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Abstract models (but that may still manipulate application state) ca

escape detection, in a manner analogous to mimicry attacks
Existing techniques for a server to verify the correctness on intrusion-detection systems [28, 22]. Greater prenisio
of client behavior in a distributed application suffer from has been achieved, but with greater expense. For example,
imprecision, increased bandwidth consumption, or signifi- the Ripleysystem [25] replays each client on the server in
cant computational expense. We present a novel method foorder to validate the client's requests, but this incurs the
a server to efficiently search for a code path through the bandwidth overhead of transmitting all client-side inputs
client that “explains” each client message, even though the (user inputs, timer values, etc.) to the server to permit re-
server does not know local inputs to the client that might play and the computational overhead of replaying the client
have caused the message. This method gives rise to a presn the server side. An approach by Bethea et al. [2] omits
cise client verification technique that consumes no addi- transmitting client-side inputs, thus not incurring baruitv
tional bandwidth and that validates most legitimate client overheads, but then must search for whether there exist in-
messages much faster than previous such techniques. Ouputs that could have produced the client messages observed
technique can gain even further improvements with a min- at the server. The resulting computational expense renders
imal increase in bandwidth use. We detail this innova- this method of verification useful primarily in an offline
tion and use it to verify client behavior in two client-serve fashion and, even then, only after modifying test applica-
games, namely XPilot and TetriNET. In our best configura- tions to constrain the search spaces they present.
tion, verification often keeps pace with TetriNET gameplay.  In this paper we develop a client-checking algorithm that
retains precision while permitting better tradeoffs betwe
bandwidth costs and computational expense in the common
case of a legitimate client. Our algorithm builds from the
1. Introduction aforementioned approach of Bethea et al. [2] but exploits a
training phase to guide a search for a path through the client
s Program that could have produced a message observed at
the server. One configuration of our algorithm incurs no ad-
ditional bandwidth costs, like Bethea et al.'s, but comgdet
verification much more efficiently in the common case of

Even if the server has no such vulnerabilities, any applica- 2 1€gitimate client. Another configuration of our algorithm

tion state for which the client is authoritative can be aiter ~ €ONSumes minimal additional bandwidth — in our tests, at
by a misbehaving client and then propagated via the servefMOSt two bytes per client-to-server message — and com-
to the larger distributed application. pletes verification even faster in the common case of a le-

A common approach to defend against client misbehay- ditimate client. Moreover, we reiterate that our algorithm
ior is for the server to validate client messages using a 'S Precise in the sense of having no false negatives and no

model of valid client behavior derived from the sanctioned false positives. Thatis, any sequence of client messages th

client software. For example, Giffin et al. [12] and Guha ©Ur technique declares legitimate actually is, in the sense

et al. [14] developed methods to confirm that requests arethat there exist inputs that would have driven the sanctione

consistent with a control-flow model of the client. This clientsoftware to send that sequence of messages,any

approach admits false negati\_/esy hOVYever — compromised  ipore precisely, the only source of false negatives is theifidef
clients that make calls consistent with their control-flow modeling values returned by components with which the tlgrtware

In client-server applications, client misbehavior cangpo
dangers to the larger distributed application in a varidty o
ways. A manipulated client may be able to compromise
the server directly if the server has an extant vulnergbilit




sequence of client messages that our technique declares inbolic execution [3], a dynamic analysis technique that “ex-
possible is actually inconsistent with the client software ecutes” a program with some values unspecified or “sym-
To definitively conclude that a sequence of client mes- bolic”, in order to derive the postconditions of the softevar
sages is impossible (the uncommon case), our algorithmon the symbolic state. In our case, we symbolically exe-
incurs a cost similar to Bethea et al’s [2], however. As cute the client software with client-side inputs unknown to
such, we expect our algorithm to be useful primarily as an the server marked symbolic and then determine whether the
online data reduction technique that prunes the client mes-messages received from the client violate the postcomditio
sages that must be logged for offline analysis by that (or derived from the software. Symbolic execution has a long
another) technique. In addition, clients whose messages ar history of study in the security and verification communi-
not verified quickly by our technique can be serviced only ties, but we believe the optimization problem we study here
provisionally (e.g., with fewer privileges and/or loggiteg ~ to be distinct from prior work, as discussed below.
enable undoing their effects) while their verification isrco The applications of symbolic execution that are most re-

pleted offline. lated to our own are in debugging and diagnostics. Zamfir et
We evaluate our algorithm in the context of online gz [34] developed a debugging tool that uses symbolic exe-
games. Online games provide a useful proving ground for cution to reconstruct the likely path a program took before
our techniques due to the frequent manipulation of gameijt crashed, from the core dump file recorded by the operat-
clients for the purposes of cheating [31, 17, 30] and due jng system when the crash occurred. Their technique finds
to the pressure that game developers face to minimize they feasible path or set of paths through a program that allow
bandwidth consumed by their games [19]. As such, our the program to reach the memory and process state that the
teChniqueS are dil’ecﬂy Useful fOI‘ Cheat deteCtion in th|S core dump f||e indicate§her|_og[33] is another error d|_
domain. Moreover, Hoglund and McGraw [15] argue that agnosis tool that uses a log file instead of a core dump file
“games are a harbinger of software security issues to come,tq indicate how a program execut&herLogperforms path
suggesting that defenses against game cheats and gamenalysis (not symbolic execution per se, but a similar tech-
related security problems will be important techniques for pigue) to determine the likely execution paths and variable
securing future massive distributed systems of other typesygjues implied by a given set of log files. Similarly, sym-
Our evaluations show, for example, that verifying the be- polic execution has been used to discover the constraints fo
havior of a valid client in thdetriNETgame can oftenkeep  the paths through a program that reaches a vulnerability or
up with the pace of gameplay. Moreover, our algorithm suc- error condition [4, 5, 7, 32]. Viewed through the lens of
ceeds in verifying messages traces of the highly interactiv thjs paper, the core dump file, log file, or error condition
XPilot game without game restrictions required by previous jn these previous works is analogous to a “client message”,
techniques [2]. and these tools similarly seek to find an execution that could
The technique that we develop here is an application explain it. However, the structure of our verification task —
of symbolic execution [3], which has been widely studied namely successively building an execution path to explain
and applied for various purposes (see Section 2). Dynamican entire sequence of messages — and the performance de-
analysis techniques like symbolic execution typicallyefac  mands that we seek to meet in this work give rise to the

scaling challenges as code complexity and execution lengthtechnique we propose, which we believe to be novel.
grow, and our case is no exception. We believe that the

technique we develop here to prioritize path analysis on the
basis of historical usage may be more broadly useful, i.e.
outside of behavior verification in distributed systems, to

Among applications of symbolic execution, software
testing has received the most research attention. Symbolic
'execution can be an effective method of increasing the de-
. . : gree of code coverage in a testing tool by generating test
contain the expense of dynamic analysis. X .

cases that cover a high percentage of paths in a program.

The rest of this paper is structured as follows. We dis- .
) . . For exampleDARTI[13] first concretely executes a program
cuss related work in Section 2 and necessary background in xampleD [13] i yexecd brog

! : ) 4 with an arbitrary input, recording the path constraint im-
Sectlon 3. We_present our aIgpnthm n Section 4 an.d Sec'plied by its choice at each branch point. The path constraint
tion 5. Evaluation results for this algorithm are presetined

. . . is then modified by negating a clause and a satisfying as-
Section 6, and we conclude in Section 7. signment to the constraint is found to derive a new input

that will cover a different path in the program. More recent
2. Related Work examples of this approach, which is also caltmhcolic
testingor dynamicsymbolic execution, includEUTE[21],
JPF[27] andPex[23, 1]. Our approach expands the veri-
fier's search for paths to explain client messages as needed,
starting from an initial collection of paths, but it does so
interacts (e.g., the client OS). This will be discussedhierrin Section 6. without solving for inputs to exercise a path concretely and

As we will see, the approach that we take to the behavior
verification problem that we study is an application of sym-




without the goal of achieving high path coverage, per se.
Aside from the behavior verification that we study here, msgq, msgy, ..

tions (SEND andRECV®) in II,, numbern + 1 and match
., msg,, by type — i.e., ifmsg, is a client-

an orthogonal defense against client compromise is to stripto-server message (respectively, server-to-client ngegsa

clients of authoritative state. In this approach, any dtzé
could affect the integrity of the larger distributed applic

tion is instead managed at the server, outside the reach osible given the contents ofisg,, msg, . .

direct manipulation by the client. Tools such &wift [9]

then thei-th network I/O instruction is &END (respec-
tively, RECV) — and if the branches taken Ih, were pos-
., msg,,. There
may be many prefixeH consistent withmsg,, msg, . ..

automatically identify such important state for placenant  (€.9., depending on inputs to the client, such as user in-
the server. This approach, however, is known to increaseputs or system-call return values), but if there are norex th
the bandwidth consumed by interactive applications suchthe tracemsg,, msg, . .. is impossible given the sanctioned
as distributed games, owing to the need for every access telient software.

authoritative state to reach the server (e.g., [19, p. 112]) The goal of the verifier is simply to determine if
Another defense is to augment the client with monitoring there exists an execution prefix that is consistent with
software (e.g., [10, 18, 20, 11, 16]), but this approach begsmsg,, msg,, . . .; if not, then the verifier detects the client
the question of how to defend the monitoring software from as compromised. Assuming that client compromise is rare,
compromise and, in some domains, has suffered resistanceur goal is to optimize locating such a prefix so that legiti-
from the user community (e.qg., [29]). mate clients (the common case) can be verified as quickly as
possible. While ideally both validation of legitimate clis

and detection of compromised clients would be achieved
online (i.e., at the pace of message receipt), the number of
execution prefixes to explore through the client will gen-

As discussed in Section 1, our goal is to build a verifier erally make it infeasible to definitively detect a compro-
to detect a client in a distributed application that exlsibit mised client, since doing so requires checking that there
behavior, as seen by the server, that is inconsistent wéth th is no prefixII that is consistent with the message trace
sanctioned client software and the application state knownmsg,, msg,,.... However, we seek to show that through
at the server. That s, the verifier discerns whether these wa judicious design of the verifier, it can validate most legiti
any possible sequenoéinputs to the sanctioned client soft- mate clients quickly. Requests from clients that the server
ware that could have given rise to each message received atannot validate quickly can then be subjected to stricter
the server, given what the server knew about the client basedthough presumably more expensive) sandboxing and/or
on previous messages from the client and the messages thiegging for further analysis offline.
server sent to the client. In doing so, our approach should
enable an automated, server-side validation procedure fo
client messages.

More specifically, consider a sequence of messages
msg,, msgy, - .. that were sent or received by the client, The algorithm we present in this paper to meet the goals
listed in the order in which the client sent or received them; described in Section 3 incorporates a training phase that is
we call such a sequenceressage traceBecause the server  used to configure the verifier.
received or sent, respectively, each of these messages, the
server knows their contenfsand previous work described 4.1, Requirements
an efficient method for the client to inform the server of
the order in which the client processed these messages [2].
As such, the message traesyg,, msg,, - . . is known to the
server and, so, the verifier.

The verifier's goal is to find a sequence of client in-
structions, called aexecution prefixand denotedl, that
begins at the client entry point and éensistentwith the
message tracensg,, msg,,.... In this paper we con-
sider only single-threaded clients, andI$anust represent
single-threaded execution. More specifically, is consis-
tentwith msg,, msgy, . . ., msg,, if the network I/O instruc-

3. Background and Goals

4. Training

The training phase uses message traces of client behavior
that should reflect to the greatest degree possible thelactua
client behavior that will be subjected to verification. Frr e
ample, in the case of a client-server game, the traininggphas
should make use of message traces of valid gameplay. We
stress that the training phase requires only valid message
traces (i.e., for which there exists an execution prefix con-
sistent with each), and any invalid message traces will be

3In this paper, we abbreviate call instructions to POSK ect (),
send() andrecv() system calls (or their functional equivalents) with

2We do not consider the loss of client-to-server messages trerugh
previous work [2] provided an efficient method to recovenirsuch losses
that we can employ equally well.

the labelsSELECT, SEND and RECV. Our techniques apply to software
written to other interfaces, of course, but would requirsme®f our defi-
nitions to be adapted accordingly.



detected as such during the training process (albeit at suba “postcondition term” for that fragment. The disjunction
stantial computational expense). As such, there is no riskof all postcondition terms collected after execution of the
of “poisoning” the training process with invalid message same fragment then forms the postcondition for that frag-
traces, and gathering valid message traces for training purment. Moreover, since the same fragment may appear in
poses can be done by executing the sanctioned client softother execution prefixds, the postcondition terms from all
ware artificially or by recording message traces from actual such executions can contribute to the postcondition of the

client-server sessions. fragment.
We use this postcondition to then determine the mes-
4.2. Algorithm sages in each trace with which the fragment is consistent,

where “consistent” has a meaning analogous to, but some-
what more generous than, that for execution prefixes with
respect to message traces. Specifically, an execution frag-
ment isconsistent witta messagensy if the fragment ends

As we will discuss in Section 5, during verification the
verifier will attempt to find an execution prefiX,, that is

consistent with the message traegg,, . . ., msg,, incre- . . . :

mentally, i.e., by appending to an execution prafix_; at an appropriate network 1/O instruction SEND if msg

that is cbnsiétent withnsg msg To do so. it is a client-to-server messages cv otherwise — and in the
0 1 ,

case of aEND, if the fragment postcondition does not con-

tradict the possibility thatnsg was sent in thasEND or, in
hother words, if the postcondition and the asserted message
contents do not imply false.

Once the set of execution fragments consistent with each
message is found, the next step of the algorithm divisively
clusters the execution fragments. The fragments are first
clustered by the type of their last instructiorse{D or
RECV) and then by their starting instructions; i.e., at the sec-
ond level, all fragments in the same cluster start at the same
instruction and end at the same type of network 1/O instruc-
tion. Finally, each of these level-two clusters is clustere
so that fragments that are only small deviations from each
other (in terms of the instructions executed) are in the same
cluster. Specifically, each level-two cluster is clustegd
(Levenshtein) edit distance usigmedoid clustering to a
fixed number of clusterk (or fewer if there are fewer than
fragments in a level-two cluster). Once the execution frag-
ments are clustered by edit distance, the medoid of each
cluster is added t@. In addition, all training messages
consistent with any fragment are retainedraticatorsfor
the fragment’s cluster (and the cluster’'s medoid).

searches througlxecution fragments an effort to find
one that it can append to credig. The goal of the train-
ing phase, then, is to determine the order in which to searc
possible execution fragments.

More specifically, let anexecution fragmenbe any
nonempty path (i) beginning at the client entry poins®
LECT, or a SEND in the client software, (ii) ending at a
SEND or RECV, and (iii) having no interveninggEND or
RECV instructions. Training produces a sétof execu-
tion fragments. As we will discuss in Section 5, the ver-
ifier will examine execution fragments in an order guided
by ® to extend an execution prefif,,_; to reach an ex-
ecution prefixII,, that is consistent with a message trace
msgy, - - -, msg,,. ldeally, ® would include the execution
fragments that are commonly exercised during execution or
reasonable approximations thereof.

The algorithm for constructing starts from at least one
message traceisg,, msg;, . . . and execution prefikl that
is consistent with it. We do not necessarily require tiat
is theactualexecution prefix that was executed to produce
the trace, though if that execution prefix could be recorded
for the purposes of training, then it will certainly suffice.
Alternatively, IT could be produced from the trace (in an

offline fashion) using existing techniques [2]. 5. Verification
Given the execution prefid, the algorithm symbolically
executes the sanctioned client software on the Hatinain- In this section, we discuss how the verifier, for the next

taining the resulting symbolic state throughout this execu messagensg,, in a message trace, utilizes the clustering
tion. This symbolic state consists of memory regions pop- described in Section 4 to guide its search for an execu-
ulated by symbolic values with constraints. The constsgaint tion fragment of the client to “explain” the client’s proge

on symbolic values are those implied by execution of the through it sending or receivingusg,,. More specifically,
pathlII; e.g., every branch condition involving a symbolic the verifier does so by finding an execution fragment to ap-
value will generally add another constraint on that value, pend to an execution prefi,_; that is consistent with
perhaps in relation to other symbolic values. A memory msg,, ..., msg,_;, in order to produce an execution prefix
region isconcretef it is constrained to be a single value. I1,, that is consistent withnsg, . . . , msg,, .

From this symbolic execution, the training algorithm Before describing the verifier algorithm, there are two
generates a “postcondition” for each distinct executiagfr ~ important caveats to note. First, even if there is an exenuti
ment contained idl. Specifically, after each execution of fragment that, appended 1b, 1, yields all,, that is con-

a fragment irll, the constraints on the symbolic state form sistent withmsg,, . . ., msg,,, it may be that this fragmentis



not contained inb. Recall that is only apartial list of all of symbolic variables they include so far. This search con-
execution fragments; it includes only the medoid fragments tinues until a path encounters an instruction that suggests
after clustering the execution fragments from training. As that the processing ofisg,,_; by the client is complete —
such, it will not suffice for us to limit our attention only to  specifically, upon encounteringseLECTor aSEND. The

the execution fragments i, and indeed a central innova- path starting frona,,_; until this instruction are used to ex-
tion in our work is how we us@ to guidethe search for  tendIl,_; (ando,,_1) to producdl’ , (ando;_,).

execution fragments without being limited to it. If msg,_, is a client-to-server message, then no such

Second, even if the client is behaving legitimately, there preprocessing step is necessary. In this Casé:[;!gtl and
may be no execution fragment that can be appended to,+ , bell,_; ando,_;, respectively,
. . . n— - — 1 .
IT1,,_; to produce an execution prefif, that is consis-

tent with msgy,...,msg,. In this case,Il,,_; could

not have been the path executed by the client throughgyerview of basic verification algorithm The core of
msgo, - - - MGy 1. SO, th? verifier will need tdack-  the verification algorithm starts from the symbolic state
track to search for anothell,,_; that is consistent with st | and uses a subsét, C @ to guide a search for an
msgo, - - -, msg,,_1, which the verifier will then try to ex-  execution fragment that can be appendefijo , to yield
tend to find all, consistent withmsgy, ..., msg,. Of I, thatis consistent withnsg,, . . . , msg,,. Intuitively, ®,,

course, backtracking can re-enter previous message Verifiincludes the execution fragments frobnthat are deemed
cations, as well, and in the limit, can devolve into an ex- |ikely to be similar to the fragment executed by the client
haustive search for a path from the client entry point that |eading up to it sending or receivingsg, . We defer dis-

is consistent withmsgy, . .., msg,,. If and only if this ex-  cussing the selection @, to Section 5.4; here we simply
haustive search concludes with no consistent path, thetclie stipulate that each fragmentdn, begins at the instruction

is detected as behaving inconsistently with the sanctionedpointed to by the program counter of , and ends at a
client software [2], and this exhaustive search will gener- senp or Recv if msg,, is a client-to-server message or a
ally be costly. However, for the applications we consider server-to-client message, respectively. We stress that de

in Section 6, legitimate clients rarely require backtragki  spite these constraints, appending & ®,, to I, will
Combined with optimizations to backtracking that we de- not necessarily yield H,, consistent withnsg,, . . ., msg,,.

scribe in Section 5.3, our algorithm is a step toward making
it possible to quickly verify legitimate clients for suchgp
cations and triage those it cannot for further checking late
(and sandboxing in the interim).

Our verification algorithm executes roughly as follows.
The algorithm builds a strictly binary tree of paths, each
starting from the next instruction to be executedsif ;.
(Here, by “strictly” we mean that every non-leaf node has
) o ) exactly two children, not one.) The root of the tree is the
5.1. Basic Verification Algorithm empty path, and the two children of a node in the tree ex-

tend the path represented by that node through the next sym-

The verification algorithm takes as input an execution bolic branch (i.e., branch instruction involving a symisoli
prefix IT,,_; consistent withmsg, ..., msg,,_, and that  variable). One child represents that branch evaluating to
ends with thesEND or RECV at whichmsg,, ; was sentor  false, and the other represents that branch evaluatingeo tr
received. The verifier can symbolically execute the sanc- The algorithm succeeds in finding a fragment with which to
tioned client software on the path,_1, using the concrete  extendII;_, to yield II,, if, upon extending a path, it en-

messagesisg, - - -, msg,,_ as those sentor received atthe counters a network I/O instruction that can “explaindg,,,
corresponding network 1/O instructions T, 1, to yield  j.e., thatyields a state with constraints that do not cafitta
the symbolic state,, ; of the client. msg, being the network 1/0 instruction’s message.

Perhaps the central idea in our algorithm, though, is the
Preprocessing for a server-to-client messagelf msg,,_, manner in which it selects the next node of the tree to ex-
is a server-to-client message, then presumably,, tend. For this purpose it uses the training fragments
most directly influenced client execution immediately afte There are any number of approaches, but the one we eval-
it was received. So, our algorithm to producéla con- uate here selects the path to extend to be the one that mini-
sistent withmsg,, . .., msg,, first performs a preprocess- mizes the edit distance to some prefix of a fragmenk,in

ing step by symbolically executing, | forward using the  (and that has not already been extended or found to be in-
server-to-client messagesg,,_; as the message received consistent). This strategy naturally leads to first exangni

in its last instruction (which is &EcV). o,,_1 is a sym- the fragments ind,,, then other fragments that are small
bolic state and so may branch on symbolic variables as it ismodifications to those i,,, and finally other fragments
executed forward (even thoughsg,,_, is concrete); pre-  that are further from the fragments @n,. This algorithm
processing explores paths in increasing order of the numbewmill be detailed more specifically below.



Algorithm verify (o7, msg,,, ®n)
101. nd < makeNode()
102. nd.path < (); nd.state < o, _,
103. Live + {nd}
104. while (|Live| > 0) {
105. nd < arg min min min editDist(nd’.path, ¢")
nd’€Live p€Py ¢/ Cop
106. Live < Live \ {nd}
107. o < nd.state; m < nd.path
108. while (o.next # L and
isNetInstr(c.next) = false and
isSymbolicBranch(o.next) = false)
109. 74— 7 || (o.next); o < execStep(o)
110. if (isNetlnstr(o.next) = true and
((o.constraints A o.next.msg = msg,,) # false))
111. return 7 || (o.next) /I success!
112. else if (isSymbolicBranch(o.next) = true) {
113. nd.childg < makeNode()
114. nd.childo.path < 7 || (o.next)
115. nd.childg.state < [ execStep(o) |
o.next.cond — false |
116. if (nd.childg.state.constraints % false)
117. Live < Live U {nd.childo}
118. nd.child; < makeNode()
119. nd.child;.path < 7 || (o.next)
120. nd.child; .state < [ execStep(o) |
o.next.cond — true |
121. if (nd.child; .state.constraints #- false)
122. Live < Live U {nd.child; }
123. }
124.}
125.return L /I failure

Figure 1. Basic verification algorithm, de-
scribed in Section 5.1

Details of basic verification algorithm The algorithm
for verifying a client-to-server message is summarizedemor
specifically in Figure 1. This algorithm, denotedrify,
takes as input the symbolic staté_, resulting from ex-
ecution ofIL,,_; from the client entry point on message
trace msg,, . . ., msg,,_,; and then the preprocessing step
described above ifnsg,,_; is a server-to-client message;
the next messageusg,,; and the execution fragmends,

tion of nodes created in lind$1, 113, and118 in Figure 1.
Each node has fieldsath, state, and childrenchildy, and
child;. The root nodend is initialized with nd.path = ()
andnd.state = 0,7, (102). Initially only the root is created
(101-102) and added to a sé&tve (103), which includes the
nodes that are candidates for extending. The algorithm ex-
ecutes awhile loop (104—124) while Live includes nodes
(104) and the algorithm has not already returnétllj. If
thewhile loop exits becauskive becomes empty, then the
algorithm has failed to find a suitable execution fragment
and_L is returned 125).

Thiswhile loop begins by selecting a nodé from Live
that minimizes the edit distance to some prefix of a frag-
ment in®,,; see linel05, where¢/ T ¢ denotes thaty’
is a prefix ofg. The selected node is then removed from
Live (106) since any node will be extended only once. The
states of this node 107) is then executed forward one
step at a timed <« execStep(o), line 109) and the ex-
ecution path recordedr(<+ 7 || (o.next), where| de-
notes concatenation) until this stepwise execution encoun
ters the client exit &.next 1, line 108), a network
I/O instruction (sNetlnstr(o.next) true), or a sym-
bolic branch {sSymbolicBranch(o.next) = true). In the
first case §.next 1), execution of the mainvhile
loop (104) continues to the next iteration. In the second
case {sNetlnstr(o.next) = true) and if the constraints
o.constraints accumulated so far with the symbolic state
do not contradict the possibility that the network 1/0 mes-
sager.next.msg in the nextinstructiom.next is msg,, (i.e.,
(0.constraints A o.next.msg = msg,,) 7 false, line 110),
then the algorithm returns successfully sinck (o.next) is
an execution fragment that meets the verifier's goblg);

Finally, in the third caseigSymbolicBranch(c.next) =
true), the algorithm explores the two possible ways of
extending w, namely by executingr.next conditioned
on the branch condition evaluating ttalse (denoted
[ execStep(c) | o.next.cond — false ] in line 115) and
conditioned on the branch condition evaluatingtite
(120). In each case, the constraints of the resulting state
are checked for consistency16, 121) and the consistent
states are added tave (117, 122).

described above (and detailed in Section 5.4). Its output is5.2. Refinements

either an execution fragment that can be appendétjto
to makell,, that is consistent withmsg,, ..., msg,,, or

Edit-distance calculations As discussed previously, one

undefined (). The latter case indicates failure and, more insight employed in ouverify algorithm is to explore paths
specifically, that there is no execution prefix that can ex- close to the training fragmends, first, in terms of edit dis-

tendII} | to makell, that is consistent withnsg,, ...,

tance (linel05). Edit distance between stringsandss, can

msg,,_1. This willinduce the backtracking described above be computed by textbook dynamic programming in time

to search for anothdf,, _; thatis consistent witmsg,, . . .,
msg,,_1, Which the verifier will then try to extend to find a

IL,, consistent withmsg,, . . ., msg,,.

O(]s1] - |s2]) and space)(min(|s1], |s2])) where|s;| de-
notes the character length of and similarly fors,. While
reasonably efficient, this cost can become significant for

The aforementioned binary tree is assembled as a colleclarges; or ss.



For this reason, our implementation optimizes the edit ductive is whennin e, ming c, editDist(nd’.path, ¢') is
distance computations. To do so, we leverage an algorithmlarge for everynd’ € Live. Because nodes are explored in
due to Ukkonen [24] that tests whethelitDist(sq, s2) < increasing order of their edit distances from their nearest
t and, if so, computezditDist(s1,s2) in time O(t - prefixes of training fragments, this condition is an indica-
min(|s1], |s2])) and spac®(min(t, |s1], |s2|)) foraparam-  tion that the training fragments,, are not a good predictor
etert. By starting with a small value far, we can quickly  of what happened in the client application leading up to the
find nodesd’ € Live such that for some € ®,, and¢’ C send or receipt ofnsg,,. This condition implies thaterify
¢, editDist(nd".path, ¢') < t. Only after such nodes are now has little useful information to guide its search and so
exhausted, do we then increasand re-evaluate the nodes no search strategy is likely to be a clear winner, and thus

still in Live. By proceeding in this fashionerify incurs in this case we abandon the use of edit distance to avoid
cost per edit-distance calculation 6f(¢ - min(|s1], |s2])) calculating it. That is, we amenrify so that when
for the distance threshotdvhen the algorithm returns, ver-

i i in editDist(nd’.path, ¢') > d

SusO/([s1 - [sa]). Jhin_ min min editDist(nd"path, ¢') > duas
N , L

Second, when calculatingditDist(nd".path, ¢), ‘it is for a fixed parametel, . (dmax — 64 in our experiments
possible to reuse intermediate results from a previousiealc i, section 6),verify transitions to selecting nodes’ €

. . . I . . 7
lation of editDist(nd".path, ) in propo/rnon_to the length | e inincreasing order of the number of symbolic variables
of the longest common prefix af and¢’. (Since®,, con- introduced omd’.path. The rationale for this choice is that

tains only fragments beginning with the instruction to whic it tends to prioritize those states that reflect fewer ugauts
the program counter points in, 1, their common prefixis  5nqis very inexpensive to track.

guaranteed to be of positive length.) To take maximum ad-
vantage of this opportunity to reuse previous calculations Selectingnd In each iteration of the maiwhile loop
Welorganize _the elements df, in a pre_fix tree (f[rie), in 104-124 of verify, the next nodend to extend is selected
which each internal node stores .th.e |pterm/ed|ate resultsaS that inLive with a minimum “weight.” where its weight
that can be reused when calculatiedjtDist(nd".path, ¢) is defined by its edit distance to a prefix of an element of
for the execution fragments,, that share the prefix repre-

ted by the interi de. 1 i h el ®d,,. Since the only operations drive are inserting new
sented by the In ?I’IOF node. 1n a simiiar way, the calcula- ;e jnto it (lined 17, 122) and extracting a hode of min-
tion of editDist(nd’.path, ¢) can reuse intermediate results

o . , imum weight (line105), Live is represented as a binary
from theed'tD'St(nd'p.ath’ ¢) calculation, .Whermd 'p.ath. min-heap. This enables both an insertion of a new element
extendsnd.path. In this way, the vast majority of edit dis-

i lculati built b ing int diate tesul and the removal of its min-weight element to complete in

fance ;‘;" culations are bullt by reusing intermediate tesu O(log |Live|) time where|Live| denotes the number of el-

rom others. L ) . ements it contains when the operation is performed. This
Third, though the verification algorithm as presented in

. bl h oatli ion-bv-i ; (only) logarithmic cost is critical sinckive can grow to be
Figure 1 assembles each pathinstruction-by-instruction ¢ jite’jarge; e.g., in our tests described in Section 6, it was
(lines 108-109), the pathad’.path and fragment%,, are

. . . not uncommon fot.ive to grow to tens of thousands of ele-
not represented as strings of instructions for the PUrposes ants

of the edit distance calculation in lirid®5. If they were, it

would not be atypical for these strings to be of lengths in the Memory management The verification algorithm, upon

tens of thousands for some of the applications we consider, ; ) .
. . o . L . traversing a symbolic branch, creates new symbolic states t
in Section 6, yielding expensive edit-distance calcufatio

/ . . representthe two possible outcomes of the branch (libes
Insteadnd’.path and®,, are represented as strings of basic T
) o . . . and120). Each state representation includes the program
block identifiers for the purposes of computing their edit :
: . . : . counter, stack and address space contents. Whie [6]
distance. In our evaluation, this representation resuitted

. . (on which we build) provides copy-on-write semantics
strings that were roughly an order of magnitude shorter than ’ .
. . . : for the address-space component, it does not provide for
if they had been represented as strings of instructions.

garbage collection of allocated memory or a method to com-
pactly represent these states in memory. To manage the
Judicious use of edit distance Despite the optimizations considerable growth in memory usage during a long run-
just described, calculating edit distances incurs a degiree ning verification task, we utilize a caching system that se-
overhead. As such, we have found that for highly interactive lectively frees in-memory representations of a state iisec
applications, it is important to employ edit distance only sary. If at a later time a freed state representation is neede
when®,, is likely to provide a useful guide in findinga (due to backtracking, for example), our system reconstruct
with which to extendI,,_; to obtainIL,. the state from a previously checkpointed state. This method

For the applications with which we have experimented, adds to the overall verification time but reduces the extent
the primary case where using edit distance is counterpro-to which memory is a limiting factor.



5.3. Backtracking and Equivalent State Detection ure 2, which reads an input character and then branches
based on its value; in one branch, it allocatésif 1 and
then+buf 2, and in the other branch, it allocatebuf 2

and thenbuf 1. Even if the address spaces of different
states occupied the same ranges, and even if the memory
allocator assigned memory deterministically (as a fumctio
of the order and size of the allocations), the addresses of
_ _ . ' I buf 1 andbuf 2 would be different in states that differ only
tion must therbacktrackinto the computationerify (o, _,, because they explored different directions of the symbolic
msgn—1, n—1) to find a different fragment to append t0 5o ¢ (¢ == ’'x'). These states would neverthe-
IT;_, to yield a new execution prefid,,_, consistentwith  |ess be equivalent, assuming that the client application be
msgo, -+ Msg,_, and resulting in staté,, ;. Once it hayior is invariant to its state’s pointer values (agairea r
does so, it invokeserify (6,1, msg,,, ®,) to try again. To  sonable assumption for well-behaved applications).

support this backtracking, upon a successful return from

verify(o,"_,, msg,_1, ®,—1) in line 111, it is necessary ~ voi d foo(char *xbufl, char *xbuf2) {

As discussed at the start of Section 5yéfify (o,

n—11
msg,,, ®,) returns_L (line 125), then it is not possi-
ble that the client legitimately executédl’ ,, producing

states," ,, and then sent/receivedsg,,. If msg, ; is a

n—1

client-to-server message (and8¢ , = II,,_1), verifica-

to save the existing algorithm state (i.e.,liige set and the char c;

states of the nodes it contains) to enable it to be restarted ¢ = getchar();

from where it left off. Ifmsg, , is a server-to-client mes- if (c=="x") {

sage (and sdl , # II,_;), then backtracking is per- *buf 1 = (char *) malloc(10);

formed similarly, except the computation @érify(o; ,, *buf2 = (char =) malloc(10);

msg,,_1, Pn_1) is resumed only after all possible exten- } else {

sionsII; , of II,,_, have been exhausted, i.e., each corre- *buf2 = (char ») malloc(10);
*buf1 = (char *) malloc(10);

+ |, msg,, ®,) has failed.

The most significant performance optimization that we }
have implemented for backtracking is a method to detect
the equivalence of some symbolic states, i.e., for which ex-  Figure 2. Toy example that may induce differ-
ecution from these states (on the same inputs) will behave ent pointer values for variables in otherwise
identically. If the states,,_; ands,,_; are equivalentand if equivalent states
avalid client could not sendhsg,, after reaching.,,_1, then
equivalently it could not sendhsg,, after reachings,,_;.

So, for example, it,,_; was reached due to backtracking To detect equivalent states,_, andd,,_, that are syn-

after verify(c,,—1, msg,,, ®,) failed, then the new execu- tactically unequal due to the above causes, we built a proce-
tion prefixﬁn,1 that produce$,,_; should be abandoned dure to walk the memory of two states in tandem. The mem-
immediately and backtracking should resume again. ory of each is traversed in lock-step and in a canonical order

The difficulty in establishing the equivalence of _; starting from each concrete pointer in its global variables
andé,_1, if they are in fact equivalent, is that they may (including the stack pointer) and following each concrete
not be syntactically equal. This lack of equality arisesrfro ~ pointer to the memory to which it points. (Pointers are rec-
at least two factors. The first is that in our present imple- 0gnized by their usage.) Concrete, non-pointer values tra-
mentation, the address spaces of the states andé,,_1 versed simultaneously are compared for equality; unequal
are not the same, but rather are disjoint ranges of the Virtuavalues cause the traversal to terminate with an indication
address space of the verifier. Maintaining disjoint addressthat the states are not equivalérimilarly, structural dif-
spaces for symbolic states is useful to enable their adeess ferences in simultaneously traversed memory regions (e.g.
to be passed to external calls (e.g., system calls) durimg sy regions of different sizes, or a concrete value in one where a
bolic execution. It also requires us to assume that thetclien Symbolic value is in the other) terminate the traversal. Sym
program execution is invariant to the range from which its bolic memory locations encountered at the same pointin the
addresses are drawn, but we believe this property is truetraversal of each state are given a common name, and this

of the vast majority of well-behaved client applications-(i ~common name is propagated to any constraints that involve
cluding the ones we use in our evaluation). that location. Finally, equivalence of these constraists i

A second factor that may cause_; and&,_; to be determined by using a constraint solver to determine if each
syntactically distinct while still being equivalent is tha implies the other. If so, the states are declared equivalent

the different execu“(.)n preflx_eHn,l anq anl. Iea_dlng 4The state could still be equivalent if the differing conergalues do
to these states may induce differences in their pointer val- ot influence execution, but our method does not detect ttessas equiv-

ues. Consider, for example, the trivial C function in Fig- alentin this case.

spondingverify (6"




5.4. Configurations the symbolic state;" , to be provided toverify as input®
For the applications we evaluate in Section 6, however, we

Thus far, we have not specified holy, is populated  adaptthisidea slightly and interpret this cluster indethi
from the setb of medoids resulting from clustering the exe- the set of all clusters whose fragments begin at that instruc
cution fragments witnessed during training (Section 4). We tion and end at &eEND. Then, ®,, is set to contain only
consider two possibilities for populatirig, in this paper. the medoid of this cluster. (If the cluster index exceeds the
number of clusters whose fragments begin at that instruc-
tion, or if msg,, is a server-to-client message, then the de-
fault approach above is used to creétg instead.) In this
way, the cluster hint can be conveyed in exadilyg, k|
extra bits on each client-to-server message, whkdeethe
number of clusters allowed by the verifier in its third level
of clustering (see Section 4.2). While sending a hint does
increase bandwidth cost, it does so minimally; e.g., in Sec-
tion 6, we considek = 256 (1 byte per client-to-server
message) ank < 65536 (2 bytes per client-to-server mes-

Default configuration The default algorithm configura-
tion constructsp,, from the contents ofnsg,, . If the closest
training message is at distange from msg,,, for a mea-
sure of distance described below, then the algorithm com-
putes the sefl/ of training messages less than distance
am from msg,,, for a fixed parameter > 1. (In Section 6,

we usea = 1.25.) An execution fragment is eligible to

be included in®,, if (i) ¢ is the medoid of some cluster for
which there is an indicator messageg € M, and (ii)

¢ begins at the instruction to which the program counter sage). . i )

in o, points, wherer!_, is the symbolic state that will Despite the fact that the client sends the hintto the server,

be passed toerify along withmsg, and®,,. Then,®,, is the client remains completely untrusted in this configura-
n n- 1 EN

set to include all eligible fragments up to a linit if there tion. Th.e.hint it p_rovides is simply to acc_elerate ver?fioati
are more tharg eligible fragments, thesb,, consists of an of a legitimate client, and providing an incorrect hint does
arbitrary subset of siz8. (In Section 6, we usg = 8.) not substantially impact the verifier’s cost for declarihg t

The distance measure between messages that we use frfi€nt compromised.
our evaluation in Section 6 is simply byte edit distance be-
tween messages of the same directionality (i.e., betweeng, Evaluation
server-to-client messages or between client-to-server me
sages). Ifmsg andmsg,, do not have the same direction-
ality, then we define their distance to be, so that only
training messages of the same directionalityrag,, are
included inM 2.

To evaluate our technique, we built a prototype that uses
the KLEE [6] symbolic execution engine as a foundation.
Our implementation includes approximately 1000 modified
source lines of code (SLOC) ikLEE and additional 10,000
SLOC in C++. That said, at present we have not com-
Hint configuration  The “hint” configurationrequiresthat  pleted the client-side implementation of the hint configu-
the client software has been adapted to work with the ver-ration described in Section 5.4, and so we instead simulate
ifier to facilitate its verification. In this configuratiorhe the client-side hint in our evaluation here. We stress gther
client piggybacks a hint omsg,, that is a direct indica-  fore, that while we accurately measure the verifier's perfor
tion of the execution fragment it executed prior to sending mance in both the default and hint configurations, the addi-
msg,. This extra hint, however, increases the bandwidth tional client overheads implied by the hint configuratioa ar
utilized by client-to-server messages, and so it is imprta not reported here. The experiments described in this sec-
that we minimize this cost. tion were performed on a system with 24GB of RAM and a

Specifically, in this configuration, the client software has 2 .93GHz processor (Intel X5670).
knowledge of the clustering used by the verifier, as de-  we limit our evaluation to the verifierserformancefor
scribed in Section 4.2. (For example, the server sendssit thi two reasons. First, performance is the dimension on which
information when the client connects.) The client records gyr algorithm offers a contribution over the most closely
its own execution path and, when sending a client-to-serverrelated previous research [2]. Second, by design, our ver-
messagensg,,, maps its immediately preceding execution ification algorithm has no false positives — i.e., if a mes-
fragmentto its closest cluster in the verifier's clustef@g:  sage trace is declared to be inconsistent with the sanctione
ing edit distance on execution fragments). The client then cjient software, then it really is (though this is subjecato

includes the index of this cluster withinsg,, as a“hint"to  assumption discussed in Section 5.3). Similarly, the only
the verifier. The server extracts the cluster index frosg,,
and provides this to the verifier. 5An alternative is for the verifier to backtrack immediateflysibegins

" : PR, at a different instruction, since in that caz-sv(gf_1 is apparently not repre-
Intumvely, the medoidy of the indicated cluster should sentative of the client's state when it executed the fragrieatling up to

b.e used as.the SOl_e elemem of thedgt but only if ¢ be- it sendingmsg,,. For the applications we evaluate in Section 6, however,
gins at the instruction pointed to by the program counter of backtracking usually incurred more verification cost evethis case.




source of false negatives arises from the limited fidelity of celeration, etc. Various limitations imposed by the client
the constraints used to model values returned by compo-such as that a client cannot both have its shields up and
nents with which the client software interacts (e.g., thg.0OS be firing at the same time, are obvious targets for a user
We could improve that fidelity by subjecting these compo- to override by modifying the game client in order to cheat.
nents to symbolic execution, as well, but here we limit sym- Our behavior verification technique will detect such game
bolic execution to the client software proper. cheats automatically.

To evaluate performance, we apply our algorithmto ver-  The previous work by Bethea et al. that leveragét-
ify behavior of legitimate clients of two open-source games lot to evaluate its techniques found it necessary to modify
namelyXPilotandTetriNET (described in Section 6.1). We  the XPilot client in various small ways to make its analy-
limit our attention tdegitimateclients since this is the case sis tractable (see [2, Section 5.2]). We used this modified
in which we make a contribution; i.e., our approach is de- version in our evaluations, as well, though to illustrate ce
signed to validate legal behavior more quickly than previ- tain improvements enabled by our technique, we reverted
ous work, but confirms illegal behavior in time comparable an important modification made there. Specifically, Bethea
to what previous work [2] would achieve. We employ these et al. inserted bounds to limit the number of user inputs that
games for our evaluation for numerous reasons: they arewould be processed in any given event-loop round, since
complex and so pose challenging test cases for our tech-otherwise the event loop could theoretically process an un-
nigue; they are open-source (and our tools require access tbounded number of such inputs. This unboundedness, in
source code); and games is a domain that warrants behawvturn, caused symbolic execution to explore arbitrary num-
ior verification due to the invalid-command cheats to which bers of corresponding input-processing loop iterationg. B

they are often subjected [30]. inserting bounds, Bethea et al. rectified this problem but
introduced a potential source of false positives, if the de-
6.1. Applications ployed client software is not modified in the same way. In

our evaluation, we removed these inserted limits so as to
eliminate this risk of false positives and also to highlight

XPilot XPilot is an open-source, multi-player, client- L o . .
. - the power of training our verifier on previous executions.
server game that has been developed in many revisions ove

more than 15 years including, e.g., a version for the iPhone/E‘fter rem"""?g the_se limits, the§e input-processjng loops
that was released in July 2009. The version we used in ourCOUId theoretically 'te.“f"te an arbitrary number of twpaﬂ, b
evaluation isXPilot NG (XPilot Next Generationversion .neverth.eless our verifier does not _explqre path_s .|r!clud|ng
4.7.2. 1ts client consists of roughly 100,000 SLOC. Beyond mcrea_smgly Iarge_numbers of suc_h |ter_at|0ns_ ”T‘“' itiselo
. . C exploring paths with numbers of iterations similar to those

this, the scope of symbolic execution included all needed encountered in the training runs. Aside from hiahliahtin
libraries excepXl i b, whose functions were replaced with the strenath of our techni gue re.movin these b%ungds rgn-
minimal stubs, so that the game could be run without dis- ders th g th t al 4 ,ht .f.g tion intractabl
play output. MoreoveruC i bc was used in lieu of the ers the bethea et al. approach o verification intractable.

GNU C library.

In the game, the user causes her spaceship to navigate TetriNET  TetriNETis a multi-player version of the popu-
two-dimensional world occupied by obstacles, objects suchlar single-playeifetrisgame. In théletrisgame, one player
as power-ups that the user can collect by navigating hercontrols a rectangular gameboard of squares, at the top of
spaceship over them, and both fixed and mobile hostileswhich atetrominoappears and starts to “fall” toward the
that can fire on her ship (some of which are ships controlled bottom at a constant rate. Each tetromino is of a size to oc-
by other players). Each player's goal is to earn the high- cupy four connected grid squares orthogonally and has one
est score. Despite its “2D” graphics, the game incorporatesof seven shapes. The tetromino retains its shape and size as
sophisticated physics simulation; e.g., ships with moet fu it falls, but the user can reorient the tetromino as it fails b
have greater mass and thus greater inertia. pressing keys to rotate it. The user can also move the tetro-

Upon startup, thPilot client reads local files that, e.g., mino to the left or right by pressing other keys. Once the
define the world map. (Our evaluation assumes that thesgetromino lands on top of another tetromino or the bottom
initialization files are available to the verifier, as theyshu of the grid, it can no longer be moved or rotated. At that
be to the server, as well.) Th&Pilot client then enters an  point, another tetromino appears at the top of the grid and
eventloop that receives user input and server messages, prdegins to fall. Whenever a full row of the gameboard is oc-
cesses them (including rendering suitable changes on theupied by tetrominos, the row disappears (potentially-frac
client’s display), and sends an update to the server. Thesduring any tetrominos occupying a portion of it) and all rows
updates can include information about the current statusabove the removed row are shifted downwaretriNETdif-
of the user’s ship’s shields (whether they are up or down), fers fromTetrisby addingan empty row to all other players’
weapons (whether any are firing), position, orientation, ac grids when this occurs. The goal of the game is for a player



to place as many tetrominos as possible before no more cathe remainder were used for training. Specifically, Fig-
enter her gameboard, and a player wins the multiplayer ver-ure 3 shows the distribution of verification time per mes-
sion by playing longer than other players. sage, binned into ten-message bins, acroathces. So,
The TetriNET client is structured as an event loop that for example, the boxplot labeled “0” shows the distribution
processes user inputs and advances each tetromino irl its fabf verification times for messagessg,), . . ., msgq in the
down the gameboard. Only once a tetromino has landed20 traces. The data point for messagey,, accounts for all
in its resting place does the game client inform the servertime spent inverify(o."_,, msg,,, ®,) and any immediately
of the location of the tetromino and whether its placement preceding preprocessing step (see Section 5.1), including
caused any rows to be deleted (and if so, which ones). Theany backtracking into those functions that occur. (That,sai
server does not validate the client’s claim that the coaditi  backtracking inTetriNET is very rare.) In each boxplot,
for deleting the row was met (i.e., that the row was full), and the “box” shows the first, second (median) and third quar-
so the game is very vulnerable to invalid-command cheats.tiles, and its whiskers extend tb1.5 times the interquar-
Again, our technique will automatically detect such cheats tile range. Additional outlier points are shown as bullets.
The TetriNET client version (0.11) that we used in our Overlaid on each boxplot is a diamoné)(that shows the
evaluation is 5000 SLOC. As iKPilot, the scope of sym-  average of the data points.
bolic execution also included all needed Iibraries, thOUgh Several things are worth noting about Figure 3. In all
again the display output librann€ur ses) was disabled  cases, the distribution of verification times is largely un-
using minimal stub functions andCl i bc was used in  affected by the message index, i.e., where in the trace the
place of the GNU C library. Despite its small size, a sin- message appears. This confirms that our implementation
gle event-loop iteration in th@etriNET client permits an s mostly free from sources of increasing verification ex-
unbounded number of user inputs to rotate or horizontally pense as traces grow longer. This figure also confirms that
shift the tetromino, which presents problems for symbolic more fine-grained clustering; (= 3790) leads to faster ver-
execution analogous to those that led Bethea et al. to cap thefication times than coarse grainek & 256). Fine-grain
number of inputs in a singl¥Pilot event-loop iteration. As  clustering, however, results in greater bandwidth useén th
such, in their experimentation wiffetriNET, Bethea et al.  hint configurationk = 3790 implies an overhead df? bits
limited gameplay so that a tetromino could be placed only or, if sent as two bytes, an averageld® bandwidth in-
at a location for which only empty squares were above it, crease per client-to-server message, in contrast todsily
so as to limit the number of user inputs needed for a tetro-per client-to-server message foe= 256. Not surprisingly,
mino placement to half the width of the gameboard plus the the hint configuration generally outperforms the default.

number of possible tetromino rotations — nine user inputs Figure 3 also suggests that our algorithm is, for the large
in total [2]. We emphasize that none of these restrictions majority of messages, fast enough to verify valetriNET
are employed in_our evaluatiqn, and aQa‘” the_ abil_ity_of our gameplay at a pace faster than the game itself: the average
algorithm FO verify the behawo_r of @etriNET client in its verification cost per message, regardless of configuration o
unconstrained form illustrates its strengths. clustering granularity, is easily beneath the inter-mgssa
delay of roughlyl.6s. That said, there are two issues that
6.2. Results require further exploration. First, there are messagets tha
induce verification times in excess 0fs or even100s,
Evaluation of our verification algorithm requires traces which unfortunately makes it impossible to reliably keep
of gameplay for both training and testing. F@triNET, we  pace with gameplay. Nevertheless, as an optimization over
generate@0 traces of manual gameplay, eachedf mes-  previous work for verifying message traces, and as a data
sages in length (which corresponds to roughlyminutes  reduction technique to eliminate some traces (or portions
of gameplay). FoXPilot, we generated0 traces of man-  thereof) from the need to log and analyze offline, our tech-
ual gameplay, each consisting 2f00 messages (roughly  nique still holds considerable promise. Second, and work-
70 seconds of gameplay). ing in favor of this promise, is the slack time between the
arrival of messages that gives verification the opportutity

TetriNET ~ Figure 3 showsTetriNET verification costs. ~ catch up to the pace of gameplay after a particularly difficul
Figure 3 includes plots for both the default and hint config- message verification.

urations, as well as for clustering parameter vakies256 To shed light on these issues, Figure 4 instead plots the
andk = 3790; the latter case ensured a single execution distributions of per-message verificatidalaybetween the
fragment per cluster. arrival of messagensg,, at the server (where a server-to-

The numbers represented in Figure 3 were obtained byclient message “arrives” when it is sent) and the discovery
a 20-fold cross validation of thdetriNET traces; i.e., in  of an execution prefiXl,, that is consistent withnsg,, . . .,
each test, one of the traces was selected for testing, andnsg,,. Delay (Figure 4) differs from verification time (Fig-
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Figure 4. TetriNET verification delays. Cross-
validation over 20 traces. Boxplotat = shows
verification delays for messages  msg,, ...
msg,.o IN each trace (after training on the
other traces). “ <" shows the average.

ure 3) by representing the fact that verification fasg,, insight into how long after the completion of the message
cannot begin until after that fomsg,_, completes. So, trace (in real time) that it took for verification for the wiol
for example, the rightmost boxplot in each graph provides trace to complete.



vary somewhat less fokPilot than they did forTetriNET,
as shown in Figure 6. Recall that each boxplot in Figure 6

100% =

.Operations on Live
[l executing insts. in kLEE The median per-message verification costBflotwhen

clustering is fine-grained(= 475, which implied a sin-
gle execution fragment per cluster) is quite comparable to

g Constraint Solving represent300 x 40 points, versus only0 x 20 in Figure 3.

s Equiv. State Detection As such, though there are larger numbers of outliers in Fig-
S so%- o _ _ :

g Computing Edl Disance ure 6, they constitute a smaller fraction of the data points.
g

>

1 1 1 1
Tetrinet ~ Tetrinet XPilot Xpilot

0% =

Default  Hint  Default  Hint that in TetriNET, as can be seen by comparing Figure 6(c)
and Figure 6(d) to Figure 3(c) and Figure 3(d), respectively
Figure 5. Percentage of time spent in each However, XPilot verification is considerably faster with
component of our algorithm. coarse clustering, see Figure 6(a) versus Figure 3(a) and

Figure 6(b) versus Figure 3(b). Our definitionkof= 256 as
“coarse” clustering was dictated by the goal of limiting the
bandwidth overhead to one byte per client-to-server mes-
One item to note about these graphs is that for the hintsage in the hint configuration. The better performance of
configuration withk = 3790 (Figure 4(d)), the median of  XPilot verification for coarse clustering verstistriNETis
the rightmost boxplotis virtually zero —i.e., the mostcom- at least partly because = 256 is closer to fine cluster-
mon case is that verification kept pace with gameplay. Thising (x = 475) in the case oXPilot than it is for TetriNET
can occur even if verification falls behind at some pointin (1 = 3790). In the hint configurationk = 256 increases
the game, since verification commonly “catches up” after bandwidth use byPilot client-to-server messages b,
falling behind. This is illustrated, for example, in the gen andk = 475 (9 bits, sent in two bytes) increases it H%.
erally downward slope of consecutive outlier points in Fig- Though the median per-message verification coXiRif
ure 4(d). That said, the cumulative effect of verification de |4 ig generally as good or better than that TetriNET, the

lays in the other configurations is more costly, €.9., C@Sin  faster pace oKPilot makes it much more difficult for veri-
verification to lag behind gameplay by more than 100 sec- fication to keep pace with the game. This effect is shown in

onds by the end of a40-message trace in the median case Figyre 7. As shown in this figure, none of the configurations

in the default configuration (Figure 4(c)). or clustering granularities permitted verification to kegp

A breakdown of verification costs fdetriNETis shown  with gameplay, and the best default configuratior 475)
in Figure 5. In ourTetriNET experiments, more than 50% included one run that requirédminutes past the end of the
of the verification time is spent iRLEE, interpreting client  race to complete its verification (see Figure 7(c)). Conse-

tions only selectively (e.g., [8]) may be a significant opti- xpilot, our algorithm does not eliminate the need to save
mization for our tool. The majority of the remaining time  {aces for post hoc analysis.

is spent in insertions and deletions bire and in comput-

ing edit distance, both to update the edit distance for each _
path when a symbolic branch is reached and to.compgte d'_s'related previous work [2] completely intractable. That is,
tances petween messages. A very small fr_act|on of time iNeca| that Bethea et al. utilized a restricted versioXBf-
our TetriNETexperiments is devoted to equivalent state de- lot in which the number of user inputs per event loop iter-

tection _(Sec“lof‘ 5'.3) ?rdln constra;nt ﬁolv_mg. In Figure 5, ation was artificially limited; we have removed that limita-
C(r)]ns;[jraflnt lso V'lng Inc ud es not onbyt T time spentsby_> tion here (see Section 6.1). With these restrictions remove
(the '€ ault solver use _b'yLEE)’ uta SO Préprocessing o pethea et al. approach is inherently unbounded for veri-
techniques to make quenes_,ScDP more efficient (bo_rrov_ved_ fying some messages, since it seeks to eagerlyfingaths
from Bethea et al. [2, Secnon 4.4]) and a _canon|cal|zat|(_)n that could explain that message, of which there could be
step (borroxvedd fron|1 \?sser et_ al. [26])_t0 Imr_Jrrr(:ve the hit infinitely many. Our approach, in contrast, succeeds in ver-
rgtg on cachedresu s for previous queriesia ese op- ifying all messages in these logs in bounded time and with
timizations significantly reduce the overall constraint/so per-message cost averaging untiédms in all configura-
ing time. tions (Figure 6).

A fractional breakdown of verification times fofPi-
XPilot XPilot poses a significant challenge for verifica- lot are shown in Figure 5. While a majority of the cost
tion because its pace is so fast. The tests described heres still contributed by interpreting client instructions i
use anXPilot configuration that resulted in an averag&df KLEE, the majority is smaller in the case &Pilot than
messages per second. The verification times per messagi¢ was for TetriNET. For XPilot, equivalent state detection

Nevertheless, we stress that our algorithm accomplishes
even if with some delay — what is for the most closely
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Figure 6. XPilot verification times. Cross-
validation over 40 traces. Boxplot at = shows
verification times for messages msg,,
msg,. g9 N €ach trace (after training on the
other traces). “ <©” shows the average.

NSTTTERARE RS
TR

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
QNN NNWWOWIOVWILLVW RIS 'S
S PPR LS CE S F PP F WP E S F
Message Bin

(a) Default,k = 256

800 -

640 -

Delay (s)
w B
N o<}
o o

1 1

e 08
 RUOETTYRTERNELE
0-&S$ee
SIS R O SRR 'éQQN,I\,QQ ;,,90 \,}J@é@ '\fI’QD '3"00 ';'\@ »‘;’00 é@ ‘LIQQQ
Message Bin

(b) Hint, k& = 256

800 -
640 -
L 480- ....,.ggg
E L [ ' g oo
[ -
8320 PN B
o 0 ééééé
“ eptdliaddes
o-44
TSI T I TS ST LT T
SHF RS L F PP F T LSS
Message Bin
(c) Default,k = 475
800 -
640 -
£480-
&
[ -
8320

T TS TqT TST
R N S I (NI
OPP R ECE S PP

Message Bin

(d) Hint, k = 475

Figure 7. XPilot verification delays. Cross-
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(Section 5.3) plays a more prominent role than it did for
TetriNET, in part due toXPilots more complex memory  constraints generated B§Pilot, constraint solving plays a
structure. Moreover, due to the substantially more complexmuch more prominent role than it did foetriNET.



7. Conclusion

In this paper we have presented a novel algorithm to en-
able a server to verify that the behavior of a client in a
client-server application is consistent with the sanaibn
client software. The central challenge that must be over-
come in achieving this goal is that the server does not know
all of the inputs to the client (e.g., user inputs) that inehlic
its behavior, and in some domains (see [19]) the additional
bandwidth utilized by sending those inputs to the server is
undesirable. We therefore developed a technique by which
the verifier “solves” for whether there exist user inputd tha
could explain the client behavior. We overcome the scaling
challenges of this approach by leveraging execution histor
to guide a search for paths through the client program that [9]
could produce the messages received by the server. This
approach enables us to achieve dramatic cost savings in the
common case of a legitimate client, and by allowing mini-
mal additional bandwidth use, we can improve performance [10]
even further. In the best configuration of our algorithm,
verification of legitimateTetriNET gameplay often keeps
pace with the game itself. In other cases, verification ef- 11
ficiency is adequate to practically handle client applaagi
that previous work was forced to restrict to make its analy-
sis tractable. We believe that the manner in which we lever-
age execution history can be useful in other applications of [12]
symbolic execution, as well.
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