
�

�

�

�

�

�

�

�

8

StopWatch: A Cloud Architecture for Timing Channel Mitigation

PENG LI, University of North Carolina at Chapel Hill
DEBIN GAO, Singapore Management University
MICHAEL K. REITER, University of North Carolina at Chapel Hill

This article presents StopWatch, a system that defends against timing-based side-channel attacks that arise
from coresidency of victims and attackers in infrastructure-as-a-service clouds. StopWatch triplicates each
cloud-resident guest virtual machine (VM) and places replicas so that the three replicas of a guest VM are
coresident with nonoverlapping sets of (replicas of) other VMs. StopWatch uses the timing of I/O events
at a VM’s replicas collectively to determine the timings observed by each one or by an external observer,
so that observable timing behaviors are similarly likely in the absence of any other individual, coresident
VMs. We detail the design and implementation of StopWatch in Xen, evaluate the factors that influence its
performance, demonstrate its advantages relative to alternative defenses against timing side channels with
commodity hardware, and address the problem of placing VM replicas in a cloud under the constraints of
StopWatch so as to still enable adequate cloud utilization.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Information
flow controls

General Terms: Security, Design

Additional Key Words and Phrases: Timing channels, side channels, clouds, virtualization, replication

ACM Reference Format:
Peng Li, Debin Gao, and Michael K. Reiter. StopWatch: A cloud architecture for timing channel mitigation
ACM Trans. Inf. Syst. Secur. 17, 2, Article 8 (November 2014), 28 pages.
DOI:http://dx.doi.org/10.1145/2670940

1. INTRODUCTION

Implicit timing-based information flows threaten the use of clouds for very sensitive
computations. In an infrastructure-as-a-service (IaaS) cloud, such an attack could be
mounted by an attacker submitting a virtual machine (VM) to the cloud that times
the duration between events that it can observe, to make inferences about a victim
VM with which it is running simultaneously on the same host but otherwise cannot
access. Such “access-driven” attacks [Zhang et al. 2012b] were first studied in the con-
text of timing-based covert channels, in which the victim VM is infected with a Trojan
horse that intentionally signals information to the attacker VM by manipulating the
timings that the attacker VM observes. Of more significance in modern cloud environ-
ments, however, are timing-based side channels, which leverage the same principles
to attack an uninfected but oblivious victim VM (e.g., Ristenpart et al. [2009]; Zhang
et al. [2012b]).

In this article, we propose an approach for defending against these timing attacks
and a system, called StopWatch, that implements this method for IaaS clouds. A timing

This work was supported in part by NSF grants 0910483 and 1330599, the Science of Security Lablet at
North Carolina State University, and grants from IBM and VMWare.
Authors’ addresses: P. Li, VMWare, Palo Alto, CA; D. Gao, School of Information Systems, Singapore
Management University, Singapore; M. K. Reiter (corresponding author), Department of Computer Science,
University of North Carolina, Chapel Hill, NC; email: reiter@cs.unc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
2014 Copyright is held by the author/owner(s).
1094-9224/2014/11-ART8 $15.00
DOI:http://dx.doi.org/10.1145/2670940

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:2 P. Li et al.

side channel can arise whenever an attacker VM uses an event sequence it observes to
“time” another independent event sequence that might reflect the victim VM’s behav-
ior [Wray 1991]. StopWatch is thus designed to systematically remove independence
of observable event sequences where possible, first by making all real-time clocks ac-
cessible from a guest VM to be determined instead by the VM’s own execution.

To address event sequences on which it cannot intervene this way, namely, for in-
put/output (I/O) events, StopWatch alters I/O timings observed by the attacker VM
to mimic those of a replica attacker VM that is not coresident with the victim. Since
StopWatch cannot identify attackers and victims a priori, realizing this intuition in
practice requires replicating each VM on multiple hosts and enforcing that the replicas
are coresident with nonoverlapping sets of (replicas of) other VMs so that, in partic-
ular, at most one attacker VM replica is coresident with a replica of the victim VM.
StopWatch then delivers any I/O event to each VM replica at a time determined by
“microaggregating” the delivery times planned by the VMMs hosting those replicas.
Specifically, StopWatch uses three replicas per VM that coreside with nonoverlapping
sets of (replicas of) other VMs and microaggregates the timing of I/O events by taking
their median across all three replicas. (Two replicas per VM seems not to be enough:
one might be coresident with its victim, and by symmetry, its I/O timings would nec-
essarily influence the timings imposed on the pair.) Even if the median timing of an
I/O event is that which occurred at an attacker replica that is coresident with a victim
replica, timings both below and above the median occurred at attacker replicas that do
not coreside with the victim.

We detail the implementation of StopWatch in Xen, specifically to intervene on all
real-time clocks and, notably, to enforce this median behavior on “clocks” available via
the I/O subsystem (e.g., network interrupts). Moreover, for a uniprocessor VM (i.e., one
limited to using only a single virtual CPU, even when running on a physical platform
with multiple physical CPUs), StopWatch enforces deterministic execution across all of
the VM’s replicas, making it impossible for an attacker VM to utilize other internally
observable clocks and ensuring the same outputs from the VM replicas. By applying
the median principle to the timing of these outputs, StopWatch further interferes with
inferences that an observer external to the cloud could make on the basis of output
timings.

We evaluate the performance of our StopWatch prototype for supporting Web ser-
vice (file downloads) and various types of computations. Our analysis shows that the
latency overhead of StopWatch is less than 2.8×, even for network-intensive appli-
cations. We also identify adaptations to a service that can vastly increase its perfor-
mance when run over StopWatch, for example, making file download over StopWatch
competitive with file download over unmodified Xen. For computational benchmarks,
the latency induced by StopWatch is less than 2.3× and is directly correlated with
their amounts of disk I/O. Overall, the latency overhead of StopWatch is qualitatively
similar to other modern systems that use VM replication for other reasons (e.g., Cully
et al. [2008]). Moreover, we compare StopWatch to other defenses against timing side-
channel attacks, namely, adding uniformly random noise to event timings or running
VMs on shared hardware in a time-sliced fashion, and demonstrate StopWatch’s bene-
fits over them.

We also study the impact of StopWatch on cloud utilization, that is, how many guest
VMs can be simultaneously executed on an infrastructure of n machines, each with a
capacity of c guest VMs, under the constraint that the three replicas for each guest
VM coreside with nonoverlapping sets of (replicas of) other VMs. We show that for any
c ≤ n−1

2 , �(cn) guest VMs (three replicas of each) can be simultaneously executed;
we also identify practical algorithms for placing replicas to achieve this bound. We

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:3

extend this result to �(cn
dmax

) guest VMs when guest VMs can place different demands,
up to dmax, on machine resources of capacity c. These results distinguish StopWatch
from the alternative of simply running each guest VM on a separate computer, which
permits simultaneous execution of only n guest VMs.

To summarize, our contributions are as follows: First, we introduce a novel approach
for defending against access-driven timing side-channel attacks in infrastructure-as-
a-service (IaaS) compute clouds that leverages replication of guest VMs with the
constraint that the replicas of each guest VM coreside with nonoverlapping sets of
(replicas of) other VMs. The median timings of I/O events across the three guest VM
replicas are then imposed on these replicas to interfere with their use of event timings
to extract information from a victim VM with which one is coresident. Second, we de-
tail the implementation of this strategy in Xen, yielding a system called StopWatch,
and evaluate the performance of StopWatch on a variety of workloads. This evaluation
sheds light on the features of workloads that most impact the performance of appli-
cations running on StopWatch and how they can be adapted for best performance. We
further extend this evaluation with a comparison to other plausible alternatives for de-
fending holistically against access-driven timing side-channel attacks, such as adding
random noise to the observable timing of events or running VMs on shared hardware
in a time-sliced fashion. Third, we show how to place replicas under the constraints of
StopWatch to utilize a cloud infrastructure more effectively than running each guest
VM in isolation.

The rest of this article is structured as follows. We describe related work in
Section 2. We provide an overview of the design of StopWatch in Section 3 and de-
tail how we address classes of internal “clocks” used in timing attacks in Section 4
and Section 5. In Section 6, we then discuss how StopWatch extends to address richer
attacks involving collaborators external to the cloud or collaborative attacker VMs. We
evaluate performance of our StopWatch prototype in Section 7. We extend this evalua-
tion to provide a comparison to other holistic timing side-channel defenses in Section 8.
Section 9 treats the replica placement problem that would be faced by cloud operators
using StopWatch, and we conclude in Section 10.

2. RELATED WORK

2.1. Timing Channel Defenses

Defenses against information leakage via timing channels are diverse, taking numer-
ous different angles on the problem. Research on type systems and security-typed
languages to eliminate timing attacks offers powerful solutions (e.g., Agat [2000],
Zdancewic and Myers [2003], Zhang et al. [2012a]), but this work is not immediately
applicable to our goal here, namely, adapting an existing virtual machine monitor
(VMM) to support practical mitigation of timing channels today. Other research has
focused on the elimination of timing side channels within cryptographic computations
(e.g., [Tromer et al. 2010]) or as enabled by specific hardware components (e.g., [Kim
et al. 2012; Raj et al. 2009]), but we seek an approach that is comprehensive.

Askarov et al. [2010] distinguish between internal timing channels that involve
the implicit or explicit measurement of time from within the system, and external
timing channels that involve measuring the system from the point of view of an ex-
ternal observer. Defenses for both internal (e.g., Agat [2000], Hu [1991], Vattikonda
et al. [2011], Zdancewic and Myers [2003]) and external (e.g., Askarov et al. [2010],
Giles and Hajek [2002], Haeberlen et al. [2011], Kang and Moskowitz [1993], Zhang
et al. [2011]) timing channels have received significant attention individually, though
to our knowledge, StopWatch is novel in addressing access-driven timing channels
through a combination of both techniques. StopWatch incorporates internal defenses to

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:4 P. Li et al.

interfere with an attacker’s use of real-time clocks or “clocks” that it might derive from
the I/O subsystem. In doing so, StopWatch imposes determinism on uniprocessor VMs
and then uses this feature to additionally build an effective external defense against
such attacker VMs.

StopWatch’s internal and external defense strategies also differ individually from
prior work, in interfering with timing channels by allowing replicas (in the internal
defenses) and external observers (in the external defenses) to observe only median I/O
timings across the three replicas. The median offers several benefits over the alterna-
tive of obfuscating event timings by adding random noise (without replicating VMs): to
implement random noise, a distribution from which to draw the noise must be chosen
without reference to an execution in the absence of the victim—that is, how the execu-
tion “should have” looked—so ensuring that the chosen noise distribution is sufficient
to suppress all timing channels can be quite difficult. StopWatch uses replication and
careful replica placement (in terms of the other VMs with which each replica coresides)
exactly to provide such a reference. Moreover, we show that the median permits the
delays incurred by the system to scale better than uniformly random noise allows for
the same protection, as the distinctiveness of victim behavior increases.

2.2. Replication

To our knowledge, StopWatch is novel in utilizing replication for timing channel
defense. That said, replication has a long history that includes techniques similar
to those we use here. For example, state-machine replication to mask Byzantine
faults [Schneider 1990] ensures that correct replicas return the same response to each
request so that this response can be identified by “vote” (a technique related to one
employed in StopWatch; see Sections 3 and 6.1). To ensure that correct replicas return
the same responses, these systems enforce the delivery of requests to replicas in the
same order; moreover, they typically assume that replicas are deterministic and pro-
cess requests in the order they are received. Enforcing replica determinism has also
been a focus of research in (both Byzantine and benignly) fault-tolerant systems; most
(e.g., Basile et al. [2006], Borg et al. [1989], Narasimhan et al. [1999]), but not all
(e.g., [Bressoud and Schneider 1996]), do so at other layers of the software stack than
StopWatch does.

More fundamentally, to our knowledge all prior systems that enforce timing deter-
minism across replicas permit one replica to dictate timing-related events for the oth-
ers, which does not suffice for our goals: that replica could be the one coresident with
the victim, and so permitting it to dictate timing-related events would simply “copy”
the information it gleans from the victim to the other replicas, enabling that infor-
mation to then be leaked out of the cloud. Rather, by forcing the timing of events
to conform to the median timing across three VM replicas, at most one of which is
coresident with the victim, the enforced timing of each event is either the timing of a
replica not coresident with the victim or else between the timing of two replicas that
are not coresident with the victim. This strategy is akin to ones used for Byzantine
fault-tolerant clock synchronization (e.g., see Schneider [1987, Section 5.2]) or sensor
replication (e.g., see Schneider [1990, Section 5.1]), though we use it here for informa-
tion hiding (versus integrity).

Aside from replication for fault tolerance, replication has been explored to detect
server penetration [Cox et al. 2006; Gao et al. 2005, 2009; Nguyen-Tuong et al. 2008].
These approaches purposely employ diverse replica codebases or data representations
so as to reduce the likelihood of a single exploit succeeding on multiple replicas. Di-
vergence of replica behavior in these approaches is then indicative of an exploit suc-
ceeding on one but not others. In contrast to these approaches, StopWatch leverages

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:5

(necessarily) identical guest VM replicas to address a different class of attacks (timing
side channels) than replica compromise.

Research on VM execution replay (e.g., Xu et al. [2007], Dunlap et al. [2008]) focuses
on recording nondeterministic events that alter VM execution and then coercing these
events to occur the same way when the VM is replayed. The replayed VM is a replica of
the original, albeit a temporally delayed one, and so this can also be viewed as a form
of replication. StopWatch similarly coerces VM replicas to observe the same event tim-
ings, but again, unlike these timings being determined by one replica (the original),
they are determined collectively using median calculations, so as to interfere with one
attacker VM replica that is coresident with the victim from simply propagating its
timings to all replicas. That said, the state of the art in VM replay (e.g., Dunlap et al.
[2008]) addresses multiprocessor VM execution, which our present implementation of
StopWatch does not. StopWatch could be extended to support multiprocessor execu-
tion with techniques for deterministic multiprocessor scheduling (e.g., Devietti et al.
[2010]). Mechanisms for enforcing deterministic execution through O/S-level modifica-
tions (e.g., Aviram et al. [2010]) are less relevant to our goals, as they are not easily
used by an IaaS cloud provider that accepts arbitrary VMs to execute.

3. DESIGN

Our design is focused on infrastructure-as-a-service (IaaS) clouds that accept virtual
machine images, or “guest VMs,” from customers to execute. Amazon EC2 (http:
//aws.amazon.com/ec2/) and Rackspace (http://www.rackspace.com/) are example
providers of public IaaS clouds. Given the concerns associated with side-channel at-
tacks in cloud environments (e.g., Ristenpart et al. [2009]; Zhang et al. [2012b]), we
seek to develop virtualization software that would enable a provider to construct a
cloud that offers substantially stronger assurances against leakage via timing chan-
nels. This cloud might be a higher assurance offering that a provider runs alongside its
normal cloud (while presumably charging more for the greater assurance it offers) or
a private cloud with substantial assurance needs (e.g., run by and for an intelligence
or military community).

3.1. Threat Model

Our threat model is a customer who submits attacker VMs for execution that are de-
signed to employ timing side channels. We presume that the attacker VM is designed
to extract information from a particular victim VM, versus trying to learn general
statistics about the cloud, such as its average utilization. We assume that access con-
trols prevent the attacker VMs from accessing victim VMs directly or from escalating
their own privileges in a way that would permit them to access victim VMs. The cloud’s
virtualization software (in our case, Xen and our extensions thereof) is trusted.

According to Wray [1991], to exploit a timing channel, the attacker VM measures
the timing of observable events using a clock that is independent of the timings being
measured. While the most common such clock is real time, a clock can be any sequence
of observable events. With this general definition of “clock,” a timing attack simply
involves measuring one clock using another. Wray identified four possible clock sources
in conventional computers [1991].

— TL. The “CPU instruction-cycle clock” (e.g., a clock constructed by executing a simple
timing loop).

— Mem. The memory subsystem (e.g., data/instruction fetches).
— IO. The I/O subsystem (e.g., network, disk, and DMA interrupts).
— RT. Real-time clocks provided by the hardware platform (e.g., time-of-day registers).

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

�

�

�

�

�

�

�

�

8:6 P. Li et al.

3.2. Defense Strategy

StopWatch is designed to interfere with the use of IO and RT clocks and, for uniproces-
sor VMs, TL, or Mem clocks, for timing attacks. (As discussed in Section 2, extension
to multiprocessor VMs is a topic of future work.) IO and RT (especially RT) clocks are
an ingredient in every timing side-channel attack in the research literature that we
have found, undoubtedly because real time is the most intuitive, independent, and re-
liable reference clock for measuring another clock. So, intervening on these clocks is of
paramount importance. Moreover, the way StopWatch does so forces the scheduler in
a uniprocessor guest VM to behave deterministically, interfering with attempts to use
TL or Mem clocks.

More specifically, to interfere with IO clocks, StopWatch replicates each attacker VM
(i.e., every VM, since we do not presume to know which ones are attacker VMs) three-
fold so that the three replicas of a guest VM are coresident with nonoverlapping sets of
(replicas of) other VMs. Then, when determining the timing with which an IO event is
made available to each replica, the median timing value of the three is adopted. Stop-
Watch addresses RT clocks by replacing a VM’s view of real time with a virtual time
that depends on the VM’s own progress [Popek and Kline 1974].

A side-effect of how StopWatch addresses IO and RT clocks is that it enforces deter-
ministic execution of uniprocessor attacker VM replicas, also disabling its ability to use
TL or Mem clocks. These mechanisms thus deal effectively with internal observations
of time, but it remains possible that an external observer could glean information from
the real-time duration between its receipt of packets sent by the attacker VM. To in-
terfere with this timing channel, we emit packets to an external observer with timing
dictated by, again, the median timing of the three VM replicas.

3.3. Justification for the Median

Permitting only the median timing of an IO event to be observed limits the information
that an attacker VM can glean from being colocated with a victim VM of interest,
because the distribution of the median timings substantially dampens the visibility of
a victim’s activities.

To see why, consider a victim VM that induces observable timings that are exponen-
tially distributed with rate λ′, versus a baseline (i.e., non-victim) exponential distri-
bution with rate λ > λ′.1 (We will broaden our discussion to other distributions later.)
Figure 1(a) plots example distributions of the attacker VMs’ observations under Stop-
Watch when an attacker VM is coresident with the victim (“Median of two baselines,
one victim”) and when attacker VM is not (“Median of three baselines”). This figure
shows that these median distributions are quite similar, even when λ is substantially
larger than λ′; for example, λ = 1 and λ′ = 1/2 in the example in Figure 1(a). In this
case, to even reject the null hypothesis that the attacker VM is not coresident with
the victim using a χ -square test, the attacker can do so with high confidence in the
absence of StopWatch with only a single observation, but doing so under StopWatch
requires almost two orders of magnitude more (Figure 1(b)). This improvement be-
comes even more pronounced if λ and λ′ are closer; the case λ = 1, λ′ = 10/11 is shown
in Figure 1(c).

In terms of the number of observations needed to extract meaningful information
from the victim VM, this assessment is very conservative, since the attacker would face
numerous pragmatic difficulties that we have not modeled here [Zhang et al. 2012b].

1It is not uncommon to model packet interarrival time, for example, using an exponential distribution
(e.g., Karagiannis et al. [2004]).

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:7

Fig. 1. Justification for median; baseline distribution Exp(λ), λ = 1, and victim distribution Exp(λ′).

But even this simple example shows the power of disclosing only median timings of
three VM replicas, and in Section 5.2 we will repeat this illustration using actual mes-
sage traces.

This illustration of the benefits of allowing only the median timing of an IO event to
be observed by an attacker is not specific to timing behaviors that are exponentially
distributed. Instead, it generalizes to any distribution. To make this clear, let Xr:m
denote the random variable that takes on the value of the rth smallest of the m values
obtained by sampling random variables X1 . . . Xm. Let Fi(x) denote the CDF of Xi (i.e.,
Fi(x) = P (Xi ≤ x)), and let Fr:m(x) denote the CDF of Xr:m. The security of StopWatch
hinges on the distribution of the median X2:3 of three independent random variables
X1, X2, X3 defined as the difference in virtual times (or, in the case of an external
observer, real times) between two subsequent IO events.

Specifically, due to the construction of StopWatch, the adversary is relegated to
learning information from the difference between (i) the CDF F2:3(x) for random
variables X1, X2, X3 corresponding to attacker VM replicas that are not coresident
with a victim VM of interest, and (ii) the CDF F′

2:3(x) for random variables X ′
1,

X2, X3, where X ′
1 corresponds to an attacker VM that is coresident with the victim

VM of interest. An example measure of the distance between two CDFs F(x) and
F̂(x) is their Kolmogorov-Smirnov distance [Deza and Deza 2006, p. 179], defined as
D(F, F̂) = maxx

∣∣∣F(x) − F̂(x)

∣∣∣.
The following theorem shows that adopting the median microaggregation function

can only interfere with the adversary’s goal.

THEOREM 1. If the distributions of X2 and X3 are overlapping (i.e., for no x is
F2(x) = 0 and F3(x) = 1, or F2(x) = 1 and F3(x) = 0), then D(F2:3, F′

2:3) < D(F1, F′
1).

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:8 P. Li et al.

PROOF. Due to well-known results in order statistics (e.g., Güngör et al. [2009,
Result 2.4]),2

Fr:m(x) =
m∑

�=r

(−1)�−r
(

� − 1
r − 1

) ∑
I⊆{1...m}:

|I|=�

∏
i∈I

Fi(x).

In particular,

F2:3(x) =F1(x)F2(x) + F1(x)F3(x) + F2(x)F3(x) − 2F1(x)F2(x)F3(x),

F′
2:3(x) =F′

1(x)F2(x) + F′
1(x)F3(x) + F2(x)F3(x) − 2F′

1(x)F2(x)F3(x),

where F′
1(x) represents the CDF of X ′

1. So,

D(F2:3, F′
2:3) = max

x

∣∣[F2(x) + F3(x) − 2F2(x)F3(x)] [F1(x) − F′
1(x)]

∣∣ .

Noting that D(F1, F′
1) = maxx

∣∣F1(x) − F′
1(x)

∣∣, it suffices to show that |F2(x) + F3(x)−
2F2(x)F3(x)| < 1 for all x. However, since F2(x) ∈[0, 1] and F3(x) ∈[0, 1] for all x,
|F2(x) + F3(x) − 2F2(x)F3(x)| ≤ 1 and, moreover, equals 1 only if for some x, one of
F2(x) and F3(x) is 1 and the other is 0. This last case is precluded by the theorem.

In the limit, when the distributions of X2 and X3 overlap exactly, we get a much
stronger result.

THEOREM 2. If X2 and X3 are identically distributed, then D(F2:3, F′
2:3) ≤

1
2D(F1, F′

1).

PROOF. In this case, F2 = F3, and so

|F2(x) + F3(x) − 2F2(x)F3(x)|
reaches its maximum value of 1

2 at the value x yielding F2(x) = F3(x) = 1
2 .

4. RT CLOCKS

Real-time clocks provide reliable and intuitive reference clocks for measuring the tim-
ings of other events. In this section, we describe the high-level strategy taken in Stop-
Watch to interfere with their use for timing channels and detail the implementation of
this strategy in Xen with hardware-assisted virtualization (HVM).

4.1. Strategy

The strategy adopted in StopWatch to interfere with a VM’s use of real-time clocks
is to virtualize these real-time clocks so that their values observed by a VM are a
deterministic function of the VM’s instructions executed so far [Popek and Kline 1974].
That is, after the VM executes instr instructions, the virtual time observed from within
the VM is

virt(instr) ← slope × instr + start. (1)

To determine start at the beginning of VM replica execution, the VMMs hosting the
VM’s replicas exchange their current real times; start is initially set to the median
of these values. slope is initially set to a constant determined by the tick rate of the
machines on which the replicas reside.

2This equation assumes each Fi(x) is continuous. See Güngör et al. [2009] for the case when some Fi(x) is
not continuous.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:9

Optionally, the VMMs can adjust start and slope periodically, for example, after the
replicas execute an “epoch” of I instructions, to coarsely synchronize virt and real time.
For example, after the kth epoch, each VMM can send to the others the duration Dk
over which its replica executed those I instructions and its real time Rk at the end of
that duration. Then, the VMMs can select the median real time R∗

k and the duration
D∗

k from that same machine and reset

startk+1 ← virtk(I)

slopek+1 ← arg min
v∈[�,u]

∣∣∣∣R∗
k − virtk(I) + D∗

k
I

− v
∣∣∣∣

for a preconfigured constant range [�, u], to yield the formula for virtk+1.3 The use
of � and u ensures that slopek+1 is not too extreme, and, if � > 0, that slopek+1 is
positive. In this way, virtk+1 should approach real time on the computer contributing
the median real time R∗

k over the next I instructions, assuming that the machine and
VM workloads stay roughly the same. Of course, the smaller I-values are, the more
virt follows real time and so poses the risk of becoming useful in timing attacks. So,
virt should be adjusted only for tasks for which coarse synchronization with real time
is important and then only with large I values.

4.2. Implementation in Xen

Real-ime clocks on a typical x86 platform include timer interrupts and various hard-
ware counters. Closely related to these real-time clocks is the timestamp counter regis-
ter, which is accessed using the rdtsc instruction and stores a count of processor ticks
since reset.

4.2.1. Timer Interrupts. Operating systems typically measure the passage of time by
counting timer interrupts; that is, the operating system sets up a hardware device to
interrupt periodically at a known rate, such as 100 times per second [VMWare 2010].
There are various such hardware devices that can be used for this purpose. Our current
implementation of StopWatch assumes the guest VM uses a Programmable Interval
Timer (PIT) as its timer interrupt source, but our implementation for other sources
would be similar. The StopWatch VMM generates timer interrupts for a guest on a
schedule dictated by that guest’s virtual time virt, as computed in Eq. (1). To do so, it
is necessary for the VMM to be able to track the instruction count instr executed by
the guest VM.

In our present implementation, StopWatch uses the guest branch count for instr,
that is, keeping track only of the number of branches that the guest VM executes.
Several architectures support hardware branch counters, but these are not sensitive
to the multiplexing of multiple guests onto a single hardware processor and so continue
to count branches regardless of the guest that is currently executing. So, to track the
branch count for a guest, StopWatch implements a virtualized branch counter for each
guest.

A question is when to inject each timer interrupt. Intel VT augments IA-32 with
two new forms of CPU operations: virtual machine extensions (VMX) root operation
and VMX non-root operation [Uhlig et al. 2005]. While the VMM uses root operation,
guest VMs use VMX non-root operation. In non-root operation, certain instructions and
events cause a VM exit to the VMM so that the VMM can emulate those instructions

3In other words, if (R∗
k − virtk(I) + D∗

k)/I ∈[�, u], then this value becomes slopek+1. Otherwise, either � or u
does, whichever is closer to (R∗

k − virtk(I) + D∗
k)/I.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:10 P. Li et al.

or deal with those events. Once completed, control is transferred back to the guest VM
via a VM entry. The guest then continues running as if it had never been interrupted.

VM exits give the VMM the opportunity to inject timer interrupts into the guest VM
as the guest’s virtual time advances. However, so that guest VM replicas observe the
same timer interrupts at the same points in their executions, StopWatch injects timer
interrupts only after VM exits that are caused by guest execution. Other VM exits can
be induced by events external to the VM, such as hardware interrupts on the physical
machine; these would generally occur at different points during the execution of the
guest VM replicas but will not be visible to the guest [Intel 2011, Section 29.3.2]. For
VM exits caused by guest VM execution, the VMM injects any needed timer interrupts
on the next VM entry.

4.2.2. rdtsc Calls and CMOS RTC Values. Another way for a guest VM to measure time is
via rdtsc calls. Xen already emulates the return values to these calls. More specifically,
to produce the return value for a rdtsc call, the Xen hypervisor computes the time
passed since guest reset using its real-time clock, and then this time value is scaled
by a constant factor. StopWatch replaces this use of a real-time clock with the guest’s
virtual clock (Eq. (1)).

A virtualized real-time clock (RTC) is also provided to HVM guests in Xen; this
provides time to the nearest second for the guest to read. The virtual RTC gets updated
by Xen using its real-time clock. StopWatch responds to requests to read the RTC using
the guest’s virtual time.

4.2.3. Reading Counters. The guest can also observe real time from various hardware
counters, for example, the PIT counter, which repeatedly counts down to zero (at a
pace dictated by real time) starting from a constant. These counters, too, are already
virtualized in modern VMMs, such as Xen. In Xen, these return values are calculated
using a real-time clock; StopWatch uses the guest virtual time, instead.

5. IO CLOCKS

IO clocks are typically network, disk, and DMA interrupts. (Other device interrupts,
such as keyboards, mice, graphics cards, etc., are typically not relevant for guest VMs
in clouds.) We outline our strategy for mitigating their use to implement timing chan-
nels in Section 5.1, and then in Section 5.2, we describe our implementation of this
strategy in StopWatch.

5.1. Strategy

The method described in Section 4 for dealing with RT clocks by introducing virtual
time provides a basis for addressing sources of IO clocks. A component of our strat-
egy for doing so is to synchronize I/O events across the three replicas of each guest
VM in virtual time so that every I/O interrupt occurs at the same virtual time at all
replicas. Among other things, this synchronization will force uniprocessor VMs to exe-
cute deterministically, but it alone will not be enough to interfere with IO clocks; it is
also necessary to prevent the timing behavior of one replica’s machine from imposing
I/O interrupt synchronization points for the others, as discussed in Section 2–3. This
is simpler to accomplish for disk accesses and DMA transfers, since replica VMs ini-
tiate these themselves, and so we will discuss this case first. The more difficult case
of network interrupts, where we explicitly employ median calculations to dampen the
influence of any one machine’s timing behavior on the others, will then be addressed.

5.1.1. Disk and DMA Interrupts. The replication of each guest VM at start time in-
cludes replicating its entire disk image, and so any disk blocks available to one VM
replica will be available to all. By virtue of the fact that (uniprocessor) VMs execute

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:11

deterministically in StopWatch, replicas will issue disk and DMA requests at the same
virtual time. Upon receiving such a request from a replica at time V, the VMM adds
an offset �d to determine a “delivery time” for the interrupt, that is, at virtual time
V + �d, and initiates the corresponding I/O activities (disk access or DMA transfer).
The offset �d must be large enough to ensure that the data transfer completes by the
virtual delivery time. Once the virtual delivery time has been determined, the VMM
simply waits for the first VM exit caused by the guest VM (as in Section 4.2) that oc-
curs at a virtual time at least as large as this delivery time. The VMM then injects the
interrupt prior to the next VM entry of the guest. This interrupt injection also includes
copying the data into the address space of the guest so as to prevent the guest VM from
polling for the data in advance of the interrupt to create a form of clock (e.g., see [Hu
1991, Section 4.2.2]).

5.1.2. Network Interrupts. Unlike the initiation of disk accesses and DMA transfers, the
activity giving rise to a network interrupt, namely, the arrival of a network packet
that is destined for the guest VM, is not synchronized in virtual time across the three
replicas of the guest VM. So, the VMMs on the three machines hosting these replicas
must coordinate to synchronize the delivery of each network interrupt to the guest VM
replicas. To prevent the timing of one from dictating the delivery time at all three,
these VMMs exchange proposed delivery times and select the median, as discussed in
Section 3. To solicit proposed timings from the three, it is necessary, of course, that
the VMMs hosting the three replicas all observe each network packet. So, StopWatch
replicates every network packet to all three computers hosting replicas of the VM for
which the packet is intended. This is done by a logically separate “ingress node” that
we envision residing on a dedicated computer in the cloud. (Of course, there need not
be only one such ingress for the whole cloud.)

When a VMM observes a network packet to be delivered to the guest, it sends its
proposed virtual time (i.e., in the guest’s virtual time, see Section 4) for the delivery of
that interrupt to the VMMs on the other machines hosting replicas of the same guest
VM. (We stress that these proposals are not visible to the guest VM replicas.) Each
VMM generates its proposed delivery time by adding a constant offset �n to the virtual
time of the guest VM at its last VM exit. �n must be large enough to ensure that once
the three proposals have been collected and the median determined at all three replica
VMMs, the chosen median virtual time has not already been passed by any of the guest
VMs. The virtual-time offset �n is thus determined using an assumed upper bound
on the real time it takes for each VMM to observe the interrupt and to propagate its
proposal to the others4, as well as the maximum allowed difference between the fastest
two replicas’ virtual times. This difference can be limited by slowing the execution of
the fastest replica.

Once the median proposed virtual time for a network interrupt has been determined
at a VMM, the VMM simply waits for the first VM exit caused by the guest VM (as in
Section 4.2) that occurs at a virtual time at least as large as that median value.5 The
VMM then injects the interrupt prior to the next VM entry of the guest. As with disk
accesses and DMA transfers, this interrupt injection also includes copying the data
into the address space of the guest so as to prevent the guest VM from polling for the
data in advance of the interrupt to create a form of clock (e.g., Hu [1991, Section 4.2.2]).

4In distributed computing parlance, we thus assume a synchronous system, that is, there are known bounds
on processor execution rates and message delivery times.
5If the median time determined by a VMM has already passed, then our synchrony assumption was violated
by the underlying system. In this case, that VMM’s replica has diverged from the others and so must be
recovered by, for example, copying the state of another replica.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:12 P. Li et al.

Fig. 2. Delivering a packet to guest VM replicas.

The process of determining the delivery time of a network packet to a guest VM’s
replicas is pictured in Figure 2. This figure depicts a real-time interval [R1, R2] at the
three machines at which a guest VM is replicated, showing at each machine: the ar-
rival of a packet at the VMM, the proposal made by each VMM, the arrival of proposals
from other replica machines, the selection of the median, and the delivery of the packet
to the guest replica. Each stepped diagonal line shows the progression of virtual time
at that machine.

5.2. Implementation in Xen

Xen presents to each HVM guest a virtualized platform that resembles a classic
PC/server platform with a network card, disk, keyboard, mouse, graphics display, etc.
This virtualized platform support is provided by virtual I/O devices (device models)
in Dom0, a domain in Xen with special privileges. QEMU (http://fabrice.bellard.
free.fr/qemu) is used to implement device models. One instance of the device models
is run in Dom0 per HVM domain.

5.2.1. Network Card Emulation. In the case of a network card, the device model running
in Dom0 receives packets destined for the guest VM. Without StopWatch modification,
the device model copies this packet to the guest address space and asserts a virtual
network device interrupt via the virtual Programmable Interrupt Controller (vPIC)
exposed by the VMM for this guest. HVM guests cannot see real external hardware
interrupts, since the VMM controls the platform’s interrupt controllers [Intel 2011,
Section 29.3.2].

In StopWatch, we modify the network card device model so as to place each packet
destined for the guest VM into a buffer hidden from the guest, rather than delivering
it to the guest. The device model then reads the current virtual time of the guest (as
of the guest’s last VM exit), adds �n to this virtual time to create its proposed delivery
(virtual) time for this packet, and multicasts this proposal to the other two replicas’
device models (step 1 in Figure 3). A memory region shared between Dom0 and the
VMM allows device models in Dom0 to read guest virtual time.

Once the network device model receives the two proposals in addition to its own,
it takes the median proposal as the delivery time and stores this delivery time in the
memory it shares with the VMM. The VMM compares guest virtual time to the delivery
time stored in the shared memory upon every guest VM exit caused by guest VM
execution. Once guest virtual time has passed the delivery time, the network device
model copies the packet into the guest address space (step 2 in Figure 3) and asserts a
virtual network interrupt on the vPIC prior to the next VM entry (step 3).

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:13

Fig. 3. Emulation of network I/O device in StopWatch.

Fig. 4. Virtual interpacket delivery times to attacker VM replicas with coresident victim (“two baselines,
one victim”) and in a run where no replica was coresident with a victim (“three baselines”).

Figure 4(a) shows the CDF of virtual interpacket delivery times to replicas of an
attacker VM in an actual run, where one replica is coresident with a victim VM con-
tinuously serving a file, in comparison to the virtual delivery times with no victim
present. This plot is directly analogous to that in Figure 1(a) but is generated from
a real StopWatch run and shows the distribution as a CDF for ease of readability.
Figure 4(b) shows the number of observations needed to distinguish the victim and
no-victim distributions in Figure 4(a) using a χ -squared test, as a function of the de-
sired confidence. This figure is analogous to Figure 1(b) and confirms that StopWatch
strengthens defense against timing attacks by an order of magnitude in this scenario.
Again, the absolute number of observations needed to distinguish these distributions
is likely quite conservative, owing to numerous practical challenges to gathering these
observations [Zhang et al. 2012b].

5.2.2. Disk and DMA Emulation. The emulation of the IDE disk and DMA devices is
similar to the preceding network card emulation. StopWatch controls when the disk
and DMA device models complete requests and notify the guest. Instead of copying
data read to the guest address space, the device model in StopWatch prepares a buffer
to receive this data. In addition, rather than asserting an appropriate interrupt via
the vPIC to the guest as soon as the data is available, the StopWatch device model
reads the current guest virtual time from memory shared with the VMM, adds �d,
and stores this value as the interrupt delivery time in the shared memory. Upon the
first VM exit caused by guest execution at which the guest virtual time has passed
this delivery time, the device model copies the buffered data into the guest address

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:14 P. Li et al.

space and asserts an interrupt on the vPIC. Disk writes are handled similarly in that
the interrupt indicating write completion is delivered as dictated by adding �d to the
virtual time at which the write was initiated.

6. COLLABORATIVE ATTACKS

The mechanisms described in Section 4–5 intervene on two significant sources of
clocks; though VM replicas can measure the progress of one relative to the other, for
example, their measurements will be the same and will reflect the median of their tim-
ing behaviors. Moreover, by forcing each guest VM to execute (and, in particular, sched-
ule its internal activities) on the basis of virtual time and by synchronizing I/O events
across replicas in virtual time, uniprocessor guest VMs execute deterministically, strip-
ping them of the ability to leverage TL and Mem clocks, as well. (More specifically, the
progress of TL and Mem clocks are functionally determined by the progress of virtual
time and so are not independent of it.) There nevertheless remains the possibility of
various collaborative attacks that leverage an attacker VM in conjunction with other
attacker components that we discuss next.

6.1. External Collaborators

One possible collaborative attack involves conjoining the attacker VM with a collabo-
rator with which it interacts that is external to the cloud and, in particular, on whose
real-time clock we cannot intervene. By interacting with the attacker VM, the external
collaborator might attempt to discern information using the real-time behavior of his
attacker VM.

Because guest VM replicas will run deterministically, they will output the same
network packets in the same order. StopWatch uses this property to interfere with a
VM’s ability to exfiltrate information on the basis of its real-time behavior as seen by
an external observer. StopWatch does so by adopting the median timing across the
three guest VM replicas for each output packet. The median is selected at a separate
“egress node” that is dedicated for this purpose (c.f., Yin et al. [2002]), analogous to the
“ingress node” that replicates every network packet destined to the guest VM to the
VM’s replicas (see Section 5). Like the ingress node, there need not be only one egress
node for the whole cloud.

To implement this scheme in Xen, every packet sent by a guest VM replica is tun-
neled by the network device model on that machine to the egress node. The egress
node forwards an output packet to its destination after receiving the second copy of
that packet (i.e., the same packet from two guest VM replicas). Since the second copy
of the packet it receives exhibits the median output timing of the three replicas, this
strategy ensures that the timing of the output packet sent toward its destination is
either the timing of a guest replica not coresident with the victim VM or else a timing
that falls between those of guest replicas not coresident with the victim.

An alternative strategy that the external collaborator might take is to send real-
time timestamps to his attacker VM, in the hopes of restoring a notion of real time
to that VM (that was stripped away as described in Section 4). Again, however, since
each packet to the attacker VM is delivered on a schedule dictated by the median
progress of the attacker VM replicas (Section 5), those timestamps will reflect only
on the behavior of the median replica. As such, it matters little whether the external
collaborator sends real-time timestamps to the attacker VM or the attacker VM sends
virtual-time timestamps (or events reflecting them) to the external collaborator; either
way, the power offered by the external collaborator is the same, namely, relating the
median progress of the attacker VM replicas to real time.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:15

6.2. Collaborating Victim-VM Clients

While the type of external collaborator addressed in Section 6.1 interacts with the
attacker VM, a more powerful collaborator is one that might additionally interact with
the victim VM, for example, as one of its clients. This possibility raises the issue of
remote timing attacks (e.g., Brumley and Boneh [2003]) that do not involve coresidence
of attacker VMs with victim VMs at all; such attacks are not our concern here, as we
are motivated only by access-driven attacks.

That said, recent investigations have paired remote timing attacks with access-
driven elements: for example, Bates et al. [2012] and Herzberg et al. [2013] developed
attacks by which a victim-VM’s client could detect the impact of a coresident attacker-
VM’s communication on the timing of the victim’s communication to it, thereby con-
firming the coresidence of the attacker VM with the victim VM, for example.

While the goal of StopWatch is not to defend against all remote timing attacks, it
does mitigate the access-driven elements of attacks, such as those of Bates et al. [2012]
and Herzberg et al. [2013]. Specifically, in StopWatch, the observable timing of a vic-
tim VM’s communication to its clients will be dictated by the median progress of its
three replicas (Section 6.1). As shown in Section 3.3, this reveals quantifiably less in-
formation to the client than the observable impact of a coresident attacker VM on a
(nonreplicated) victim VM would. In particular, an attacker VM could perturb the vic-
tim VM’s observable communication timings only if it is coresident with the victim
VM replica whose progress is the median of the victim’s three replicas, and only then
constrained above and below according to the other replicas’ progress.

The defenses suggested by Herzberg et al. to the attack they investigate include
a rate-limiting firewall that interferes with the remote attacker’s ability to induce
load on VMs hosted in the cloud. Our ingress node (Section 5.1.2) could trivially be
adapted to rate-limit inbound traffic as well, as a secondary defense against such
attacks.

6.3. Collaborating Attacker VMs

Another possible form of attacker collaboration involves multiple attacker VMs work-
ing together to mount access-driven timing attacks. The apparent risks of such collab-
oration can be seen in the following possibility: replicas of one attacker VM (“VM1”)
reside on machines A, B, and C; one replica of another attacker VM (“VM2”) resides
on machine A; and a replica of the victim VM resides on machine C. If VM2 induces
significant load on its machines, then this may slow the replica of VM1 on machine A
to an extent that marginalizes its impact on median calculations among its replicas’
VMMs. The replicas of VM1 would then observe timings influenced by the larger of the
replicas on B and C, which may well reflect timings influenced by the victim.

Mounting such an attack, or any collaborative attack involving multiple attacker
VMs on one machine, appears to be difficult, however. Just as previously argued that
an attacker VM detecting its coresidence with a victim VM is made much harder by
StopWatch, one attacker VM detecting coresidence with another using timing covert
channels would also be impeded. If the cloud takes measures to avoid disclosing cores-
idence of one VM with another by other channels, it should be difficult for the attacker
to even detect when he is in a position to mount such an attack or to interpret the
results of mounting such an attack indiscriminately.

If such attacks are nevertheless feared, they can be made harder still by increasing
the number of replicas of each VM. If the number were increased from three to, say,
five, then inducing sufficient load to marginalize one attacker replica from its median
calculations would not substantially increase the attacker’s ability to mount attacks

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:16 P. Li et al.

on a victim. Rather, the attacker would need to marginalize multiple of its replicas,
along with accomplishing the requisite setup to do so.

7. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our StopWatch prototype. We present
additional implementation details that impact performance in Section 7.1, our experi-
mental setup in Section 7.2, and our tests and their results in Section 7.3–7.4.

7.1. Selected Implementation Details

Our prototype is a modification of Xen version 4.0.2-rc1-pre, amounting to insertions
or changes of roughly 1,500 source lines of code (SLOC) in the hypervisor. There
were also about 2,000 SLOC insertions and changes to the QEMU device models
distributed with that Xen version. In addition to these changes, we incorporated
OpenPGM (http://code.google.com/p/openpgm/) into the network device model in
Dom0. OpenPGM is a high-performance reliable multicast implementation, specifi-
cally of the Pragmatic General Multicast (PGM) specification [Speakman et al. 2001].
In PGM, reliable transmission is accomplished by receivers detecting loss and request-
ing retransmission of lost data. OpenPGM is used in StopWatch for replicating ether-
net packets destined to a guest VM to all of that VM’s replicas and for communication
among the VMMs hosting guest VM replicas. We also extended the network device
model on a host to tunnel each ethernet packet emitted from a local VM replica to the
appropriate egress node (see Section 6.1) over a persistent TCP connection.

Recall from Section 5 that each VMM proposes (via an OpenPGM multicast) a virtual
delivery time for each network interrupt, and the VMMs adopt the median proposal as
the actual delivery time. As noted there, each VMM generates its proposal by adding
a constant offset �n to the current virtual time of the guest VM. �n must be large
enough to ensure that by the time each VMM selects the median, that virtual time has
not already passed in the guest VM. However, subject to this constraint, �n should be
minimized, since the real time to which �n translates imposes a lower bound on the
latency of the interrupt delivery. (Note that because �n is specified in virtual time and
virtual time can vary in its relationship to real time, the exact real time to which �n
translates can vary during execution.) We selected �n to accommodate timing differ-
ences in the arrivals of packets destined to the guest VM at its three replicas’ VMMs,
the delays for delivering each VMM’s proposed virtual delivery time to the others,
and the maximum allowed difference in progress between the two fastest guest VM
replicas (which StopWatch enforces by slowing the fastest replica, if necessary). For
the platform used in our experiments (see Section 7.2) and under diverse networking
workloads, we found that a value of �n that typically translates to a real-time delay
in the vicinity of 7–12ms sufficed to meet the above criteria. The analogous offset �d
for determining the virtual delivery time for disk and DMA interrupts was determined
based on the maximum observed disk access times and translates to roughly 8–15ms.

7.2. Experimental Setup

Our “cloud” consisted of three machines with the same hardware configuration: 4 Intel
Core2 Quad Q9650 3.00GHz CPUs, 8GB memory, and a 70GB rotating hard drive.
Dom0 was configured to run Linux kernel version 2.6.32.25. Each HVM guest had
one virtual CPU, 2GB memory, and 16GB disk space. Each guest ran Linux kernel
2.6.32.24 and was configured to use the Programmable Interrupt Controller (PIC) as
its interrupt controller and a Programmable Interrupt Timer (PIT) of 250Hz as its
clock source. The Advanced Programmable Interrupt Controller (APIC) was disabled.
An emulated ATA QEMU disk and a QEMU Realtek RTL-8139/8139C/8139C+ were
provided to the guest as its disk and network card. In each of our tests, we installed an

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:17

Fig. 5. HTTP and UDP file-retrieval latency.

application (e.g., a Web server or other program) in the guest VM, as will be described
later.

After the guest VM was configured, we copied it to our three machines and restored
the VM at each. In this way, our three replicas started running from the same state.
In addition, we copied the disk file to all three machines to provide identical disk state
to the three replicas.

Once the guest VM replicas were started, inbound packets for this guest VM were
replicated to all three machines for delivery to their replicas, as discussed in Section 5.
These three machines had 100Mb/s ethernet connectivity via a NetGear FS108 switch.
They were part of a /24 subnet within the UNC campus network. Broadcast traffic on
the network (e.g., ARP requests) was replicated for delivery, as in Section 5. These
broadcasts averaged roughly 50–100 packets per second. As such, this background ac-
tivity was present throughout our experiments and is reflected in our numbers. Since a
cloud operator would presumably place the replicas of each VM in close network prox-
imity to one another so as to minimize the networking penalties of coordinating across
those machines, we believe that our doing likewise provides a reasonable approxima-
tion of the networking costs that StopWatch might encounter in practice.

7.3. Network Services

In this section, we describe tests involving network services deployed on the cloud. In
all of our tests, our client that interacted with the cloud-resident service was a Lenovo
T400 laptop with a dual-core 2.8GHz CPU and 2GB memory attached to the same /24
subnet as the cloud machines.

7.3.1. File Downloads. Our first experiments tested the performance of file download by
the client from a Web server in the cloud. The total times for the client to retrieve files
of various sizes over HTTP are shown in Figure 5. This figure shows tests in which our
guest VM ran Apache version 2.2.14, and the file retrieval was from a cold start (and
so file-system caches were empty). The “HTTP Baseline” curve in Figure 5 shows the
average latency for the client to retrieve a file from an unmodified Xen guest VM. The
“HTTP StopWatch” curve shows the average cost of file retrieval from our StopWatch
implementation. Every average is for ten runs. Note that both axes are log-scale.

Figure 5 shows that for HTTP download, a service running on our current Stop-
Watch prototype loses less than 2.8× in download speed for files of 100KB or larger.
Diagnosing this cost reveals that the bottleneck, by an order of magnitude or more,
was the network transmission delay (vs. disk access delay) in both the baseline and for
StopWatch. Moreover, the performance cost of StopWatch in comparison to the base-
line was dominated by the time for delivery of inbound packets to the Web-server guest
VM, that is, the TCP SYN and ACK messages in the three-way handshake, and then

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:18 P. Li et al.

additional acknowledgments sent by the client. Enforcing a median timing on output
packets (Section 6.1) adds modest overhead in comparison.

This combination of insights, namely, the detriment of inbound packets (mostly ac-
knowledgments) to StopWatch file download performance and the fact that these costs
so outweigh disk access costs, raises the possibility of recovering file download perfor-
mance using a transport protocol that minimizes packets inbound to the Web server,
for example, using negative acknowledgments or forward error correction. Alterna-
tively, an unreliable transport protocol with no acknowledgments, such as UDP, could
be used; transmission reliability could then be enforced at a layer above UDP using
negative acknowledgments or forward error correction. Though TCP does not define
negative acknowledgments, transport protocols that implement reliability using them
are widely available, particularly for multicast where positive acknowledgments can
lead to “ack implosion.” Indeed, recall that the PGM protocol specification [Speakman
et al. 2001] and the OpenPGM implementation that we use ensure reliability using
negative acknowledgments.

To illustrate this point, in Figure 5, we repeat the experiments using UDP to transfer
the file.6 The “UDP Baseline” curve shows the performance using unmodified Xen; the
“UDP StopWatch” curve shows the performance using StopWatch. Not surprisingly,
baseline UDP shows performance comparable to (but slightly more efficient than, by
less than a factor of two) baseline TCP, but rather than losing an order of magnitude,
UDP over StopWatch is competitive with these baseline numbers for files of 100KB
or more.

7.3.2. NFS. We also set up a Network File System (NFSv4) server in our guest VM.
On our client machine, we installed an NFSv4 client; remotely mounted the filesystem
exported by the NFS server; performed file operations manually; and then ran nfsstat
on the NFS server to print its server-side statistics, including the mix of operations in-
duced by our activity. We then used the nhfsstone benchmarking utility to evaluate
the performance of the NFS server with and without StopWatch. nhfsstone generates
an artificial load with a specified mix of NFS operations. The mix of NFS operations
used in our tests was the previously extracted mix file.7 In each test, the client ma-
chine ran five processes using the mounted file system, making calls at a constant rate
ranging from 25 to 400 per second in total across the five client processes.

The average latency per operation is shown in Figure 6(a). In this figure, the hori-
zontal axis is the rate at which operations were submitted to the server; note that this
axis is log-scale. Figure 6(a) suggests that an NFS server over StopWatch incurs a less
than 2.7× increase in latency over an NFS server running over unmodified Xen. Since
the NFS implementation used TCP, in some sense this is unsurprising in light of the
file download results in Figure 5. That said, it is also perhaps surprising that Stop-
Watch’s cost increased only roughly logarithmically as a function of the offered rate
of operations. This modest growth is in part because StopWatch schedules packets for
delivery to guest VM replicas independently—the scheduling of one does not depend
on the delivery of a previous one, and so they can be “pipelined”—and because the
number of TCP packets from the client to the server actually decreases per operation,
on average, as the offered load grows (Figure 6(b)).

6We are not advocating UDP for file retrieval generally but rather are simply showing the advantages
for StopWatch of a protocol that minimizes client-to-server packets. We did not use OpenPGM in these
tests since the website (as the “multicast” originator) would need to initiate the connection to the client;
this would have required more substantial modifications. This “directionality” issue is not fundamental to
negative acknowledgments, however.
7This mix was 11.37% setattr, 24.07% lookup, 11.92% write, 7.93% getattr, 32.34% read, and 12.37%
create.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:19

Fig. 6. Tests of NFS server using nhfsstone.

Fig. 7. Tests of PARSEC applications.

7.4. Computations

In this section, we evaluate the performance of various computations on StopWatch
that may be representative of future cloud workloads. For this purpose, we employ
the PARSEC benchmarks [Bienia 2011]. PARSEC is a diverse set of benchmarks that
covers a wide range of computations that are likely to become important in the near
future (see http://parsec.cs.princeton.edu/overview.htm). Here we take PARSEC
as representative of future cloud workloads.

We utilized the following five applications from the PARSEC suite (version 2.1),
providing each the “native” input designated for it. ferret is representative of
next-generation search engines for nontext document data types. In our tests, we con-
figured the application for image similarity search. blackscholes calculates option
pricing with Black-Scholes partial differential equations and is representative of fi-
nancial analysis applications. canneal is representative of engineering applications
and uses simulated annealing to optimize routing cost of a chip design. dedup repre-
sents next-generation backup storage systems characterized by a combination of global
and local compression. streamcluster is representative of data mining algorithms for
online clustering problems. Each of these applications involves various activities, in-
cluding initial configuration, creating a local directory for results, unpacking input
files, performing its computation, and finally cleaning up temporary files.

We ran each benchmark ten times in one guest VM over unmodified Xen, and then
ten more times with three guest VM replicas over StopWatch. Figure 7(a) shows the
average runtimes of these applications in both cases. In this figure, each application is
described by two bars; the black bar on the left shows its performance over unmodified
Xen, and the gray bar on the right shows its performance over StopWatch. StopWatch

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:20 P. Li et al.

imposed an overhead of at most 2.3× (for blackscholes) to the average running time of
the applications. Owing to the dearth of network traffic involved in these applications,
the overhead imposed by StopWatch is mostly due to the overhead involved in inter-
vening on disk I/O (see Section 5). As shown in Figure 7(b), there is a direct correlation
between the number of disk interrupts to deliver during the application run and the
performance penalty (in absolute terms) that StopWatch imposes. If the computers in
our experiments used solid-state drives (vs. hard disks), we conjecture that their re-
duced access times would permit us to shrink �d and so improve the performance of
StopWatch for these applications.

8. COMPARISON TO ALTERNATIVES

In this section, we pause to compare StopWatch to two alternatives for defending
against timing side channels of the form we consider here. The two alternatives we
consider, neither of which involves VM replication at all, is (i) overcoming timing side
channels by the injection of random noise, and (ii) temporally isolating guest VMs by
time slicing each node and running only one guest VM at a time on the node, resetting
the machine to as clean a state as possible between each. We discuss these alternatives
in Section 8.1 and Section 8.2, respectively.

The purpose of our comparisons is to illustrate certain advantages that StopWatch
has over these alternatives, but not to argue that StopWatch is superior to these alter-
natives in all ways. Indeed, it is appropriate to point out that StopWatch’s approach
comes with several deployment overheads that these alternatives do not suffer. For
example, StopWatch requires VM replication and the placement of each VM’s replicas
so that the replicas of any VM are coresident with nonoverlapping sets of (replicas of)
other VMs, a nontrivial placement constraint discussed further in Section 9. Moreover,
for any VM for which networking performance is important, the VM replicas should
be placed in close network proximity to one another (as we discussed in Section 7.2).
The cloud must additionally provide (not necessarily physically distinct) ingress nodes
for replicating inbound traffic to each VM’s replicas (Section 5), and egress nodes for
hiding timing information in the traffic (the replicas of) each VM sends to others
(Section 6.1). Neither of the alternatives discussed next impose such additional re-
quirements.

8.1. Comparison to Uniformly Random Noise

An alternative to StopWatch is simply adding random noise (without replicating VMs)
to confound timing attacks. To illustrate advantages that StopWatch’s approach has
over this alternative, we borrow notation first introduced in Section 3.3: Let X1 denote
a random variable representing the “baseline” timing behavior observed by an attacker
VM (replica) in the absence of the victim of interest, and let X ′

1 be the random variable
as observed by the attacker VM when it is coresident with the victim VM of interest.
Again, in StopWatch, the adversary learns information from the difference between (i)
the distribution of X2:3 for random variables X1, X2, X3 corresponding to attacker VM
replicas that are not coresident with a victim VM of interest, and (ii) the distribution
of X ′

2:3 for random variables X ′
1, X2, X3, where X ′

1 corresponds to an attacker VM that
is coresident with the victim VM of interest. More specifically, in the case where X2:3 or
X ′

2:3 denotes the logical time of a network interrupt delivery, for example, the adversary
observes either X2:3 + �n or X ′

2:3 + �n. (�n is discussed in Section 5.1.2.)
For simplicity, suppose that X1 and X ′

1 are exponentially distributed with rate pa-
rameters λ and λ′, respectively, as in the example of Figure 1. For the random variable
XN representing added noise, assume that XN is drawn uniformly from [0, b] (i.e.,

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:21

Fig. 8. Expected delay induced by StopWatch vs. by uniform noise as a function of confidence with which at-
tacker distinguishes the two distributions (coresident victim or not) after the same number of observations;
baseline distribution Exp(λ), λ = 1; victim distribution Exp(λ′).

XN ∼ U(0, b)), a common choice to mitigate timing channels (e.g., Hu [1991], Giles and
Hajek [2002]).

We calculated expected delay imposed by StopWatch and by adding uniformly dis-
tributed noise. To make a fair comparison, we configured both approaches to provide
the same strength of defense against timing attacks. Specifically, after calculating the
number of observations the attacker requires in the case of StopWatch to distinguish,
for a fixed confidence level, the distributions X2:3 +�n and X ′

2:3 +�n using a χ -squared
test, we calculated the minimum b that would give the attacker the same confidence in
distinguishing X1 +XN and X ′

1 +XN after that number of observations. Figure 8 shows
the resulting expected delays in each case.

This figure indicates that StopWatch scales much better as the attacker’s required
confidence and the distinctiveness of the victim grows (as represented by λ′ dropping).
The delay of the StopWatch approach is tied most directly to �n, which is added to
ensure that the replicas of each VM remain synchronized (see Section 5.1.2); here we
calculated it so that Pr[|X1 − X ′

1| ≤ �n] ≥ 0.9999. That is, the probability of a desyn-
chronization at this event is less than 0.0001. Note that E[X2:3 +�n] and E[X ′

2:3 +�n]
are nearly the same in Figure 8, since their difference is how the attacker differenti-
ates the two, and similarly for E[X1 + XN] and E[X ′

1 + XN].

8.2. Comparison to Time Slicing

In this section, we compare StopWatch to another alternative, namely, time slicing,
to defend against timing attacks. Here, “time slicing” refers to executing each VM
(without replication) in isolation for a period of time. When multiple VMs coreside
on the same physical machine, they are scheduled to run in a one-at-a-time fashion.
Specifically, time is divided into slices, and within each time slice, only one VM is
allowed to execute, exclusively occupying all physical resources. VMs are scheduled to
consume time slices according to a round-robin scheduler (i.e., in turns). In addition,
each two consecutive time slices are separated by a cleansing period within which we
cleanse shared components in the system to simulate a machine reset. As an example,
Figure 9 depicts the execution of three time-sliced VMs running on the same machine.

8.2.1. Design. To make VMs execute in turns, we unpause virtual CPUs (vCPUs) of
one VM and leave vCPUs of all the other VMs paused for the duration of a time slice.
In this experiment, we designed three sets of cleansing operations, described next and
summarized in Table I, to flush shared components in the system with varying degrees
of thoroughness. Even our most aggressive cleansing operation falls short of a complete
machine reset since there are some shared components (e.g., shared network stack of

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:22 P. Li et al.

Fig. 9. Time-sliced execution of three VMs.

Table I. Length of Time Slice (sliceLen) and
of Cleansing (cleanseLen)

sliceLen (s) cleanseLen (s)
Flush-A 0.4 0.001
Flush-B 2 0.2
Flush-C 2.5 0.25

the host machine) with state that could carry information about one VM to another.
For each type of cleansing operation described next, we set the length of each time slice
(sliceLen) to be larger than the length of the cleansing period (cleanseLen) by at least
one order of magnitude, in an effort to limit the impact of cleansing periods.

Flush-A: CPU Caches and TLB. In the “Flush-A” cleansing operation, we use the
WBINVD instruction to flush CPU instruction and data caches. WBINVD writes back all
modified (instruction and data) cache lines in the processor’s internal cache to main
memory and invalidates (flushes) the internal caches. The instruction then directs
external caches to be invalidated and to write back modified data, though there are
no external caches on our machines in this experiment. In our experiment, WBINVD is
invoked at the beginning of each cleansing period, as depicted in Figure 9.

The TLB (Translation Lookaside Buffer) stores translations between virtual ad-
dresses and physical addresses. It gets flushed every time a context switch happens
and CR3 register is reloaded. The flushing of the TLB is automatically carried out by
the virtualization software we use (Xen).

When we choose the length of the cleansing period (cleanseLen), we choose a value
that is big enough to pause/unpause vCPUs (about 0.8ms in total on our machines) and
to complete all flushing operations. In Flush-A, we use sliceLen = 0.4s and cleanseLen
= 0.001s. (In contrast, Xen’s CPU schedule quantum is 30ms.)

Flush-B: Flush-A + Disk Page Cache. The disk page cache is a buffer of disk-backed
pages kept in main memory (RAM) by the operating system for quicker access. All
physical memory that is not directly allocated to applications is usually used by the
operating system for the page cache. For a VM running on Xen, the disk device is vir-
tualized and provided by a device model process running in Dom0. QEMU [Bellard
2005] is used to implement such device models which, by default, uses write-through
caching for all block devices (see http://wiki.qemu.org/download/qemu-doc.html).
This means that the page cache of Dom0 will be used to read and write data.
To flush the disk page cache, we use a SYNC system call followed by writing to
/proc/sys/vm/drop caches. SYNC writes all dirty cache pages to the disk, while writing to
/proc/sys/vm/drop caches frees all the page caches for reading. In Flush-B, in addition
to the CPU and TLB caches, we flush the disk page cache as well, which takes about
185ms in our system. In this case, we set sliceLen = 2.0s and cleanseLen = 0.2s.

Flush-C: Flush-B + On-Drive Disk Cache Buffer. The disk cache buffer is the em-
bedded memory in a hard drive acting as a buffer between the rest of the computer

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:23

Table II. Configurations

VM (replicas) per host
total hosts total VMs vanilla Xen time slicing StopWatch

Baseline 3 1 0 or 1 N/A 1
Config-1 13 26 2 2 6
Config-2 19 57 3 3 9
Config-3 25 100 4 4 12

Fig. 10. StopWatch vs. time slicing: comparison of slowdown and delay.

and the physical hard disk platter that is used for storage. We use the utility hdparm
-F, which takes roughly 25ms, to flush this buffer in addition to operations included in
Flush-B. In this case, we set sliceLen = 2.5s and cleanseLen = 0.25s.

8.2.2. Evaluation. To fairly compare the performance of VMs running under StopWatch
and in a time-sliced fashion, we first configure our system carefully so that the same
number of VMs are running on the same number of physical machines in both modes.
For instance, given 13 machines, if each is time sliced by two VMs, then there are
26 VMs running in total. StopWatch can also support 26 VMs (78 replicas in total)
with 13 machines, each of which hosts 6 distinct replicas without violating Stop-
Watch’s placement constraints. We have three configurations in this evaluation, shown
in Table II, as well as a “Baseline” configuration in which there is at most one VM
(replica) per host. In all tests, one “target VM” is serving files via HTTP; half of the
other VMs (if any, and rounding up if necessary) with which it is coresident are serving
NFS with a workload described next; and the rest are receiving light ICMP traffic (i.e.,
being ping’ed). All VMs in this experiment are uniprocessor VMs. The machines used
to support these experiments are as described in Section 7.2.

In Figure 10, we compare the performance of the target VM serving files via HTTP
in the time slicing and StopWatch cases. Specifically, the target VM serves a file of size
100MB via HTTP. In these tests, the downloading client was a machine sitting on the
same campus network as the nodes hosting these VMs, with a wired connection. The
y-axis shows the slowdown factor, which is computed by dividing the time taken to
fetch the file from the target VM running in either StopWatch or time-sliced mode by
the “vanilla Xen” value for that configuration. Each shown data point is the average
over ten such downloads.

To help explain results shown in Figure 10(a), in Figure 11, we show the progress of
downloading for various setups. (Flush-B is not shown, since it largely overlays Flush-
C.) Even in Flush-A, the download speed suffers both from frequent context switches
among VMs and from CPU cache flushing. While in Flush-C, which has longer time
slices, the download speed roughly recovers within one slice from a cleaned cache, the
slice ends shortly thereafter. And also due to the longer time slices, stepped effects
become more obvious in Flush-C.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:24 P. Li et al.

Fig. 11. Progress of file download via HTTP.

Finally, in Figure 10(b), we confirm these effects by measuring the latency of highly
interactive NFS operations. An NFS server was set up in the target VM, and the client
remotely mounted the exported partition and then launched grep operations, trying
to find a target string in a 32B file. grep operations were conducted with a frequency
of 10 ops/s, and the average latency to perform 200 grep operations is reported. In
this experiment, the effects observed in the HTTP case manifest themselves as paused
grep commands owing to the NFS server not being scheduled yet and so being unable
to respond.

8.3. Discussion

The previous analyses are not meant to conclude that StopWatch will always pro-
vide superior performance to adding random noise or time slicing hosts, nor do we
believe that is the case. For example, machines with few physical cores and a compute-
intensive batch workload would almost certainly perform better with time slicing than
it would with StopWatch, since StopWatch would triplicate the computations on ma-
chines allowing minimal concurrency. That said, the analyses do illustrate ways in
which StopWatch could outperform these alternative designs, while providing an ar-
guably more holistic defense against timing channels than either of them.

9. REPLICA PLACEMENT IN THE CLOUD

StopWatch requires that the three replicas of each guest VM are coresident with
nonoverlapping sets of (replicas of) other VMs. This constrains how a cloud operator
places guest VM replicas on its machines. In this section, we clarify the significance
of these placement constraints in terms of the provider’s ability to best utilize its in-
frastructure. After all, if under these constraints, the provider were able to simulta-
neously run a number of guest VMs that scales, say, only linearly in the number of
cloud nodes, then the provider should forgo StopWatch and simply run each guest VM
(nonreplicated) in isolation on a separate node. Here we show that the cloud operator
is not limited to such poor utilization of its machines.

If the cloud has n machines, then consider the complete, undirected graph (clique)
Kn on n vertices, one per machine. For every guest VM, the placement of its three
replicas forms a triangle in Kn consisting of the vertices for the machines on which the
replicas are placed and the edges between those vertices. The placement constraints of
StopWatch can be expressed by requiring that the triangles representing VM replica
placements be pairwise edge-disjoint. As such, the number of guest VMs that can
simultaneously be run on a cloud of n machines is the same as the number of
edge-disjoint triangles that can be packed into Kn. A corollary of a result due to
Horsley [2011, Thm. 1.1] is as follows.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:25

THEOREM 3. A maximum packing of Kn with pairwise edge-disjoint triangles has
exactly k triangles, where (i) if n is odd, then k is the largest integer such that 3k ≤ (n

2

)
and

(n
2

) − 3k
∈ {1, 2}; and (ii) if n is even, then k is the largest integer such that 3k ≤(n
2

) − n
2 .

So, a cloud of n machines using StopWatch can simultaneously execute k = �(n2) guest
VMs. The existence of such a placement, however, does not guarantee an efficient algo-
rithm to find it. Moreover, this theorem ignores machine capacities. Next we address
both of these shortcomings.

Under the constraints of StopWatch, one node in a cloud of n nodes can simultane-
ously execute up to n−1

2 guest VMs, since the other replicas of the guest VMs that it
executes (two per VM) must occupy distinct nodes. If each node has resources to si-
multaneously execute c ≤ n−1

2 guest VMs, then the following theorem provides for an
algorithm to efficiently place them subject to the per-machine capacity constraint c. Its
proof can be found in the Online Appendix available in the ACM Digital Library.

THEOREM 4. Let n ≡ 3 mod 6 and c ≤ n−1
2 . If c ≡ 0 or 1 mod 3, then there is an

efficient algorithm to place k ≤ 1
3cn guest VMs. If c ≡ 2 mod 3, then there is an efficient

algorithm to place k ≤ 1
3 (c − 1)n + n−3

6 guest VMs.

A limitation of Theorem 4 is that it provides an efficient algorithm to place �(cn)
VMs only in the case that all VMs consume one unit of machine capacity. In this sense,
the theorem is simplistic, since VMs submitted to clouds frequently have different de-
mands for some resources. For example, if the capacity c represents physical memory,
then different VMs may have different memory demands. The following theorem pro-
vides for an efficient placement of VMs even in this case, and is proved in the Online
Appendix.

THEOREM 5. Let n = 6v + 3, and 2v + 1 = 3q for some q ∈ N. Suppose that each
machine has capacity c ≤ n−1

2 and each VM guest has a constant associated demand
on that capacity of at most dmax. There is an efficient algorithm to place �(c

dmax
n) VM

guests.

10. CONCLUSION

We proposed a new method for addressing timing side channels in IaaS compute clouds
that employs three-way replication of guest VMs and placement of these VM replicas
so that they are coresident with nonoverlapping sets of (replicas of) other VMs. By
permitting these replicas to observe only virtual (vs. real) time and the median timing
of I/O events across the three replicas, we suppress their ability to glean informa-
tion from a victim VM with which one is coresident. We described an implementation
of this technique in Xen, yielding a system called StopWatch, and we evaluated the
performance of StopWatch on a variety of workloads. Though the performance cost
for our current prototype ranges up to 2.8× for networking applications, we used our
evaluation to identify the sources of costs and alternative application designs (e.g., re-
liable transmission using negative acknowledgments, to support serving files) that can
enhance performance considerably. We also extended this evaluation to demonstrate
ways in which StopWatch can provide better performance than alternatives that lever-
age commodity hardware, namely, adding random noise to observable event timings
and eliminating concurrent VM execution (time slicing). We showed that clouds with

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:26 P. Li et al.

n machines capable of each running c ≤ n−1
2 guest VMs simultaneously can efficiently

schedule �(cn) guest VMs under the constraints of StopWatch, or �(cn
dmax

) guest VMs
if each guest VM makes demands on the per-machine capacity c of at most dmax. These
results represent a clear improvement over the alternative of running each guest VMs
on its own machine. We envision StopWatch as a basis for a high-security cloud, for ex-
ample, suitable for military, intelligence, or financial communities with high assurance
needs.

An important topic for future work is extending StopWatch to support multiproces-
sor guest VMs. As discussed in Section 2, previous research on deterministic schedul-
ing (e.g., Devietti et al. [2010]) should provide a basis for extending our current
StopWatch prototype. A second direction for improvement is that we have implicitly
assumed in our StopWatch implementation (and in many of our descriptions in this
article) that the replicas of each VM are placed on a set of homogeneous nodes. Ex-
panding our implementation to heterogeneous nodes poses additional challenges that
we hope to address in future work. Finally, as discussed in Section 8, StopWatch in-
troduces various deployment considerations (e.g., ingress and egress nodes, and VM
replication with replica placement constraints) that some competing alternatives do
not. An additional topic for future work is evaluating the operational costs of these re-
quirements in practice and possibly improving the StopWatch design to reduce these
burdens on cloud operators while retaining the advantages it offers.

REFERENCES

J. Agat. 2000. Transforming out timing leaks. In Proceedings of the 27th ACM Symposium on Principles of
Programming Languages. 40–53.

A. Askarov, A. C. Myers, and D. Zhang. 2010. Predictive black-box mitigation of timing channels. In
Proceedings of the 17th ACM Conference on Computer and Communications Security. 520–538.

A. Aviram, S.-C. Weng, S. Hu, and B. Ford. 2010. Efficient system-enforced deterministic parallelism. In
Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation.

C. Basile, Z. Kalbarczyk, and R. K. Iyer. 2006. Active replication of multithreaded applications. IEEE Trans.
Parallel Distrib. Syst. 17, 5, 448–465.

A. Bates, B. Mood, J. Fletcher, H. Pruse, M. Valafar, and K. Butler. 2012. Detecting co-residency with active
fraffic analysis techniques. In Proceedings of the ACM Workshop on Cloud Computing Security. 1–12.

F. Bellard. 2005. QEMU, a fast and protable dynamic translator. In Proceedings of the USENIX Annual
Technical Conference, FREENIX Track. 41–46.

C. Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton University.
A. Borg, W. Blau,W. Graetsch, F. Herrmann, and W. Oberle. 1989. Fault tolerance under UNIX. ACM Trans.

Comput. Syst. 7, 1, 1–24.
T. C. Bressoud and F. B. Schneider. 1996. Hypervisor-based fault-tolerance. ACM Trans. Comput. Syst. 14, 1,

80–107.
D. Brumley and D. Boneh. 2003. Remote timing attacks are practical. In Proceedings of the 12th USENIX

Security Symposium. 1–14.
B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser.

2006. N-variant systems: A secretless framework for security through diversity. In Proceedings of the
15th USENIX Security Symposium.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and Andrew Warfield. 2008. Remus: High avail-
ability via asynchronous virtual machine replication. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation. 161–174.

J. Devietti, B. Lucia, L. Ceze, and M. Oskin. 2010. DMP: Deterministic shared memory multiprocessing.
IEEE Micro 30, 41–49.

E. Deza and M. Deza. 2006. Dictionary of Distances. Elsevier.
G. W. Dunlap, D. G. Lucchetti, P. M. Chen, and M. A. Fetterman. 2008. Execution replay of multiproces-

sor virtual machines. In Proceedings of the 4th ACM Conference on Virtual Execution Environments.
121–130.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

StopWatch 8:27

D. Gao, M. K. Reiter, and D. Song. 2005. Behavioral distance for intrusion detection. In Proceedings of the
8th International Symposium Recent Advances in Intrusion Detection. 63–81.

D. Gao, M. K. Reiter, and D. Song. 2009. Beyond output voting: Detecting compromised replicas using HMM-
based behavioral distance. IEEE Trans. Depend. Secure Comput. 6, 2, 96–110.

J. Giles and B. Hajek. 2002. An information-theoretic and game-theoretic study of timing channels. IEEE
Trans. Inf. Theory 48, 9.

M. Güngör, Y. Bulut, and S. Çalık. 2009. Distributions of order statistics. Appl. Math. Sci. 3, 16, 795–802.
A. Haeberlen, B. C. Pierce, and A. Narayan. 2011. Differential privacy under fire. In Proceedings of the 20th

USENIX Security Symposium.
A. Herzberg, H. Shulman, J. Ullrich, and E. Weippl. 2013. Cloudoscopy: Services discovery and topology

mapping. In Proceedings of the ACM Workshop on Cloud Computing Security. 113–122.
D. Horsley. 2011. Maximum packing of the complete graph with uniform length cycles. J. Graph Theory

68, 1, 1–7.
W.-M. Hu. 1991. Reducing timing channels with fuzzy time. In Proceedings of the IEEE Symposium on

Security and Privacy. 8–20.
Intel. 2011. Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation.
M. H. Kang and I. S.Moskowitz. 1993. A pump for rapid, reliable, secure communication. In Proceedings of

the ACM Conference on Computer and Communications Security. 119–129.
T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. 2004. A nonstationary Poisson view of Internet traffic.

In Proceedings of the INFOCOM. 1558–1569.
T. Kim, M. Peinado, and G. Mainar-Ruiz. 2012. STEALTHMEM: System-level protection against cache-based

side channel attacks in the cloud. In Proceedings of the 21st USENIX Security Symposium.
C. C. Lindner and C. A. Rodger. 2008. Design Theory. CRC Press, Chapter 1.
P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. 1999. Enforcing determinism for the consistent

replication of multithreaded CORBA applications. In Proceedings of the IEEE Symposium on Reliable
Distributed Systems. 263–273.

A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox, and J. W. Davidson. 2008. Security through redundant
data diversity. In Proceeding of the 38th IEEE/IFPF International Conference on Dependable Systems
and Networks.

G. Popek and C. Kline. 1974. Verifiable secure operating system software. In Proceedings of the AFIPS
National Computer Conference. 145–151.

H. Raj, R. Nathuji, A. Singh, and P. England. 2009. Resource management for isolation enhanced cloud
services. In Proceedings of the ACM Workshop on Cloud Computing Security. 77–84.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. 2009. Hey, you, get off of my cloud: Exploring infor-
mation leakage in third-party compute clouds. In Proceedings of the 16th ACM Conference on Computer
and Communications Security. 199–212.

F. B. Schneider. 1987. Understanding Protocols for Byzantine Clock Synchronization. Technical Report
87-859, Department of Computer Science, Cornell University.

F. B. Schneider. 1990. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surveys 22, 4.

T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D. Leshchiner, M. Luby, T. Montgomery,
L. Rizzo, A. Tweedly, N. Bhaskar, R. Edmonstone, R. Sumanasekara, and L. Vicisano. 2001. PGM reli-
able transport protocol specification. Request for Comments 3208, Internet Engineering Task Force.

E. Tromer, D. A. Osvik, and A. Shamir. 2010. Efficient cache attacks on AES, and countermeasures.
J. Cryptol. 23, 1, 37–71.

R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V. Anderson, S. M. Bennett, A. Kagi, F.
H. Leung, and L. Smith. 2005. Intel virtualization technology. IEEE Computer 38, 3, 48–56.

B. C. Vattikonda, S. Das, and H. Shacham. 2011. Eliminating fine grained timers in Xen. In Proceedings of
the ACM Cloud Computing Security Workshop.

VMWare. 2010. Timekeeping in VMware Virtual Machines. VMWare Inc.
J. C. Wray. 1991. An analysis of covert timing channels. In Proceedings of the IEEE Symposium on Security

and Privacy. 2–7.
M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman. 2007. ReTrace: Collecting execution

trace with virtual machine deterministic replay. In Proceedings of the 3rd Workshop on Modeling, Bench-
marking and Simulation.

J. Yin, A. Venkataramani, J.-P. Martin, L. Alvisi, and M. Dahlin. 2002. Byzantine fault-tolerant confiden-
tiality. In Proceedings of the International Workshop on Future Directions in Distributed Computing.

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

�

�

�

�

�

�

�

�

8:28 P. Li et al.

S. Zdancewic and A. C. Myers. 2003. Observational determinism for concurrent program security. In
Proceedings of the 16th IEEE Computer Security Foundations Workshop. 29–43.

D. Zhang, A. Askarov, and A. C. Myers. 2011. Predictive mitigation of timing channels in interactive systems.
In Proceedings of the 18th ACM Conference on Computer and Communications Security.

D. Zhang, A. Askarov, and A. C. Myers. 2012a. Language-based control and mitigation of timing channels.
In Proceedings of the 33rd ACM Conference on Programming Language Design and Implementation.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. 2012b. Cross-VM side channels and their use to extract
private keys. In Proceedings of the 19th ACM Conference on Computer and Communications Security.

Received January 2014; revised June 2014; accepted September 2014

ACM Transactions on Information and System Security, Vol. 17, No. 2, Article 8, Publication date: November 2014.

