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Abstract. Growing traffic volumes and the increasing complexity of attacks pose
a constant scaling challenge for network intrusion prevention systems (NIPS).
In this respect, offloading NIPS processing to compute clusters offers an im-
mediately deployable alternative to expensive hardware upgrades. In practice,
however, NIPS offloading is challenging on three fronts in contrast to passive
network security functions: (1) NIPS offloading can impact other traffic engi-
neering objectives; (2) NIPS offloading impacts user perceived latency; and (3)
NIPS actively change traffic volumes by dropping unwanted traffic. To address
these challenges, we present the SNIPS system. We design a formal optimization
framework that captures tradeoffs across scalability, network load, and latency.
We provide a practical implementation using recent advances in software-defined
networking without requiring modifications to NIPS hardware. Our evaluations
on realistic topologies show that SNIPS can reduce the maximum load by up to
10× while only increasing the latency by 2%.

1 Introduction

Network intrusion prevention systems (NIPS) are an integral part of today’s network
security infrastructure [38]. However, NIPS deployments face a constant battle to han-
dle increasing volumes and processing requirements. Today, network operators have
few options to tackle NIPS overload – overprovisioning, dropping traffic, or reducing
fidelity of the analysis. Unfortunately, none of these options are attractive in practice.
Thus, NIPS scaling has been, and continues to be, an active area of research in the
intrusion detection community with several efforts on developing better hardware and
algorithms (e.g., [32, 34, 36, 39]). While these efforts are valuable, they require signif-
icant capital costs and face deployment delays as networks have 3–5 year hardware
refresh cycles.

A promising alternative to expensive and delayed hardware upgrades is to offload
packet processing to locations with spare compute capacity. Specifically, recent work
has considered two types of offloading opportunities:

• On-path offloading exploits the natural replication of a packet on its route to distribute
processing load [27, 28].

• Off-path offloading utilizes dedicated clusters or cloud providers to exploit the
economies of scale and elastic scaling opportunities [9, 29].
Such offloading opportunities are appealing as they flexibly use existing network

hardware and provide the ability to dynamically scale the deployment. Unfortunately,
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current solutions either explicitly focus on passive monitoring applications such as
flow monitors and NIDS [9, 28] and ignore NIPS-induced effects, e.g., on traffic vol-
umes [23,27,29]. Specifically, we observe three new challenges in NIPS offloading that
fall outside the scope of these prior solutions:

• Interaction with traffic engineering: Offloading NIPS to a datacenter means that
we are effectively rerouting the traffic. This may affect network congestion and other
traffic engineering objectives.

• Impact on latency: NIPS lie on the critical forwarding path of traffic. Delays intro-
duced by overloaded NIPS or the additional latency induced by offloading can thus
affect the latency for user applications.

• Traffic volume changes: NIPS actively change the traffic volume routed through the
network. Thus, the load on a NIPS node is dependent on the processing actions of
the upstream nodes along the packet forwarding path.

To address these challenges and deliver the benefits of offloading to NIPS deployments,
we present the SNIPS system. SNIPS takes a first-principles approach to capture the
above effects and balance the tradeoffs across scalability, latency increase, and network
congestion. Perhaps counterintuitively, we show that it is feasible to capture these com-
plex requirements and effects through a linear programming (LP) formulation that is
amenable to fast computation using off-the-shelf solvers. As we show in §7, the com-
putation takes ≤2 seconds, for a variety of real topologies enabling SNIPS to react in
near-real-time to network dynamics. The design of SNIPS is quite general and it can be
used in many deployment settings and the ideas may also be applicable to other network
functions virtualization (NFV) applications [17].

We leverage software-defined networking (SDN) mechanisms to implement the op-
timal strategy derived from the LP formulation. A key benefit of SDN is that it does not
require modifications to the NIPS hardware or software unlike prior work [9,27]. Using
trace-driven simulations and emulations, we show that SNIPS can reduce the maximum
load by up to 10× while only increasing the latency by 2%.

Contributions: In summary, this paper makes four contributions:

• Identifying challenges in applying offloading to NIPS deployments (§3);

• Designing formal models to capture new effects (e.g., rerouting, latency, traffic
changes) (§5);

• Addressing practical challenges in an SDN-based implementation (§6); and

• A detailed evaluation showing that SNIPS imposes low overhead and offers signifi-
cant advantages (§7).

2 Related Work

On-Path Offloading: The key difference between SNIPS and prior work on on-path
offloading [27, 28] is three-fold: (1) they focus only on on-path monitoring; (2) these
assume that the traffic volume does not change inside the network; and (3) they are not
concerned with latency. As a result, the models from these efforts do not apply as we
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highlight in the next section. SNIPS considers a generalized model of both on- and off-
path offloading, models the impact of rerouting on latency, and captures effects of NIPS
actively changing the traffic volume. In terms of implementation, these efforts modify
software platforms such as the yaf flow monitor and the Bro IDS [20]. In contrast,
SNIPS leverages software-defined networking (SDN) to provide an in-network offload-
ing solution that does not require access to the NIPS software source or the hardware
platform. Thus, SNIPS can accommodate legacy and proprietary NIPS solutions.

Off-Path Offloading: Recent efforts make the case for virtualizing NIPS-like func-
tions [7] and demonstrate the viability of off-path offloading using public cloud
providers [29]. Our work shares the motivation to exploit elastic scaling and reduce
capital/operating expenses. However, these efforts focus more on the high-level vision
and viability. As such they do not provide formal models like SNIPS to capture trade-
offs across scalability, network bandwidth costs, and user-perceived latency and incor-
porating the effects of active traffic dropping by NIPS. The closest work in off-path
offloading is our prior work [9]. However, the focus there was on NIDS or passive mon-
itoring and thus the traffic is simply replicated to clusters. As such, this prior work does
not model rerouting or the impact on user-perceived latency. Furthermore, this imple-
mentation requires running a Click-based shim layer [12] below the NIDS, and thus
cannot work with legacy NIDS/NIPS hardware. As discussed earlier, SNIPS provides
an in-network solution via SDN that accommodates legacy NIPS.

Traditional NIPS/NIDS Scaling: There are several complementary approaches for
scaling NIPS, including algorithmic improvements [32], using specialized hardware
such as TCAMs (e.g., [15, 39]), FPGAs (e.g., [14]), or GPUs (e.g., [10, 35]). These are
orthogonal to SNIPS as they improve single NIPS throughput, while SNIPS focuses on
network-wide NIPS resource management.

Distributed NIPS: Prior work in distributed NIDS and NIPS [2, 13, 21] focus on cor-
relating events, combining alerts from different vantage points, and extracting useful
information from multiple vantage points. Our framework, in contrast, focuses on dis-
tribution primarily for scalability.

SDN and Security: Recent work has recognized the potential of SDN for security
tasks; e.g., FRESCO uses SDN to simplify botnet or scan detection [31]. SIMPLE [23]
and SoftCell [11] use SDN for steering traffic through a desired sequence of waypoints.
These do not, however, model the impact of altering the traffic volume as in SNIPS.
In addition, there are subtle issues in ensuring stateful processing and load balancing
that these works do not address (see §6). Shin et al. highlight security concerns where
reactive controllers that set up forwarding rules dynamically per-flow can get over-
loaded [30]. SNIPS uses proactive rule installation and is immune to such attacks.

3 Motivation and Challenges

We begin by briefly describing the idea of offloading for scaling passive monitoring
solutions. Then, we highlight the challenges in using this idea for NIPS deployments
that arise as a result of NIPS-specific aspects: NIPS actively modify the traffic volume
and NIPS placement impacts the end-to-end latency.
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3.1 Case for Offloading

Avoiding overload is an important part of NIPS management. Some NIPS processing is
computationally intensive, and under high traffic loads, CPU resources become scarce.
Modern NIPS offer two options for reacting to overload: dropping packets or suspend-
ing expensive analysis modules. Neither is an attractive option. For example, Snort by
default drops packets when receiving more traffic than it can process — in tests in our
lab, Snort dropped up to 30% of traffic when subjected to more traffic than it had CPU to
analyze — which can adversely impact end-user performance (especially for TCP traf-
fic). Suspending analysis modules decreases detection coverage. In fact, this behavior
under overload can be used to evade NIPS [19]. As such, network operators today have
few choices but to provision their NIDS/NIPS to handle maximum load. For example,
they can upgrade their NIPS nodes with specialized hardware accelerators (e.g., using
TCAM, GPUs, or custom ASICs). While this is a valid (if expensive) option, practical
management constraints restrict network appliance upgrades to a 3–5 year cycle.

N1 

N3 

N2 

N4 

Path1: N1  N4 

Path2: N3  N4 

ath1: N1 N4

D 

Fig. 1. An example to explain the on- and off-path of-
floading opportunities that have been proposed in prior
work for passive monitoring solutions

A practical alternative to avoid
packet drops or loss in detection
coverage is by exploiting oppor-
tunities for offloading the process-
ing. Specifically, prior work has
exploited this idea in the con-
text of passive monitoring in two
ways: (1) on-path offloading to
other monitoring nodes on the
routing path [27, 28] and (2) off-
path offloading by replicating traf-
fic to a remote datacenter [9, 29].

To make these more concrete, consider the example network in Figure 1 with 4 nodes
N1–N4, with traffic flowing on two end-to-end paths P1:N1→N4 and P2:N3→N4.1

In a traditional deployment, each packet is processed at its ingress on each path: N1
monitors traffic on P1 and N3 monitors traffic on P2. An increase in the load on P1 or
P2 can cause drops or detection misses

With on-path offloading, we can balance the processing load across the path (i.e., N1,
N2, and N4 for P1 and N2, N3, and N4 for P2) to use spare capacity at N2 and N4 [27,
28]. This idea can be generalized to use processing capacity at off-path locations; e.g.,
N1 and N2 can offload some of their load to the datacenter; e.g., a NIDS cluster [34] or
cloudbursting via public clouds [29].

3.2 Challenges in Offloading NIPS

Our goal is to extend the benefits of offloading to NIPS deployments. Unlike passive
monitoring solutions, however, NIPS need to be inline on the forwarding path and they
actively drop traffic. This introduces new dimensions for both on-path and off-path
offloading that falls outside the scope of the aforementioned prior work.

1 For brevity, in this section we use an abstract notion of a “node” that includes both the
NIDS/NIPS functionality and the switching/routing function.
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Cap = 40 for all nodes 

Fig. 2. Need to model the impact of inline traffic
modifications
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Fig. 3. Impact of rerouting to remote locations

Suppose we have a network administrator who wants to distribute the processing
load across the different nodes to: (1) operate within the provisioned capacity of each
node; (2) meet traffic engineering objectives w.r.t. link loads (e.g., ensure that no link
is loaded to more than 30%); (3) minimize increased latency due to rerouting; and (4)
ensures that the unwanted traffic is dropped as close to the origin as possible subject
to (1), (2), and (3). We extend the example topology from earlier to highlight the key
challenges that arise in meeting these goals

NIPS Change Traffic Patterns: In Figure 2, each NIPS N1–N4 can process 40 packets
and each link has a capacity to carry 200 packets. Suppose P1 and P2 carry a total of
100 packets and the volume of unwanted traffic on P1 is 40%; i.e., if we had no NIPS
resource constraints, we would drop 40% of the traffic on P1. In order to meet the NIPS
load balancing and traffic engineering objectives, we need to model the effects of the
traffic being dropped by each NIPS node. If we simply use the formulations for passive
monitoring systems and ignore the traffic drop rate, we may incorrectly infer that there
is no feasible solution—the total offered load of 200 packets exceeds the total NIPS
capacity (160). Because P1 drops 40 packets, there is actually a feasible solution.

Fig. 4. Need to carefully select offload locations in
order to account for the latency for user connec-
tions

Rerouting: Next, let us consider the
impact of off-path offloading to a dat-
acenter. Here, we see a key difference
between NIDS and NIPS offloading.
With NIDS, we replicate traffic to the
datacenter D. With NIPS, however, we
need to actively reroute the traffic. In
Figure 3, the traffic on P1 exceeds the
total NIPS capacity even after account-
ing for the drop rate. In this case, we
need to reroute a fraction of the traffic on P1 to the datacenter from N2. If we were
replicating the traffic, then the load on the link N2-N4 would be unaltered. With rerout-
ing, however, we are reducing the load on N2-N4 and introducing additional load on the
links between N2 and D (and also between D and N4). This has implications for traffic
engineering as we need to account for the impact of rerouting on link loads.

Latency Addition Due to Offloading: NIDS do not actively impact user-perceived
performance. By virtue of being on the critical forwarding path, however, NIPS of-
floading to remote locations introduces extra latency to and from the datacenter(s). In
Figure 4, naively offloading traffic from N1 to D1 or from N3 to D1 can add hundreds



14 V. Heorhiadi et al.

of milliseconds of additional latency. Because the latency is critical for interactive and
web applications (e.g., [8]), we need systematic ways to model the impact of rerouting
to minimize the impact on user experience.

Conflict with Early Dropping: Naive offloading may also increase the footprint of
unwanted traffic as traffic that could have been dropped may consume extra network
resources before it is eventually dropped. Naturally, operators would like to minimize
this impact. Let us extend the previous scenario to case where the link loads are low,
and D1 and D2 have significantly higher capacity than the on-path NIPS. From a pure
load perspective, we might want to offload most of the traffic to D1 and D2. However,
this is in conflict with the goal of dropping unwanted traffic early.

Together, these examples motivate the need for a systematic way to capture NIPS-
specific aspects in offloading including: (1) changes to traffic patterns due to NIPS
actions; (2) accounting for the impact of rerouting in network load; (3) modeling the
impact of off-path offloading on latency for users; and (4) balancing the tension between
load balancing and dropping unwanted traffic early.

4 SNIPS System Overview

Fig. 5. Overview of the SNIPS architecture for
NIPS offloading

In order to address the challenges from
the previous section, we present the de-
sign of the SNIPS system. Figure 5
shows a high-level view of the system.
The design of SNIPS is general and
can be applied to several contexts: en-
terprise networks, datacenter networks,
and ISPs, though the most common
use-case (e.g., as considered by past
network security literature) is typically
for enterprise networks.

We envision a logically centralized
controller that manages the NIPS deployment as shown, analogous to many recent
network management efforts (e.g., [3]). Network administrators specify high-level ob-
jectives such as bounds on acceptable link congestion or user-perceived latency. The
controller runs a network-wide optimization and translates these high-level goals into
physical data plane configurations.

This network-wide optimization is run periodically (e.g., every 5 minutes) or trig-
gered by routing or traffic changes to adapt to network dynamics. To this end, it uses in-
formation about the current traffic patterns and routing policies using data feeds that are
routinely collected for other network management tasks [5]. Based on these inputs, the
controller runs the optimization procedures (described later) to assign NIPS processing
responsibilities. We begin by describing the main inputs to this NIPS controller.

• Traffic Classes: Each traffic class is identified by a specific application-level port
(e.g., HTTP, IRC) and network ingress and egress nodes. Each class is associated
with some type of NIPS analysis that the network administrator wants to run. We use
the variable c to identify a specific class. We use c.in and c.out to denote the ingress
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and egress nodes for this traffic class; in particular, we assume that a traffic class has
exactly one of each. For example, in Figure 5 we have a class c consisting of HTTP
traffic entering at c.in = N1 and exiting at c.out = N3. Let S (c) and B(c) denote
the (expected) volume of traffic in terms of the number of sessions and bytes, respec-
tively. We use Match(c) to denote the expected rate of unwanted traffic (which, for
simplicity, we assume to be the same in sessions or bytes) on the class c, which can
be estimated from summary statistics exported by the NIPS.

• Topology and Routing: The path traversed by traffic in a given class (before any
rerouting due to offloading) is denoted by c.path . For clarity, we assume that the rout-
ing in the network is symmetric; i.e., the path c.path=Path(c.in , c.out) is identical
to the reverse of the path Path(c.out , c.in). In our example, c.path = 〈N1,N2,N3〉.
Our framework could be generalized to incorporate asymmetric routing as well.
For simplicity, we restrict the presentation of our framework to assume symmetric
routing.

We use the notation Nj ∈ Path(src, dst) to denote that the NIPS node Nj is on
the routing path between the source node src and the destination node dst . In our
example, this means that N1,N2,N3 ∈ Path(N1,N3). Note that some nodes (e.g.,
a dedicated cluster such as D1 in Figure 5) are off-path; i.e., these do not observe
traffic unless we explicitly re-route traffic to them. Similarly, we use the notation
l ∈ Path(src, dst) to denote that the link l is on the path Path(src, dst). We use
|Path(src, dst)| to denote the latency along a path Path(src, dst). While our frame-
work is agnostic to the units in which latency is measured, we choose hop-count for
simplicity.

• Resource Footprints: Each class c may be subject to different types of NIPS anal-
ysis. For example, HTTP sessions may be analyzed by a payload signature engine
and through web firewall rules. We model the cost of running the NIPS for each class
on a specific resource r (e.g., CPU cycles, memory) in terms of the expected per-
session resource footprint F r

c , in units suitable for that resource (F r
c for Footprint on

r). These values can be obtained either via NIPS vendors’ datasheets or estimated
using offline benchmarks [4].

• Hardware Capabilities: Each NIPS hardware device Nj is characterized by its re-
source capacity Capr

j in units suitable for the resource r. In the general case, we
assume that hardware capabilities may be different because of upgraded hardware
running alongside legacy equipment.

We observe that each of these inputs (or the instrumentation required to obtain them) is
already available in most network management systems. For instance, most centralized
network management systems today keep a network information base (NIB) that has
the current topology, traffic patterns, and routing policies [5]. Similarly, the hardware
capabilities and resource footprints of the different traffic classes can be obtained with
simple offline benchmarking tools [4]. Note that our assumption on the availability of
these inputs is in line with existing work in the network management literature. The
only additional input that SNIPS needs is Match(c), which is the expected drop rate
for the NIPS functions. These can be estimated using historical logs reported by the
NIPS; anecdotal evidence from network administrators suggests that the match rates



16 V. Heorhiadi et al.

are typically quite stable [1]. Furthermore, SNIPS can provide significant benefits even
with coarse estimates. In this respect, our guiding principle is to err on the conservative
side; e.g., we prefer to overestimate resource footprints and underestimate the drop
rates.

Note that SNIPS does not compromise the security of the network relative to a tra-
ditional ingress-based NIPS deployment. That is, any malicious traffic that would be
dropped by an ingress NIPS will also be dropped in SNIPS; this drop may simply occur
elsewhere in the network as we will see.

Given this setup, we describe the optimization formulations for balancing the trade-
off between the load on the NIPS nodes and the latency and congestion introduced by
offloading.

5 SNIPS Optimization

Given the inputs from the previous section, our goal is to optimally distribute the NIPS
processing through the network. To this end, we present a linear programming (LP) for-
mulation. While LP-based solutions are commonly used in traffic engineering [6, 28],
NIPS introduce new dimensions that make this model significantly different and more
challenging compared to prior work [9, 28]. Specifically, rerouting and active manipu-
lation make it challenging to systematically capture the effective link and NIPS loads
using the optimization models from prior work, and thus we need a first-principles ap-
proach to model the NIPS-specific aspects.

Path(N,E) 

Path(N,D) Path(D,E) 

Path(I,N) 

dropped dropped dropped 

Sessions(c) )
0 1 

Fig. 6. An example to highlight the key concepts in our
formulation and show modeling of the additional la-
tency due to rerouting

Our formulation introduces de-
cision variables that capture the
notion of processing and offload-
ing fractions. These variables, de-
fined for each node along a rout-
ing path, control the number of
flows processed at each node. Let
pc,j denote the fraction of traffic
on class c that the router Nj pro-
cesses locally and let oc,j ,d denote
the fraction of traffic on class c
that the NIPS node Nj offloads to
the datacenter d. For clarity of pre-
sentation, we assume there is a single datacenter d and thus drop the d subscript; it is
easy to generalize this formulation to multiple datacenters, though we omit the details
here due to space considerations.

Intuitively, we can imagine the set of traffic sessions belonging to class c entering
the network (i.e., before any drops or rerouting) as being divided into non-overlapping
buckets, e.g., either using hashing or dividing the traffic across prefix ranges [28,34,37].
The fractions pc,j and oc,j represent the length of these buckets as shown in Figure 6.

Figure 7 shows the optimization framework we use to systematically balance the
trade-offs involved in NIPS offloading. We illustrate the key aspects of this formulation
using the example topology in Figure 6 with a single class c of traffic flowing between
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Minimize: (1−α−β)×NLdCost+α×HopsUnwanted+β×LatencyInc, subject to:

∀c :
∑

Nj∈c.path

pc,j +oc,j =1 (1)

∀r, j :NLd j,r =
∑

c:Nj∈c.path

pc,j ×S(c)×F r
c (2)

∀r, j :NLd j,r ≤Capr
j (3)

∀r :
∑

c

∑

Nj∈c.path

oc,j ×S(c)×F r
c ≤DCapr (4)

∀r, j :NLdCost ≥NLd j,r (5)

∀l :BG l =
∑

c:l∈c.path

B(c) (6)

∀l :LLd l ≤MaxLLd×LCapl (7)

LatencyInc =
∑

c

∑

Nj∈c.path

oc,j ×S(c)×
( |Path(Nj , d)|+ |Path(d, c.out)|

−|Path(Nj , c.out)|
)

(8)

HopsUnwanted =
∑

c

∑

Nj∈c.path

pc,j ×S(c)×Match(c)×|Path(c.in,Nj)|

+
∑

c

∑

Nj∈c.path

oc,j ×S(c)×Match(c)×
( |Path(c.in,Nj)|

+|Path(Nj , d)|
)

(9)

∀l :LLd l =BG l +
∑

c

∑

Nj :Nj∈c.path

∧ l∈Path(Nj ,d)

oc,j ×B(c)

+
∑

c:l∈Path(d,c.out)

∑

Nj∈c.path

oc,j ×B(c)× (1−Match(c))

−
∑

c

∑

Nj≺c l

oc,j ×B(c)−
∑

c

∑

Nj≺c l

pc,j ×B(c)×Match(c) (10)

Fig. 7. Formulation for balancing the scaling, latency, and footprint of unwanted traffic in
network-wide NIPS offloading

the ingress I and egress E. This toy topology has a single data center D and traffic being
offloaded to D from a given node N.
Goals: As discussed earlier, NIPS offloading introduces several new dimensions: (1)
ensure that the NIPS hardware is not overloaded; (2) keep all the links at reasonable
loads to avoid unnecessary network congestion; (3) add minimal amount of extra la-
tency for user applications; and (4) minimize the network footprint of unwanted traffic.
Of these, we model (2) as a constraint and model the remaining factors as a multi-
criterion objective.2

Note that these objectives could possibly be in conflict and thus we need to system-
atically model the trade-offs between these objectives. For instance, if are not worried
about the latency impact, then the optimal solution is to always offload traffic to the
datacenter. To this end, we model our objective function as a weighted combination
of factors (1), (3), and (4). Our goal here is to devise a general framework rather than

2 The choice of modeling some requirement as a strict constraint vs. objective may differ across
deployments; as such, our framework is quite flexible. We use strict bounds on the link loads
to avoid congestion.
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mandate specific values of the weights. We discuss some natural guidelines for selecting
these weights in §7.

Coverage (Eqn. 1): Given the process and offload variables, we need to ensure that
every session in each class is processed somewhere in the network. Eqn. 1 captures this
coverage requirement and ensures that for each class c the traffic is analyzed by some
NIPS on that path or offloaded to the datacenter. In our example, this means that pc,I,
pc,N, pc,E, and oc,N should sum up to 1.

Resource Load (Eqn. 2–Eqn. 5): Recall that F r
c is the per-session processing cost of

running the NIPS analysis for traffic on class c. Given these values, we model the load
on a node as the product of the processing fraction pc,j , the traffic volume along these
classes and the resource footprint F r

c . That is, the load on node Nj due to traffic pro-
cessed on c is S (c)×pc,j×F r

c . Since our goal is to have all nodes operating within their
capacity, we add the constraint in Eqn. 3 to ensure that no node exceeds the provisioned
capacity. The load on the datacenter depends on the total traffic offloaded to it, which
is determined by the oc,j values, i.e., oc,N in our example of Figure 6. Again, this must
be less than the capacity of the datacenter, as shown in Eqn. 4. Furthermore, since we
want to minimize resource load, Eqn. 5 captures the maximum resource consumption
across all nodes (except the datacenter).3

Latency Penalty due to Rerouting (Eqn. 8): Offloading means that traffic takes a
detour from its normal path to the datacenter (and then to the egress). Thus, we need to
compute the latency penalty caused by such rerouting. For any given node Nj , the orig-
inal path c.path can be treated as the logical concatenation of the path Path(in ,Nj)
from ingress in to node Nj and the path Path(Nj , out) from Nj to the egress out .
When we offload to the datacenter, the additional cost is the latency from this node
to the datacenter and datacenter to the egress. However, since this traffic does not tra-
verse the path from Nj to the egress, we can subtract out that latency. In Figure 6,
the original latency is |Path(I,N)|+ |Path(N,E)|; the offloaded traffic incurs a latency
of |Path(I,N)|+ |Path(N,D)|+ |Path(D,E)| which results in a latency increase of
|Path(N,D)|+ |Path(D,E)| − |Path(N,E)|. This models the latency increase for a
given class; the accumulated latency across all traffic is simply the sum over all classes
(Eqn. 8).

Unwanted Footprint (Eqn. 9): Ideally, we want to drop unwanted traffic as early
as possible to avoid unnecessarily carrying such traffic. To capture this, we compute
the total “network footprint” occupied by unwanted traffic. Recall that the amount
of unwanted traffic on class c is Match(c)×B(c). If the traffic is processed locally
at router Nj , then the network distance traversed by the unwanted traffic is simply
|Path(c.in ,Nj)|. If the traffic is offloaded to the datacenter by Nj , however, then the
network footprint incurred will be |Path(c.in,Nj)|+ |Path(Nj , d)|. Given a reason-
able bucketing function, we can assume that unwanted traffic will get mapped uni-
formly across the different logical buckets corresponding to the process and offload

3 At first glance, it may appear that this processing load model does not account for reduction in
processing load due to traffic being dropped upstream. Recall, however, that pc,j and oc,j are
defined as fractions of original traffic that enters the network. Thus, traffic dropped upstream
will not impact the processing load model.
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variables. In our example, the volume of unwanted traffic dropped at N is simply
Match(c) × B(c) × pc,N. Given this, we can compute the network footprint of the
unwanted traffic as a combination of the locally processed and offloaded fractions as
shown in Eqn. 9.

Due to the processing coverage constraint, we can guarantee that SNIPS provides the
same the security functionality as provided by a traditional ingress NIPS deployment.
That is, any malicious traffic that should be dropped will be dropped somewhere under
SNIPS. (And conversely, no legitimate traffic will be dropped.)

Link Load (Eqn. 6, Eqn. 7, Eqn. 10): Last, we come to the trickiest part of the
formulation — modeling the link loads. To model the link load, we start by considering
the baseline volume that a link will see if there were no traffic being dropped and if
there were no offloading. This is the background traffic that is normally being routed.
Starting with this baseline, we notice that NIPS offloading introduces both positive and
negative components to link loads.

First, rerouting can induce additional load on a given link if it lies on a path between
a router and the datacenter; either on the forward path to the datacenter or the return path
from the data center to the egress. These are the additional positive contributions shown
in Eqn. 10. In our example, any link that lies on the path Path(N,D) will see additional
load proportional to the offload value oc,N. Similarly, any link on the path from the data
center will see additional induced load proportional to oc,N× (1−Match(c)) because
some of the traffic will be dropped.

NIPS actions and offloading can also reduce the load on some links. In our example,
the load on the link N-E is lower because some of the traffic has been offloaded from N;
this is captured by the first negative term in Eqn. 10. There is also some traffic dropped
by the NIPS processing at the upstream nodes. That is, the load on link N-E will be
lowered by an amount proportional to (pc,I+pc,N)×Match(c). We capture this effect
with the second negative term in Eqn. 10 where we use the notation Nj ≺c l to capture
routers that are upstream of l along the path c.path .

Together, we have the link load on each link expressed as a combination of three
factors: (1) baseline background load; (2) new positive contributions if the link lies on
the path to/from the datacenter, and (3) negative contributions due to traffic dropped
upstream and traffic being rerouted to the data center. Our constraint is to ensure that
no link is overloaded beyond a certain fraction of its capacity; this is a typical traffic
engineering goal to ensure that there is only a moderate level of congestion at any time.

Solution: Note that our objective function and all the constraints are linear functions
of the decision variables. Thus, we can leverage commodity linear programming (LP)
solvers such as CPLEX to efficiently solve this constrained optimization problem. In
§6 we discuss how we map the output of the optimization (fractional pc,j and oc,j
assignments) into data plane configurations to load balance and offload the traffic.

We note that this basic formulation can be extended in many ways. For instance,
administrators may want different types of guarantees on NIPS failures: fail-open (i.e.,
allow some bad traffic), fail-safe (i.e., no false negatives but allow some benign traffic
to be dropped), or strictly correct. SNIPS can be extended to support such policies;
e.g., modeling redundant NIPS or setting up forwarding rules to allow traffic to pass
through.
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6 Implementation Using SDN

In this section, we describe how we implement SNIPS using software-defined network-
ing (SDN). At a high-level, an SDN architecture consists of a network controller and
SDN-enabled switches [3]. The controller installs rules on the switches using an open
API such as OpenFlow [18] to specify forwarding actions for different flow match pat-
terns. The flow match patterns are exact or wildcard expressions over packet header
fields. This ability to programmatically set up forwarding actions enables a network-
layer solution for NIPS offloading that does not require NIPS modifications and can
thus work with legacy/proprietary NIPS hardware.

SNIPS Using SDN/OpenFlow: We want to set up forwarding rules to steer traffic to
the different NIPSes. That is, given the pc,j and oc,j values, we need to ensure that each
NIPS receives the designated amount of traffic. In order to decouple the formulation
from the implementation, our goal is to translate any configuration into a correct set of
forwarding rules.

As discussed in §4, each traffic class c is identified by application-level ports and net-
work ingress/egress. Enterprise networks typically use structured address assignments;
e.g., each site may be given a dedicated IP subnet. Thus, in our prototype we iden-
tify the class using the IP addresses (and TCP/UDP port numbers). Note that we do
not constrain the addressing structure; the only requirement is that hosts at different
locations are assigned addresses from non-overlapping IP prefix ranges and that these
assignments are known.

For clarity, we assume that each NIPS is connected to a single SDN-enabled switch.
In the context of our formulation, each abstract node Nj can be viewed as consisting of
a SDN switch Sj connected to the NIPS NIPS j .4

6.1 Challenges in Using SDN

While SDN is indeed an enabler, there are three practical challenges that arise in our
context. We do not claim that these are fundamental limitations of SDN. Rather, SNIPS
induces new requirements outside the scope of traditional SDN/OpenFlow applica-
tions [3] and prior SDN use cases [23, 24].

Stateful Processing: NIPS are stateful and must observe both forward and reverse
flows of a TCP/UDP session for correct operation. In order to pin a session to a specific
node, prior solutions for NIDS load balancing use bidirectional hash functions [9, 34].
However, such capabilities do not exist in OpenFlow and we need to explicitly ensure
stateful semantics.

To see why this is a problem, consider the example in Figure 8 with class c1
(c1.in=S1 and c1.out = S2) with pc1,NIPS1=pc1,NIPS2=0.5. Suppose hosts with gate-
ways S1 and S2 are assigned IP addresses from prefix ranges Prefix 1=10.1/16
and Prefix2=10.2/16 respectively. Then, we set up forwarding rules so that pack-
ets with src = 10.1.0/17, dst=10.2/16 are directed to NIPS NIPS1 and those with

4 For “inline” NIPS deployments, the forwarding rules need to be on the switch immediately
upstream of the NIPS and the NIPS needs to be configured to act in “bypass” mode to allow
the remaining traffic to pass through untouched.
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src=10.1.128/17, dst=10.2/16 are directed to NIPS2 as shown in the top half of Fig-
ure 8. Thus, the volume of traffic each NIPS processed matches the SNIPS optimization.
Note that we need two rules, one for each direction of traffic. 5

S1 
S2 

NIPS1 NIPS2 

10.2/16 10.1/16 

pc1,N1 fwd 

pc1,N1 rev 

pc1,N2 fwd 

pc 1,N2 rev 

c1: Src = 10.1/16, Dst = 10.2/16; pc1,N1 = 0.5 pc1,N2 = 0.5 
    c2: Src = 10.2/16, Dst = 10.1/16; pc2,N1 = 0.25 pc2,N2 = 0.75 

pc2,N1 fwd 
pc2,N1 rev 

pc2,N2 fwd 

pc2,N2 fwd 

pc2,N2 rev 

pc 2,N2 rev 

S1

NIPS1 N1 

S2

NIPS2 N2 

Fig. 8. Potentially conflicting rules with bidirectional forwarding
rules for stateful processing. The solution in this case is to logically
merge these conflicting classes.

There is, however,
a subtle problem. Con-
sider a different class
c2 whose c2.in = S2
and c2.out = S1. Sup-
pose pc2,NIPS1 = 0.25
and pc2,NIPS2 = 0.75.
Without loss of gen-
erality, let the split
be src = 10.2.0/18,
dst = 10.1/16 for
NIPS1 and rest to
NIPS2 as shown in
bottom half of Figure 8.
Unfortunately, these new rules will create conflict. Consider a bidirectional session
src = 10.1.0.1, dst = 10.2.0.1. This session will match two sets of rules; e.g., the
forward flow of this session matches rule 1 on S1 while the reverse flow matches rule
4 (a reverse rule for c2) on S2. Such ambiguity could violate the stateful processing
requirement if the forward and reverse directions of a session are directed to different
NIPS.

N1 N2 

10.2/16 10.1/16 

Naïve:  

pc1,N1 = pc1,N2 = 0.5 

NIPS1 NIPS2 

S1 S2 

Fig. 9. NIPS loads could be violated with a non-uniform dis-
tribution of traffic across different prefix subranges. The so-
lution in this case is a weighted volume-aware split

Skewed Volume Distribu-
tion: While class merging
ensures stateful processing,
using prefix-based partitions
may not ensure that the load
on the NIPS matches the
optimization result. To see
why, consider Figure 9 with
a single class and two NIPS,
NIPS1 and NIPS2, with an
equal split. The straw man
solution steers traffic be-
tween 10.1.0/17–10.2/16 to NIPS1 and the remaining (10.1.128/17–10.2/16) to NIPS2.
While this splits the prefix space equally, the actual load may be skewed if the volume
is distributed as shown. The actual load on the NIPS nodes will be 0.3 and 0.7 instead
of the intended 0.5:0.5. This non-uniform distribution could happen for several reasons;
e.g., hotspots of activity or unassigned regions of the address space.

Potential Routing Loops: Finally, there is a corner case if the same switch is on the
path to/from the data center. Consider the route: 〈in , . . ., Soffload , . . ., Si, Sj , . . ., Sd ,
d, Sd , . . ., Si, Sj , . . ., out〉. With flow-based forwarding rules, Sj cannot decide if a

5 For clarity, the example only shows forwarding rules relevant to NIPS; there are other basic
routing rules that are not shown.
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packet needs to be sent toward the datacenter d or toward egress out . (Note that this is
not a problem for Sd itself; it can use the input interface on which the packet arrived to
determine the forwarding action.)

We could potentially address some of these issues by modifying the optimization
(e.g., choose a loop-free offload point for (2) or rewrite the optimization w.r.t merged
classes for (1).) Our goal is to decouple the formulation from the implementation path.
That is, we want to provide a correct SDN-based realization of SNIPS without making
assumptions about the structure of the optimization solution or routing strategies.

6.2 Our Approach

Next, we discuss our approaches to address the above challenges. At a high-level, our
solution builds on and extends concurrent ideas in the SDN literature [11,23,24]. How-
ever, to the best of our understanding, these current solutions do not handle conflicts
due to stateful processing or issues of load imbalance across prefixes.

Class Merging for Stateful Processing: Fortunately, there is a simple yet effective so-
lution to avoid such ambiguity. We identify such conflicting classes—i.e., classes c1 and
c2 with c1.in= c2.out and vice versa6—and logically merge them. We create a merged
class c′ whose pc′,j and oc′,j are (weighted) combinations of the original responsibil-
ities so that the load on each NIPS NIPS j matches the intended loads. Specifically, if
the resource footprints F r

c1 and F r
c2 are the same for each resource r, then it suffices to

set pc′,j =
S(c1)×pc1,j+S(c2)×pc2,j

S(c1)+S(c2)
. In Figure 8, if the volumes for c1 and c2 are equal,

the effective fractions are pc′,NIPS1 =
0.5+0.25

2 and pc′,NIPS2 =
0.5+0.75

2 . We can simi-
larly compute the effective offload values as well. If the resource footprints F r

c1 and F r
c2

are not the same for each resource r, however, then an appropriate combination can be
computed using an LP (not shown for brevity).

Volume-Aware Partitioning: A natural solution to this problem is to account for the
volumes contributed by different prefix ranges. While this problem is theoretically hard
(being reducible to knapsack-style problems), we use a simple heuristic described below
that performs well in practice, and is quite efficient.

Let PrefixPair c denote the IP subnet pairs for the (merged) class c. That is, if c.in
is the set Prefix in and c.out is the set Prefix out , then PrefixPairc is the cross prod-
uct of Prefix in and Prefixout . We partition PrefixPair c into non-overlapping blocks
PrefAtomc,1 . . . PrefAtomc,n. For instance, if each block is a /24×/24 subnet and the

original PrefixPair is a /16×/16, then the number of blocks is n= 216×216

28×28 =65536.
Let S (k) be the volume of traffic in the k th block.7 Then, the fractional weight for each
block is wk =

S(k)∑
k′ S(k ′) .

We discretize the weights so that each block has weight either δ or zero, for some
suitable 0<δ< 1. For any given δ, we choose a suitable partitioning granularity so that

6 If the classes correspond to different well-known application ports, then we can use the port
fields to disambiguate the classes. In the worst case, they may share some sets of application
ports and so we could have sessions whose port numbers overlap.

7 These can be generated from flow monitoring reports or statistics exported by the OpenFlow
switches themselves.
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the error due to this discretization is minimal. Next, given the pc,j and oc,j assignments,
we run a pre-processing step where we also “round” each fractional value to be an
integral multiple of δ.

Given these rounded fractions, we start from the first assignment variable (some pc,j
or oc,j ) and block PrefAtomc,1. We assign the current block to the current fractional
variable until the variable’s demand is satisfied; i.e., if the current variable, say pc,j ,
has the value 2δ, then it is assigned two non-zero blocks. The only requirement for this
procedure to be correct is that each variable value is satisfied by an integral number of
blocks; this is true because each weight is 0 or δ and each variable value is an integral
multiple of δ. With this assignment, the volume of traffic meets the intended pc,j and
oc,j values (modulo rounding errors).

Handling Loops Using Packet Tagging: To handle loops, we use packet tags similar
to prior work [11,23]. Intuitively, we need the switches on the path from the datacenter
to the egress to be able determine that a packet has already been forwarded. Because
switches are stateless, we add tags so that the packet itself carries the relevant “state”
information. To this end, we add an OpenFlow rule at Sd to set a tag bit to packets that
are entering from the datacenter. Downstream switches on the path to out use this bit (in
conjunction with other packet header fields) to determine the correct forwarding action.
In the above path, Sj will forward packets with tag bit 0 toward d and packets with bit
1 toward out .

6.3 Putting it Together

Given these building blocks we translate the LP solution into an SDN configuration in
three steps:

1. Identify conflicting classes and merge them.

2. Use a weighted scheme to partition the prefix space for each (merged) class so that
the volume matches the load intended by the optimization solution.

3. Check for possible routing loops in offloaded paths and add corresponding tag addi-
tion rules on the switches.

We implement these as custom modules in the POX SDN controller [22]. We choose
POX mostly due to our familiarity; these extensions can be easily ported to other plat-
forms. One additional concern is how packets are handled during SNIPS rule updates to
ensure stateful processing. To address this we can borrow known techniques from the
SDN literature [25].

7 Evaluation

In evaluating SNIPS, we focus on two key aspects:

• System benchmarks using our SDN implementation (§7.1).

• Performance benefits over other NIPS architectures (§7.2).

Setup: We use a combination of custom trace-driven simulations, a real system emula-
tion using Mininet [16], and optimization-driven analysis. We use OpenvSwitch as the
SDN switch and use Snort as the NIPS.
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Fig. 11. Validating that our SDN implementa-
tion faithfully realizes the SNIPS optimization
on the Internet2 topology

We use realistic network topologies from educational backbones, ISPs [33], and an
enterprise network; these topologies range in size between 11 and 70 nodes. Due to the
absence of public traffic data, we use a gravity model based on location populations [26]
to generate the traffic matrix specifying the volume of traffic between every pair of
network nodes for the AS-level topologies. For the enterprise topology, we obtained the
enterprise’s empirical traffic matrix. For simplicity, we consider only one application-
level class and assume there is a single datacenter located at the node that observes the
largest volume of traffic.

We configure the node and link capacities as follows. We assume a baseline ingress
deployment (without offloading or on-path distribution) where all NIPS processing oc-
curs at the ingress of each end-to-end path. Then, we compute the maximum load across
all ingress NIPS and set the capacity of each NIPS to this value and the datacenter
capacity to be 10× this node capacity. For link capacities, we simulate the effect of
routing traffic without any offloading or NIPS-induced packet drops, and compute the
maximum volume observed on the link. Then, we configure the link capacities such that
the maximum loaded link is at ≈ 35% load.

7.1 System Benchmarks

Computation Overhead: A potential concern with centralized management is the
time to recompute the network configurations, especially in reaction to network dy-
namics. The SNIPS system has three potential overheads: solving the linear program
using CPLEX; translating the LP solution to OpenFlow rules; and rule dissemination.
Figure 10 shows the breakdown of these three components for the different topologies.
Even with the largest topology (AS2914) with 70 nodes, the total time for configura-
tion is only 2.6 seconds. Given that typical network reconfiguration tasks need to be
performed every few minutes, this overhead is quite low [5].

Validation: We validated that our SDN implementation faithfully matches the load
distribution intended by the optimization. Figure 11 shows this validation result in terms
of the normalized NIPS loads (measured in total volume of traffic) for the Internet2
topology. (We have verified this for other topologies but do not show it for brevity.)
Nodes 1–11 are the local NIPS and Node 12 is the data center. We use the LP solution
to generate the expected load using the original traffic matrix. The result shows that
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the observed load closely tracks the intended load.8 In this specific configuration, the
volume of traffic offloaded to the datacenter (node 12) is small, but as we will see in the
following sections, in other topologies the datacenter can help significantly.

7.2 Benefits of SNIPS

Next, we evaluate the performance benefits of SNIPS. We start with a baseline result
with a simple configuration before evaluating the sensitivity to different parameters. For
the baseline, we set the SNIPS parameters β=α=0.333; i.e., all three factors (latency,
unwanted hops, load) are weighted equally in the optimization. We fix the fraction of
unwanted traffic to be 10%. For all results, the maximum allowable link load is 40%.
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Fig. 12. Trade-offs between current deployments and SNIPS

Improvement Over Current NIPS Architectures: We compare the performance
of SNIPS against today’s Ingress NIPS deployments. As an intermediary point, we
also consider three other deployments: 1) Ingress+DC deployment, where all process-
ing/offloading happens at the ingress of each path and the datacenter. 2) Path deploy-
ment, modeling the on-path deployment described in [27]; and 3) Path+: identical to
Path except each node has an increased capacity of DCapr/N .

Figure 12 shows three normalized metrics for the topologies: load, added latency,
and unwanted footprint. For ease of presentation, we normalize each metric by the
maximum possible value for a specific topology so that it is between 0 and 1.9 Higher
values indicate less desirable configurations (e.g., higher load or latency).

By definition, the Ingress deployment introduces no additional latency and unwanted
footprint is low10, since all of the processing is at the edge of the network. Such a de-
ployment, however, can suffer overload problems as shown in the result. SNIPS offers a
more flexible trade-off: a small increase in latency and unwanted footprint for a signif-
icant reduction in the maximum compute load. We reiterate that SNIPS does not affect
the security guarantees; it will drop all unwanted traffic, but it may choose to do so after
a few extra hops. In some topologies (e.g., AS3356) SNIPS can reduce the maximum
load by 10× compared to a naive ingress deployment while only increasing the latency

8 The small discrepancies are due to the variability in flow sizes.
9 Hence the values could be different across topologies even for the ingress deployment.

10 It is impossible for this footprint to be 0, since unwanted traffic enters the network and must
be flagged as such.
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by 2%. Similarly, SNIPS can provide a 4× reduction in load without increasing latency
over the Ingress+DC deployment (e.g., AS3257). Note that these benefits arise with a
very simple equi-weighted trade-off across the three objective components; the benefits
could be even better with other configurations.
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Fig. 15. Visualizing trade-offs in choosing different weight factors on Internet2 topology

Impact of Modeling Traffic Drops: SNIPS provides a higher fidelity model compared
to past works in NIDS offloading because it explicitly incorporates the impact of traffic
drops. We explore the impact of modeling these effects. For this result, we choose the
Internet2 topology and use our simulator to vary the fraction of malicious flows in
the network. Figure 13 shows the maximum observed link loads, averaged over 50
simulation runs. In addition to directly using the SNIPS-recommended strategy, we
also consider a naive setup that does not account for such drops.

There are two key observations. First, the max link load is significantly lower with
SNIPS which means that SNIPS can exploit more opportunities to offload under over-
load compared to the naive model. Second, by assuming no drops, “no drop” setup
ignores the HopsUnwanted factor, thus potentially obstructing the link to the datacen-
ter with unwanted traffic that could have been dropped at an earlier point in the network
(this effect is represented in Figure 13).

7.3 Sensitivity Analysis

Sensitivity to Weights: As an illustrative result, we show the result of varying the
weighting factors for the Internet2 topology in Figure 15. (We show only one topology
due to space limitations). In the figure, darker regions depict higher values, which are
less desirable. Administrators can use such visualizations to customize the weights to
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suit their network topology and traffic patterns and avoid undesirable regions. In par-
ticular, our equi-weighted configuration is a simple but reasonable choice (e.g., mostly
low shades of gray in this graph).

Sensitivity to Estimation Errors: We also show that the parameter estimation (such
as drop rate) for our framework need not be precise. For this, we choose to run a number
of simulations with imperfect knowledge of the drop rate. In that case, the drop rate is
sampled from a Gaussian distribution with mean of 0.1 (the estimated drop rate) and
changing standard deviation σ. Figure 14 shows the relative gap for compute and link
loads, between values predicted by the optimization with exact drop rate knowledge and
the simulated values. This result shows that even with large noise levels the difference
in load on links and nodes is insignificant.

8 Conclusions

Offloading has recently emerged as an appealing alternative to traditional approaches
for scaling in-network processing. The goal of this paper is to bring the benefits of of-
floading to NIPS deployments. As we discussed, NIPS create new dimensions—active
dropping, rerouting, and user-perceived latency—that fall outside the purvey of prior
offloading systems that apply to passive monitoring solutions. To address these chal-
lenges, we presented the design and implementation of SNIPS. We presented a linear
programming framework to model the new effects and trade-offs and addressed practi-
cal challenges in an SDN-based implementation. We showed that SNIPS offers greater
scalability and flexibility with respect to current NIPS architectures; it imposes low
overhead; and is robust to variations in operating parameters.
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