
Cross-Tenant Side-Channel Attacks in PaaS Clouds

Yinqian Zhang
University of North Carolina

Chapel Hill, NC, USA
yinqian@cs.unc.edu

Ari Juels
Cornell Tech (Jacobs Institute)

New York, NY, USA
juels@cornell.edu

Michael K. Reiter
University of North Carolina

Chapel Hill, NC, USA
reiter@cs.unc.edu

Thomas Ristenpart
University of Wisconsin

Madison, WI, USA
rist@cs.wisc.edu

ABSTRACT

We present a new attack framework for conducting cache-
based side-channel attacks and demonstrate this framework
in attacks between tenants on commercial Platform-as-a-
Service (PaaS) clouds. Our framework uses the Flush-

Reload attack of Gullasch et al. as a primitive, and ex-
tends this work by leveraging it within an automaton-driven
strategy for tracing a victim’s execution. We leverage our
framework first to confirm co-location of tenants and then
to extract secrets across tenant boundaries. We specifically
demonstrate attacks to collect potentially sensitive applica-
tion data (e.g., the number of items in a shopping cart), to
hijack user accounts, and to break SAML single sign-on. To
the best of our knowledge, our attacks are the first granular,
cross-tenant, side-channel attacks successfully demonstrated
on state-of-the-art commercial clouds, PaaS or otherwise.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Information flow controls

General Terms

Security

Keywords

Cloud security; side-channel attacks; cache-based side chan-
nels; Platform-as-a-Service

1. INTRODUCTION
Public Platform-as-a-Service (PaaS) clouds are an impor-

tant segment of the cloud market, being projected for com-
pound annual growth of almost 30% through 2017 [20] and
“on track to emerge as the key enabling technology for inno-
vation inside and outside enterprise IT” [23]. For our pur-
poses here, a PaaS cloud permits tenants to deploy tasks

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.

ACM 978-1-4503-2957-6/14/11.

http://dx.doi.org/10.1145/2660267.2660356.

in the form of interpreted source (e.g., PHP, Ruby, Node.js,
Java) or application executables that are then executed in
a provider-managed host OS shared with other customers’
applications. As such, a PaaS cloud often leverages OS-
based techniques such as Linux containers to isolate ten-
ants, in contrast to hypervisor-based techniques common in
Infrastructure-as-a-Service (IaaS) clouds.

A continuing, if thus far largely hypothetical, threat to
cloud tenant security is failures of isolation due to side-
channel information leakage. A small but growing handful
of works have explored side channels in settings character-
istic of IaaS clouds, to which tenants deploy tasks in the
form of virtual machines (VMs). Demonstrated attacks in-
clude side channels by which an attacker VM can extract
coarse load measurements of a victim VM with which it is
co-located [32]; identify pages it shares with a co-located vic-
tim VM, allowing it to detect victim VM applications, down-
loaded files [33] and its operating system (OS) [29]; and even
exfiltrate a victim VM’s private decryption key [40]. How-
ever, only the first of these attacks was demonstrated on a
public cloud, with the others being demonstrated in lab set-
tings. To the best of our knowledge, no side-channel attack
capable of extracting granular information from a victim has
been demonstrated in the wild.

In this paper, we initiate the study of cross-tenant side-
channel attacks specifically in PaaS clouds and, in doing
so, provide the first demonstration of granular, cross-tenant
side channels in commercial clouds of any sort. Existing
side-channel attacks mountable by one process on another
running on the same OS, particularly those that leverage
processor caches (e.g., [28, 30, 25, 34, 14, 38]), seem well
suited to performing attacks across boundries between ten-
ant instances1 in PaaS deployments. This is largely true in
our experience, though directly leveraging these attacks in
PaaS settings is not as straightforward as one might think.
One reason is that even identifying suitable targets to at-
tack in a PaaS deployment requires some thought. After
all, cryptographic keys that commonly form their most nat-
ural targets are largely absent in typical PaaS environments
where cryptographic protections (e.g., storage encryption, or
application of TLS encryption to network traffic) are com-

1While “instance” typically refers to an instantiated VM in
an IaaS setting, here we borrow the term for the PaaS set-
ting, to refer more generically to a collection of running com-
putations on one physical machine that are associated with
the same tenant and should be isolated from other tenants.

990

monly provided as a service by the cloud operator, often on a
different computer than those used to host tenant instances.

In this paper we report on our investigation of cache-based
side channels in PaaS clouds that, among other things, iden-
tifies several novel targets (in the context of cross-tenant
side-channel attacks) for PaaS environments:

1. We show how an attacker instance can infer aspects of
a victim web application’s responses to clients’ service
requests. In particular, we show that an attacker can
reliably determine the number of distinct items in an au-
thenticated user’s shopping cart on an e-commerce site
(the victim instance) running the popular Magento e-
commerce application.

2. We show how an attacker instance can hijack a user ac-
count on a web site (the victim instance) by predicting
the pseudorandom number it embeds in a password reset
link. We specifically demonstrate this attack against the
PHP pseudorandom number generator that the site uses.

3. We show how an attacker instance can monitor the vic-
tim so as to obtain a padding oracle to break XML en-
cryption schemes. In particular, we demonstrate a Ble-
ichenbacher attack [6] against SimpleSAMLphp, an open-
source SAML-based authentication application that im-
plements PKCS#1 v1.5 RSA encryption in a manner re-
sistant to these attacks via other vectors (but not via our
side-channel attacks).

We stress, moreover, that we have successfully mounted
each of these attacks in commercial PaaS clouds (though ob-
viously against victims that we deployed ourselves). More-
over, as a side effect of doing so, we have also addressed
how to achieve co-location of an attacker instance with a
victim instance in these PaaS clouds. To our knowledge,
our attacks are thus the first granular, cross-tenant attacks
demonstrated on commercial clouds, PaaS or otherwise.

A key ingredient in our attacks is a framework we develop
through which the attacker instance can trace a victim’s ex-
ecution paths inside shared executables. Starting with the
control-flow graph (CFG) of an executable shared with the
victim, our framework consists of building an attack non-
deterministic finite automaton (attack NFA) that prescribes
the memory chunks (see Sec. 3.1) that the attack instance
should monitor over time (using a known cache-based side
channel [14, 38]) in order to trace the victim’s execution
path in the CFG. This general framework can then be used
to characterize the victim’s execution for specific attacks,
such as the exact number of times a certain execution path
segment was traversed in a short interval (in the first at-
tack above); the precise time at which certain path segments
were traversed by the victim (as in the second attack); or
the direction taken in a specific branch of interest (in the
third attack). We believe the attack NFA framework that
we introduce here will be similarly useful in subsequent work
on both evaluating and defending against cross-tenant side-
channel attacks.

To summarize, then, the contributions of this paper are
threefold: (i) a general framework for expressing and guiding
cross-tenant side-channel attacks leveraging shared executa-
bles; (ii) identification of novel and important targets for
side-channel attacks in PaaS environments; and (iii) demon-
stration of attacks against these targets in commercial PaaS
clouds. Sec. 2 provides background on PaaS clouds and
common isolation techniques they employ and specifies the

PaaS cloud URL (http://...) Isolation

AppFog www.appfog.com User
Azure azure.microsoft.com VM
Baidu App Engine developer.baidu.

com/en
Container

Cloud Foundry cloudfoundry.org User
DotCloud www.dotcloud.com Container
Elastic Beanstalk aws.amazon.com/

elasticbeanstalk/
VM

Engine Yard www.engineyard.com VM
Heroku www.heroku.com Container
HP Cloud Applica-
tion PaaS

www.hpcloud.com/
products-services/
application-paas

Container

Joyent SmartOS www.joyent.com VM
OpenShift www.openshift.com Container
WSO2 wso2.com/cloud Runtime

Table 1: Example PaaS isolation techniques

threat model we assume in our work. Sec. 3 describes our
attack framework. Sec. 4 discusses our strategies for achiev-
ing and confirming co-location of attacker instances with
victims. Sec. 5–7 then detail our three attack demonstra-
tions outlined above. We discuss ethical considerations, ex-
tensions of the attacks, and potential countermeasures in
Sec. 8 and conclude in Sec. 9.

2. BACKGROUND
Cloud computing systems are often categorized as either

IaaS, PaaS, or Software-as-a-Service (SaaS). IaaS clouds en-
able users to launch virtual machines that they control on
the provider’s infrastructure, and provide access to vari-
ous low-level resources including storage and networking.
A canonical public PaaS cloud allows customers to upload
interpreted source code (e.g., PHP, Ruby, Node.js, Java)
or even application executables, which are then run in a
provider-managed host operating system (OS). This OS may
itself be running within a guest VM on a public IaaS plat-
form such as Amazon EC2. The host OS facilitates data
storage, monitoring and logging, and other value-adds that
enable customers to quickly provision applications.

A canonical PaaS use case is dynamic web hosting, where
the customer provides scripts or applications defining the
webpage (i.e., PHP scripts or similar) and a MySQL schema,
while the cloud provides integration of middleware to facili-
tate data storage, performance monitoring and mobile inte-
gration if desired. The convenience and flexibility that PaaS
provides to customers, together with the fact that mature
IaaS clouds enable quick time-to-market for a new PaaS sys-
tem, has lead to an explosion in the number of offerings.

2.1 PaaS Tenant Isolation
In order to increase server utilization and reduce operat-

ing cost, PaaS systems are usually multi-tenant, meaning
they run multiple customers’ instances on the same operat-
ing system. As such, isolation between tenants is essential
for the security of PaaS clouds. In Table 1 we summarize
the isolation mechanisms used in a variety of PaaS systems,
and describe these models in more detail below.

Runtime-based isolation. Some PaaS clouds host appli-
cations owned by multiple tenants in the same process and
isolate them with application runtimes. Multiple tenants

991

therefore may share, e.g., the same JVM environment, and
be isolated only by JVM runtime security mechanisms.

User-based isolation. A more widely used isolation tech-
nique is traditional user-based isolation within the host OS.
Each hosted application runs as a non-privileged user on
the OS, and the instance is a set of processes run by that
user. Basic OS-facilitated memory protection prevents il-
legal memory accesses across instance boundaries, and cor-
rectly configured discretionary access control (DAC) in Unix-
like systems prevents cross-tenant file accesses.

Container-based isolation. The main limitation of user-
based isolation is the unrestricted use of computer resources
by individual instances. This has been relatively recently
addressed with the advent of Linux containers, as imple-
mented by Linux-VServer (linux-vserver.org), OpenVZ
(openvz.org), and LXC (linuxcontainers.org). The last
has been merged into mainstream Linux kernels. A con-
tainer is a group of processes that are isolated from other
groups via distinct kernel namespaces and resource alloca-
tion quotas (so-called control groups or cgroups). A pop-
ular open-source project, Docker, which has been adopted
by several PaaS offerings, is built atop LXC to facilitate the
management of Linux containers.

VM-based isolation. Some PaaS clouds give each cus-
tomer instance a separate IaaS VM instance, thereby lever-
aging the isolation offered by modern virtualization.

The attacks we demonstrate in this paper were performed
on clouds offering container-based isolation, but as they ex-
ploit features common to both container-based and user-
based isolation, we believe they are equally applicable to
clouds protected by user-based isolation.

2.2 Threat model
We consider attacks by the PaaS provider (or other ma-

licious insiders) as out of scope. The same trust extends to
any underlying IaaS provider. Should the IaaS cloud be pub-
lic (e.g., EC2) then its malicious IaaS customers represent a
threat to PaaS customers, but not one that we explore fur-
ther. Rather we focus on other malicious customers of the
PaaS cloud, and container-based isolation in particular.

Thus both the adversaries and the victims in our threat
model are users of a PaaS system. An adversary seeks to (i)
arrange for a malicious instance it controls to be scheduled
to run within a different container on the same host OS as
the target victim and (ii) extract confidential information
from the target victim using this vantage point.

3. ATTACK FRAMEWORK
In this section, we present an attack framework that en-

ables an adversary to conduct a cache-based attack to track
the execution path of a victim and, in doing so, to extract a
secret of interest from the victim. We will first describe
the Flush-Reload-based side channels exploited in this
study (Sec. 3.1), and then develop an attack nondeterminis-
tic finite automaton or attack NFA (Sec. 3.2–3.3) from the
control-flow graph (CFG) of an executable shared with the
victim. We defer the actual demonstration of security at-
tacks to later sections.

3.1 Side Channels via Flush-Reload
We leverage a type of cache-based side channel that was

first reported by Gullasch et al. [14], who demonstrated its

use by an attack process to extract Advanced Encryption
Standard (AES) keys from a victim process when both were
running within the same OS. The attack was studied on
a single-core processor and exploits the adversary’s process’
ability to evict data in physical memory pages it shares with
the victim process from the CPU cache (e.g., via the instruc-
tion clflush2). The technique was later extended by Yarom
and Falkner to multi-core systems with a shared last-level
cache [38]. They refer to their attack as Flush-Reload. In
this work, we further extend the use of the Flush-Reload

side channels to more general attack scenarios.

Basic Flush-Reload. The basic building block of a Flush-

Reload attack is as follows. A chunk is a cacheline-sized,
aligned region in the physical memory that is mapped into
the adversary’s address space. For example, if a cacheline
is of size 64B, then each address that is a multiple of 64B
defines the chunk starting at that address.

• Flush: The adversary flushes chunks containing specific
instructions located in a memory page it shares with the
victim out of the entire cache hierarchy (including the
shared last-level cache) using the clflush instruction.

• Flush-Reload interval: The adversary waits for a pre-
specified interval while the last-level cache is utilized by
the victim running on another CPU core.

• Reload: The adversary times the reload of the same
chunks into the processor. A faster reload suggests these
chunks were in the last-level cache and so were executed
by the victim during the Flush-Reload interval; a slower
reload suggests otherwise.

We refer to the chunks being Flush-Reloaded by the ad-
versary as being monitored, since Flush-Reload essentially
monitors access to data in the chunk. Flushing a chunk via
clflush, and so monitoring that chunk, can be done with-
out knowing the physical address of the chunk, since clflush
takes the chunk’s virtual address (in this case, in the adver-
sary’s address space) as its operand. We call a faster reload
during the Reload phase an observed event or observation.
We also adopt concepts from statistical classification and
use the term false negative to refer to missed observations
of the victim’s access to the monitored chunk and false pos-
itives to refer to observed events that are caused by reasons
other than the victim’s access to the monitored chunk.

Flush-Reload Protocols. We define a Flush-Reload

protocol, in which the adversary process monitors a list of
chunks simultaneously and repeatedly until instructed oth-
erwise. It will first try to Reload the first chunk, record the
reload time and Flush it immediately afterwards. Then it
will repeat these steps on the second chunk, the third, and
so on, until the last chunk in the list. Then the adversary
will wait for a carefully calculated time period before start-
ing over from the first chunk, so that the interval between
the Flush and Reload of the same chunk is of a target
duration.3 From the Reload of the first chunk to the end
of the waiting period is called one Flush-Reload cycle. An il-
lustration of the Flush-Reload protocol is shown in Fig. 1.

2The clflush instruction takes a virtual address as the
operand and will flush all cachelines with the correspond-
ing physical address out of the entire cache hierarchy.
3Variation in the duration on the order of one or two hun-
dred CPU cycles may occur as the reload of a chunk does
not take constant time.

992

Flush-Reload Interval

Flush-Reload Cycle

Reloading
chunk 1

Reloading
chunk 2

Flushing
chunk 1

Flushing
chunk 2

Idle looping

Figure 1: An example of a Flush-Reload protocol in
which two chunks are monitored at the same time.
Gray rectangles are Reloads of two chunks and dark
squares are immediate Flushes of the prior Reloads.

3.2 From CFGs to Attack NFAs
In this section we provide a framework to leverage Flush-

Reload attacks as a primitive in a larger attack strategy to
trace the execution path of a victim instance during (at least
part of) its execution. Specifically, we develop attack NFAs
that prescribe the order in which different chunks should be
monitored using Flush-Reload attacks, based on what has
been learned so far.

The development of an attack NFA to attack a target
victim begins with a control-flow graph (CFG) [1] of the
executable4 shared with the victim. As usual, each node
of the CFG is a basic block of instructions, and an edge
from one basic block to another indicates that the latter can
immediately follow the former in execution. Let B denote
the set of basic blocks of the victim instance, and let E

denote the directed edges of its CFG.
When the shared executable is loaded, its organization in

memory determines a function BBToChunks : B → 2C that
describes how each basic block shared with the victim (i.e.,
in the shared executable) is stored in one or more chunks
mapped into the adversary instance’s virtual memory. Here,
C is the set of all chunks mapped into the adversary’s vir-
tual memory and occupied by the shared executable, and 2C

denotes the power set of C. That is, each basic block in B is
mapped to one or more chunks, by BBToChunks. Although
the chunks to which each basic block is mapped are usually
contiguous in memory, this might not be true when those
chunks span the end of a memory page.

Like a regular NFA, the attack NFA is defined as a tu-
ple (Q,Σ, δ, q0, F), where Q is a set of states, Σ is a set of
symbols, δ : Q × Σ → Q is a transition function, q0 is the
initial NFA state, and F ⊆ Q is a set of accepting states.
To each state q ∈ Q is associated a set of chunks, denoted
mon(q) ⊆ C, that contains the chunks the adversary will
monitor while in state q. Note that mon(q) might be the
same for multiple states q.

The symbols Σ consumed by the NFA is the set Σ = C ×
N×N where N is the set of natural numbers. Specifically, the
meaning of the transition (q, (c, ℓ, u), q′) ∈ δ is: while in state
q and so monitoring the chunks mon(q), if the adversary
detects the victim’s use of chunk c within the interval [ℓ, u]
(in units of Flush-Reload cycles since entering q), then the
adversary transitions to q′ and begins monitoring the chunks
mon(q′). We allow ℓ to be zero; detecting the victim’s use of
c in zero Flush-Reload cycles since entering state q means
that c was detected in the same Flush-Reload cycle that
caused state q to be entered.

4We use the term “executable” to refer to both executable
files and shared libraries in this paper.

In light of this intended meaning of the attack NFA, the
transition function should satisfy certain constraints.

• Observability: If (q, (c, ℓ, u), q′) ∈ δ, then c ∈ mon(q).
Otherwise, an adversary in state q will not observe the
victim using c. If in addition (q′, (c′, 0, u′), q′′) ∈ δ, then
mon(q′) ⊆ mon(q), since for transition (q′, (c′, 0, u′),
q′′) to become enabled with no Flush-Reload cycles
after transitioning to q′, c′ must be monitored in q (as
must other chunks included in mon(q′) due to recursive
application of this rule to additional “downstream” states
like q′′).

• Feasibility: To each state q there corresponds a basic
block b such that for each transition (q, (c, ℓ, u), q′) ∈ δ,
there is a (possibly empty) path in the CFG from b to a
basic block b′ (corresponding to q′) that can be traversed
in no fewer than ℓ and no more than u Flush-Reload

cycles and such that c ∈ BBToChunks(b′). Intuitively,
it is this execution path that the adversary detects in
transitioning from state q to q′.

In addition, in practice it is important to design the attack
NFA so that the number of monitored chunks in any state is
constrained, since monitoring many chunks simultaneously
poses difficulties.

A transition is taken out of a state at the first Flush-

Reload cycle that enables a transition. Still, it is possi-
ble for multiple transitions to become enabled in the same
Flush-Reload cycle, in which case an arbitrary enabled
transition is taken. In this respect, the automaton is nonde-
terministic.

The designated initial state q0 represents the shared exe-
cutable’s entry point(s) of interest to the adversary. That is,
mon(q0)∩BBToChunks(b) 6= ∅ for each basic block b that the
adversary wants to detect initially. The set F of accepting
states is chosen by the adversary to reflect having tracked
the execution of the victim sufficiently far to permit his in-
ference of the targeted information about the victim with
sufficient confidence.

After the attack NFA is constructed, the adversary may
employ it to reconstruct the victim’s execution path by si-
multaneously (i) triggering the victim’s execution by send-
ing a request to victim’s web application interface, and (ii)
inducing its co-located attacker application to start monitor-
ing mon(q0). If the NFA transitions to an accepting state,
the adversary knows the execution path of interest is taken
by the victim. We have found that in practice, a well de-
signed NFA usually leads to successful identification of an
execution path of the victim application.

3.3 Practical Construction of Attack NFAs
In this section we discuss how an adversary can construct

attack NFAs in practice.

3.3.1 Basic Strategy

In PaaS clouds an application usually consists of a set of
scripts written in scripting languages that manage dynamic
web content, a set of shared libraries that implement the
runtime of the programming language or any other support-
ing functionality (e.g., cryptography, database access), and
a web server executable that serves the web requests and
interacts with the scripting language runtime.

It is not necessary to construct the attack NFA from a
full CFG of the victim application. If the source code of the
shared executables of interest is unavailable to the adversary,

993

he can make progress on the attack with the following steps:
(1) disassembling these shared executables and constructing
partial CFGs from the results; (2) manually analyzing these
partial CFGs and selecting blocks along the execution paths
of interest for which chunks should be monitored; and (3)
constructing the attack NFA with the help of online training,
in which the adversary monitors all chunks of interest at
once and triggers the victim’s activity that he would like to
capture by submitting appropriate requests. During phase
(3), the Flush-Reload protocol will report a sequence of
observed events on the monitored chunks. The temporal
order of these events suggests the NFA states and chunks to
monitor in each, and the relative timestamps can help train
the ℓ and u values for each transition. Multiple training
trials will help refine the constructed attack NFA.

However, adversaries usually face a more favorable sce-
nario in practice. Source code of the victim application
is available to the adversary in many cases: Since most
PaaS clouds are built based on Linux distributions, most
web servers, application runtimes and supporting libraries
are open-source. Moreover, about 37% of the top 10 million
websites use a third-party content management system such
as WordPress, Drupal, or Magento [37], the source code of
which is either open or obtainable with a fee.

If the adversary has the source code of the shared executa-
bles as well as the scripts for managing dynamic web content,
the above attack steps can be facilitated with the additional
information. For instance, step (1) can be replaced by per-
forming static control-flow analysis on the source code, and
step (2) and (3) can be assisted by replicating the same
PaaS environment offline and tracking the victim applica-
tion’s control flow dynamically. For example, the adver-
sary may run the entire web application in Valgrind [24]
and trigger various victim activities with manufactured web
requests, recording the control flow that results from each.
However, even so, the training step (3) is still necessary to
determine the ℓ and u values for the transitions.

Although we have developed some software tools to facil-
itate attack NFA construction, constructing an attack NFA
with or without source code is still mostly a manual process
and depends in large part on the attack goals — in particu-
lar, which execution paths in the victim the adversary needs
to detect. In Sec. 5–7, we will give several examples of how
to construct attack NFAs for different types of attacks.

3.3.2 Reducing Side-Channel Noise

One challenge that we have overlooked so far is noise in
the Flush-Reload side channel. Here, “noise”refers to false
positives and false negatives in the Reload phase. Com-
pared with the Prime-Probe attacks used in many previ-
ous works (e.g., [28, 30, 25, 34, 40]), Flush-Reload attacks
involve relatively less noise, since the adversary is able to
tell whether the victim accessed the data in the chunk the
adversary is monitoring, versus simply some data mapped to
the same cache set. Nevertheless, the technique still suffers
from many sources of noise in practice.

Sources of noise. We discuss, in turn, false negative noise
due to race conditions and unobserved duplicate accesses,
and then false positive noise due to false sharing of chunks,
hardware cache prefetching, and background activities from
other processes sharing the same memory pages. These
sources of noise affect the granularity and reliability of the
attacks that we will develop in subsequent sections.

A race condition here refers to the situation where two
memory loads of the same chunk are issued from two CPU
cores roughly at the same time. In such cases, the outcome
of the Reload step can be unpredictable. The access of the
shared chunk by the victim may be missed by the adversary
if it overlaps with the adversary’s memory load. Because the
adversary increases the risk of such an overlap as it shortens
its Flush-Reload interval, the adversary is limited in how
far it can shrink that interval.

Another source of noise is the victim itself—a victim’s first
access of a chunk can be missed by Flush-Reload monitor-
ing if it accesses the chunk a second time before the Reload

of the adversary. We call this an unobserved duplicate access.
This type of noise is particularly significant when applying
the attack framework to count the repeated use of the same
chunk, which will be discussed in our attack scenarios.

False sharing usually refers to a cache usage pattern in
distributed, coherent cache systems that degrades the per-
formance of the cache [7]. Here we refer to false sharing of
a cacheline to refer to cases in which two separate program
components share the same chunk and hence the Flush-

Reload monitoring of one component may be misled by
the execution of another. For example, the memory layout
of a function rarely aligns perfectly within chunks, and the
beginning and the end of a function usually share the same
chunks with other functions.

Depending on the hardware implementation, data cache
prefetching may load more than one consecutive chunk into
the cache upon a cache miss. This behavior can result in
false positives, since observed events may be caused by data
prefetching.

As multiple processes in the operating system may share
the same executables, and so the same memory pages that
contain executable code, activities from processes other than
the victim may trigger false positives in the Reload phase.
Especially in PaaS cloud settings, tens or even hundreds
of applications may share the same set of executables, and
careful use of the Flush-Reload side channel is required to
reduce such background noise.

Overcoming noise. We have found that several design
principles help to overcome the above sources of noise.

• Select an appropriate Flush-Reload interval. A shorter
interval will increase the chance of race conditions, and
longer intervals will incur more unobserved duplicate ac-
cesses. As such, in our case studies (Sec. 5–7) we deter-
mined the length of the interval empirically to minimize
false negatives, which resulted in a Flush-Reload inter-
val of about 1µs in each case.

• Avoid monitoring chunks that correspond to frequently
used basic blocks in the CFG, to reduce false positives
due to background noise. For instance, the wrapper func-
tions of system calls in libc are inevitably shared and
used by multiple processes concurrently, and therefore
will frequently induce noise in the Flush-Reload chan-
nel. It is better to monitor entries in the procedure link-
age tables (PLT) of other libraries that call these func-
tions, instead, as they tend to be less frequently used.

• When the same chunk contains the end of one basic
block and the beginning of another, avoid monitoring this
chunk if possible, due to false positives resulting from the
false sharing.

994

• Use the timing constraints, ℓ and u, of the transitions to
reduce false positives. While false positives may occur
due to false sharing, cache prefetching, and background
noise, the timing constraints of a transition can often
rule out these false observations for not falling into the
specified interval [ℓ, u].

4. CO-LOCATION IN PAAS
To exploit side channels in PaaS environments, an adver-

sary must first somehow achieve co-location of a malicious
instance on the same OS as a target. Ristenpart et al. [32]
explored co-location vulnerabilities in the setting of IaaS
clouds. To the best of our knowledge, no one has inves-
tigated co-location in PaaS settings. We therefore provide
a preliminary empirical study of the ability to co-locate an
attacker instance with a victim instance in modern public
PaaS clouds, leveraging our proposed attack framework to
detect success.

Co-location attacks consist of two steps. First, the adver-
sary employs some strategy for launching (typically a large
number of) instances on the cloud service. Second, each
of these instances attempts to perform co-location detec-
tion. For the first step, we explore only the simplest strat-
egy in which we repeatedly launch instances that check for
co-location until success is achieved.

Co-location detection. For the second step, we use a
Flush-Reload side channel to detect whether any of the
instances co-locates with the victim instance. To detect co-
location, the adversary sends an HTTP query to the victim
instance and instructs each of the attacker instances to si-
multaneously monitor a certain execution path using the
techniques proposed in Sec. 3. If the execution path is de-
tected, the adversary will have some confidence that the
detecting attacker instance is co-located with the victim.
However, this approach may have false positives, in which
not-co-located instances were reported as co-located due to
activities of other tenants sharing the same OS, and false
negatives, in which co-located instances were not reported
so. In order to increase the confidence, two strategies can
be taken: (1) induce and monitor for rare events to reduce
false positives; or (2) use multiple trials to reduce both false
positives and false negatives.

The execution path to be monitored may vary. In our ex-
periments, we considered a victim instance that ran a popu-
lar PHP e-commerce application, Magento. To differentiate
the query sent by the adversary from background noise, we
simply used a relatively unusual query with an associated
uncommon execution path. By inspecting the source code
of the Magento application, facilitated by dynamic analysis
using Valgrind, we found the functions xmlXPathNodeSet-

Sort() in libxml2.so and php_session_start() in either
libphp5.so or php5-fpm (depending on the version of PHP
used by the cloud) are called sequentially during a (failed)
login attempt. We confirmed with dynamic analysis of other
types of queries that the execution paths that traverse both
functions are uncommon. Therefore, we constructed an at-
tack NFA as shown in Fig. 2. In this figure, for example, c2
corresponds to a chunk in php_session_start(), and the
number of Flush-Reload periods allowed to transition out
of the state q in which BBToChunks(q) = {c2} is any in the
range [1, T], where T is the maximum Flush-Reload cy-
cles before the attack NFA stops accepting new inputs. In

Figure 2: The attack NFA used for detection of co-
location with PaaS Magento e-commerce instances.
Initial state q0 indicated by “Start” and accepting
states indicated with double ovals. T is the maxi-
mum Flush-Reload cycles without transitioning be-
fore the NFA stops accepting new inputs.

our experiments, T corresponded to one or two seconds of
wall clock time. One can of course adapt the above strategy
easily to targets beyond Magento.

We observed in earlier experiments that some cloud ser-
vices tend to schedule applications with different runtimes
(e.g., PHP versus Ruby) on different machines. Fortunately
(for an adversary) it is easy to choose the same runtime as
the victim should it be known to the adversary, which we did
in all of our experiments. If it is not known, the adversary
can simply repeat the co-location attack for each runtime as
there are only a handful in any given cloud.

Co-location validation. To obtain ground truth for eval-
uating efficacy, we took advantage of the fact that during
our experiments we controlled both the attacker and victim
instances. In particular, we augmented the above procedure
to also have both attack instances and the target victim es-
tablish a TCP connection with an external server under our
control. (Most clouds have their firewalls configured to allow
outbound traffic.) This revealed the IP addresses associated
with each instance; if two instances shared the same IP ad-
dress they were hosted on the same (virtual) server. It is
worth noting that a Network Address Translation (NAT)
configuration in the cloud provider’s network would hinder
this approach. However, we did not observe this problem in
our experiments. We also note that this co-location check
could potentially be used in cases in which real adversaries
can obtain the IP address of the target, and so this might be
directly useful by real adversaries. However, in many cases
clients do not directly connect to PaaS instances, hitting a
load balancer or HTTPS endpoint first. Thus we only used
the IP comparison approach to validate that the previously
described side-channel based co-location check worked.

Co-location experiments. We provide some initial proof-
of-concept experiments regarding the ability of an adversary
to obtain co-location with a single victim. We do so for two
popular public PaaS services: DotCloud and OpenShift.

The client control interfaces are different in the two ser-
vices. In OpenShift, a target victim instance was launched
and after a certain amount of time (typically on the order of
a few hours, though times varied), the adversary launched
attack instances one-at-a-time (with a 30-second interval to
reduce the stress of the experiments on the cloud fabric)
until one obtained co-location with the victim as indicated
by the attack NFA. In DotCloud, the experiments were con-
ducted similarly, except that the control interface enabled
us to launch attack instances ten-at-a-time via static scaling

995

(vs. dynamic scaling in OpenShift which prevents doing so).
We repeated this process three times for each cloud. We re-
port in Table 2 the number of instances that the adversary
launched before a successful co-location. As can be seen,
every trial succeeded in every cloud, providing strong evi-
dence that an adversary is very likely to be able to obtain
co-location with a target. (Indeed, in the course of writ-
ing this paper, we never were unable to achieve co-residency
with our victim instance in these clouds.) The number of
trials required, however, varied greatly. Even in the worst
observed case, with 120 instances in OpenShift, co-location
was obtained after 3.2 hours and at a total cost of zero US
dollars, as we did not exceed the limits of the free tier.

Trials Miss Detection
1st 2nd 3rd FP FN

DotCloud ≤ 10 ≤ 10 ≤ 10 0.00 0.03
OpenShift 98 120 5 0.00 0.49

Table 2: Number of sequentially launched instances
before co-location.

We used this experimental data to test the accuracy of
our co-location detection attack NFA. Specifically, we ran
for each cloud the co-location detection 100 times using two
instances which were co-located (as per IP address checks)
and 100 times on instances which were not co-located (as
per IP address checks). The detection rates are also shown
in Table 2: FP indicates the rate of false positives, and FN
indicates the rate of false negatives. We believe the high
false negative rate in OpenShift was due to CPU resource
contention, as the applications were run on a two-core VM
sharing CPUs with hundreds of processes. We defer further
discussion on this issue to Sec. 8.3. Nevertheless, the re-
sult indicates the rare execution path represented in Fig. 2
successfully reduced background noise; repeating the co-
location test five times resulted in a false negative rate of
.28 ≈ (.49)5.

5. CASE STUDY 1: INFERRING SENSITIVE

USER DATA
In this section and the two that follow, we present three

examples in the form of case studies that demonstrate how
an adversary can apply our proposed framework to accom-
plish a variety of real-world attacks. Our experimental en-
vironment was common to all three studies.

Experimental environment. Our evaluations were con-
ducted in a public PaaS cloud, DotCloud. We will discuss
the ethical considerations surrounding our experiments in
Sec. 8.1. The software and hardware stack in DotCloud
was out of our control and was not officially reported by
the provider. By observing data extracted from procfs, a
pseudo filesystem presenting system information, and data
available from the PaaS control fabric, however, we believe
the applications in our experiment were run on a VM with
four virtual CPUs operated by Amazon EC2 in us-east-1a

datacenter. The physical CPU was a 2.4GHz Intel Xeon pro-
cessor E5-2665, which has 8 cores sharing a 20MB last-level
cache. Moreover, we believe the operating systems that sup-
ported the applications were Ubuntu 10.04.4 LTS on Linux
kernels version 2.6.38. The tenants were isolated with Linux
containers.

In all three case studies, we created two accounts us-
ing different email addresses and user information in Dot-
Cloud, designating one of them as the victim account and
the other as the attacker account. We believe the victim and
attacker accounts were treated as two separate, mutually-
distrusting accounts by the cloud provider. Since the vic-
tims were PHP applications in our case studies, all attacker
applications were designed to operate on the same runtimes
to facilitate their co-location with the victim, which was
achieved as described in Sec. 4. DotCloud used php-fpm

(version 5.4.6), which interacted with the Nginx web server
(http://nginx.org) and processed PHP requests. In all ex-
periments, the Flush-Reload cycle was set to be 2400 clock
cycles, corresponding to about one microsecond in real time.

5.1 Attack Background
Our first case study explores a relatively simple attack, a

good starting point for end-to-end illustration of our tech-
niques. We show how our proposed attack framework per-
mits inference of the responses of a victim web application
to client requests. Specifically, an adversary may combine
what is known as a cross-site request (CSR) with the Flush-
Reload side channel to infer the number of distinct items
in a user’s shopping cart on an e-commerce server.

There have been various related timing attacks demon-
strated on web privacy, e.g., [13, 22]. Particularly similar
to our case study here is a CSR-based attack described by
Bortz et al. [8] that likewise infers the number of distinct
items in a user’s shopping cart. As their attack relies on the
timing of request fulfillment, they propose and implement a
countermeasure that enforces uniform server response tim-
ing. The attack we present here depends instead on execu-
tion tracking via an attack NFA, and thus defeats timing-
side-channel countermeasures of this kind.

Cross-site requests. The target of the adversary in this
case study is, specifically, a user that is authenticated to
a victim e-commerce site. We presume, however, that the
adversary cannot compromise the credentials of the user for
the victim site, and only makes use of the side channel to ob-
serve data retrieved by the user. A passive adversary might
be unable to determine the identities of users accessing the
victim site. We consider an alternative strategy in which
the adversary prompts user retrieval of the target data by
means of a cross-site request.

CSRs are HTML requests made to a third-party resource,
that is, one hosted by a domain other than that serving
the HTML. While there are legitimate uses for such indi-
rection, it can also serve as a basis for requests that make
improper use of a user’s credentials, as in our attack here. A
CSR requires that the adversary lure the user to a site that
serves HTML crafted by the adversary to redirect the user’s
browser to the victim’s e-commerce site, e.g., <img src =

"http://victim-site.com/index.php/checkout/cart/">.
If a user Alice has been previously authenticated to the

domain www.victim-site.com, then her browser will often
obtain and cache credentials for the domain, such as cook-
ies, and automatically re-authenticate on subsequent vis-
its. Thus, in our attack, www.victim-site.com will see an
authenticated request originating from Alice’s browser, un-
aware that the request was triggered by an adversary.

Web applications may include protections against mali-
cious CSRs, such as requiring explicit user authorization of
resource requests or inserting session-specific random syn-

996

Figure 3: Attack NFA for case study in Sec. 5. Ini-
tial state q0 indicated by“Start” and accepting states
indicated with double ovals. T is the maximum
Flush-Reload cycles without transitioning before the
NFA stops accepting new inputs.

chronizer tokens in HTML forms and links. Often these pro-
tections are confined, however, to what are called cross-site
request forgery (CSRF) attacks, which cause state changes
(known as “side-effects”) in the server. The CSR we exploit
for our attack here has no side effects, and will thus be al-
lowed by most victim servers.

5.2 Evaluation in Public PaaS
We empirically evaluated our proposed attack in Dot-

Cloud against the Magento e-commerce application (version
1.8, the latest version as of this writing). This is a popular
open source e-commerce application, used by roughly 1% or
about 200,000 of the top 10 million websites ranked by Alexa
(http://www.alexa.com) [37]. We reiterate that our goal is
for an attacker instance to reliably determine the number
of distinct items in an authenticated user’s shopping cart
on the e-commerce site of the victim. Our attack cannot
determine the quantity count for a given item.

We assume, as noted above, that the adversary can lure
an authenticated user of the victim Magento website to an
HTML page hosted in its own webserver, thereby triggering
a CSR in which the user requests her shopping cart on the
victim site. We simulated the user on Google Chrome (v34).
We expect the attack to work on other browsers that support
a similar range of cross-origin requests.

Attack details and results: The attack NFA we con-
structed in this example is highly dependent on the specifics
of the Magento web application. We analyzed the applica-
tion with Valgrind. We observed that a Zend opcode handler
(which we call handler() for convenience5), which is imple-
mented in the executable php5-fpm, is invoked every time
an item in the shopping cart is displayed.

To count the number of items in a shopping cart, there-
fore, it suffices for the adversary to count the number of invo-
cations of the handler() function using the Flush-Reload

side channel. In our experiments, an interval of at least 20
Flush-Reload cycles elapsed between the display of two
distinct items. We took this interval length to be a lower
bound on the time between calls to handler() within the
NFA we constructed for the attack, depicted in Fig. 3.

The evaluation was performed on DotCloud as follows.
The victim user placed m distinct items in her shopping
cart, for m ∈ {0, 1, 2, 3, 4, 5, 6}. We repeated our experiment
10 times for each value of m. The number of successes for

5As only the virtual address of the handler was required
to construct the attack NFA, we were able to perform the
attack without studying the Zend source code. Therefore,
the name of the function, which is hidden in the result of an
objdump, remains unknown to us.

each number m of distinct items, that is, the frequency with
which the adversary correctly determined m from a single
trial, is shown in Table 3. Also shown is that when the ad-
versary inferred m incorrectly, its inference was nevertheless
very close to correct.

Items detected in cart
0 1 2 3 4 5 6 7

It
em

s
in

ca
rt

(m
) 0 10

1 10
2 9 1
3 10
4 1 9
5 1 9
6 1 8 1

Table 3: Item count inferences by the adversary.
Each table entry indicates the number of experi-
ments yielding a given (true count, inferred count)
pair over 10 trials per row. Entries on the diagonal,
which predominate, correspond to correct inference.

6. CASE STUDY 2: PASSWORD-RESET AT-

TACKS
In this second case study, we show how to employ our

attack framework to compromise the pseudorandom num-
ber generators (PRNGs) used by many web applications in
authenticating password reset requests. An adversary can
exploit this ability to reset the passwords for and thus ob-
tain control of the accounts of arbitrarily selected users.

Our attack targets the PRNG present in certain program-
ming language runtimes (e.g., PHP), which relies upon sys-
tem time (e.g., gettimeofday()) as a source of seed entropy.
With a malicious application that is co-located with the vic-
tim application, the adversary is able to detect system calls
such as gettimeofday(), reconstruct the internal state of
the PRNG, and thereby reproduce its entire output.

The ability to mount password-reset attacks is one con-
sequence of this PRNG vulnerability. Such attacks are of
particular concern because an adversary can trigger a pass-
word reset on a web application for a user with knowledge
of the user’s account name or email address alone. To au-
thenticate the user, a web application will typically use a
PRNG to generate a random string R, and then embed this
string in the URL of a password reset link sent to the user’s
registered email address. By learning the state of the web
application’s PRNG, a co-located attacker instance can re-
produce the password reset token R, reset the password be-
fore the user does, and hijack the user’s account. We stress
that the adversary does not need access to the user’s email
to accomplish this attack. In this section, we demonstrate
such a password-reset attack against PHP-based web appli-
cations in public clouds.

Weaknesses in PHP PRNGs have been previously reported
(e.g., [12, 17]). A recent study by Argyros and Kiayias [3]
gave several attacks, one of which involves recovery of the
seed values of the PHP system’s PRNGs for password reset
and so has the same goal as the attack in our own case study.
Their attacks (which are against victims presenting a much
smaller search space than ours, see [3, Sec. 6.2]), however,
require sending repeated requests to the victim server, which

997

Figure 4: The call graph of password reset token
generation in PHP applications.

may take several minutes and may result in attack detection.
In comparison, after a setup phase requiring a small brute-
force attack (220 offline trials), our attack requires at most
four online queries to compromise a user account. It is thus
almost instantaneous and scales easily to a large number of
accounts.

6.1 Background on PRNG in PHP
The PHP runtime provides several functions by which

applications can obtain or generate (pseudo)random num-
bers. For instance, during the process of password reset
token generation, most PHP applications call APIs such
as microtime(), mt_rand(), and uniqid(). Internally, the
microtime() function calls gettimeofday() to obtain the
current system time in the form of the number of seconds
and microseconds since the Unix epoch (0:00:00 1 January
1970 UTC). The mt_rand() function, which is the interface
to the PHP internal Mersenne Twister generator, automat-
ically initializes its own internal state, if mt_srand() has
not yet been invoked, with a random seed generated using
functions time(), php_combined_lcg(), and getpid(). The
time() function merely returns the number of seconds since
the Unix epoch, and therefore has low entropy. The func-
tion php_combined_lcg() combines two linear congruential
generators (with prime periods 231−85 and 231−249) to gen-
erate a long-period pseudorandom sequence (the product of
the primes). The initialization of php_combined_lcg() de-
pends on the lcg_seed() function, which generates random
seeds by calling getpid() once and gettimeofday() twice.
These function calls and dependencies are shown in Fig. 4.

While the range of options for seeding the PRNG in PHP
systems may seem convoluted, as Fig. 4 shows, the only
sources of entropy for the PRNG seed are gettimeofday(),
time(), and getpid(). By monitoring invocations of the
gettimeofday() function, the adversary can immediately
issue another call to gettimeofday() once it is called by the
victim. As the adversary shares the OS with the victim web
application, the result of the adversary’s invocation of get-
timeofday() will be very close to, if not exactly the same as,
that returned to the victim application. The same is (even
more) true of time(). As such, the only input to the victim
PRNG that may be unknown to the adversary is the result
of getpid(), which may assume any of 216 values.

An adversary can initiate a password reset for its own ac-
count with the victim web application. As the adversary re-
ceives the corresponding secret string R, it can guess the pid

and verify its correctness against R. Subsequent password
reset attacks issued from the same connection will be served
by the same process. The adversary therefore resolves vir-
tually all entropy in the initial state of the PHP application.
By continuously monitoring the invocations of mt_rand()

and php_combined_lcg(), the adversary can keep track of
the evolution of the PRNG and guess all the random num-
bers generated.

As described above, it is critical that the adversary mon-
itors the initialization process of the PRNG, which takes
place only once in the lifetime of a server process. A very
common configuration (see www.apache.org and www.php.

net for more information about PHP web server configura-
tions) is to have one process, either an Apache process or
a standalone PHP process, to serve each new request. As
such, it is possible for an adversary to mount an active at-
tack in which it triggers the PRNG initialization process for
observation. To do so, the adversary can saturate existing
server processes and force the victim application to instan-
tiate new processes to serve subsequent requests.

6.2 Evaluation in Public PaaS
As in our previous attack, we experimented in DotCloud

with the Magento eCommerce application (version 1.8). Not
only are e-commerce applications very popular, and Ma-
gento especially so as mentioned above, but they are likely
targets because of the severity of the password resetting at-
tacks against them. Our investigation of the source code
of other web applications reveals that a few more widely
used PHP applications are susceptible to such attacks as
well, such as the latest version of WordPress (http://www.
wordpress.com) that is reportedly used by 21.9% of the top
10 million websites.

By default, a Magento application launches two instances,
a www instance and a db instance, running on separate ma-
chines. In this experiment, the parameters in php-fpm.conf

were set so that the FastCGI processes were created and ter-
minated dynamically and only a small number of processes
were kept when idle, which are typical settings in many web
hosting configurations. The proposed attack is simple in this
case, as the requests are likely to be served by newly cre-
ated php-fpm processes. However, if the PHP is configured
to maintain a static set of FastCGI processes, the adversary
needs to crash the php-fpm process to create a fresh one,
which could be achieved by various means [2].

Attack details and results: The strategy we employ is
for the adversary to create enough HTTP “keep-alive” con-
nections to force the creation of a new php-fpm process;
then within the same connection, the adversary sends two
password-reset requests—one request for an account under
the adversary’s control, another for the victim’s account. As
the first request results in email being sent to the account un-
der the adversary’s control, the adversary can use the URL
(and embedded secret R), together with the timing informa-
tion collected from the side channel, to recover the pid of the
new php-fpm process. Then the password reset token gen-
erated by the second request becomes entirely predictable.
The adversary maintains a local copy of the PRNG modified
to inject results collected from the side channel instead of
those from real system calls.

As shown in Fig. 5, five code chunks were monitored: one
chunk from each of the three functions php_gettimeofday(),
lcg_seed(), and uniqid(), which calls the entry point of

998

Figure 5: Attack NFA for case study in Sec. 6. Ini-
tial state q0 indicated by“Start” and accepting states
indicated with double ovals. T is the maximum
Flush-Reload cycles without transitioning before the
NFA stops accepting new inputs.

gettimeofday() in the procedure linkage table (PLT); the
first chunk of the function php_combined_lcg(); and the
chunks that contain the entry point of gettimeofday() in
the PLT. A complete execution path of the password reset
action that initializes the PRNG in the PHP application is
c2 → c1 → c2 → c1 → c3→ c1→ c4 → c1 → c5 (indices as
shown in Fig. 5). The second password reset action follows
the path c3 → c1 → c4 → c1. The attack NFA is shown in
Fig. 5.

In our experiments, the adversary and victim measure-
ments of gettimeofday() sometimes differed by one bit; the
response time (about 0.3µs) of the system call may at most
cause a single microsecond discrepancy. Thus, to recover the
pid upon initialization of the PRNG the adversary needed
to perform a (trivial) offline brute-force guessing attack in
a search space of size 220 = 216 × 24 (space 216 for the pid

and 24 for four invocations of gettimeofday()).
Once the adversary recovers the pid, a password-reset at-

tack against a victim requires only two invocations of get-
timeofday(), and thus, in our experiments, an online attack
against a (tiny) space of size 4 = 22. We emphasize that
because the adversary is performing password reset and not
password guessing, there is no account lockdown in response
to an incorrect guess. So the adversary in our experiments
could quickly guess the correct embedded secret R in the
URL of the password link sent to the victim and then reset
the victim’s password.

7. CASE STUDY 3: SAML-BASED SINGLE

SIGN-ON ATTACKS
In this final case study, we use our side-channel attack

framework to instantiate a padding error oracle sufficient for
mounting a Bleichenbacher attack [6] against PKCS#1 v1.5
RSA encryption as used in XML. Bleichenbacher attacks al-
low the decryption of a target RSA ciphertext (although not
key recovery). While this class of attacks has been known
since 1998 and the insecurity of XML encryption in the face
of a kind of Bleichenbacher attack was shown by Jager et

al. in 2012 [16], implementations of PKCS#1 v1.5 persist in
deployments and, instead of moving on to inherently more
secure encryption, practitioners have deployed a sequence of
countermeasures that prevent each attack. Current imple-
mentations are not exploitable by prior attacks, but our new
attack circumvents all the existing countermeasures to (yet
again) break XML encryption. We emphasize that the main
takeaway is not that PKCS#1 v1.5 is inherently broken (as
already known), but rather that our new side-channel attack
framework and PaaS environments provide new opportuni-
ties for adversaries.

7.1 Bleichenbacher Attacks
PKCS#1 specifies an algorithm for encryption using RSA.

Recall that with RSA, one generates a key pair by choosing
a modulus N = pq for primes p, q and exponents e, d for
which ed ≡ 1 mod φ(N); the public key is then (N, e) and
secret key is (N, d). Let n be the length of N in bytes. With
the PKCS#1 v1.5 padding scheme, one encrypts a message
M of size m bytes with m < n − 11. Letting r = n − m −
3, a byte string P of length r is generated in which each
byte is randomly selected from {0, 1}8 \ {0}. Letting X =
00 ‖ 02 ‖P ‖ 00 ‖M , the ciphertext is then C = Xe mod N .

To decrypt, one computesX = Cd mod N and then checks
the padding. A padding error occurs if the first two bytes of
X are not 00 ‖ 02, there exists a 00 byte among the first 11
bytes, or there does not exist a 00 byte at all after the first
two bytes. Decryption fails in such a case.

Bleichenbacher [6] showed how to exploit decryption im-
plementations that notify the sender of a ciphertext when
a padding error occurs. Given a challenge ciphertext C∗

encrypting some unknown message M , the adversary sends
a sequence of adaptively chosen ciphertexts to the oracle,
using the response to learn whether the padding is correct
or not. Bleichenbacher attacks were first used against XML
encryption by Jager et al. [16], with improvements shortly
after by Bardou et al. [5]. Below we use the latter’s experi-
mental results to estimate timings of the full attack.

Modern implementations attempt to defend against Ble-
ichenbacher attacks by uniform error reporting, in which
padding errors are not reported differently from other er-
rors, and by ensuring that decryption runs in essentially the
same time when padding errors occur as when not. We will
show, however, that our side-channel attack framework can
be used in PaaS type settings to re-enable Bleichenbacher
attacks despite such countermeasures.

7.2 Evaluation in a Public PaaS
We demonstrate this attack in DotCloud. The target of

the attack is an active open source project, SimpleSAMLphp
(version 1.12, http://simplesamlphp.org/), which imple-
ments a SAML-based authentication application in PHP
that can be used as either a service provider or an identity
provider. It is worth noting that recent SimpleSAMLphp
implementations (>v1.9.1) have provided defenses against
the traditional Bleichenbacher attack (see changelog v1.9.1)
by generating uniform error messages and eliminating timing
differences due to invalid padding in session-key decryption.
As we show in this section, however, these defenses do not
prevent our attack. As we also explain, a recent change in
v1.10 of SimpleSAMLphp to a better padding scheme (RSA-
OAEP) does not prevent our attack either, as it is possible

999

Service Provider
(SP)

User Agent
Identity Provider

(IdP)

1. Request target resource

(Discover IdP)

2. HTTP Redirect Binding

3. HTTP Redirect Binding

(User Login)

4. HTTP POST Binding
5. HTTP POST Binding

6. Redirect to target resource

(SAML response returned in XHTML
form targeted at SP)(Submits form in HTTP POST to SP)

(SAML request encoded into

Location header)

(SAML request redirected to Idp)

Figure 6: The targeted SAML 2.0 protocol.

to force SimpleSAMLphp to roll back to use PKCS#1 v1.5
instead as long as it is not explicitly disallowed.

A set of protocol bindings [26] and profiles [27] are defined
in the SAML 2.0 specification. We investigated the default
protocol bindings implemented in SimpleSAMLphp for the
web browser SSO profile. As shown in Fig. 6, a web browser
acting as a user agent interacts with the service provider
(SP) to access resources with the identify provider (IdP) for
authentication. Upon receiving a resource access request,
the SP issues an <AuthnRequest> message via HTTP redi-
rect binding. The message in XML format is uncompressed
and then base64-encoded in the redirect URL query string.
After authenticating the user’s identity, the IdP will return a
SAML response message via HTTP POST binding, in which
a signed and encrypted XML file is base64-encoded as a
POST parameter which is then sent by the user agent to
the service provider using the HTTP POST method.

The padding oracle. In the SAML 2.0 core specification,
XML encryption and signing work as follows. The message
is first signed, and then encrypted under a symmetric ses-
sion key. The session key is in turn encrypted. This means
that the XML signature is only validated after performing
the RSA decryption. While the default padding for encryp-
tion is RSA-OEAP, because the padding type is specified
in the assertion itself, it is possible to modify the assertion
and force the service provider to roll back to PKCS#1 v1.5
padding. The server generates an error whether or not the
PKCS padding is correct, to eliminate timing channels. But
we will now show how to use the side-channel attack to dif-
ferentiate between code paths associated with padding errors
and non-errors, enabling a Bleichenbacher-style attack.

Attack details and results. The victim account operated
a PHP application integrated with the latest stable version
of SimpleSAMLphp. The PaaS environment ran OpenSSL
version 0.9.8k (which we could not change) and was invoked
by the victim application. As such, the adversary monitored
the shared library libcrypto.so, a component of OpenSSL,
and specifically the chunks associated with the basic blocks
of function RSA_padding_check_PKCS1_type_2() that inter-
nally reports a padding error by calling ERR_put_error().
As the padding check procedure is only used during the RSA
decryption, other operations do not invoke these functions
and it is thus sufficient to monitor only the first chunk of
each of the two functions. In practice, though, we found it
helped to monitor the first two chunks of the function to

Figure 7: Attack NFA for case study in Sec. 7. Ini-
tial state q0 indicated by“Start” and accepting states
indicated with double ovals. T is the maximum
Flush-Reload cycles without transitioning before the
NFA stops accepting new inputs.

increase the chance of capturing the events. The adversary
repeated step 5 in Fig. 6 with manipulated ciphertexts and
while applying the side-channel attack framework to detect
the occurrence of padding errors.

The attack NFA is shown in Fig. 7. We continuously
sent 10,000 requests with conformant padding and 10,000
requests with non-conformant padding, and report the rate
of acceptance by the NFA. The results are shown in Table 4.
The average time for making one request and padding error
detection in this experiment was 0.544 seconds. Optimized
attack software could achieve a much higher request rate.

The results indicate that we only had one-sided errors: an
execution path accepted by the attack NFA correlated with
a non-conformant padding with 100% accuracy. Therefore,
the best strategy for the adversary is to send k requests
to the padding oracle for each padding, and stop once an
execution is accepted by the attack NFA and consider it to
be non-conformant padding. If none of the k requests are
accepted by the NFA, then no padding error occurred.

This approach will yield no false positives (i.e., false ap-
pearances of non-conformant padding). Given the error rate
of 12% and assuming errors are independent of ciphertext
values, the probability of a false negative (i.e., failure to ob-
serve non-conformant padding) in this procedure is (.12)k.

Bardou et al. [5] estimated that their modified Bleichen-
bacher attack against 2048-bit RSA keys could require about
335,065 queries. We take (.12)k to be an upper bound on the
probability of a false negative for non-conformant padding
across k queries. Thus for all queries, an error bound is
335, 065(.12)k ; a choice of k = 7 yields an error probability
of less than 1% for 335, 065 × 7 = 2, 345, 455 total queries.
This is about the same number of queries as the original
Bleichenbacher attack, and significantly better than, for ex-
ample, the same estimate of Jager et al. [16] that would
require about 85 million queries and only works against old
versions of SimpleSAMLphp.

Attack NFA
Accepted Rejected

P
a
d
d
in
g Non-conformant

8800 1200
(88%) (12%)

Conformant
0 10000

(0%) (100%)

Table 4: Confusion matrix for padding error detec-
tion. The adversary has only one-sided errors, 12%
of the time failing to observe a padding error.

1000

8. DISCUSSION

8.1 Ethical Considerations
The experiments discussed in Sec. 4–7 were run on pro-

duction PaaS platforms. As such, our experiments were de-
signed to conform with PaaS provider acceptable use, the
law, and proper ethics.

Our attacks only targeted tenants running accounts that
we setup and controlled, and no information about other
customers was ever collected in our experiments. Our at-
tacker instances did not conduct Flush-Reload attacks in-
discriminately, but rather these were carefully timed to coin-
cide with requests that we initiated to our victim instances.
In this way, we limited the risk of our attacker instances
observing activities of tenants other than our own.

It is possible that another tenant’s programs made use of
the same shared executable as our attacker and victim, in
which case there is a concern that other tenants might expe-
rience degraded memory hierarchy performance as compared
to running while co-located with different tenants. More-
over, the acceptable use policies of the clouds on which we
demonstrated our attacks include general requirements that
we not interfere with other users’ enjoyment of their services,
which could be interpreted to preclude our demonstrations
if they slowed down other tenants substantially as a side ef-
fect. We therefore designed our experiments so that they
do not cause undue harm and, specifically, do not degrade
performance of such bystanders significantly more than their
performance could be degraded by other workloads.

To ensure no undue harm, we ran local micro benchmarks
to evaluate the possible overhead observed by a bystander
due to our attacks. For example, to gain confidence that the
attack of Sec. 6 would introduce minimal overhead on a by-
stander, in one container we constructed an attacker appli-
cation that, in each Flush-Reload cycle, monitored every
chunk monitored in any state of the attack NFA of Fig. 5.
The “bystander” in another container ran a web server host-
ing a dynamic web page that was artificially constructed to
touch (i.e., execute some instruction in) every chunk moni-
tored by the adversary before returning. We forced the at-
tacker application and the bystander to share the last level
cache in all experiments.

We configured a separate machine in the same LAN to rep-
resent a client that repeatedly issued HTTP requests (in the
same HTTP session) to the dynamic web page served by the
bystander. To measure the bystander’s performance degra-
dation resulting from the attacker application’s activity, we
instrumented the client with httperf and apachebench. In
the absence of the attacker application, the client received
responses with an average latency of .306ms, and the through-
put of the bystander was 461 requests per second. With the
attacker application active, the results were nearly identical:
an average latency of .307ms and, again, 461 requests per
second. Given the conservative nature of these experiments
(with the attacker application monitoring more chunks than
in the actual attack, and the bystander touching all of them
per request), we concluded that our attack demonstrations
posed negligible risk to bystanders.

Finally, we attempted to inform affected parties well in ad-
vance of publicly disclosing the vulnerabilities documented
here. Specifically, we disclosed our findings to selected cloud
operators and software vendors directly, and to the CERT
(http://cert.org) for dissemination more broadly, starting

roughly six months prior to publication. Some vendors have
made changes to address these issues; e.g., SimpleSAMLphp
will blacklist PKCS#1 v1.5 by default in version 1.13.0 [10].

8.2 Extending the Attacks

Attacks in IaaS clouds. We believe our NFA-based at-
tack framework can work in IaaS clouds as well, as long as
memory de-duplication is enabled and memory pages that
contain executables are shared between tenants. For in-
stance, Irazoqui et al. [15] utilized a similar Flush-Reload

side channel (a special case of our NFA-based framework)
in a cross-VM context to break AES keys. However, to the
best of our knowledge, memory deduplication across VMs is
not commonly used in many IaaS clouds (e.g., EC2), which
limits the applicability of the Flush-Reload side-channel
attack in those settings.

Multiple victim copies. Multiple copies of the same vic-
tim application may co-exist behind a load balancer to in-
crease the throughput and reliability of the services. In such
cases, beyond the steps described in this paper, the adver-
sary needs to further determine whether the requests sent to
the web server are served by the instance that is co-located
with his attacker instance. Such hurdles can be overcome by
issuing multiple requests concurrently or co-locating multi-
ple attacker applications with the victim replicas.

Other attack targets. The NFA-based attack framework
proposed in this paper provides a general control-flow anal-
ysis approach to side-channel observations. We stress its
application extends beyond the three examples discussed in
the paper. For instance, we believe the latest version (v3.2.8
as of this writing) of the GnuTLS libraries are subject to
plaintext-recovery attacks as the co-located adversary can
employ the attack framework to construct a padding ora-
cle which reveals the correctness of the CBC mode padding
during symmetric key decryption processes. We also believe
that an adversary may Flush-Reload a shared MySQL
client library to monitor the victim’s SQL query execution
(e.g., invocation of mysql_error() and a few other func-
tions), thus facilitating blind SQL injection attacks.

8.3 Countermeasures
A key question for future research is how to design ef-

fective defenses against the attacks enabled within our pro-
posed framework. Various countermeasures to cache-based
side channels (not necessarily Flush-Reload channels) have
been proposed in IaaS cloud contexts [31, 4, 36, 18, 41, 19,
35]. However, none of these is applicable to our attacks. We
briefly discuss some other possible defenses for our setting.

Mitigating side channels through program analysis.
A general countermeasure to control-flow side channels, pro-
posed by Molnar et al. [21] and further explored by Coppens
et al. [9], involves the automatic detection of such side chan-
nels in source code and their remediation by means of generic
source-to-source translation. This approach would thwart
the attacks we describe here but does incur significant over-
head. A complementary approach involves static analysis of
binaries to measure their vulnerability to cache-based side
channels [11]; this approach yields only an approximation of
the degree of vulnerability of an application, and no coun-
termeasure.

1001

Disabling the clflush instruction. It is tempting to dis-
able clflush instructions altogether in PaaS applications to
prevent side-channel attacks. However, as clflush is a non-
privileged instruction, trapping its execution to mitigate its
effect in the privileged software layer, i.e., operating sys-
tem, is difficult without hardware modification. An alterna-
tive solution is to sandbox PaaS applications and specifically
disallow the use of clflush in the application code. Still,
the adversary might be able to accomplish the effects of a
clflush by other means akin to a Prime-Probe protocol.

Increasing background noise with more applications.
Increasing the number of applications sharing the last-level
caches increases background noise in two ways. First, if
more processes share the monitored executables, false posi-
tive noise increases. Second, as more processes are queued
by the CPU scheduler, the last-level caches are less likely to
be shared by the attacker and the victim at the same time.
However, the security provided by this approach is weak
in practice, unless the number of applications is artificially
sustained even when there is less real demand.

Disallowing resource sharing. The most general coun-
termeasure for any side-channel attack is to prevent sharing
of the exploited resource. In our setting, this would mean
disallowing sharing of memory pages that serve as Flush-

Reload attack vectors. An extreme realization would be
a prohibition on sharing any memory pages among different
users, for instance by duplicating binary files for each user in
the OS. Such a defense, however, would increase the memory
footprint of each tenant, decreasing the number of tenants
that a PaaS provider could provision on a (virtual) machine
and reducing machine utilization and service-provider profit.
Selective memory sharing promises a more cost-effective ap-
proach; sharing of memory pages specifically carrying vul-
nerable code might then be disallowed. We leave the chal-
lenges of identifying, annotating, and protecting such code,
as well as the development of alternative defenses, as inter-
esting lines of future research.

Detecting Flush-Reload attacks. An interesting side
observation from the experiments conducted in Sec. 8.1 is
that the minimal performance degradation induced by the
attacks in this paper offers little hope for detecting these at-
tacks. That is, prior studies suggest that cross-tenant side-
channel attacks in cloud settings can induce significant per-
formance degradation in victim workloads, as was the case
in, e.g., the attacks demonstrated by Zhang et al. [40]. It
is possible, therefore, that the attacks of Zhang et al. might
be detected by monitoring the performance of the victim
application. While our results here do not conclusively rule
out the use of victim application performance monitoring to
detect the attacks in this paper, they also do not offer much
promise for doing so.

However, it might be possible to employ the same type of
side-channel analysis to detect Flush-Reload attacks, sim-
ilar to the ideas of HomeAlone [39]. That is, a victim might
be able to infer the presence of an adversary by means of
performing Flush-Reload monitoring of the cache to de-
tect the Flush-Reload pattern induced by an adversary’s
likely choice of NFA. We leave the implementation of this
defense as future work.

9. CONCLUSION
We have proposed a general automaton-driven framework

to mount cache-based side-channel attacks and demonstrated
its potency specifically in PaaS environments. Our three
case studies demonstrate that an attacker co-located with a
victim can learn sensitive user data, such as the number of
distinct items in a shopping cart; perform password-reset at-
tacks against arbitrary users; and break XML encryption in
a SAML-based authentication application. The attacks we
illustrate are especially significant in some cases in that they
bypass existing or proposed side-channel countermeasures.
Our shopping-cart attack is immune to defenses proposed
for analogous, timing-based side-channel attacks. Our study
of RSA private-key decryption re-enables the classic Ble-
ichenbacher padding-oracle attack despite widely deployed
countermeasures against remote adversaries.

In sum, we believe our work presents: (1) the first ex-
ploration of cache-based side-channel attacks specifically in
PaaS environments, and (2) the first report of granular,
cross-tenant, side-channel attacks successfully mounted in
any existing commercial cloud, PaaS or otherwise, against
state-of-the-art applications.

Acknowledgments

This work was supported in part by NSF grants 1065134,
1253870, 1330308, and 1330599, as well as a Google Ph.D.
Fellowship for Yinqian Zhang.

10. REFERENCES

[1] F. E. Allen. Control flow analysis. SIGPLAN Not.,
5(7):1–19, July 1970.

[2] I. Alshanetsky. Top 10 ways to crash PHP.
http://ilia.ws/archives/5_Top_10_ways_to_

crash_PHP.html. Accessed: 2014-08-17.

[3] B. Argyros and A. Kiayias. I forgot your password:
Randomness attacks against PHP applications. In 21st
USENIX Security Symposium, 2012.

[4] A. Aviram, S. Hu, B. Ford, and R. Gummadi.
Determinating timing channels in compute clouds. In
2010 ACM workshop on Cloud computing security
workshop, pages 103–108, 2010.

[5] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato,
G. Steel, and J.-K. Tsay. Efficient padding oracle
attacks on cryptographic hardware. In Advances in
Cryptology — CRYPTO 2012, pages 608–625. 2012.

[6] D. Bleichenbacher. Chosen ciphertext attacks against
protocols based on the RSA encryption standard
PKCS#1. In Advances in Cryptology — CRYPTO
’98, pages 1–12, 1998.

[7] W. J. Bolosky and M. L. Scott. False sharing and its
effect on shared memory performance. In 4th USENIX
Symposium on Experiences with Distributed and
Multiprocessor Systems, 1993.

[8] A. Bortz and D. Boneh. Exposing private information
by timing web applications. In 16th International
Conference on World Wide Web, pages 621–628, 2007.

[9] B. Coppens, I. Verbauwhede, K. De Bosschere, and
B. De Sutter. Practical mitigations for timing-based
side-channel attacks on modern x86 processors. In
IEEE Symposium on Security and Privacy, pages
45–60, 2009.

1002

[10] J. P. Crespo. Personal communication, June 2014.

[11] G. Doychev, D. Feld, B. Köpf, and L. Mauborgne.
CacheAudit: A tool for the static analysis of cache
side channels. In USENIX Security Symposium, 2013.

[12] S. Esser. Lesser known security problems in PHP
applications. In Zend Conference, 2008.

[13] E. W. Felten and M. A. Schneider. Timing attacks on
web privacy. In 7th ACM Conference on Computer
and Communications Security, pages 25–32, 2000.

[14] D. Gullasch, E. Bangerter, and S. Krenn. Cache games
– bringing access-based cache attacks on AES to
practice. In 2011 IEEE Symposium on Security &
Privacy, pages 490–505, 2011.

[15] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar.
Wait a minute! A fast, cross-VM attack on AES.
Cryptology ePrint Archive, 2014.

[16] T. Jager, S. Schinzel, and J. Somorovsky.
Bleichenbacher’s attack strikes again: breaking
PKCS#1 v1.5 in XML encryption. In Computer
Security — ESORICS 2012, pages 752–769. 2012.

[17] S. Kamkar. phpwn: Attacking sessions and
pseudo-random numbers in PHP. In Blackhat USA,
2010.

[18] T. Kim, M. Peinado, and G. Mainar-Ruiz.
STEALTHMEM: system-level protection against
cache-based side channel attacks in the cloud. In 21st
USENIX Security Symposium, 2012.

[19] P. Li, D. Gao, and M. K. Reiter. Mitigating
access-driven timing channels in clouds using
StopWatch. In 43rd IEEE/IFIP International
Conference on Dependable Systems and Networks,
pages 1–12, June 2013.

[20] R. P. Mahowald, C. W. Olofson, M.-C. Ballou,
M. Fleming, and A. Hilwa. Worldwide competitive
public Platform as a Service 2013-2017 forecast (Doc
243315). IDC Inc., November 2013.

[21] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner.
The program counter security model: Automatic
detection and removal of control-flow side channel
attacks. In Information Security and Cryptology, pages
156–168, 2005.

[22] Y. Nagami, D. Miyamoto, H. Hazeyama, and
Y. Kadobayashi. An independent evaluation of web
timing attack and its countermeasure. In 3rd
International Conference on Availability, Reliability
and Security, pages 1319–1324, 2008.

[23] Y. V. Natis. Gartner research highlights Platform as a
Service (ID: G00259659). Gartner Inc., 3 February
2014.

[24] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation.
SIGPLAN Not., 42(6):89–100, June 2007.

[25] M. Neve and J.-P. Seifert. Advances on access-driven
cache attacks on AES. In Selected Areas in
Cryptography, 13th International Workshop, SAC
2006, pages 147–162, August 2006.

[26] OASIS. Bindings for the OASIS Security Assertion
Markup Language (SAML) V2.0.
http://docs.oasis-open.org/security/saml/v2.0/

saml-bindings-2.0-os.pdf.

[27] OASIS. Profiles for the OASIS Security Assertion
Markup Language (SAML) V2.0.
http://docs.oasis-open.org/security/saml/v2.0/

saml-profiles-2.0-os.pdf.

[28] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of AES. In Topics in
Cryptology – CT-RSA 2006, pages 1–20.
Springer-Verlag, 2005.

[29] R. Owens and W. Wang. Non-interactive OS
fingerprinting through memory de-duplication
technique in virtual machines. In 30th IEEE
International Conference on Performance, Computing
and Communications, pages 1–8, November 2011.

[30] C. Percival. Cache missing for fun and profit. In
BSDCon 2005, 2005.

[31] H. Raj, R. Nathuji, A. Singh, and P. England.
Resource management for isolation enhanced cloud
services. In 2009 ACM workshop on Cloud computing
security, pages 77–84, 2009.

[32] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds. In 16th ACM
Conference on Computer and Communications
Security, pages 199–212, 2009.

[33] K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Memory
deduplication as a threat to the guest OS. In 4th
European Workshop on System Security, April 2011.

[34] E. Tromer, D. A. Osvik, and A. Shamir. Efficient
cache attacks on AES, and countermeasures. Journal
of Cryptology, 23(1):37–71, 2010.

[35] V. Varadarajan, T. Ristenpart, and M. Swift.
Scheduler-based defenses against cross-VM
side-channels. In 23st USENIX Security Symposium,
2014.

[36] B. C. Vattikonda, S. Das, and H. Shacham.
Eliminating fine grained timers in Xen. In 3rd ACM
workshop on Cloud computing security workshop,
pages 41–46, 2011.

[37] W3Techs. Usage of content management systems for
websites. http://w3techs.com/technologies/
overview/content_management/all.

[38] Y. Yarom and K. Falkner. Flush+Reload: a high
resolution, low noise, L3 cache side-channel attack.
http://eprint.iacr.org/2013/448, 2013.

[39] Y. Zhang, A. Juels, A. Oprea, and M.K. Reiter.
HomeAlone: Co-residency detection in the cloud via
side-channel analysis. In IEEE Symposium on Security
and Privacy, pages 313–328, 2011.

[40] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-VM side channels and their use to extract
private keys. In 2012 ACM Conference on Computer
and Communications Security, pages 305–316, 2012.

[41] Y. Zhang and M. K. Reiter. Düppel: retrofitting
commodity operating systems to mitigate cache side
channels in the cloud. In 2013 ACM Conference on
Computer and Communications Security, pages
827–838, 2013.

1003

