
1 23

International Journal of Information
Security
 
ISSN 1615-5262
 
Int. J. Inf. Secur.
DOI 10.1007/s10207-014-0268-3

Toward practical encrypted email that
supports private, regular-expression
searches

Lei Wei & Michael K. Reiter



1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.



Int. J. Inf. Secur.
DOI 10.1007/s10207-014-0268-3

REGULAR CONTRIBUTION

Toward practical encrypted email that supports private,
regular-expression searches

Lei Wei · Michael K. Reiter

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract In this paper, we develop a protocol to enable
private regular-expression searches on encrypted data stored
at a server. A novelty of the protocol lies in allowing a user
to securely delegate an encrypted search query to a proxy,
which interacts with the server where the user’s data are
stored encrypted to produce the search result for the user.
The privacy of the query and the data are both provably pro-
tected against an arbitrarily malicious server and an honest-
but-curious proxy under rigorous security definitions. We
then detail a series of optimizations to our initial design that
achieve an order-of-magnitude performance improvement
over the original protocol. We demonstrate the practicality
of the resulting protocol through measurements of private
regular-expression searches on a real-world email dataset.

Keywords Private search on encrypted data ·
Regular-expression search · Cloud security

1 Introduction

The tension between encryption and the ability to perform
searches on the underlying plaintext has been a topic of con-
siderable attention in the research community. Numerous
designs of so-called searchable encryption schemes have
been proposed to address this tension (see Sect. 2 for a
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detailed discussion), but few have made it to practical use. We
believe that this state of affairs is in part due to inflexibility, in
the sense that such schemes typically require the document
creator to tag it by the keywords on which searches will be
supported in the future. Even though one can imagine tag-
ging and encrypting all the words in an document to allow
for all searches on any word, anything from a typo in the
document to different forms of word stemming will render
the search results unsatisfactory. For example, a document
tagged with the keyword “meetings” would not be returned
in the search results for the queries “meet” or “meeting”.
A recent study of user email query patterns [1] showed that
many queries that users create are only partial words, and
so, substring searching capability is important to provide an
adequate user experience. Furthermore, very few searchable
encryption schemes offer the capabilities of performing sub-
string, conjunctive, disjunctive, and range queries, and we
are aware of none that offers all them at the same time.

In this paper, we develop a protocol to enable private
regular-expression searches on encrypted data and a sys-
tem that demonstrates this capability on encrypted email.
Regular-expression searches are a widely adopted search
primitive in many languages and programming frameworks1

(e.g., see [3]) and, for example, suffice to support the search
options (including Boolean combinations) offered by the
Thunderbird email client for the text and numeric email
fields. Our system is thus able to support range queries on
the date field and various types of substring queries on the
source, destination and subject fields of emails.

1 To be more precise, the term “regular expression” is used in some
frameworks in a way that follows but deviates somewhat from its orig-
inal definition. Our system supports searches using regular expressions
as originally defined, i.e., searches that can be expressed as deterministic
finite automata [2].
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Our protocol for regular-expression searching gains com-
putational efficiency by using interaction, in fact requiring
data transfer between the searching client and the server
holding the ciphertext of a volume larger than the searchable
ciphertext itself. This obviously begs the question of whether
a more suitable solution would be to download each email to
the client and decrypt it there, to be searched locally. With
the widespread use of volume-priced networking (i.e., over
cellular data plans), however, neither design is particularly
appealing. So, we instead explore a different design in which
the user (e.g., via her mobile device) submits her encrypted
regular expression (or suitable representation thereof) to a
proxy, which then interacts with the server hosting the
encrypted data using our protocol. After this interaction, the
proxy reports information back to the user that permits her
to determine which files matched, so she can retrieve these
files from the server. We stress that the volume of interaction
between the user and the proxy is independent of the lengths
of the ciphertexts stored at the server. Moreover, the proxy
is untrusted for the privacy of the search or the file contents
(provided that it does not collaborate maliciously with the
server), provably so when the proxy is honest-but-curious.
So, for example, the proxy could be a machine that is well
defended and closely monitored to ensure its integrity, but
nevertheless untrusted with the details of the user’s searches
or the emails they match—as might be the case with a user’s
professionally maintained work computer, through which she
also searches her personal email.

The task of constructing such a protocol to be efficient
is, as we found, very challenging. Starting from a protocol
that implements the above functionality, we detail a series
of optimizations that resulted in an optimized protocol with
more than an order-of-magnitude improvement in the perfor-
mance, while enjoying similar security properties. At a high
level, the optimizations involve careful redesign of the proto-
col in order to take advantage of well-known algebraic opti-
mization techniques (e.g., preprocessing to optimize pairing
operations) and a few novel algebraic techniques to reduce
the online computational costs. After detailing these protocol
optimizations, we then explore additional optimizations that
leverage specifics of the email setting. These optimizations
pertain to the specific regular-expression alphabet that should
be utilized for each type of searchable field (i.e., source email
address, sender name, date, and subject).

We detail an implementation of our protocol and its per-
formance when searching emails from a real-world email
dataset. We show, for example, that our implementation
incurs average latencies of 0.89 s per email for performing a
nine-character substring search on the sender email address
field and 0.17 s per email for performing a range query span-
ning about six months on the email date field (These numbers
were obtained from a proxy and server each having eight
2.67 GHz cores with simultaneous multithreading enabled).

We also evaluate options for exploiting parallelism with our
protocol, ranging from very coarse (i.e., one server thread
and one proxy thread per server–proxy protocol instance,
but running many protocols instances in parallel) to very fine
(i.e., many server threads and proxy threads in one protocol
instance). While our protocol admittedly does not offer suf-
ficient user responsiveness to search the many thousands of
emails in our own email folders while we wait, it is easily effi-
cient enough to search the small minority of those messages
that are encrypted or, we believe, that would merit encryp-
tion. Moreover, we anticipate other usage modes for which
our protocol’s search performance should be more than suf-
ficient: e.g., a user can register a long-standing “subscrip-
tion” query at the proxy, which can evaluate the query on
each email message as it arrives at the server and inform the
user of the result.

To summarize, our contributions are as follows. First,
we provide a design for an interactive protocol by which
(i) a user provides an encrypted representation of a regular
expression to a proxy, (ii) the proxy interacts with a server
holding an encrypted file to produce an output for the proxy,
and (iii) upon receiving that output from the proxy, the user
can determine whether the regular expression matched that
file. However, neither the proxy nor the server learns any-
thing about the search result, the regular expression (except
its size), or the file plaintext (except its size). Second, we
develop an implementation of this protocol together with sev-
eral optimizations to make it perform well and then evaluate
the performance of this implementation on a real-world email
dataset.

2 Related work

The problem we study falls into the general area of secure
“computing on encrypted data” [4] or two-party secure com-
putation [5,6] and could be implemented using general tech-
niques. The former achieves computations noninteractively
using fully homomorphic encryption, for which existing
implementations (e.g., [7–10]) are still far from practical.
The latter utilizes “garbled circuits” of size linear in the cir-
cuit representation of the function to be computed. Despite
progress on practical implementations of this technique [11–
14], this limitation renders it much more computation and
communication intensive for the problem we consider. Per-
haps, more importantly, since our protocol aims to enable a
resource-constrained user to outsource the search query and
workload to a proxy, the interaction between the user and
proxy should be minimized. Using our protocol, the com-
munication cost in the direction from the user to the proxy is
only dependent on the size of the search query and is inde-
pendent of the number and size of the file ciphertexts. We
are unaware of how to achieve this property using garbled
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circuits, however. Since the garbled circuit and its inputs
are “unreusable” across different runs of the protocol, the
user would need to provide a number of inputs (in this case,
encrypted queries) to the proxy that equals to the number of
files to be searched. Furthermore, the fact that in our con-
struction, the user-generated encrypted query can be used an
unlimited number of times enables a “subscription” service in
which the proxy holds the encrypted query and periodically
informs the user of the arrival of matched emails, without any
further communication from the user to the proxy. Again,
we are unaware of how to implement this functionality using
generic garbled circuit techniques.

The protocol we design here directly builds on a previous
protocol [15] that enables a client to evaluate a deterministic
finite automaton (DFA) on the plaintext of an encrypted file
hosted by a server provided that the client has been given
permission to do so by the data owner. Our protocol differs by
permitting the client (in our case, the proxy) to perform this
evaluation using an encrypted DFA provided by the user,
so that the proxy need not be trusted with the privacy of
the search query. We also contribute over that prior work by
developing substantial optimizations to the performance of
the resulting protocol; many of these optimizations should
be applicable to the previous protocol, as well.

The structure of our protocol, involving a user who splits
the DFA evaluation between a proxy and server, is reminis-
cent of a protocol due to Blanton and Aliasgari [16]. Their
protocol secret-shares the DFA and (plaintext) file, respec-
tively, between two hosts, which then interactively evaluate
the DFA on the file without reconstructing either one. Their
protocol, however, does not support asymmetric encryption
of the file, which in the email context that our protocol is
designed to support, is the predominant method for preparing
a private email for its intended recipient. With our protocol,
as with today’s encrypted email options, the email sender
needs only a public key for the intended recipient.

There has been a significant work on searchable symmet-
ric encryption (SSE) (e.g., [17–24]), the key for which an
email sender could encrypt using the email recipient’s pub-
lic key after using it to encrypt the searchable email fields.
This would make the search functionality provided by the
SSE scheme available to the user, but only after the user
downloads the encrypted symmetric key for each email, so
that she can create search queries for each one. In contrast,
the protocol we present here does not require the user to
obtain per email information before creating a search query
for all emails. As mentioned above, the proxy could even
hold and apply a “subscription” query periodically to inform
the user of newly arrived emails that match it. Using search-
able asymmetric encryption (e.g., [19,22,23,25–27]) to
encrypt each email could provide this feature, though we are
unaware of any such scheme that supports regular-expression
queries.

Because our protocol between the proxy and server is
interactive, other interactive protocols are also related to our
work. (Searchable encryption schemes are typically nonin-
teractive.) In particular, interactive protocols for two-party
private DFA evaluation, in which a server has a file and a
user has a DFA to evaluate on that file, have been a topic
of recent focus (e.g., [28–31]). Our work differs from these
in that in our protocols, the file is available to the parties
only in ciphertext form. We overcome this obstacle by the
user two-party sharing the email-decryption key between
the proxy and the server, so that they can interact to eval-
uate the user’s DFA on encrypted email fields. A protocol
due to Choi et al. [32] takes a similar approach to enable
general two-party computations on data that resides only in
encrypted form at the parties. However, because this proto-
col is based on garbled circuits, it inherits the drawbacks we
mentioned earlier.

Returning to the noninteractive case, Waters [33] described
a functional encryption scheme that allows a secret key tied
to a specific DFA to decrypt a ciphertext if the DFA accepts
a fixed string associated with the ciphertext. However, his
security requirements are quite different from ours, in that
the string to be matched is considered public in his context.
In our case, this string corresponds to the encrypted file and
so must remain private.

3 Protocol design

We describe our protocols for regular-expression evaluation
by assuming the regular expression has first been translated
to an equivalent deterministic finite automaton (DFA) [2]. A
DFA M is a tuple 〈Q, Σ , δ, qinit, Δ〉 where Q is a set of
|Q| = n states; Σ is a set (alphabet) of |Σ | = m symbols;
δ : Q × Σ → Q is a transition function; qinit is the initial
state; and Δ : Q → {0, 1} is a function for which Δ(q) = 1
indicates that q is an accepting state.

3.1 Our starting point

We first review the protocol that serves as our starting
point [15]. The protocol enables a client having a DFA M
to interact with a server storing the ciphertext of a file to
obtain the result as though M was evaluated on the file plain-
text. More precisely, the client should output a bit indicating
whether the final state to which the file plaintext drives the
DFA is accepting or not; i.e., if the plaintext of the file is a
sequence 〈σk〉k∈[�] where [�] denotes the set {0, 1, . . . , �−1}
and where each σk ∈ Σ , then the client should output
Δ(δ(. . . δ(δ(qinit, σ0), σ1), . . . , σ�−1)). The client can learn
the file length �, and the server can learn both � and the num-
ber of states n in the client’s DFA. The client should learn
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client(pk , sk1, server(pk , sk2, Σ,
Q, Σ, δ, qinit, Δ ) ckj k∈[ ],j∈[m])

c101. n ← |Q|, m ← |Σ| s101. m ← |Σ|
c102. π0 ← I s102. λσj σ∈Σ,j∈[m] ←
c103. π1

$← Injs(Q → ) Lagrange(Σ)
c104. α ← Encpk (π1(qinit))

m101.
n

m102.
c105. for k ← 0 − 1 s103. for k ← 0 − 1
c106. β ← Dec1sk1

(α)

m103.
α,β

s104. γ ← Dec2sk2
(α, β)

c107. π0 ← π1 s105. for σ ∈ Σ

c108. π1
$← Injs(Q → ) s106. Ψσ ← pk

m−1

j=0

λσj ·pk ckj

c109. δ ← Blind(δ, π0, π1) s107. for i ∈ [n]
c110. aσi σ∈Σ,i∈[n] ← s108. μσi ← γi ·pk Ψσ

ToPoly(Q, Σ, δ ) s109. endfor
s110. endfor

m104.
μσi σ∈Σ,i∈[n]

c111. α ← pk

σ∈Σ

pk

n−1

i=0

aσi ·pk μσi

c112. endfor s111. endfor
c113. β ← Dec1sk1

(α)

m105.
α,β

c114. π0 ← π1 s112. γ ← Dec2sk2
(α, β)

c115. π1
$← s113. for i ∈ [n]

Injs({0,1} → {0,1}) s114. μi ← Encpk (γi)
c116. Δ ← Blind(Δ, π0, π1) s115. endfor
c117. zi i∈[n] ←

ToPoly(Q, Σ, Δ )

m106.
μi i∈[n]

c118. Θ ← pk

n−1

i=0

zi ·pk μi

c119. β ← Dec1sk1
(Θ)

m107.
Θ,β

s116. θ ← Dec2sk2
(Θ, β)

m108.
θ

c120. return π−1
1 (θ)

Fig. 1 Protocol Π1(E)

nothing else about the file; however, the server should learn
nothing else about the file or the client’s DFA.

The protocol is shown in Fig. 1. The protocol is built
using an additively homomorphic encryption scheme with
plaintext space R where 〈R,+

R
, ·

R
〉 denotes a commutative

ring. Specifically, an encryption scheme E includes algo-
rithms Gen, Enc, and Dec where: Gen is a randomized
algorithm that on input 1κ outputs a public key/private key
pair (pk, sk) ← Gen(1κ); Enc is a randomized algorithm
that on input public key pk and plaintext m ∈ R (where R

can be determined as a function of pk) produces a ciphertext
c ← Encpk(m), where c ∈ Cpk ; Cpk is the ciphertext space

determined by pk; and Dec is a deterministic algorithm that
on input a private key sk and ciphertext c ∈ Cpk produces
a plaintext m ← Decsk(c) where m ∈ R. In addition, E
supports an operation +pk on ciphertexts such that for any
public key/private key pair (pk, sk), Decsk(Encpk(m1) +pk

Encpk(m2)) = m1+R
m2. Using+pk , it is possible to imple-

ment ·pk for which Decsk(m2 ·pk Encpk(m1)) = m1 ·R m2.
We use pk

∑
to denote summation using +pk ; R

∑
to denote

summation using +
R

; and R

∏
to denote the product using ·

R

of a sequence.
The protocol also requires E to support two-party decryp-

tion. Specifically, there exists an efficient randomized algo-
rithm Share that on input a private key sk outputs shares
(sk1, sk2) ← Share(sk), and there are efficient deter-
ministic algorithms Dec1 and Dec2 such that Decsk(c) =
Dec2

sk2
(c, Dec1

sk1
(c)). An example of an encryption scheme

E that meets the above requirements is due to Paillier [34]
with modifications by Damgård and Jurik [35].

The main ingredient of the protocol is a method to encode
a DFA 〈Q, Σ , δ, qinit, Δ〉, and specifically the transition
function δ, as a bivariate polynomial f(x, y) over R where x
is the variable representing a DFA state and y is the variable
representing an input symbol. That is, if we treat each state
q ∈ Q and each σ ∈ Σ as distinct elements of R, then
we would like f(q, σ ) = δ(q, σ ). This can be achieved by
choosing f to be the interpolation polynomial

f(x, y) = R

∑

σ∈Σ

(
fσ (x) ·

R
Λσ (y)

)
(1)

where fσ (q) = δ(q, σ ) for each q ∈ Q and where

Λσ (y) = R

∏

σ ′∈Σ
σ ′ �=σ

y −
R

σ ′

σ −
R

σ ′
(2)

is a Lagrange basis polynomial. Note that Λσ (σ) = 1 and
Λσ (σ ′) = 0 for any σ ′ ∈ Σ \ {σ }.

Calculating (2) requires taking multiplicative inverses in
R. While not every element of a ring has a multiplicative
inverse in the ring, fortunately, the ring used in Paillier
encryption, for example, has negligibly few elements with
no inverses, and so, there is little risk of encountering an
element with no inverse. Using Eq. 2, we can calculate coef-
ficients 〈λσ j 〉 j∈[m], so that

Λσ (y) = R

m−1∑

j=0

λσ j ·R y j

This calculation is encapsulated in the procedure
〈λσ j 〉σ∈Σ, j∈[m] ← Lagrange(Σ) in Fig. 1.

Each fσ needed to compute Eq. 1 can again be deter-
mined as an interpolation polynomial in the Lagrange form
and then expressed as fσ (x) = R

∑n−1
i=0 aσ i ·R xi . In Fig. 1, this
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calculation is represented by the operation 〈aσ i 〉σ∈Σ,i∈[n] ←
ToPoly(Q,Σ, δ).

At the beginning of the protocol, the client receives as
input a public key pk under which the file stored at the server
is encrypted. In addition, he receives a share sk1 of the private
key sk corresponding to pk, and the DFA 〈Q, Σ , δ, qinit, Δ〉.
The server receives as input the public key pk, another share
sk2 of the private key sk, the DFA alphabet Σ , and the file
ciphertexts 〈ck j 〉k∈[�], j∈[m] where ck j ← Encpk((σk)

j ).
The protocol proceeds in rounds, processing one character

in each round. The client begins the kth loop iteration with
an encryption α of the current DFA state after being blinded
by a random injection π1 : Q → R it chose in the (k − 1)th
loop at line c108 (or, if k = 0, then in line c103), where
Injs(Q → R) denotes the set of injections from Q to R

(I denotes the identity function in c102). The client uses
its share sk1 to partially decrypt α (c106) and sends the
result to the server. The server uses his share sk2 to fully
decrypt α and obtains the blinded state γ (s104). The server
then computes, for each σ ∈ Σ (s105), a value Ψσ such
that Λσ (σk) = Decsk(Ψσ ) (s106) by utilizing coefficients
〈λσ j 〉σ∈Σ, j∈[m] output from Lagrange (s102). The server
then returns (in s104) values 〈μσ i 〉σ∈Σ,i∈[n] created, so that
Decsk(μσ i ) = γ i ·

R
Λσ (σk) (s108).

Meanwhile, the client selects a new random injection

π1
$← Injs(Q → R) (c108) and constructs a new

DFA transition function δ′ reflecting the injection it chose
in the last round (now denoted π0, see line c107) and
the new injection π1 it chose for this round. Specifically,
it creates a new DFA state transition function δ′ defined as
δ′(q, σ ) = π1(δ(π

−1
0 (q), σ )) for all σ ∈ Σ and q ∈ π0(Q)

where π0(Q) = {π0(q)}q∈Q . This step is denoted as δ′ ←
Blind(δ, π0, π1) in line c109. That is, δ′ “undoes” the previ-
ous injection π0, applies δ, and then applies the new injection
π1. The client then interpolates a new bivariate polynomial
f(x, y) such that f(q, σ ) = δ′(q, σ ) in line c110, using the
algorithm described previously. The client uses these coef-
ficients and 〈μσ i 〉σ∈Σ,i∈[n] sent from the server (m103) to
“evaluate” the polynomial and obtains a ciphertext α of the
new DFA state under the injection π1 (c111). After � loop
iterations, the client obtains the encrypted final state inc111.

The client then engages in another round of interaction
with the server in order to obtain a binary answer of whether
the final state is an accepting state or not. For that purpose,
the client creates another polynomial F(x) = R

∑n−1
i=0 zi ·R xi

such that F(q) = 1 if and only if Δ(q) = 1 and F(q) = 0
otherwise (c117). That is, F(x) “converges” all accepting
states to 1 and all nonaccepting states to 0. Since the client
needs help from the server to decrypt the final result (s116),

it applies another random injection π1
$← Injs({0, 1} →

{0, 1}) on the output of the function Δ to hide the results from
the server. In the protocol, we use Δ′ ← Blind(Δ, π0, π1)

(c116) to denote the step to generate the blinded function
that maps the accepting state to a random element of {0, 1}.
The client then uses the polynomial interpolation procedure
to obtain the coefficients of F(x) inc117. After “evaluating”
F(x) in c118 and obtaining the encrypted binary output Θ,
the client interacts with the server once more to decrypt it
and returns the result in c120.

3.2 Our initial construction

Starting from the protocol of the previous section, in this sec-
tion, we develop the first contribution of this paper, namely a
protocol that replaces the client with two parties: a user that
holds the DFA 〈Q, Σ , δ, qinit, Δ〉 and a proxy that the user
invokes to conduct a protocol to evaluate this DFA on a file
stored at the server. Notably, the protocol we develop here
protects the secrecy of the DFA 〈Q, Σ , δ, qinit, Δ〉 and the
evaluation result from the proxy, and so, this modification
enables the proxy to execute the protocol on behalf of others
who do not trust it with knowledge of the DFA. One scenario
in which this protection is desirable is if the user does not
have the bandwidth or processing available for performing
the evaluation herself.

The protocol, denoted Π2(E), protects the DFA privacy
by giving to the proxy the encryptions of the coefficients
of the DFA polynomial f , denoted 〈âσ i 〉σ∈Σ,i∈[n] where
âσ i ← Encpk(aσ i ) and 〈aσ i 〉σ∈Σ,i∈[n] ← ToPoly(Q,Σ, δ),
and the encryptions of the coefficients of the converging poly-
nomial F , i.e., 〈ẑi 〉i∈[n] where ẑi ← Encpk(zi ) and 〈zi 〉i∈[n]
← ToPoly(Q,Σ,Δ). (The values 〈zi 〉i∈[n] do not depend on
Σ , but we continue to provide Σ to ToPoly for consistency.)
The implications of this change to the protocol are far reach-
ing, due to the operations that the proxy needs to perform
using these now-encrypted coefficients.

In the original protocol, in order to hide the current state
transition from the server, the client blinds the current tran-
sition state by choosing a random injection π1 of the state
encodings in each round, so that the server obtains a ran-
dom ring element γ in s104 every time. A new DFA poly-
nomial is then interpolated to accommodate the injections
chosen in the last and current round (c107–c110) to con-
tinue state transitions consistently. When the coefficients are
encrypted, however, the proxy will not be able to interpolate
new polynomials because it does not have access to δ. We
thus need another strategy to achieve these “blinding” and
“unblinding” effects. Rather than blinding with a random
injection, the new protocol does so by adding in a random
ring element r to the ciphertext representing the current state
(c203–c204). The consequence of this additive blinding
operation is that the proxy needs a way to “shift” f (and its
encrypted coefficients) to produce a polynomial f ′(x, y) sat-
isfying f ′(q +

R
r, σ ) = δ(q, σ ) for each q ∈ Q and σ ∈ Σ ,

for a specified r ∈ R. If we set
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f ′(x, y) = R

∑

σ∈Σ

(
f ′σ (x) ·

R
Λσ (y)

)

where f ′σ (x) = R

∑n−1
i=0 a′σ i ·R xi , then it suffices if f ′σ (x +

R

r) = fσ (x) for all σ ∈ Σ . Note that

fσ (x −
R

r)

= R

n−1∑

i=0

aσ i ·R (x −
R

r)i

= R

n−1∑

i=0

aσ i ·R R

i∑

i ′=0

(
i

i ′

)

·
R

xi−i ′ ·
R

(−
R

r)i ′

= R

n−1∑

i=0

(

R

n−1−i∑

i ′=0

aσ(i+i ′) ·R
(

i + i ′

i ′

)

·
R

(−
R

r)i ′
)

·
R

xi (3)

where Eq. 3 follows from the binomial theorem. As such,
setting

a′σ i ← R

n−1−i∑

i ′=0

aσ(i+i ′) ·R
(

i + i ′

i ′

)

·
R

(−
R

r)i ′ (4)

ensures f ′σ (x +
R

r) = fσ (x) and, therefore, f(x +
R

r, σ ) =
f ′(x, σ ). When the proxy has access to only the encrypted
coefficients, represented by 〈âσ i 〉σ∈Σ,i∈[n], the operation in
Eq. 4 needs to be changed to

â′σ i ← pk

n−1−i∑

i ′=0

((
i + i ′

i ′

)

·
R

(−
R

r)i ′
)

·pk âσ(i+i ′) (5)

In our pseudocode, we encapsulate calculations of Eq. 5 in
the invocation 〈â′σ i 〉σ∈Σ,i∈[n] ← Shift(r, 〈âσ i 〉σ∈Σ,i∈[n]).

Now that the coefficients are encrypted, the operation by
the client to combine coefficients with ciphertexts as was
done in linec111 in Fig. 1 no longer works for the proxy. For
this reason, we need to expand the properties we require of the
encryption system we use, to include the ability to homomor-
phically “multiply” ciphertexts once. We emphasize that we
do not require fully homomorphic encryption. Our construc-
tion can be instantiated with any additively homomorphic
encryption scheme that allows a single homomorphic multi-
plication of two ciphertexts (e.g., [36,37]), provided that it
also supports two-party decryption. Here, we build from the
more well-studied scheme of Boneh et al. [36], which we
denote by BGN.2

Encryption scheme BGN uses an algorithm BGNInit that,
on input 1κ , outputs (p, p′, G, G

′, e) where p, p′ are ran-
dom κ/2-bit primes, G and G

′ are cyclic groups of order

2 Our previous work [15] includes a protocol that also leverages BGN
but for a completely different purpose, namely simply improving the
communication complexity between the client and server.

N = pp′, and e : G × G → G
′ is a bilinear map. In this

encryption scheme, the ring R is ZN , the ciphertext space
C〈N ,G,G′,e,g,h,ĝ〉 is G ∪ G

′, and the relevant algorithms are
defined as follows. Note that we assume that elements of G

and G
′ are encoded distinctly.

Gen(1κ): Generate (p, p′, G, G
′, e)← BGNInit(1κ); select

random generators g, u
$← G; set N ← pp′, h ← u p′ , and

ĝ ← e(g, g)p; and return public key 〈N , G, G
′, e, g, h, ĝ〉

and private key 〈N , G, G
′, e, g, ĝ, p〉.

Enc〈N ,G,G′,e,g,h,ĝ〉(m): Select x
$← ZN and return gm hx .

Dec〈N ,G,G′,e,g,ĝ,p〉(c): If c ∈ G, then return the discrete
logarithm of e(c, g)p with respect to base ĝ. If c ∈ G

′, then
return the discrete logarithm of cp with respect to base ĝ.
c1 +〈N ,G,G′,e,g,h,ĝ〉 c2: If c1 and c2 are in the same group (i.e.,
both are in G or both are in G

′), then return c1c2. Otherwise,
if c1 ∈ G and c2 ∈ G

′, then return e(c1, g)c2.
m ·〈N ,G,G′,e,g,h,ĝ〉 c: Return cm .
c1 
〈N ,G,G′,e,g,h,ĝ〉 c2: If c1, c2 ∈ G, then return e(c1, c2).
Otherwise, return ⊥.
Share(〈N , G, G

′, e, g, ĝ, p〉): Return sk1 = 〈G, G
′, d1〉

and sk2 = 〈G, G
′, e, g, ĝ, d2〉 where d1

$← ZN and
d2 ← p − d1 mod N .
Dec1

〈G,G′,d1〉(c): Return cd1 .

Dec2
〈G,G′,e,g,ĝ,d2〉(c1, c2): If c1, c2 ∈ G, then return the

discrete logarithm of e(c2cd2
1 , g) with respect to base ĝ. If

c1, c2 ∈ G
′, then return the discrete logarithm of c2cd2

1 with
respect to base ĝ.

Note the new operator 
pk that homomorphically mul-
tiplies two ciphertexts in G. Since the result is in G

′, it is
not possible to use the result as an argument to 
pk . This is
the sense in which this scheme permits homomorphic mul-
tiplication “once”. Also note that though the basic scheme
of Boneh et al. did not include ĝ = e(g, g)p in the public
key, Boneh et al. proposed an extension supporting multi-
party threshold decryption [36, Section 5] that did so;3 it is
this extension that we adopt here.

A complication of using BGN is the need to compute a
discrete logarithm to decrypt in both Dec〈N ,G,G′,e,g,ĝ,p〉 and
Dec2

〈G,G′,e,g,ĝ,d2〉. We thus need to design our protocol, so
that any ciphertext that a party attempts to decrypt should
hold a plaintext from a small range 0 . . . L . Then, Pollard’s
lambda method [39, p. 128] enables recovery of the plaintext
in O(
√

L) time. Alternatively, a precomputed table that maps
ĝm to the plaintext m ∈ {0 . . . L} enables decryption to be
performed by table lookup.

Protocol steps Protocol Π2(E) is shown in Fig. 2. It has a
similar structure to Π1(E), but differs in many respects.

3 The exact construction supporting threshold decryption was left
implicit by Boneh et al. [36], but we have confirmed that including
ĝ = e(g, g)p in the public key is what they intended [38].
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Fig. 2 Protocol Π2(E), described in Sect. 3.2

– Rather than taking 〈Q, Σ , δ, qinit, Δ〉 as input, the proxy
takes the encrypted initial state αinit and encrypted coef-
ficients 〈âσ i 〉σ∈Σ,i∈[n] and 〈ẑi 〉i∈[n] as input. To simplify
discussion later, we presume that αinit is created as a
ciphertext of qinit in G

′, e.g., αinit ← Encpk(qinit) 
pk

Encpk(1). Moreover, Fig. 2 presumes that the coefficients
are created by performing 〈aσ i 〉σ∈Σ,i∈[n] ← ToPoly(Q,
Σ , δ) and 〈zi 〉i∈[n]←ToPoly(Q,Σ ,Δ) and then encrypt-
ing each coefficient using pk, i.e., âσ i ← Encpk(aσ i ) for
each σ ∈ Σ and i ∈ [n], and ẑi ← Encpk(zi ) for each
i ∈ [n].

– Because server decrypts the (blinded) DFA state in line
s204, the plaintext should be adequately small so that
decryption—which as discussed above, involves comput-
ing (or looking up) a discrete logarithm if BGN encryp-
tion is in use—is not too costly. For this reason, and
assuming R = ZN (as it is in BGN) and Q = [n],

the blinding term r is drawn from {0, 1}κ ′ instead of R,
where κ ′  κ is another security parameter. Then, the
statistical distance between the distribution of γ seen by
server in line s204 when the blinded state is q (i.e.,
when γ = q +

R
r ) and uniformly random choices from

{0, 1}κ ′ is

∑

x

∣
∣
∣
∣
∣

P(q + r = x | r $← {0, 1}κ ′)
−P(r = x | r $← {0, 1}κ ′)

∣
∣
∣
∣
∣

=
∑

0≤x<q

1

2κ ′ +
∑

2κ′≤x<q+2κ′

1

2κ ′ =
q

2κ ′−1

Since q ∈ [n], we anticipate setting κ ′ = �log2 n� +
15 to achieve a reasonable balance between decryption
cost and security for moderately sized n. In particular, no
algorithm can then distinguish the values γ from random
elements of {0, 1}κ ′ in a run of the protocol on a file of
length � with combined type-I and type-II error better
than (1 − 1

215 )�+1 (see [40, Corollary 4]). κ ′ will thus
need to grow with n, though only logarithmically so. We
stress, however, that the need to utilize a κ ′ at all is a side
effect of using BGN encryption in our protocol and is not
fundamental to its design.

– The fact that each âσ i is a ciphertext necessitates using
the “one-time multiplication” operator
pk in line c207
to produce the ciphertext of the new state, versus ·pk as
in line c111. The same is true in c213 because each ẑi

is a ciphertext.
– The protocol returns an encrypted evaluation result Θ to

the proxy (c214), and so, the original round to decrypt
the result (m107–m108) is omitted.

Protocol security We are able to prove that Π2(E) protects
DFA privacy and file content privacy against arbitrarily mali-
cious server adversaries, and DFA privacy and file privacy
against honest-but-curious proxy adversaries. We do not
present the proofs here but refer readers to an accompany-
ing technical report [41] for the proofs. Moreover, since the
proxy receives only ciphertexts in the protocol that it cannot
decrypt (and the file length �), we believe it heuristically pro-
tects DFA and file privacy against even an arbitrarily mali-
cious proxy. In the next section, we develop an optimized
protocol that has better efficiency and achieves similar secu-
rity properties. We formally define the security notions and
evaluate that protocol’s security in Sect. 5.

4 Optimizations

In this section, we detail a series of optimizations that we
developed for our protocol that, in our implementation, col-
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lectively achieved an order-of-magnitude improvement in
performance over Π2(E).

4.1 File representation

We first observe that, in protocol Π2(E), the computation
done by the server in s206 using the Lagrange coefficients
it computed in s202 is effectively evaluating the ciphertext
of Λσ (σk) for each σ ∈ Σ , using the values 〈ck j 〉 j∈[m] pro-
vided as input to the server where ck j ← Encpk((σk)

j ).
Recall that only for σ = σk does Λσ (σk) = 1; otherwise,
Λσ (σk) = 0. Since this calculation only depends on the
ciphertexts of the current file character, the result of it, i.e.,
〈Encpk(Λσ (σk))〉σ∈Σ , could have been provided by the data
owner as the ciphertext of file character σk so that the server
would not need to compute it itself.

With this observation, our first optimization is to elimi-
nate the use of the Lagrange polynomial Λσ (y) completely
and decompose the original bivariate polynomial f(x, y) to
m univariate polynomials, i.e., fσ (x) for each σ ∈ Σ . The
encryption of a file character σk now becomes a vector of
encryptions of 0’s and one 1. Specifically, σk is provided to
the server as ciphertexts 〈ckσ 〉σ∈Σ where ckσ ← Encpk(1)

if σ = σk and ckσ ← Encpk(0) otherwise. This represen-
tation has the same storage costs per file character as the
original protocol, i.e., m ciphertexts per encrypted file char-
acter.

4.2 Pairing operations

During the implementation of our protocol, we noticed that
the pairing operations performed by the proxy in c207 are
very costly and became the bottleneck for the overall perfor-
mance. Accelerating pairing operations is a research area of
substantial interest, and any progress made would be benefi-
cial to protocols such as ours that utilize pairing. Our focus
here, however, is twofold. One is to adapt the protocol to
reduce the number of pairing operations. In particular, mn
pairing operations are needed in c207 in each round. In this
section, we redesign the protocol to reduce the number of
pairing operation down to m. The other focus is to make the
protocol design amenable to pairing preprocessing [42].

Given a bilinear map e : G × G → G
′, if it is known

in advance that a particular value c ∈ G will be paired
with other elements multiple times, then preprocessing on c
can be performed in advance to achieve a significant reduc-
tion in pairing time. For example, for the class of machines
used in our experiments in Sect. 6, a pairing operation for
a 1,024-bit BGN scheme costs around 35 ms without pre-
processing but only 10 ms after preprocessing. In c207, the
pairing operation performed is e(â′σ i , μσ i ). Unfortunately,
both â′σ i and μσ i change in each round, which prohibits pre-
processing. This suggests that performing pairing operations

proxy(pk , sk1, Σ, n, αinit, server(pk , sk2, Σ,
âσi σ∈Σ,i∈[2n], ẑi i∈[2n]) ckσ k∈[ ],σ∈Σ)

m301.
n,αinit

s301. α ← αinit

m302.
c301. for k ← 0 − 1 s302. for k ← 0 − 1

s303. r
$← {0, 1}κ

s304. α ← α +pk Encpk (r)
s305. β ← Dec1sk2

(α)

m303.
α,β

c302. γ ← Dec2sk1
(α, β)

c303. γ ← γ mod n s306. r ← −r mod n
c304. âσi σ∈Σ,i∈[2n] ←

Shift(γ, âσi σ∈Σ,i∈[2n])

m304.
âσi σ∈Σ,i∈[2n]

s307. for σ ∈ Σ

s308. ωσ ← pk

2n−1

i=0

âσi ·pk ri

s309. endfor
s310. α ← pk

σ∈Σ

ωσ pk ckσ

c305. endfor s311. endfor

s312. r
$← {0, 1}κ

s313. α ← α +pk Encpk (r)
s314. β ← Dec1sk2

(α)

m305.
α,β

c306. γ ← Dec2sk1
(α, β)

c307. γ ← γ mod n s315. r ← −r mod n
c308. ẑi i∈[2n] ←

Shift(γ, ẑi i∈[2n])

m306.
ẑi i∈[2n]

s316. Θ ← pk

2n−1

i=0

ẑi ·pk ri

m307.
Θ

c309. return Θ

Fig. 3 Optimized protocol Π3(E), described in Sect. 4

on the proxy side may not be the best choice in terms of the
potential for optimization.

We therefore redesigned the protocol with the goals of
reducing the number of pairing operations and making pair-
ing preprocessing possible. Fortunately, we were able to
achieve both goals by shifting the pairing operations to the
server side. The resulting protocol Π3(E) is shown in Fig. 3.
The new protocol essentially switches the roles of the proxy
and server (though not entirely, since each still receives the
same inputs). Note that the directions of the messages m303
and m304 are reversed from those in Fig. 2. The values α

and β, which used to be produced by the proxy in c204 and
c205, are now produced by the server in s304 and s305.
This role reversal imposes some significant changes in the
computations done by the proxy and server.

We now describe the changes made in the protocol. We ask
the readers to ignore the operations c303, c307, and c306,
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s315 for the time being; these will be discussed in Sect. 4.3.
The proxy now obtains γ in c302, which is equal to q+

R
r ,

where q is the current DFA state and r was chosen by the
server in s303. It now uses γ as input (as opposed to r in
Π2(E)) into the Shift procedure first described in Sect. 3.2,
i.e., computing new coefficients as:

â′σ i ← pk

n−1−i∑

i ′=0

âσ(i+i ′) ·pk

(
i + i ′

i ′

)

·pk γ i ′ (6)

As a consequence of this “shift”, the plaintexts of the coef-
ficients 〈â′σ i 〉σ∈Σ,i∈[n] define a new polynomial f ′σ (x) such
that f ′σ (x) = fσ (x +

R
(q +

R
r)). The proxy then sends

〈â′σ i 〉σ∈Σ,i∈[n] to the server in m304. The server, knowing
r , blindly “evaluates” the polynomial f ′σ (x) on value (−

R
r )

for each σ ∈ Σ , in lines s307–s309. Specifically, it com-
putes a ciphertext of f ′σ (−

R
r) = fσ (−

R
r +

R
(q +

R
r)) =

fσ (q) as:

ωσ ← pk

n−1∑

i=0

â′σ i ·pk (−
R

r)i (7)

A naive way to compute Eq. 7 requires O(n2) exponentia-
tions, but by leveraging Horner’s rule, it can be reduced to
O(n) exponentiations. Once the server obtains {ωσ }σ∈Σ , it
calculates a ciphertext α of the correct next DFA state in line
s310, i.e., by homomorphically summing ωσ 
pk ckσ over
all σ ∈ Σ (Recall from Sect. 4.1 that, for fixed k, exactly
one of 〈ckσ 〉σ∈Σ is a ciphertext of 1 and the rest are cipher-
texts of 0). The key point to notice here is that, by rearrang-
ing the protocol messages and letting the proxy send over
the shifted coefficients, the number of pairing operations is
chopped down to only m from nm, a major improvement.

We have already alluded to the potential benefit of pairing
preprocessing to reduce the online cost of pairing operations.
The only question left is how to adapt the protocol, so that it
is amenable to using this technique. Fortunately, the changes
we have just made to the protocol also makes pairing pre-
processing possible. The pairing operation that the server
needs to perform in s310 is e(ωσ , ckσ ), for σ ∈ Σ and
k ∈ [�]. The ciphertext ckσ is fixed and known even before
the protocol starts. This allows the server to perform pair-
ing preprocessing using these ciphertexts offline and store
them to stable storage for future use. During the protocol
run, the preprocessing information can be retrieved and used
to greatly reduce the online costs of the pairing operations.

4.3 Shifting

After the above optimizations, a remaining computation in
the protocol that is especially expensive is the Shift proce-
dure, i.e., Eq. 6, which is performed as part of c304 and

c308. Computing each â′σ i requires O(n) exponentiations
with exponents being powers of γ. Since γ is κ ′ bits, this
exponentiation is increasingly expensive as κ ′ grows and is
one of the performance bottlenecks of our implementation for
the κ ′ values we employ (As discussed in Sect. 3.2, we take
κ ′ ≈ �log2 n� + 15 in our present implementation, though
this setting is an artifact of using BGN encryption and could
be larger with another encryption scheme). Our next target
is thus to find ways to optimize this operation.

One possibility is to use a smaller κ ′ to speed up the expo-
nentiations. However, κ ′ cannot be arbitrarily reduced with-
out reducing the security of the protocol. Instead, here we
propose letting the proxy reduce γ modulo n before feeding
it into the Shift procedure, i.e., to compute:

â′σ i ← pk

n−1−i∑

i ′=0

âσ(i+i ′) ·pk

(
i + i ′

i ′

)

·pk (γ mod n)i ′ (8)

in Shift, instead (See c303 and c307). By reducing γ, the
exponents that used to be O(nκ ′) bits long are now reduced to
O(n log n) bits, after taking into account the exponentiations
on γ itself. However, this change does have implications for
the correctness of the computation. Referring to the deriva-
tion in Eq. 7, now that the proxy shifted the polynomial by
γ mod n, the server needs to adapt to this change accord-
ingly. Intuitively, it should evaluate the new polynomial on
(−r mod n) as opposed to on −

R
r in Eq. 7, in which case it

computes a ciphertext ωσ of

f ′σ (−r mod n) = fσ ((−r mod n)+
R

((q +
R

r) mod n))

=
{

fσ (q) if n | r or q+(r mod n)≥n
fσ (q + n) otherwise

assuming that κ ′ + 1 < κ (See lines s306 and s315).
However, as indicated, there are two possible outcomes
from this calculation. One is exactly what we want, i.e., a
ciphertext of fσ (q). The other possibility is a ciphertext of
fσ (q + n), which is problematic because fσ (q + n) is arbi-
trary. The server unfortunately cannot tell which case hap-
pened because everything it operates on is encrypted. Our
solution to this problem is to add constraints when construct-
ing fσ (x) so that fσ (q + n) = fσ (q) for all q ∈ Q and
σ ∈ Σ . These additional constraints guarantee the correct
state transition regardless of which case happens. However,
the price we pay is that the degree of fσ (x) increases to 2n−1
since additional n constraints need to be added to define the
polynomial. But the performance gains we achieve outweigh
this loss.

Another key insight to draw from this technique is that
γ mod n can take on only n different values, and so, there can
be at most n different sets of coefficients 〈â′σ i 〉σ∈Σ,i∈[2n] from
the calculation in Eq. 8. This allows the proxy to precompute
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all possible sets of 〈â′σ i 〉σ∈Σ,i∈[2n] for each γ mod n ∈ [n]
and store them in a table before the start of the protocol. It
can then simply perform table lookups depending on which
value of γ mod n it obtains inc303 (orc307). This way, the
proxy does not need to perform the computations in Eq. 8
during the protocol except for randomizing the ciphertexts
before sending them back to the server. This offers tremen-
dous performance gains for the protocol: Without applying
this optimization, the cost for the proxy to calculate Eq. 8
for all 〈â′σ i 〉σ∈Σ,i∈[2n] involves O(mn2) exponentiations in
each round. After applying this optimization, it is reduced to
only O(mn) exponentiations, due to the need for ciphertext
randomizations.

4.4 Packing the result ciphertexts and boolean combinations

When using Π3(E) to evaluate a DFA on k files, k encrypted
evaluation results Θ0, . . . , Θk−1—each the ciphertext of a
0 or 1—need to be communicated back to the user. Send-
ing these k ciphertexts individually to the user introduces an
undesirably high communication cost between the proxy and
the user. A better approach is for the proxy to aggregate mul-
tiple such results into a single ciphertext before sending these
results back to the user. Specifically, the proxy can aggre-
gate these k ciphertexts into ciphertexts �0, . . . ,��k/z�−1

where

�i ← pk

z−1∑

j=0

2 j ·pk Θi z+ j

for each i ∈ [�k/z�]. This aggregation is omitted from Fig. 3.
The user can then decrypt each �i to recover all the evalua-
tion results. The value of z is upper bounded by the bit length
of the plaintext space of the cryptosystem E in general, and
in the case of BGN, z must be restricted to a small value such
as κ ′ to enable efficient decryption by the user.

This packing technique generalizes nicely to support eval-
uating conjunctions or disjunctions of d DFAs on k files.
That is, after the proxy interacts with the server to evalu-
ate DFAs M0, . . ., Md on each of k files, yielding encrypted
results Θ0,0, . . ., Θk−1,d−1, the proxy can aggregate these
kd ciphertexts into ciphertexts �0, . . . ,��k/z′�−1 where
z′ = �z/�log2(d + 1)�� and

�i ← pk

z′−1∑

j=0

(

2 j�log2(d+1)� ·pk pk

d−1∑

d ′=0

Θi z′+ j,d ′

)

for each i ∈ [�k/z′�]. Upon decrypting each such aggre-
gate ciphertext, each �log2(d + 1)�-length sequence of bits
represents the number of DFAs M0, . . . Md−1 that the corre-
sponding file matched. That is, the file satisfies the disjunc-
tion of these DFAs if that count is nonzero, and it satisfies
the conjunction of these DFAs if that count is d.

To evaluate other Boolean combinations of d DFAs on
files, it suffices for the proxy and server to evaluate each
DFA individually on each file and communicate the results
per DFA to the user, and the user can herself determine
which files match the Boolean combination she is inter-
ested in. While less communication efficient than the above
approach for conjunctions and disjunctions, this approach is
more computationally efficient for the proxy and server than
combining all d DFAs into a single large DFA that represents
the Boolean combination of interest.

5 Protocol security

In this section, we analyze the security of Π3(E) as shown
in Fig. 3 (For simplicity, here, we elide consideration of the
extension in Sect. 4.4, not shown in Fig. 3, though it has
no impact on the security of the protocol). We show that
the protocol Π3(E) provably protects the privacy of both the
DFA and file contents from either honest-but-curious proxy
adversaries or arbitrarily malicious server adversaries.

5.1 Security against server adversaries

In this section, we bound the advantage that an arbitrarily
malicious server gains by executing this protocol, in deter-
mining either the DFA that the proxy is evaluating or the
plaintext of the file in its possession. That is, we prove the
privacy of the file and DFA inputs against server adversaries.

Following previous security definitions [15], we formalize
our security claims against server compromise by defining
two separate server adversaries. The first server adversary
S = (S1, S2) attacks the encrypted DFA M = 〈Q, Σ , δ,
qinit, Δ〉, i.e., 〈âσ i 〉σ∈Σ,i∈[n] held by the proxy, as described
in experiment Expts-dfa

Π3(E)
in Fig. 4a. S1 first generates a file

〈σk〉k∈[�] and two DFAs M0, M1. (Note that we use, e.g.,
“M0.Q” and “M1.Q” to disambiguate their state sets.) S2 is
then invoked with the ciphertexts 〈ckσ 〉k∈[�],σ∈Σ of its file and
information φ created for it by S1 and is given oracle access
to proxyOr. proxyOr is given input arguments pertaining to
one of the two DFAs output by S1, selected at random (as
indicated by b).

proxyOr responds to queries from S2 as follows, ignoring
malformed queries. The first query (say, consisting of sim-
ply “start”) causes proxyOr to begin the protocol; proxyOr
responds with a message of the form n, αinit (i.e., of the form
of messagem301). The second invocation by S2 must include
a single integer � (i.e., of the form of message m302). The
next � queries by S2 must be of the form α, β, i.e., two values
as in message m303, to which proxyOr responds by sending
2nm elements of Cpk , i.e., 〈â′σ i 〉σ∈Σ,i∈[2n] as in m304. S2’s
next query to proxyOr again must contain two values of the
form α, β (as in m305), to which proxyOr responds with 2n
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(a) (b)

Fig. 4 Experiments for proving security of Π3(E) against server adversaries. a Experiment Expts-dfa
Π3(E) . b Experiment Expts-file

Π3(E)

Fig. 5 Exptind-cpa
E (U)

ciphertexts 〈ẑi
′〉i∈[2n] as in m306. The next (and last) query

by S2 can consist one element of Cpk as in m307. Eventually,
S2 outputs a bit b′, and Expts-dfa

Π3(E)
(S) = 1 only if b′ = b.

We say the advantage of an arbitrarily malicious S is

Advs-dfa
Π3(E) (S) = 2 · P

(
Expts-dfa

Π3(E) (S) = 1
)
− 1

and define Advs-dfa
Π3(E)

(t, �, n, m) = maxS Advs-dfa
Π3(E)

(S)

where the maximum is taken over all adversaries S taking
time t and selecting a file of length � and DFAs containing n
states and an alphabet of m symbols.

We reduce DFA privacy against server attacks to the IND-
CPA [43] security of the encryption scheme. IND-CPA secu-
rity is defined using the experiment in Fig. 5, in which an
adversary U is provided a public key p̂k and access to an

oracle Encb̂
p̂k

(·, ·) that consistently encrypts either the first

of its two inputs (if b̂ = 0) or the second of those inputs
(if b̂ = 1). Eventually, U outputs a guess b̂′ at b̂, and
Exptind-cpa

E (U) = 1 only if b̂′ = b̂. The IND-CPA advan-
tage of U is defined as

Advind-cpa
E (U) = 2 · P

(
Exptind-cpa

E (U) = 1
)
− 1

and then Advind-cpa
E (t, w) = maxU Advind-cpa

E (U) where
the maximum is taken over all adversaries U executing in

time t and making w queries to Encb̂
p̂k

(·, ·).
In our theorem statements, we omit terms that are negli-

gible as a function of the security parameters κ and κ ′. For
any E operation op, we use top to denote the time required to
perform op; e.g., tDec is the time to perform a Dec operation.

Theorem 1 For t ′ = t+ tShare+(�m+2nm+2n+1) · tEnc ,

Advs-dfa
Π3(BGN)(t, �, n, m)≤n�+1Advind-cpa

BGN (t ′, 2nm+2n+1)

Proof Given an adversary S = (S1, S2) for Π3(BGN)

that runs in time t, produces a file of length �, and pro-
duces DFAs of n states over an alphabet of m symbols,
we construct an IND-CPA attacker U for BGN to demon-
strate the theorem as follows. On input a BGN public key

p̂k = 〈N , G, G
′, e, g, h, ĝ〉, U sets d2

$← ZN , and
invokes S1(p̂k, sk2) where sk2 = 〈G, G

′, d2〉 to obtain (�,
〈σk〉k∈[�], M0, M1, φ). Note that d2 is chosen from a dis-
tribution that is perfectly indistinguishable from that from
which d2 is chosen in the real system. If M0.Q �= M1.Q
or M0.Σ �= M1.Σ , then U aborts the simulation. Other-
wise, letting Σ = M0.Σ , m = |Σ | and n = |M0.Q|, U
computes 〈a0σ i 〉σ∈Σ,i∈[2n] ← ToPoly(M0.Q, Σ , M0.δ) and
〈a1σ i 〉σ∈Σ,i∈[2n] ← ToPoly(M1.Q, Σ , M1.δ), and it sets âσ i

←Encb̂
p̂k

(a0σ i , a1σ i ) forσ ∈ Σ and i ∈ [n]. It then computes

〈z0i 〉i∈[2n] ← ToPoly(M0.Q, Σ , M0.Δ) and 〈z1i 〉i∈[2n] ←
ToPoly(M1.Q, Σ , M1.Δ), and it sets ẑi ← Encb̂

p̂k
(z0i , z1i )

for i ∈ [n]. U finally sets αinit ← Encb̂
p̂k

(M0.qinit, M1.qinit)


p̂k Encp̂k(1), and then for all k ∈ [�], σ ∈ Σ , it sets
ckσ ← Encpk(1) if σ = σk and ckσ ← Encpk(0) other-
wise.
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U then invokes S2(φ, 〈ckσ 〉k∈[�],σ∈Σ) and simulates
responses to S2’s queries to proxyOr as follows (ignoring
malformed invocations). Upon initializing S2, U sends n,
αinit to S2 and gets � in return. For the kth query of the form

α, β (0 ≤ k < �), U selects γ
$← [n], as opposed to

decrypting it as in a real execution (see c302 and c303).
It computes 〈â′σ i 〉σ∈Σ,i∈[2n] ← Shift(γ, 〈âσ i 〉σ∈Σ,i∈[2n]) as
in c304 and returns 〈â′σ i 〉σ∈Σ,i∈[2n] to S2. For the (�+ 1)th

query of the form α, β, U again randomly sets γ
$← [n] and

〈ẑi
′〉i∈[2n] ← Shift(γ, 〈ẑi 〉i∈[2n]) and then sends 〈ẑi

′〉i∈[2n]
to S2. Finally, when S2 outputs b′, U outputs b′, as well.

U’s simulation is perfectly indistinguishable from the real
system to a malicious server adversary S if and only if U made
the correct guesses on γ in each round. When that happens,
the advantage of U winning his game is the same with that of
S. So, Advind-cpa

BGN (U) ≥ ( 1
n )�+1Advs-dfa

Π3(BGN)
(S). U runs in

time t ′ = t+ tShare+ �m · tEnc + (2nm+ 2n+ 1) · tEnc due
to the need to generate a secret key share for S, to generate
〈ck j 〉k∈[�], j∈[m], and to make 2nm+2n+1 encryption oracle
queries to create 〈âσ i 〉σ∈Σ,i∈[2n], 〈ẑi 〉i∈[2n] and αinit. ��

The multiplicative factor of n�+1 that appears in Theo-
rem 1 and in Theorem 2 below, while independent of the
security parameters κ and κ ′, nevertheless, renders these the-
orems of limited practical use. That said, we have no reason
to believe that the actual security of Π3(BGN) against server
adversaries decays so dramatically as a function of �. Rather,
this factor is simply an artifact of our proof method, and
since the server in Π3(BGN) receives (aside from the value
n) only ciphertexts from the proxy created using a public key
for which it does not hold the private key, we believe these
theorems to be overwhelmingly conservative.

In addition, the n�+1 factor can be eliminated in both the-
orems if S is honest-but-curious and so follows the protocol
as prescribed, provided that we modify the protocol with
the following trick: the data owner initializes the server
with another, distinct public key—for which the correspond-
ing private key is given to nobody—that the server uses to
encrypt each value of r it selects in the protocol (s303 and
s312), sending this ciphertext along with α, β to the proxy
in messages m303 and m305. This ciphertext is useless to
the proxy since it does not hold the key to decrypt it. How-
ever, in the proof of security against an honest-but-curious
server, who faithfully includes r in this ciphertext, the IND-
CPA adversary U can create this new public key for the server
adversary S, while keeping the private key for decrypting the
ciphertexts containing the r values. This enables completion
of a security proof for an honest-but-curious S that does not
incur a n�+1 loss factor. Indeed, a similar trick was used in
our proof of security for protocol Π1(E) [15].

The second server adversary S = (S1, S2) that we con-
sider attacks the file for which it holds the per-symbol cipher-
texts 〈ckσ 〉k∈[�],σ∈Σ as in experiment Expts-file

Π3(E)
shown in

Fig. 4b. Here, S1 produces two separate, equal-length plain-
text files 〈σ0k〉k∈[�], 〈σ1k〉k∈[�] and a DFA M. S2 then receives
ciphertexts 〈ckσ 〉k∈[�],σ∈Σ for file 〈σbk〉k∈[�] where b is cho-
sen randomly. S2 is also given oracle access to proxyOr(pk,
sk1, Σ , n, αinit, 〈âσ i 〉σ∈Σ,i∈[2n], 〈ẑi 〉i∈[2n]). The interaction
between S2 and proxyOr is similar to what was described
for the server DFA adversary. Eventually, S2 outputs a bit b′,
and Expts-file

Π3(E)
(S) = 1 iff b′ = b. The advantage of S is

Advs-file
Π3(E) (S) = 2 · P

(
Expts-file

Π3(E) (S) = 1
)
− 1

and then Advs-file
Π3(E)

(t, �, n, m) = maxS Advs-file
Π3(E)

(S)

where the maximum is taken over all adversaries S =
(S1, S2) taking time t and producing (from S1) files of �

symbols and a DFA of n states and alphabet of size m.

Theorem 2 For t ′ = t+ tShare+(�m+2nm+2n+1) · tEnc ,

Advs-file
Π3(BGN)(t, �, n, m) ≤ n�+1Advind-cpa

BGN (t ′, �m)

Proof Given an adversary S = (S1, S2) running in time t
and selecting files of length � symbols and a DFA of n states
over an alphabet of m symbols, we construct an IND-CPA
adversary U. On input a BGN public key p̂k = 〈N , G, G

′, e,

g, h, ĝ〉, U sets d2
$← ZN , and invokes S1(p̂k, sk2) where

sk2 = 〈G, G
′, d2〉 to obtain (�, 〈σ0k〉k∈[�], 〈σ1k〉k∈[�], M, φ),

where M = 〈Q, Σ , qinit, δ, Δ〉 is a DFA. Note that d2 is
chosen from a distribution that is perfectly indistinguishable
from that from which d2 is chosen in the real system. For

k ∈ [�] and σ ∈ Σ , U sets ck j ← Encb̂
p̂k

(I0, I1) where

I0 ←
{

1 if σ = σ0k

0 otherwise
I1 ←

{
1 if σ = σ1k

0 otherwise

U also setsαinit←Encp̂k(qinit)
p̂kEncp̂k(1), 〈aσ i 〉σ∈Σ,i∈[2n]
← ToPoly(Q,Σ, δ), and 〈zi 〉i∈[2n] ← ToPoly(Q, Σ,Δ). U
then computes âσ i ← Encp̂k(aσ i ) and ẑi ← Encp̂k(zi ) for
all σ ∈ Σ and i ∈ [2n].

U then invokes S2(φ, 〈ckσ 〉k∈[�],σ∈Σ) and simulates
responses to S2’s queries to proxyOr as follows (ignoring
malformed invocations). Upon initializing S2, U sends n,
αinit to S2 and gets � in return. For the kth query of the form

α, β (0 ≤ k < �), U selects γ
$← [n], as opposed to

decrypting it as in a real execution c302 and c303. U then
sets 〈â′σ i 〉σ∈Σ,i∈[2n] ← Shift(γ, 〈âσ i 〉σ∈Σ,i∈[2n]) as done in
c304 and returns 〈â′σ i 〉σ∈Σ,i∈[2n] to S2. For the (� + 1)th

query of the form α, β, U again randomly sets γ
$← [n] and

then computes 〈ẑi
′〉i∈[2n] ← Shift(γ, 〈ẑi 〉i∈[2n]) and sends

〈ẑi
′〉i∈[2n] to S2. Finally, when S2 outputs b′, U outputs b′.
This simulation is perfectly indistinguishable from the real

system provided that U made correct guesses for γ on each
round of the simulation. When that happens, U wins his game
if and only if S wins his. So, we have Advind-cpa

BGN (U) ≥
( 1

n )�+1Advs-file
Π3(BGN)

(S). U runs in time t ′ = t + tShare +
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(a) (b)

Fig. 6 Experiments for proving security of Π3(E) against proxy adversaries. a Experiment Exptp-dfa
Π3(E) . b Experiment Exptp-file

Π3(E)

(2nm+2n+1) · tEnc + �m · tEnc due to the need to generate
a secret key share for S, to generate αinit, 〈âσ i 〉σ∈Σ,i∈[2n] and
〈ẑi 〉i∈[2n], and to make �m queries to its encryption oracle to
create 〈ckσ 〉k∈[�],σ∈Σ . ��

5.2 Security against proxy adversaries

In this section, we analyze the privacy of the DFA and
file from proxy adversaries, specifically honest-but-curious
ones. Our protocol’s security is limited to honest-but-curious
proxies as an artifact of using BGN encryption, specifically
because this forces us to employ κ ′  κ . Advances in
additively homomorphic encryption that also supports “one-
time” homomorphic multiplication and that also permits us
to employ κ ′ ≈ κ , would permit us to prove security against
malicious proxy adversaries, as well.4

The case of proxy adversaries in Π3(E) differs more sub-
stantially from that in prior work [15]. For one, we need to for-
malize and prove a result about the degree to which the DFA
is protected from the proxy. Such an experiment for defining
this type of security is shown in Fig. 6a. In this experiment,
P2 is invoked with encrypted coefficients 〈âσ i 〉σ∈Σ,i∈[2n],
〈ẑi 〉i∈[2n] and the encrypted initial state αinit for one of two
DFAs output by P1 (determined by random selection of b).
P2 can invoke serverOr first with an integer n and a cipher-
text (as in m301), in response to which serverOr returns
� (as in m302). In the next � rounds, each time serverOr
sends ciphertext α and partial decryption β (as in m303) to
P2. P2 then sends ciphertexts 〈â′σ i 〉σ∈Σ,i∈[2n] in response (as

4 For example, if r
$← R in lines s303 and s312, then γ in lines

c302 and c306 is uniformly distributed in R and so conveys no infor-
mation to the proxy, regardless of how the proxy misbehaves.

in m304). The next round, serverOr again sends α and β (as
in m305) to S2, who responds with ciphertexts 〈ẑi

′〉i∈[2n] as
in m306. serverOr sends one last message consisting one
element in Cpk to S2 as in m307. Finally, P2 outputs a bit b′,
and Exptp-dfa

Π3(E)
(P) = 1 only if b′ = b.

We prove DFA privacy against honest-but-curious proxy
adversaries. A proxy adversary (P1, P2) is honest-but-
curious if P2 invokes serverOr exactly as Π3(E) pre-
scribes. The honest-but-curious advantage hbcAdvp-dfa

Π3(E)
(P)

of adversary P = (P1, P2) is

hbcAdvp-dfa
Π3(E)

(P) = 2 · P
(

Exptp-file
Π3(E)

(P) = 1
)
− 1

and hbcAdvp-dfa
Π3(E)

(t, �, n, m) = maxP Advp-dfa
Π3(E)

(P) where
the maximum is taken over all honest-but-curious client
adversaries P running in total time t and producing files of
length � and a DFA of n over an alphabet of m symbols.

We now discuss the DFA privacy against an honest-but-
curious proxy adversary.

Theorem 3 For t ′ = t+ tShare+(�m+2nm+2n+2) · tEnc ,

hbcAdvp-dfa
Π3(BGN)

(t, �, n, m) ≤ Advind-cpa
BGN (t ′, 2(nm + n + 1))

Proof Given an adversary P = (P1, P2) running in time t
and selecting files of length � and a DFA of n states over
an alphabet of m symbols, we construct an IND-CPA adver-
sary U. On input a BGN public key p̂k = 〈N , G, G

′, e, g,

h, ĝ〉, U sets d1
$← ZN , and invokes P1(p̂k, sk1) where

sk1 = 〈G, G
′, d1〉 to obtain (�, 〈σk〉k∈[�], M0, M1, φ). Note

that d1 is chosen from a distribution that is perfectly indistin-
guishable from that from which d1 is chosen in the real sys-
tem. If M0.Q �= M1.Q or M0.Σ �= M1.Σ , then U aborts the
simulation. Letting Σ = M0.Σ , m = |Σ | and n = |M0.Q|,
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U computes 〈a0σ i 〉σ∈Σ,i∈[2n] ← ToPoly(M0.Q, Σ , M0.δ)

and 〈a1σ i 〉σ∈Σ,i∈[2n] ← ToPoly(M1.Q,Σ, M1.δ), and then

sets âσ i ← Encb̂
p̂k

(a0σ i , a1σ i ) for σ ∈ Σ and i ∈ [2n].
It also computes 〈z0i 〉i∈[2n] ← ToPoly(M0.Q,Σ, M0.Δ)

and 〈z1i 〉i∈[2n] ← ToPoly(M1.Q,Σ, M1.Δ), and then sets

ẑi ← Encb̂
p̂k

(z0i , z1i ) for i ∈ [2n]. U then sets αinit ←
Encb̂

p̂k
(M0.qinit, M1.qinit)
p̂k Encp̂k(1). For all k ∈ [�], σ ∈

Σ , U also sets ckσ ← Encp̂k(1) if σ = σk and ckσ ←
Encp̂k(0) otherwise.

U invokes P2(φ, αinit, 〈âσ i 〉σ∈Σ,i∈[2n], 〈ẑi 〉i∈[2n]) and sim-
ulates responses to P2’s queries to serverOr as follows. Upon
receiving the first message from P2, U sends back �. In each

round, U sets r
$← {0, 1}κ ′ , α ← Encp̂k(r)
p̂k Encp̂k(1)

and β ← ĝrα−d1 so that αd1β = ĝr . It then sends α and
β to P2. In the last round, upon receiving 〈ẑi 〉i∈[n] as in

m306, U sets Θ ← Encb̂
p̂k

(M0(〈σk〉k∈[�]), M1(〈σk〉k∈[�]))
where M0(〈σk〉k∈[�]) denotes the evaluation result of M0 on
the file and similarly for M1(〈σk〉k∈[�]). U then sends Θ to
P2. Finally, when P2 outputs b′, U outputs b′ as well.

U’s simulation is statistically indistinguishable (as a func-
tion of κ ′) from a real protocol execution as long as P2 is
honest-but-curious. So Advind-cpa

BGN (U) ≥ hbcAdvp-dfa
Π3(BGN)

(P). U runs in time t ′ = t + tShare + �m · tEnc + (2nm +
2n + 2) · tEnc due to the need to generate a secret key
share for P, to create 〈ckσ 〉k∈[�],σ∈Σ , and to make 2nm +
2n + 2 queries to its encryption oracle in order to gen-
erate 〈âσ i 〉σ∈Σ,i∈[2n], 〈ẑi 〉i∈[2n], αinit and Θ in the final
round. ��

Next, we consider security against attacks on the encrypted
files from a proxy adversary. Since the proxy no longer learns
the final state of the DFA evaluation, we do not require the
proxy adversary to choose two files that produce the same
final result for the user’s DFA, compared to previous defini-
tions [15]. The experiment that we use to define file security
against proxy adversaries Exptp-file

Π3(E)
is shown in Fig. 6b.

There, P1 produces two separate, equal-length plaintext files
〈σ0k〉k∈[�], 〈σ1k〉k∈[�] and a DFA M. P2 then receives the
ciphertexts 〈ckσ 〉k∈[�],σ∈Σ for file 〈σbk〉k∈[�] where b is cho-
sen randomly. P2 is also given oracle access to serverOr
and finally P2 outputs a bit b′, and Exptp-file

Π3(E)
(P) = 1 iff

b′ = b. The advantage of an honest-but-curious adversary
P = (P1, P2) is defined as:

hbcAdvp-file
Π3(E)

(P) = 2 · P
(

Exptp-file
Π3(E)

(P) = 1
)
− 1

and hbcAdvp-file
Π3(E)

(t, �, n, m) = maxP hbcAdvp-file
Π3(E)

(P)

where the maximum is taken over all honest-but-curious
proxy adversaries P running in total time t and producing
files of length � and a DFA of n over an alphabet of m sym-
bols. We now have:

Theorem 4 For t ′ = t+ tShare+(2nm+2n+�m+2) · tEnc ,

hbcAdvp-file
Π3(BGN)

(t, �, n, m) ≤ Advind-cpa
BGN (t ′, �m + 1)

Proof Given an adversary P = (P1, P2) running in time t
and selecting files of length � and a DFA of n states over
an alphabet of m symbols, we construct an IND-CPA adver-
sary U. On input a BGN public key p̂k = 〈N , G, G

′, e, g,

h, ĝ〉, U sets d1
$← ZN , and invokes P1(p̂k, sk1) where

sk1 = 〈G, G
′, d1〉 to obtain (�, 〈σ0k〉k∈[�], 〈σ1k〉k∈[�], M, φ).

Note that d1 is chosen from a distribution that is perfectly
indistinguishable from that from which d1 is chosen in the
real system. Let Σ = M.Σ , Q = M.Q, Δ = M.Δ,
m = |Σ | and n = |Q|. For k ∈ [�] and σ ∈ Σ , U sets

ck j ← Encb̂
p̂k

(I0, I1) where

I0 ←
{

1 if σ = σ0k

0 otherwise
I1 ←

{
1 if σ = σ1k

0 otherwise

U also setsαinit←Encp̂k(qinit)
p̂kEncp̂k(1), 〈aσ i 〉σ∈Σ,i∈[2n]
← ToPoly(Q,Σ, δ), and 〈zi 〉i∈[2n] ← ToPoly(Q, Σ,Δ). U
then computes âσ i ← Encp̂k(aσ i ) and ẑi ← Encp̂k(zi ) for
all σ ∈ Σ and i ∈ [2n].

U invokes P2(φ, αinit, 〈âσ i 〉σ∈Σ,i∈[2n], 〈ẑi 〉i∈[2n]) and sim-
ulates responses to P2’s queries to serverOr as follows. Upon
receiving the first message from P2, U sends back �. In each

round, U sets r
$← {0, 1}κ ′ , α ← Encp̂k(r)
p̂k Encp̂k(1)

and β ← ĝrα−d1 so that αd1β = ĝr . It then sends α and β

to P2. In the last round, upon receiving 〈ẑi 〉i∈[n] as in m306,

U sets Θ ← Encb̂
p̂k

(M(〈σ0k〉k∈[�]), M(〈σ1k〉k∈[�])). U then

sends Θ to P2. Finally, when P2 outputs b′, U outputs b′.
U’s simulation is statistically indistinguishable (as a func-

tion of κ ′) from a real protocol execution as long as P2 is
honest-but-curious. So Advind-cpa

BGN (U) ≥ hbcAdvp-file
Π3(BGN)

(P). U runs in time t ′ = t+ tShare+ (2nm+2n+1) · tEnc +
(�m+ 1) · tEnc due to the need to generate a secret key share
for P, to generate 〈âσ i 〉σ∈Σ,i∈[2n] , 〈ẑi 〉i∈[2n] and αinit, and
to make �m + 1 queries to its encryption oracle in order to
create 〈ckσ 〉k∈[�],σ∈Σ and Θ in the last round. ��

6 Performance evaluation

6.1 Implementation

We implemented our optimized protocol Π3(E) in Java using
an open source Java pairing-based cryptography library jPBC
[44], which is built on the original C pairing library PBC [42].
Our regular-expression-to-DFA conversion engine is built
around the Java dk.brics.automaton library [45]. The com-
plete implementation contains about 5,000 physical source
lines of code.
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Fig. 7 Time spent per file character in milliseconds, with pairing preprocessing disabled. a 1 thread per worker. b 4 threads per worker. c 16 threads
per worker

For our evaluation, we chose a BGN public key of size
κ = 1,024 and a secondary security parameter of κ ′ = 22. To
further improve performance, we utilized a fixed-base win-
dowing exponentiation technique [39] to accelerate exponen-
tiation operations on the proxy side. We also take advantage
of pairing preprocessing at the server (see Sect. 4.2) and
compare the performance with and without this optimiza-
tion. In particular, pairing preprocessing produces approxi-
mately 600 KB of information per BGN ciphertext and so
increases the required storage dramatically. As such, it may
not be appropriate for use in some environments.

To exploit parallelism available in the protocol computa-
tion and the physical hardware, we implemented two levels of
parallelization for the server and proxy programs. The first
level is a thread pool of workers, each running a single server
or proxy instance. Each server worker grabs an encrypted
email from a shared queue of all the encrypted emails being
searched and runs a protocol instance with its paired proxy
worker independently. Each server or proxy worker can fur-
ther spawn extra threads to assist in its computation. This
level of parallelization is designed to take advantage of the
computational independence found in many calculations in
the protocol. For example, for server workers, the calcula-
tion in line s308 can be split among multiple threads before
combining the results to obtain α. Similarly for client work-
ers, the Shift procedure in line c304 can also be partitioned
across multiple threads.

6.2 Microbenchmarks

We first report microbenchmarks for our implementation.
The experiments reported below were conducted using two
machines connected via a 1 Gb/s network, each equipped
with two quad-core Intel Xeon 2.67 GHz CPUs with simul-
taneous multithreading enabled. All proxy workers ran on
one of these machines, and all server workers ran on the
other.

To understand the performance cost of the protocol and
the impact of its two parameters, i.e., the number of DFA

states n and the alphabet size m, we conducted experiments
measuring the average time spent by the server and proxy for
processing one character (or one round of protocol execution)
for various combinations of n and m. For this purpose, we
generated encrypted files each consisting of 20 characters
for m = 1 to m = 50. We then created random DFAs with
number of states n ranging from 1 to 50 and ran them against
the files. We computed the average time spent per character
by dividing the total time spent processing a file by 20. The
results, with pairing preprocessing disabled, are presented
in contour graphs in Fig. 7 where the times are binned into
ranges, each shown as a band representing the range indicated
in the sidebar legend.

To show that the computation of the protocol is highly par-
allelizable, in this experiment, we launched a single worker
on both server and proxy machines and tested its perfor-
mance when 1, 4, and 16 threads are spawned by each worker
to assist in their computations, shown in Fig. 7a–c, respec-
tively. It is clear from all three graphs that the protocol per-
formance scales much better with the increase of n than with
m; the number of expensive pairing operations performed by
the server in each round is equal to m, and the cost resulted
from the increase of m significantly outweighs that result-
ing from the increase of n. These results also show that the
protocol is highly amenable to parallelization, with dramat-
ically decreased processing time as the number of threads
increases.

Since Fig. 7 clearly shows the impact of the pairing oper-
ations on the overall performance of the protocol, we went
on to evaluate how much improvement pairing preprocessing
can provide. In these experiments, we applied preprocessing
on the file ciphertexts before conducting the same experi-
ments as described above. The results are shown in Fig. 8. As
expected, the overall protocol performance improves signifi-
cantly in each of the multithreading cases, with darker bands
reduced dramatically in size. More importantly, the protocol
performance now scales much better with the increase of m
because of the significantly reduced cost of pairing opera-
tions on the server side.
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Fig. 8 Time spent per file character in milliseconds, with pairing preprocessing enabled. a 1 thread per worker. b 4 threads per worker. c 16 threads
per worker

To better understand the relative computational burden
imposed on the server and proxy by the protocol, we also
measured the average CPU time spent processing one charac-
ter for the server and proxy processes for each combination
of n and m. To perform these tests, we instantiated one server
worker and one proxy worker, each with a single thread. The
CPU time takes into account the amount of time spent in both
user and kernel modes. The results for the server and proxy
are plotted in Fig. 9a, c, respectively. For the server side,
it generally takes below or around 100 ms for one round of
computation when m is less than 10. The proxy side enjoys
a slightly lighter computational cost and spends around or
below 100 ms even for m as high as 50 with n less than 15.
The results reveal that the server side takes more hit when m
increases due to the need to perform the pairing operations,
while the proxy achieves a more balanced degradation with
the increasing of n or m.

We also conducted the same experiments when pairing
preprocessing is used on the file ciphertexts in advance. Since
it does not affect the proxy side processing time, we only
show the server side CPU time in Fig. 9b. Compared with
Fig. 9a, the CPU time spent is reduced significantly and the
performance scales better as m increases.

Since the protocol is interactive, we also measured the
aggregate network bandwidth consumption between the
server and proxy in one round of protocol execution. As
shown in Fig. 9d, the bandwidth usage ranges from about
15 KB per round (i.e., per file character) for moderate n and
m to as much as 640 KB per round when n and m are 50.

6.3 Case study: regular-expression search on encrypted
emails

To further provide insight into the expected performance
when using our protocol in real-world applications, we con-
ducted a case study for performing regular-expression search
on public key encrypted emails. We envision an email system
in which the sender encrypts the email body using a tradi-
tional hybrid encryption scheme, in which the email body

is encrypted using a symmetric encryption key that itself
is encrypted by the receiver’s public key. To enable search
operations, however, the sender also attaches an encrypted
searchable “header” to the encrypted email body that consists
of all the information from the email that allows searching.
We now detail the design of this header.

6.3.1 Header information

Our current design allows searching on selected header fields
of the email that are most commonly searched: (1) date; (2)
sender email address; (3) sender name; and (4) subject line.
The character-by-character encryption of the four headers
is attached to the encrypted email body to enable searches.
Since characters in each header are usually drawn from dif-
ferent distributions, we define the dictionary of a header as
the set containing all possible characters and field-specific
words that can be used in that header. Each header-field text
is encoded using the dictionary before encryption, including
sanitizing any characters not present in the dictionary (e.g.,
converting uppercase letters to lowercase, if only lowercase
are included in the dictionary). We stress that this sanitiza-
tion is only applied to the encrypted header that facilitates
the search operations. The original field value in the email
body is left intact.

The benefit of defining different dictionaries for different
header fields is that adding field-specific words provides an
opportunity for compressing the header fields, which is rem-
iniscent of dictionary-based compression schemes. In addi-
tion, we envision dictionaries to be receiver-specific, e.g.,
distributed within the public key certificate for the receiver.
Below, we describe how each dictionary is defined for each
header in our evaluation.

Date: Date is converted into YYMMDD, where year, month
and day each consists of two digits of numerical values. For
years, we expect to store emails dated from 1990 to 2050.
So, we included “90” to “50”, as words, in the dictionary
to encode the year. Similarly for months and days, we also
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Fig. 9 CPU time and network
bandwidth measurements.
a server CPU time per file
character, with pairing
preprocessing disabled.
b server CPU time per file
character, with pairing
preprocessing enabled. c proxy
CPU time per file character.
d Network bandwidth per file
character
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added “01” to “31” into the dictionary. So, the dictionary is
defined as {00, 01, 02, . . ., 49, 50} ∪ {90, 91, . . ., 99}.
Sender address: The sender email address is represented
in the usual format, e.g., “alice@abc.com”, where the dictio-
nary consists of “a” through “z”, “0” through “9”, “.”, “@”,
“_”, and “−”. We also added into the dictionary several com-
mon email service names like “gmail”, domain names like
“com”, and “enron” because the email dataset used in our
evaluation (see Sect. 6.3.3) was from Enron. (Again, dictio-
naries can be receiver-specific). In total, the dictionary for
this field is {a, . . ., z} ∪ {0, . . ., 9} ∪ {@, ., _,−} ∪ {gmail,
yahoo, aol, hotmail, enron, com, edu, net, org}.
Sender name: The sender name field represents the sender’s
name with first name followed by the last name, separated
by a space. The name dictionary consists of “a” through “z”
and the space character.

Subject line: The subject line is allowed to include arbitrary
characters that can be typed from a keyboard. However, in
practice, users rarely create search queries including special
characters [1]. So, in our design, we restrict the dictionary
to include “a” through “z”, “0” through “9”, and selected
special characters including “@”, “!”, “%”, “.”, and the space
character.

6.3.2 Encoding

To enable DFA evaluations, we need to define the input alpha-
bet Σ that drives the DFA state transitions. The simplest way

is to define it as the union of all the dictionaries defined for
all header fields, which would result in an m well above 50.
However, the experiment results in Sect. 6.2 suggested that
the protocol performance is very sensitive to a large m. So,
we make the DFA alphabet Σ and its size m a user-defined
parameter and designed a method to encode each word in
the dictionary into a representation using the input symbols
in Σ . Since the exact representation of the input symbols in
Σ is not important, for simplicity, we use numerical values
to represent each symbol. For example, a size m alphabet
will consists of Σ = {0, 1, . . . , m − 1}. Then, each word
in a dictionary is represented using a distinct sequence of
symbols from Σ . Each of the header fields is first encoded
using this method and then encrypted symbol by symbol. The
regular-expression query is encoded in the same way before
converting it into a DFA.

6.3.3 Evaluation

In order to shed light on the expected performance when
using our protocol to perform search operations in real-world
email systems, we implemented a prototype search system
and evaluated its performance based on the Enron email
dataset [46], which is a publicly available real-world email
corpus that contains roughly 0.6 million messages from about
150 then-employees of Enron. We randomly sampled 1,000
emails from the inboxes of all the users in the dataset and
performed evaluations using selected representative search
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queries. In the experiments, we fixed a DFA alphabet of size
m = 4.

Motivated by the email search features found in Thun-
derBird [47], we selected four different queries to evalu-
ate the protocol efficiency. For the date field, we selected
a range query to search for all emails with date stamps
between 2001/09/10 and 2002/04/20. The corresponding reg-
ular expression is

(0109(10|11| . . . |31)) | (01(10|11|12)(01| . . . |31))

| (02|(01|02|03)(01| . . . |31)) | (0204(01|02| . . . |20))

which results in a DFA of n = 23 states using our con-
version engine. For the sender address field, we selected a
query to search for emails with sender address ending with
the string “enron.com”. The resulting regular expression is
∗enron.com where ∗ denotes zero or more occurrences of
dictionary words, which converts into a DFA with n = 9
states. For the name field, we selected the query to search for
sender name containing the word “John”, which translates
into the regular expression ∗John∗ ,with a corresponding
DFA containing n = 17 states. Lastly for the subject line
field, we chose to search for emails with subject lines con-
taining the word “meet” followed by “Jan” followed by a
space and two arbitrary characters. This translates into a reg-
ular expression of ∗meet Jan ??∗ where ? denotes exactly
one occurrence of a dictionary word, which results in a DFA
of n = 36 states.

We encrypted the bodies of 1,000 randomly selected
emails using GnuPG [48], which results in an average size
of 1.5 KB per email. We wrote our own tool to generate the
encrypted searchable headers, which take up about 185 KB
per email. To understand the performance impact when using
the two parallelization techniques described in Sect. 6.1,
we report performance numbers for various combinations
of the number of workers and the number of threads that
each worker spawns. The average time spent processing each
email is shown in Table 1, which was calculated by dividing
the total time to finish processing all 1,000 emails by 1,000.
In order to demonstrate the performance improvement when
pairing preprocessing is applied on email ciphertexts, we also
performed pairing preprocessing for the email ciphertexts
and stored the results on disk. The resulting protocol perfor-
mance measurements (after preprocessing) are shown in the
same table inside parentheses. The performance gain is very
compelling, as it offers an approximately 30 % improvement
over the version without preprocessing. However, the down-
side is that it needs significantly more storage space to store
the pairing preprocessing information.

The experiment results also demonstrate the benefit of
concurrently processing multiple emails by instantiating
multiple workers. In most cases, doubling the number of
workers results in a decrease of the timing results by a fac-
tor of two. Meanwhile, spawning multiple threads for each
worker has similar effect, although to a lesser extent. This can

Table 1 Average time per email in seconds; numbers in parenthesis are
when pairing preprocessing was applied on email ciphertexts in advance

Workers Threads per worker

1 2 4

(a) Query ‘*enron.com’ on sender address field

1 13.09 (6.95) 8.00 (4.69) 6.75 (5.26)

2 6.68 (3.58) 3.97 (2.72) 3.45 (2.68)

4 3.31 (1.81) 2.01 (1.51) 2.01 (1.44)

8 1.70 (0.98) 1.40 (0.93) 1.34 (0.89)

16 1.27 (0.94) 1.25 (0.94) 1.26 (0.95)

(b) Range query 2001/09/10–2002/04/20 on date field

1 3.55 (2.38) 2.03 (1.39) 1.23 (0.99)

2 1.68 (1.17) 0.96 (0.71) 0.63 (0.50)

4 0.84 (0.57) 0.49 (0.36) 0.42 (0.28)

8 0.43 (0.30) 0.30 (0.20) 0.29 (0.19)

16 0.27 (0.18) 0.26 (0.18) 0.25 (0.17)

(c) Query ‘*John*’ on sender name field

1 12.34 (7.93) 7.55 (4.84) 4.84 (3.50)

2 6.47 (3.99) 3.56 (2.40) 2.40 (1.96)

4 3.13 (1.98) 1.82 (1.28) 1.56 (1.16)

8 1.62 (1.05) 1.25 (0.80) 1.15 (0.77)

16 1.09 (0.79) 1.06 (0.81) 1.06 (0.81)

(d) Query ‘*meet Jan ??*’ on subject field

1 35.97 (27.17) 20.17 (15.02) 11.38 (9.52)

2 17.68 (12.85) 9.49 (7.41) 5.75 (4.80)

4 8.59 (6.30) 4.81 (3.71) 4.20 (2.97)

8 4.41 (3.21) 2.81 (2.10) 3.04 (1.91)

16 2.49 (1.93) 2.55 (1.75) 2.39 (1.77)

Best results are indicated in bold

be seen by reading the entries horizontally, where the timing
results are typically reduced by about 40 % as the number
of threads per worker doubles. The date query (Table 1b)
finishes fastest, averaging (in the best worker/thread config-
uration) only a quarter of a second (s) to process one email
and 0.17 s when pairing preprocessing is used. This is due
to the fact that the date field is very short for all emails. The
sender name query (Table 1c) averaged 1.06 s per email and
0.79 s with pairing preprocessing. This is followed by the
sender address query (Table 1a), which averaged 1.25 s per
email and 0.89 s with pairing preprocessing. The subject line
query (Table 1d) was the slowest, mainly due to the fact that
subject lines in the email corpus are usually much longer than
the other fields.

7 Conclusion

In this paper, we developed a novel protocol to perform pri-
vate regular-expression evaluations on encrypted data stored
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at a server. The protocol allows a user to delegate a reg-
ular expression search request to a proxy, which interacts
with the server and returns the search result to the user.
The privacy of the search query is provably protected against
both an honest-but-curious proxy and an arbitrarily mali-
cious server (provided that they do not maliciously col-
lude), and so, is the privacy of the data itself. In Sect. 4,
we described a number of optimization steps for the protocol
that resulted in a substantial performance improvement for
it, while retaining the protocol’s security properties. Many of
these techniques should apply to the previous protocol [15]
(summarized in Sect. 3.1) that provided our starting point for
this work. We demonstrated the performance of our protocol
using a working implementation, in both microbenchmarks
and when applied to a real-world dataset (Sect. 6).
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