schemes
in terms of CPU time when multi-threading is enabled for
the same number of threads. We plot the aggregate results
in Fig 9. To study the e↵ect of address length, we consider
160-bit and 320-bit AD addresses. For a fair comparison,
we do not enable internal collision avoidance that generates
extra hash values. For a fixed k, we observe our scheme in
average incurs by up to 18% and 70% smaller processing
overheads for 160-bit and 320-bit addresses compared to the
flat scheme. Note the overall number of XOR operations in
the hierarchical scheme is 2kCaesar � k

Caesar

� 1.

6.2.5 Blacklisting and backup path delay
Finally, we evaluate the blacklisting in two extreme cases:

per-flow and permanent. Due to blacklisting (Sec 4.2), only
a small amount of packets activating multi-match line and
going through the backup path are delayed. In the per-flow
case, we store the destination AD address of a flow that leads
to a multi-match until the flow completes. In the permanent
case, we permanently store AD addresses that lead to a
multi-match, upon the first detection.

Finding 8. Very few flows are delayed by both the
permanent and per-flow blacklisting schemes. Table 4

shows the di↵erence between these two cases. The perma-
nent case reduces the number of delayed flows by an order
of magnitude compared with the per-flow case. For example,
for n

max

= 4, fewer than 261 flows are delayed by the per-
manent blacklisting while the per-flow blacklisting approach
delays up to 17.93X more flows. Note when a flow is delayed
in both approaches, except its first packet, the other packets
are forwarded at high speed. In both approaches, the black-
list memory footprint is insignificant because each next-hop
pointer is only one-byte.

7. RELATED WORK
In the past few years, filters have been used in designing

routing and forwarding engines. These e↵orts mostly have
targeted improving the performance and simplifying tra�c
processing in enterprise switches and routers.
Much of the previous work focuses on memory-e�cient

IP routers [15, 31]. Unlike Caesar, these designs optimize
the longest prefix matching algorithm to minimize the fast
memory consumption. In particular, they store all address
prefixes of the same length into a very wide filter. Given
there can be multiple matches and the lookup uncertainty
problem, these systems mostly test all candidates against a
very large hash table located on slow memory to find the
length of the longest match. Due to limited performance,
these approaches cannot be used in high-speed border routers.
Also, their coarse-grained filter construction is not reliable
in practice.

Some other work focuses on designing low-cost and scalable
switches handling flat addresses in small-scale and single-
domain enterprise networks [20, 33]. The primary technique
in such designs is constructing a very large filter per outgoing
interface, each containing flat addresses reachable from the
port. Upon facing the multi-match uncertainty problem,
these designs mostly randomly choose among matching can-
didate filters, and thus impose significant delays and path
inflations. Also, they require many memory accesses per
lookup, and therefore have limited peak performance.
In contrast to the above techniques, Caesar is designed

for high-speed border routers in the future Internet. Caesar
constructs fine-grained filters that are more reliable and
scalable. Caesar does not need to compute separate hash
values for accessing each filter. It tests all the filters in parallel
in one clock cycle and does not waste many memory accesses
to check all the matching filters as it can detect false positives



at high speed using a hardware flag. Caesar minimizes hash
computation overheads by recursively combining hash values.
Our idea of using filters in TCAM entries is similar to

previous work [19]. However, the authors focus on the case
that input register is filled by a set of elements instead of
one to solve multiple string matching and virus detection
problems. Although the authors propose a theoretical upper
bound on the maximum false positive rate, still they do not
provide any mechanism for detecting false positives at high
speed. In contrast to this work, we reduce the hash com-
putation overhead, design parallel forwarding paths, cleanly
detect false positives, manage memory entries, and design
an element removal procedure.
To optimize hash table operations in network processors,

prior work [30] employs counting filter per table bucket. In-
stead, we use an expiration timer per address to minimize
the size of the Blacklist memory and avoid occasional colli-
sions. We can improve the robustness of the backup path by
benefiting from such techniques.
Our idea of using small counting filters to support route

changes is similar to some proposals (e.g., [33, 15, 18]). In
contrast to existing approaches, Caesar constructs equal-sized
filters in terms of bit width and the maximum number of
constituent members. We dynamically allocate counting and
standard filters while maintain them highly utilized. Also,
our counting filters never experience overflow, and we do
not modify the filters in the critical forwarding path during
updates.

8. CONCLUDING REMARKS
Existing future Internet architecture proposals share an

addressing scheme that requires addresses to be substantially
long. These proposals lack a high-speed and memory-e�cient
border router design. In this paper, we propose a practical
solution for high-speed routers of the future Internet archi-
tecture, called Caesar. We design scalable and reliable filters
to compress long addresses. Our design can be extended
to more address components. Due to poor performance of
storing filters into SRAMs, we design a forwarding engine
to search all the filters in parallel. To avoid forwarding
loops and black holes, the engine uses two forwarding paths.
We o↵er a novel blacklisting mechanism for accelerating the
performance of the backup path. Caesar supports routing
updates and performs intelligent memory management by
utilizing counting filters in slow memory. For minimizing
the computational overhead of hash functions, we propose a
hierarchical hash computation scheme for our small filters.
Our evaluation results indicate our design is memory-e�cient,
energy-e�cient, and high-performance in practice.

Acknowledgments
We would like to thank the anonymous reviewers for pro-
viding valuable feedback on our work, and Amir Rahmati
and Prabal Dutta at University of Michigan, and Patrick
Soheili at eSilicon for helpful discussions on SRAM and
TCAM technologies. This research was supported in part by
the National Science Foundation under grants CNS-1039657,
CNS-1345226, and CNS-1040626.

9. REFERENCES
[1] CAIDA Datasets. http://goo.gl/kcHlQf.
[2] Cisco Routers. http://goo.gl/6CWpLA.

[3] Esilicon TCAMs. http://goo.gl/O3rloQ.
[4] Internet Architecture Board. http://goo.gl/cnMyY9.
[5] Route Views Dataset. http://goo.gl/cn8sT6.
[6] Scaling Issues. http://goo.gl/SAnq28.
[7] TCAM Memory Challange. http://goo.gl/OGYyKn.
[8] Predictions. http://goo.gl/qmnVDy, 2012.
[9] MobilityFirst Project. http://goo.gl/sD64f9, 2014.

[10] B. Agrawal and T. Sherwood. Modeling TCAM Power for Next
Generation Network Devices. In Proc. IEEE ISPASS, 2006.

[11] M. Akhbarizadeh, M. Nourani, and D. Vijayasarathi. A
Nonredundant Ternary CAM Circuit for Network Search
Engines. IEEE Trans. VLSI, 2006.

[12] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable Internet Protocol. In
Proc. ACM SIGCOMM, 2008.

[13] H. Ballani, P. Francis, T. Cao, and J. Wang. Making Routers
Last Longer with ViAggre. In Proc. USENIX NSDI, 2009.

[14] B. H. Bloom. Space/Time Trade-O↵s in Hash Coding with
Allowable Errors. In ACM CCR, 1970.

[15] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor.
Longest Prefix Matching Using Bloom Filters. In Proc. ACM
SIGCOMM, 2003.

[16] A. Ermolinskiy and S. Shenker. Reducing transient
disconnectivity using anomaly-cognizant forwarding. In Proc.
Workshop on Hot Topics in Networks, 2008.

[17] C. Esteve, F. L. Verdi, and M. F. Magalhães. Towards a new
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