
9

File System Virtual Appliances: Portable File System Implementations

MICHAEL ABD-EL-MALEK, MATTHEW WACHS, JAMES CIPAR, KARAN SANGHI,
and GREGORY R. GANGER, Carnegie Mellon University
GARTH A. GIBSON, Carnegie Mellon University and Panasas, Inc.
MICHAEL K. REITER, University of North Carolina at Chapel Hill

File system virtual appliances (FSVAs) address the portability headaches that plague file system (FS)
developers. By packaging their FS implementation in a virtual machine (VM), separate from the VM that
runs user applications, they can avoid the need to port the file system to each operating system (OS) and OS
version. A small FS-agnostic proxy, maintained by the core OS developers, connects the FSVA to whatever
OS the user chooses. This article describes an FSVA design that maintains FS semantics for unmodified FS
implementations and provides desired OS and virtualization features, such as a unified buffer cache and VM
migration. Evaluation of prototype FSVA implementations in Linux and NetBSD, using Xen as the virtual
machine manager (VMM), demonstrates that the FSVA architecture is efficient, FS-agnostic, and able to
insulate file system implementations from OS differences that would otherwise require explicit porting.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—Maintenance

General Terms: Design, Performance

Additional Key Words and Phrases: Operating systems, virtual machines, file systems

ACM Reference Format:
Abd-El-Malek, M., Wachs, M., Cipar, J., Sanghi, K., Ganger, G. R., Gibson, G. A., and Reiter, M. K. 2012.
File system virtual appliances: Portable file system implementations. ACM Trans. Storage 8, 3, Article 9
(September 2012), 26 pages.
DOI = 10.1145/2339118.2339120 http://doi.acm.org/10.1145/2339118.2339120

1. INTRODUCTION

Building and maintaining file systems (FSs) is painful. OS functionality is notoriously
difficult to develop and debug, and FSs are more so than most because of their size and
interactions with other OS components. In-kernel FSs must adhere to the OS’s virtual
file system (VFS) interface [Kleiman 1986], but that is the easy part. FS implemen-
tations also depend on memory allocation, threading, locking/preemption, networking
for distributed FSs, and device access for local FSs, interfaces, and semantics. To sup-
port memory-mapped file I/O and a unified buffer cache, FSs are also closely coupled
to the virtual memory subsystem. Correctly handling locking and preemption is also
notoriously difficult.

This work is sponsored in part by the National Science Foundation, via grants CNS-0326453 and CCF-
0621499, by the Department of Energy, under Award Number DE-FC02-06ER25767, and by the Army
Research Office, under agreement number DAAD19–02–1–0389. Intel and Network Appliance donated hard-
ware donations that enabled this work.
M. Abd-El-Malek is currently affiliated with Google, Inc.
Author’s addresses: M. Abd-El-Malek, Google; email: mabdelmalek@gmail.com; M. Wachs, J. Cipar, G. R.
Ganger, and G. A. Gibson, Computer Science Department, Carnegie Mellon University; M. K. Reiter, Uni-
versity of North Carolina at Chapel Hill.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1553-3077/2012/09-ART9 $15.00

DOI 10.1145/2339118.2339120 http://doi.acm.org/10.1145/2339118.2339120

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

© ACM, 2012. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://dx.doi.org/10.1145/2339118.2339120.

9:2 M. Abd-El-Malek et al.

User VM

Applications

Linux 2.6.28

F
ed

or
a

9

FSVA

LFS cleaner

N
et

B
S

D

LFS

Xen

NetBSD 5.99.5

Fig. 1. A file system runs in a separate VM. A user continues to run their preferred OS. By decoupling the
user and FS OSs, one allows users to use any OS without needing a corresponding FS port. As an example,
Linux does not include a log-structured file system (LFS) implementation. But, using FSVAs, a Linux user
can utilize NetBSD’s LFS implementation. This illustrated example is used as a case study in Section 5.2.

Though difficult during initial FS development, these extra dependencies particu-
larly complicate porting a file system to different OSs or even OS versions. While VFS
interfaces vary a bit across OSs, the other OS internal interfaces vary greatly, making
porting and support of file systems painful and effort-intensive. Need for portabil-
ity comes in three forms: (1) an FS developed for one OS requires explicit porting to
function in another; (2) an FS developed for one OS version requires modifications
to function in each subsequent version of that OS, which is particularly burdensome
for third-party FS developers; (3) an FS developed for the latest OS version must be
backported, to support users of a previous OS version who cannot upgrade to the latest
version.

In practice, these portability issues require substantial developer effort—
approximately 50% of the effort, in the estimate of some developers (see Section 2.1).
As a result, new FSs are often supported only on one OS and/or require substantial
porting/compatibility teams. The pain and effort involved in FS development create a
large barrier for those seeking to innovate, and they wear on those who choose to do
so. Most researchers sidestep these issues by prototyping in just one version of one
OS. Many also avoid kernel programming by using user-level FS implementations via
a mechanism like FUSE (e.g., Bershad and Pinkerton [1988]; Webber [1993] [FUSE])
or NFS-over-loopback (e.g., Callaghan and Lyon [1989]), and some argue that such
an approach sidesteps version compatibility issues. In reality, it does not, for both
practical and fundamental reasons. For example, existing kernel-level FS implemen-
tations would require a user-level reimplementation to gain the portability benefits of
user-level FSs.

User-level approaches also do not completely insulate an FS from OS-specific kernel-
level issues (e.g., handling of memory pressure) or from user-level differences among
OSs (e.g., shared library availability and file locations). Although these user-space
issues are easier to handle than kernel-level issues, they still require ongoing mainte-
nance effort. So, FS developers address the problem with brute force where they can,
and simply forgo OSs that pose too large a hurdle.

This article offers a new approach (Figure 1) for portable FS implementations, lever-
aging virtual machines (VMs) to decouple the OS in which the FS runs from the OS
used by the user’s applications. The FS is distributed as a file system virtual appliance

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:3

(FSVA), a prepackaged virtual appliance [Sapuntzakis and Lam 2003] loaded with the
FS. The FSVA runs the FS developers’ preferred OS and version, with which they have
performed extensive testing and tuning. The user(s) run their applications in a sepa-
rate VM, using their preferred OS and version. Since it runs in a distinct VM, the FS
can be used by users who choose OSs to which it is never ported. The FSVA approach
handles all three forms of the FS portability problem.

Crucially, the FSVA approach relies on the interface to FSs being relatively simple
and consistent across OSs, with a smallish number of VFS primitives. In contrast, the
interfaces from FSs to other OS components are much more complex and variable,
especially when trying to maximize FS performance. The VFS-like FSVA interface
allows an FS in an FSVA to be accessed via an FS-agnostic proxy in the user’s VM,
isolated from the user OS’s internal interfaces.

For the FSVA approach to work, the FS-agnostic proxy must be a native part of the
OS—it must be maintained across versions by the OS implementers. The hope is that
because of its small size and value to a broad range of FS users and implementers, the
OS implementers would be willing to adopt such a proxy. FUSE, a kernel proxy for user-
level FS implementations, has been integrated into Linux, NetBSD, and OpenSolaris,
and we envision a similar adoption path for the FSVA proxy. It may be possible to extend
the FSVA interface to deal with OSs that lack a VFS-like interface (e.g., Windows) or it
may be necessary to have a different FSVA interface for every OS type; this is beyond
our scope (see Section 3.4).

This article details the design, implementation, and evaluation of FSVA support in
Linux and NetBSD, using Xen as the VM platform. The Xen communication primitives
allow for reasonable performance—for a variety of macrobenchmarks and FSs, the
slowdown is less than 15% compared to native kernel-level FSs with a very small
FS change. Careful design is needed, however, to ensure FS semantics, maintain OS
features like a unified buffer cache, minimize OS changes in support of the proxy, and
retain virtualization features such as isolation and migration. Our prototype realizes
all of these design goals.

We demonstrate the efficacy of the FSVA architecture in addressing the FS porta-
bility problem with a number of case studies. Six FSs (ext2, ext3, ext4, LFS, NFS,
and ReiserFS) are transparently provided, via an FSVA, to applications running on
different VMs, which can be running different OSs or different OS versions. For exam-
ple, a Linux user can utilize the NetBSD log-structured FS [Rosenblum and Ouster-
hout 1992] implementation, immediately filling the void of LFS implementations for
Linux. As another example, a Linux 2.6.18 user can immediately use the new ext4
FS, which was recently merged into the Linux 2.6.28 kernel but is not available in
2.6.18. No changes are required to the FS implementations in the FSVA to enable such
portability.

2. BACKGROUND AND ARCHITECTURE

FS implementations are tightly intertwined with OS internals. Of course, the OS calls
into the FS to access its functions. The VFS interface [Kleiman 1986] in most OSs
allows multiple FSs to coexist in an OS, while presenting a unified interface and sharing
common caches. The VFS approach was also intended to ease portability of FSs across
OSs [Kleiman 1986; Webber 1993], but it falls far short of its goal. The problem is that
the majority of portability problems relate to FS-OS interdependencies other than the
basic FS interface. Specifically, to implement its functionality, the FS must rely on, and
conform to, many internal OS interfaces and semantics, including memory allocation,
threading, locking/preemption, and the virtual memory subsystem. These aspects vary
widely across OSs, and they often vary even across versions of the same OS. Adapting
to such variation is the primary challenge in porting FS implementations.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:4 M. Abd-El-Malek et al.

This section describes portability challenges in more detail, the shortcomings of
existing approaches, and the FSVA approach to addressing FS portability.

A less-appreciated challenge is dealing with changes across OS versions. For ex-
ample, the Linux kernel’s internal interfaces often change across minor releases. In
addition to kernel-level changes, user-space environments often differ among Linux dis-
tributions. For example, there is variation in the preinstalled programs and libraries,
file locations, and daemon configuration syntax and locations. While most pronounced
for Linux, with its independent and decentralized development process, this problem
poses challenges for FS vendors targeting any OS.

At least partly for this reason, some OS vendors limit changes to their interfaces
to occur infrequently (e.g., only in major releases). By adopting the methodology we
advocate here, such OS vendors could reduce FS dependencies on these interfaces and
gain flexibility in their development processes.

2.1. Porting Experiences from the Field

To better understand FS portability, we interviewed developers of four third-party
FSs: GPFS [Schmuck and Haskin 2002], OpenAFS, Panasas DirectFLOW [Welch et al.
2008], and PVFS [Carns et al. 2000]. All four FSs have been widely deployed for many
years. Since the inter-OS FS porting problem is well-known and PVFS and Panasas
DirectFLOW are only available in Linux, we describe the four FS developers’ first-
hand experiences with intra-OS FS porting: maintaining Linux client-side FS code.
Naturally, inter-OS portability faces all of these issues and more.

2.1.1. Interface Syntax Changes. The first changes that an FS developer encounters in
an OS update are interface syntax changes due to compilation errors. The following
is a representative list. Many examples were conveyed to us by the developers, and
we gleaned others from looking at OpenAFS and PVFSs’ source control management
systems’ logs. Some examples, with the corresponding Linux kernel version in paren-
theses, include the following.

—Callbacks. The vector I/O readv, writev VFS callbacks were replaced with the
asynchronous I/O aio read, aio write callbacks (2.6.19). sendfile was replaced
by splice (2.6.23).

—Virtual memory. The virtual memory page fault handlers, overridable by an FS,
changed interfaces (2.6.23).

—Caching. The kernel cache structure constructors’ and destructors’ parameters
changed (2.6.20).

—Structures. The per-inode blksize field was removed (2.6.19). The process task struc-
ture no longer contains the thread pointer (2.6.22).

While some of these changes may seem trivial, they are time-consuming and rid-
dle source code with version-specific #ifdefs that complicate code understanding and
maintenance. Furthermore, every third-party FS team must deal with each problem
as it occurs. Examination of the open-source OpenAFS and PVFS change logs shows
that both FSs contain fixes for these and many similar issues.

2.1.2. Policy and Semantic Changes. Even if interfaces remain constant across OS re-
leases, implementation differences can have subtle effects that are hard to debug. The
following examples illustrate this.

—Memory Pressure. Some RedHat Enterprise Linux 3 kernels are not robust in low
memory situations. In particular, the kernels can block during allocation despite the
allocation flags specifying no blocking. This resulted in minutes-long delays in dirty
data write-back under low-memory situations. RedHat acknowledged the semantic

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:5

mismatch but did not fix the issue [RedHat 2004]. An FS vendor was forced to work
around the bug by carefully controlling the number of dirty pages (via per-kernel-
version parameters) and I/O sizes to the data server, thereby negatively impacting
server scalability.

—Write-back. Linux uses a write-back control data structure (WBCDS) to identify dirty
pages that should be synced to stable storage. An FS fills out this data structure and
passes it to the generic Linux VFS code. Linux 2.6.18 changed the handling of a
sparsely-initialized WBCDS, such that only a single page of a specified page range
was actually synced. This caused an FS to mistakenly assume that all pages had
been synced, resulting in data corruption.

—Stack Size. RedHat distributions often use a smaller kernel stack size (4 K instead of
the default 8 K). To avoid stack overflow, once this was discovered, an FS implemen-
tation used an event-based programming style and passed request state across a set
of server threads. This has been cumbersome for the developers and has complicated
debugging. This illustrates how one of the platform’s idiosyncrasies can complicate
the entire FS, not just the OS-specific section.

—Locking. existing inode attribute fields required the inode lock to be held during
access, whereas previously no locking was required.

—Radix Tree. The kernel provides a radix tree library. The 2.6.20 Linux kernel required
the least significant bit of stored values be 0, breaking an FS that was storing
arbitrary integers.

Because these changes were not documented, each third-party FS team had to discover
them by code analysis and kernel debugging, and then work around them.

2.1.3. Overall Statistics. To appreciate the magnitude of the problem, consider the fol-
lowing statistics. Panasas’ Linux portability layer supports over 300 configurations.1
PVFS developers estimate that 50% of their maintenance effort is spent dealing with
Linux kernel issues. The most frequently revised file in the OpenAFS client source
code is the Linux VFS-interfacing file. An OpenAFS developer estimates that 40% of
Linux kernel updates necessitate an updated OpenAFS release.

One may be tempted to brush off these difficulties as artificial and related only to
Linux. While most pronounced for Linux, however, with its independent and decen-
tralized development process, this problem poses challenges for FS vendors targeting
any OS. Furthermore, given Linux’s popularity in the server marketplace, this is a real
problem faced by third-party FS developers, as the statistics demonstrate—simply dis-
missing it is inappropriate. Finally, these same porting issues are experienced across
OSs as well, and a solution that addresses the full FS portability problem would be
attractive.

2.2. Existing Approaches and Shortcomings

2.2.1. User-Level File Systems. Most OS vendors maintain binary compatibility for user-
level applications across OS releases. As a result, user-level FSs have been proposed
as a vehicle for portable FS implementations [Bershad and Pinkerton 1988; Mazieres
2001; Webber 1993]. This is done either through a small kernel module that reflects FS
calls into user-space [Bershad and Pinkerton 1988; Webber 1993; FUSE] or through
a loopback NFS server that leverages existing kernel NFS client support [Callaghan
and Lyon 1989].

1Due to differences among distributions and processor types, Panasas clusters Linux platforms by a tuple
of <distribution name, distribution version, processor architecture>. Currently, Panasas supports 45 Linux
platforms. In addition, within each platform, Panasas has a separate port for each kernel version. The result
is that Panasas supports over 300 configurations.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:6 M. Abd-El-Malek et al.

User-level FSs are not sufficient, for several reasons. First, a user-level FS solution
would provide no help for existing kernel-level FS implementations. Second, user-level
FSs still depend on the kernel to provide low-level services such as device access,
networking, and memory management. Changes to the behavior of these components
will still affect a user-level FS. For instance, the Memory Pressure example in Sec-
tion 2.1 would not be solved by user-level FSs. Third, user-level FSs can deadlock since
most OSs were not designed to robustly support a user-level FS under low-memory
situations [Mazieres 2001]. Such deadlocks can be avoided by using a purely event-
driven structure, as the SFS toolkit [Mazieres 2001] does, but at the cost of restricting
implementer flexibility. FUSE was accepted into the Linux kernel only after disallow-
ing writeable memory mappings. These constraints affect the FS’s semantics. Fourth,
when using interfaces not explicitly designed for user-level FSs, such as NFS loopback,
user-level FS semantics are limited by the information (e.g., no close calls) and control
(e.g., NFS’s weak cache consistency) available to them. Fifth, user-level FSs provide
no assistance with user-space differences, such as shared library availability and OS
configuration file formats and locations.

Rump allows the execution of unmodified NetBSD kernel file systems in user-space,
by reimplementing the necessary internal OS interfaces in user-space [Kantee 2009].
This was previously performed by Thekkath et al. [1994] to accurately model storage
system performance and was suggested by Yang et al. [2006] but considered too bur-
densome. Because this approach essentially adds a library on top of existing user-space
support, it suffers from all but the first of the user-level file system deficiencies. Fur-
thermore, although rump accommodates unmodified kernel-level file systems, it does
so at a cost: reimplementing the internal OS interfaces that file systems rely on. These
interfaces are much broader than the VFS interface. To achieve inter-OS operability,
this reimplementation must be performed for each OS and OS version. Also, conflicts
between kernel and user-space interfaces can pose problems. For example, rump’s NFS
server required modification due to conflicts between the kernel and user-space RPC
portmapper and NFS mount protocol daemon.

2.2.2. Language-Based Approaches. FiST [Zadok and Nieh 2000] provides an alternative
to portable FS implementation, via a specialized language for FS developers. The
FiST compiler generates OS-specific kernel modules. Given detailed information about
all relevant kernel-level interfaces, updated for each OS version, FiST could address
interversion syntax changes. But, FiST was not designed to offer assistance with policy
and semantic changes. Also, a specialized language is unlikely to be adopted unless it is
expressive enough to address all desirable control, which is far from a solved problem.
FS developers are also unlikely to adopt such a specialized language.

Coccinelle [Padioleau et al. 2008] is a program transformation tool that automatically
updates Linux device drivers after API changes. While Coccinelle could handle some
of the interface syntax changes that we described, like FiST, it would be unable to
mitigate the policy and semantic problems. The latter are OS design artifacts that
require much more intrusive FS changes.

2.2.3. Software Engineering Approaches. The software engineering community has
studied the general problem of variability management. Software product lines
(SPL) [Clements and Northrop 2001] is a technique that advocates a disciplined ap-
proach to finding and reusing common functionality and interfaces among related prod-
ucts. In a single vendor environment, or when multiple vendors agree on a common
interface, SPL can be effective.

Unfortunately, different OS vendors (and even different releases of the same OS)
have failed to agree on a common, comprehensive VFS interface. Different design

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:7

choices, backward compatibility, and tight coupling to other changing OS components
(e.g., the virtual memory subsystem) mean that the differences in OSs’ VFS interfaces
and syntax are here to stay. Overcoming policy and semantic differences is even more
challenging. Some differences (e.g., Section 2.1’s Stack Size example) arise from entirely
non-FS-related OS design choices.

2.3. Virtualization

Virtualization is a technique for providing, and possibly sharing, a system or component
interface that is potentially different from the underlying resources’ interface [Rosen-
blum 2004; Smith and Nair 2005]. Depending on the resource, different types of virtu-
alization are possible; for example, virtualization can occur at the hardware, storage,
network, or process levels. In this article, we use virtualization to refer to machine-
level virtualization: the ability to concurrently execute multiple OSs on a physical
machine [Borden et al. 1989]. Each OS executes in an isolated virtual machine (VM),
observing a hardware interface that is identical or similar to the underlying hardware
interface [Rosenblum 2004].

Architecturally, there are two virtualization approaches: native or hosted. In native
virtualization, a hypervisor directly executes on hardware. VMs run on top of the
hypervisor. In hosted virtualization, the hypervisor and VMs execute inside normal
processes in a host OS that is directly executing on hardware. The two approaches
trade off robustness, performance, and ease of deployment.

The FSVA design is independent of which virtualization approach is used. Conse-
quently, the user OS may be executing either in a VM or directly on hardware. The rest
of this article will use the generic term “user OS” that is applicable in both scenarios.
In contrast, the FSVA always executes in a VM. To reflect our prototype, figures use
the native virtualization architecture.

Some of the features we describe are only applicable for native virtualization. For ex-
ample, hosted virtualization does not support host OS migration; hence our discussion
of migrating the user and FSVA VM pair is only applicable for native virtualization.

2.4. FSVAs = VM-Level FSs

The FSVA approach promoted here is similar in spirit to user-level FSs. As before,
a small FS-agnostic proxy is maintained in the kernel. But, instead of a user-level
process, the proxy allows the FS to be implemented in a dedicated VM. This approach
leverages virtualization to address the compatibility challenges discussed above. In
contrast to user-level FSs, FSVAs support legacy FS implementations and permit an
FS to use OS-specific functionality (e.g., RDMA) while still supporting multiple OSs.
Furthermore, FSVAs fully isolate the FS from user OSs and thus overcome the policy
and semantic challenges described in Section 2.1.

Figure 2 illustrates the FSVA architecture. User applications run in a user’s preferred
OS.2 An FS implementation executes in a VM running the FS vendor’s preferred OS.
In the user OS, an FS-independent proxy registers as an FS with the VFS layer. The
user OS proxy sends all VFS calls to a proxy in the FSVA that sends the VFS calls
to the actual FS implementation. The two proxies translate to/from a common VFS
interface and cooperate to maintain OS and VM features such as a unified buffer cache
(Section 3.2) and migration (Section 3.3).

Using an FSVA, an FS developer can tune and debug her implementation to a single
OS version without concern for the user’s particular OS (version). The FS will be
insulated from both kernel- and user-level differences in user OSs, because it interacts

2The FS in an FSVA may be the client component of a distributed FS. To avoid client/server ambiguities, we
use “user” and “FSVA” to refer to the FS user and VM executing the FS, respectively.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:8 M. Abd-El-Malek et al.

User VM FSVA

Hypervisor

FS applications

FSVA proxy

File systemUser OS proxy

VFS

Applications
FS sys calls

VFS calls VFS callsFSVA IPCs

Fig. 2. FSVA architecture. An FS and its optional management applications run in a dedicated VM. An
FS-agnostic proxy running in the client OS and FSVA pass VFS calls via an efficient IPC transport.

with just the one FSVA OS version. Even issues like the poor handling of memory
pressure and write-back can be addressed by simply not using such a kernel in the
FSVA—the FS implementer can choose an OS to suit the FS, rather than being forced
to work with a user’s chosen OS.

2.5. Viability

For the FSVA approach to succeed, the FSVA interface must be stable. Otherwise,
FSVAs would merely shift the location of the changing-interfaces problem. Towards
that end, we designed a minimal FSVA interface. Since the majority of interface and
policy changes occur in internal OS functionality (Section 2.1), rather than at the
core VFS interface, we expect FSVA interface stability to be possible. NFS provides a
successful model of a constant FS interface that has enjoyed wide OS support—though,
as discussed in Section 2.2, it is inadequate for our purposes.

The user OS and FSVA proxies are dependent on the hypervisor interface. Conse-
quently, a proliferation of hypervisors could make it difficult for OS vendors to support
the proxies for every hypervisor. Fortunately, there are only a few widely-used hyper-
visors. Furthermore, the hypervisor-specific code is a quarter of the user OS and FSVA
proxies (about 2200 SLOC, as measured by SLOCCount). Given the necessarily thin
hypervisor interface, it is unlikely that the hypervisor-interfacing RPC code will sig-
nificantly change over time. Thus, we believe it is reasonable to expect OS vendors to
support common hypervisors.

FSVAs do not preclude an FS developer from porting the FS to a different OS or OS
version. Indeed, he/she might still do so to get new features, for improved performance,
or for OS bug fixes. But, FSVAs enable such porting to occur at the FS developer’s pace,
not at the users’ pace. The FS developer can skip porting to most OSs and select a new
stable OS or OS version when desired.

3. DESIGN

This section describes an FSVA design intended to achieve the following goals.

—No FS changes for correctness. To simplify adoption and deployment, FS developers
should not have to modify their FS to run in an FSVA. But, although changes are not
required for correctness (to maintain FS semantics), we allow optional FS changes
in order to gain performance.

—Generality. The FSVA interface should be OS- and FS-agnostic. It should not make
assumptions about OS internals or FS behavior.

—Maintain OS and VM features. They should support existing user OS features such as
a unified buffer cache, and memory mapping. Applications should not be aware of the
FSVA separation. Existing virtualization features such as migration, checkpointing,
and performance isolation should not be adversely affected.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:9

Table I. The FSVA Interface
Most of the calls correspond to VFS calls, with the exception of three RPCs that support migration and a unified
buffer cache.
Type Operations
Mount mount, unmount
Metadata getattr, setattr, create, lookup, mkdir, rmdir, link, unlink, readdir, truncate,

rename, symlink, readlink, dirty inode, write inode
File ops open, release, seek
Data read, write, map page, unmap page
Misc. dentry validate, dentry release, flush, fsync, permission

UBC invalidate page, evict page
Migration restore grants

—Minimal OS and VMM changes. To encourage OS vendor adoption, the user OS and
FSVA proxies should require few changes to the OS. Similarly, any VMM changes
should be minimal.

—Efficiency. FSVAs should impose minimal overheads.

Together, these goals allow FS developers to use FSVAs, knowing that the OS-
maintained proxies will work for them, without being required to change their FS
or the OS within which they implement it. (They may choose to make changes, for effi-
ciency, but can rely on unchanged FS semantics.) These goals also serve to encourage
adoption by users and OS and VMM vendors.

Two major design decisions follow from our goals. First, to maintain FS semantics for
unmodified FSs, all VFS calls are passed from the user OS to the FSVA; by default, no
user OS caching is performed (Section 3.1). Second, to maintain virtualization features
in the presence of multiple user VMs, each user VM is given its own FSVA; FSVAs are
not shared among user VMs (Section 3.3).

3.1. FSVA Interface

3.1.1. VFS-Like Interface. Our goals dictate a VFS-like interface between the proxies:
this is the most direct interface to existing FSs. Most Unix OSs have similar VFS
interfaces, both in the operation types (e.g., open, create, write) and state (e.g., file
descriptors, inodes, and directory entries). Consequently, the VFS interfaces in the two
OSs will be similar and differences can be normalized by the proxies. In addition to
VFS operations, the interproxy interface includes calls to support a unified buffer cache
and migration. Table I lists the FSVA interface (see Section 4.1).

What has been left out of the FSVA interface is notable: virtual memory interactions,
data and metadata caching, device access, memory allocation, locking, preemption
policy, and threading. It is precisely these aspects that change most across OSs and
OS versions and cause the most grief for FS developers. The spartan FSVA interface
ensures that it can remain constant among OSs and across OS revisions. The limited
FSVA interface does not constrain the functionality of the user OSs or the FS. OS
developers are free to change internal OS interfaces and implementation, as long as
they maintain the proxies.

3.1.2. Passing all VFS Calls. Our goal of a generic architecture that maintains FS se-
mantics for unmodified FSs precludes any FS-independent user OS caching. Although
avoiding calls into the FSVA (e.g., read hits and write-backs) would improve perfor-
mance, embedding such functionality in the user OS proxy decreases generality and
couples the FSVA and user OSs. For example, many FSs carefully manage write-back
policies to improve performance and achieve correctness—if the user OS performed
write-back caching without giving control to the FSVA, it would lose this control and
face issues such as the memory pressure and write-back issues described in Section 2.1.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:10 M. Abd-El-Malek et al.

Such user OS proxy write-back would also break consistency protocols, like NFS, that
require write-through for consistency or reliability. Similar problems arise for read
caching in the user OS proxy; callback schemes would be needed for consistency, un-
less shared memory were used; but a shared memory metadata cache would force the
two OSs to use a common format for their cached metadata, requiring intrusive OS
changes.

Thus, for correctness (i.e., maintaining FS semantics), all VFS calls are sent to
the FSVA by default. But, FSVA-optimized FSs can choose to override this behavior
for performance reasons. For example, Section 4.4 discusses how letting the user OS
handle the permission access control VFS call can make a significant performance
improvement without affecting FS semantics.

3.2. Maintaining OS Features

3.2.1. Metadata Duplication. Many OS components expect in-memory file metadata such
as inodes or directory entries (e.g., for open files or executing programs). Therefore, the
user OS proxy creates those data structures in the user OS. The FSVA will also contain
metadata, to support the FS and FSVA OS operations. Thus, metadata exists in both
OSs. Note that the user OS metadata is minimal: the user OS proxy creates basic
inodes and directory entries, but any FS-specific extra metadata (e.g., block allocation
maps) is stored only in the FSVA. This follows from the FS-agnostic FSVA design—the
proxies are not aware of FS-specific metadata.

Metadata duplication can be avoided through invasive OS changes to wrap metadata
access. But, practically, this would complicate the adoption of the user OS proxy by OS
vendors. Given that inodes and directory entries are small data structures, we opted
for duplication. As we describe in the following, data pages are not duplicated.

For distributed FSs with cache consistency callbacks, a user OS might contain stale
metadata. For example, an open file’s attributes may be updated in the FSVA through
a cache consistency callback. But, this inconsistency will not be visible to the user
application. OSs already call into the FS in response to application operations that
require up-to-date metadata. This will cause the user OS proxy to retrieve the updated
metadata from the FSVA.

3.2.2. Unified Buffer Cache. Early Unix OSs had separate caches for virtual memory
pages and file system data. This had data and control disadvantages. First, disk blocks
were sometimes duplicated in both caches. Second, the lack of a single eviction policy
led to suboptimal cache partitioning. Unified buffer caches (UBCs) fix both problems
[Gingell et al. 1987; Silvers 2000]. A single cache stores both virtual memory pages and
FS data, avoiding copies and enabling a single eviction policy.

An analogous problem exists for FSVAs: separate caching between the user OS and
FSVA OS. Without extensive OS changes, we cannot coalesce the two OSs’ caches into
a single cache—the OSs have different data structures and expect exclusive access
to hardware (e.g., in order to read and set page access bits). Instead, we maintain
the illusion of a single cache by using shared memory (to avoid data copies) and by
coupling the two caches (to obtain a single eviction policy). The user OS and FSVA
proxies maintain this illusion transparently to the two OSs.

Providing a single eviction policy is complicated since each OS has its own memory
allocation needs and knowledge. On one hand, since applications execute in the user OS,
the user OS allocates virtual memory pages and is aware of their access frequency. On
the other hand, since I/O is performed in the FSVA (both in response to user requests
and due to FS features such as read-ahead and write-back), the FSVA allocates FS
buffer pages and is aware of their access frequency.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:11

The semantic gap between the two caches can be bridged by informing one of the OSs
of the other OS’s memory allocations and accesses. To cleanly support multiple FSVAs
and to preserve the user OS’s cache eviction semantics and performance, we chose to
inform the user OS of the FSVA’s memory allocations and accesses. Thus, the user OS
controls the eviction policy.

The FSVA proxy registers callbacks with the FSVA buffer cache’s allocation and
access routines. When the FSVA proxy observes that a new page is inserted into the
buffer cache, it makes a hypercall to grow the FSVA by a single page. On every response
to the user OS, the FSVA proxy piggybacks page allocation and access information.
On receiving a page allocation message, the user OS proxy returns a page to the
hypervisor, thereby balancing the memory usage among the OSs. Furthermore, the
user OS proxy allocates a ghost page [Ebling et al. 1994; Patterson et al. 1995] in its
UBC. Conceptually, the ghost page is an entry in the UBC’s LRU lists that lacks a
physical backing page.

On receiving a page access message, the user OS proxy calls the OS’s “page accessed”
function to update the ghost page’s location in the OS’s LRU lists. Thus, the ghost page
serves as a placeholder in the user OS’s UBC for the FSVA’s buffer cache page. When
the user OS later decides to evict this ghost page, the user OS proxy grows by a page,
informs the FSVA that it should decrease its buffer cache by a corresponding page, and
the FSVA returns a page to the hypervisor. The net result is a coupling of the two OSs’
UBCs and a single inter-VM cache eviction policy.

The inter-VM UBC serves to optimally size the two VMs’ memory sizes, based on the
virtual memory workload in the user OS and the buffer cache workload in the FSVA.
Note that VM ballooning [Waldspurger 2002] and page deduplication [Waldspurger
2002] are orthogonal to inter-VM UBC—these mechanisms contain heuristics for de-
ciding on an optimal VM size, while our inter-VM UBC algorithm uses the user OS’s
specific UBC cache eviction policy.

Our design choice of a single FSVA per user VM (Section 3.3) greatly simplifies
the UBC design. In a shared FSVA design, properly attributing page allocations and
accesses to a specific user is complicated by concurrent requests and latent FS work,
such as write-back and read-ahead. The FSVA OS and FS would require modifications
to ensure proper attribution.

3.3. Maintaining VM Features

3.3.1. One User OS per FSVA. A fundamental FSVA design decision is whether to share
an FSVA among multiple user VMs. Sharing a single FSVA among multiple user VMs
decreases overhead: common inter-VM FS metadata and data would be automatically
shared, the number of any cache consistency callbacks would be reduced (e.g., for AFS),
greater batching opportunities would exist, and there would exist potential for better
CPU cache locality. Indeed, POFS and XenFS use this single FS server approach [Pfaff
2007; Williamson 2009].

There is a well-known tension between sharing and isolation. A consequence is that
the sharing opportunities provided by a single-FSVA design do not come for free. A
single FSVA complicates a unified buffer cache (Section 3.2), performance isolation,
and user VM migration (Section 3.3). Therefore, to maintain OS and virtualization
features in the presence of multiple user VMs, each user VM is given its own FSVA;
FSVAs are not shared among user VMs. We now describe in detail how a shared FSVA
would complicate maintenance of OS and virtualization features.

3.3.2. Resource Accounting. Virtualization provides coarse-grained physical resource-
sharing among users. This low-level sharing avoids the performance crosstalk that
plagues OS-level resource multiplexing [Barham et al. 2003]. Coarse-grained physical

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:12 M. Abd-El-Malek et al.

resource-sharing also simplifies per-VM resource-accounting, enabling flexible schedul-
ing policies and accurate billing (e.g., in a shared data center).

When a user has one or more FSVAs, resource usage in the FSVAs should be charged
to the user VM. This allows an administrator to continue setting a single coarse-grained
resource policy for user VMs. Logically, the user VM and its FSVAs form a single unit
for the purpose of resource-accounting.

Associating only a single user OS per FSVA simplifies resource-accounting. If mul-
tiple users share an FSVA, the hypervisor would not be able to map FSVA resource
utilization to user VMs. Instead, the FSVA would itself have to track per-user resource
usage and inform the hypervisor. For shared block or network driver VMs [Fraser et al.
2004], tracking per-user resource usage is viable, owing to the small number of request
types and their fairly regular costs [Gupta et al. 2006]. But, FSVAs provide a much
richer interface to users; there are many VFS operation types and an operation can
have significantly varying performance costs (e.g., reads that hit or miss in cache). La-
tent OS work (e.g., cache pressure causing a previously written dirty page to be sent to
the server) further complicates OS-level resource accounting. Also, any DoS-like activ-
ity (e.g., opening a large number of files) only harms the one user OS. Thus, our design
of one user OS per FSVA simplifies resource accounting by leveraging the hypervisor’s
existing coarse accounting mechanisms.

3.3.3. Migration. One feature of virtualization is the ability to migrate VMs without OS
or application support. In addition, live migration minimizes VM downtime, reducing
interference to user applications [Clark et al. 2005]. If a VM relies on another VM for
a driver [Fraser et al. 2004], the VM’s driver connection is reestablished to a driver
VM in the new physical host. This is relatively simple since driver VMs are mostly
stateless and provide idempotent operations.

FSVAs complicate migration. In contrast to driver VMs, FSVAs can contain large
state on behalf of a user VM and the FSVA interface is nonidempotent. To allow un-
modified FSs running in an FSVA to support migration, we migrate an FSVA along
with its user VM. This approach leverages VM migration’s existing ability to transpar-
ently move VMs. Since some FS operations are nonidempotent, care must be taken to
preserve exactly-once semantics. Another complication is that shared memory pages
(e.g., for the request/response ring and memory-mapped I/O) will likely have differ-
ent physical page mappings after migration. To address these two issues, the user OS
and FSVA proxies transparently restore the shared memory mappings and retransmit
any pending requests and responses that were lost during the IPC layer teardown.
Moreover, we retain live migration’s low downtime by synchronizing the two VMs’
background transfer and suspend/resume. More details are available in Abd-El-Malek
et al. [2009].

Having only a single user OS per FSVA simplifies migration. In contrast, a shared
FSVA would require FS involvement in migrating private state belonging to the specific
user OS being migrated. Additionally, for distributed FSs with stateful servers, the
server would need to support a client changing its network address. This would likely
require server modifications. By migrating the unshared FSVA, our approach leverages
the existing migration feature of retaining IPs, thereby requiring no server changes.

3.4. Limitations

3.4.1. Out-of-VFS-band State. The FSVA design fails to capture out-of-VFS-band FS
state. For example, NFSv4 uses Kerberos authentication. With Kerberos, a user runs
a program to obtain credentials, which are stored in /tmp on a per-process-group basis.
The NFSv4 VFS handlers retrieve those Kerberos credentials. To preserve the applica-
tions’ authentication semantics, the use of Kerberos authentication in NFSv4 requires

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:13

the credentials to be copied from the user OS to the FSVA. Since Kerberos is also
used by other FSs, the user OS and FSVA proxies should probably be Kerberos-aware.
However, the general problem of out-of-VFS-band state requires FS cooperation.

3.4.2. Incompatible FS Semantics. A semantic mismatch exists if the user and FSVA OSs
have incompatible VFS interface. For example, connecting a Unix FSVA to a Windows
user OS brings up issues with file naming, permission semantics [Watson et al. 2001],
and directory notifications. So we envision a single FSVA interface for every OS type.
This article focuses on an FSVA interface for Unix OSs, which tend to share similar
VFS interfaces [Kleiman 1986] and POSIX [Eifeldt 1997] semantics. It may be possible
to create a superset interface to support both Windows and Unix users [Eisler et al.
2007], but this is beyond our scope.

3.4.3. Memory Overhead. There is memory overhead for an FSVA, due to an extra OS
and metadata duplication. Since the FS vendor is likely to use only a small subset
of the OS, and they distribute a single FSVA, it is feasible for them to fine-tune the
OS leading to a small OS image. Nevertheless, the FSVA architecture may not be
appropriate for environments with severe memory pressure. Section 5.5 quantifies this
memory overhead.

3.4.4. Reliability. FSVAs introduce a new failure mode: an FSVA crash. But, FS de-
velopers will likely choose a stable FSVA OS (version) that is stripped of unnecessary
kernel- and user-level functionality. Furthermore, the freed-up maintenance resources
allow greater testing for the FSVA OS, leading to greater reliability.

4. IMPLEMENTATION

We used the Xen hypervisor [Barham et al. 2003] for our FSVA prototype. To demon-
strate FS portability, we implemented the user OS and FSVA proxies for two different
Linux kernels: 2.6.18 (released in September 2006) and 2.6.28 (released in December
2008). We also implemented the FSVA proxy for NetBSD 5.99.5—but that port cur-
rently lacks UBC and migration support. We are also currently working on a VMware
port.

An FSVA runs as an unprivileged VM. The IPC layer closely resembles Xen’s block
and network drivers’ IPC layers, consisting of a shared memory region (containing an
asynchronous I/O ring of requests and responses) and an event notification channel
(for inter-VM signaling).

Most of our code is implemented in user OS and FSVA kernel modules. But, we had
to make a number of small changes to Linux and Xen. First, to allow applications to
memory-map FSVA pages, we modified the Linux page fault handler to call the user
OS proxy when setting and removing page table entries that point to an FSVA page.
Xen requires a special hypercall for setting user-space page table entries that point
to another VM’s pages. Second, to support a unified buffer cache, we added hooks to
the kernel’s buffer cache allocation and page-accessed handlers. We also modified the
writeback code as described in Section 4.2. Third, to support migration, we modified
the hypervisor to zero out page table entries that point to another VM at migration
time. In total, these three changes constituted less than 100 SLOC.

A user OS proxy is instantiated for each FSVA. This is similar to how a local FS such
as ext2 can be mounted multiple times for different devices. The proxies are unaware
of each other—they do not share state or communicate with each other.

The Linux user OS and FSVA proxies contain ∼5300 and ∼3500 SLOC, respec-
tively, as measured by SLOCCount. Of the sum, ∼2200 SLOC belong to the migration-
supporting IPC layer, and ∼700 SLOC belong to the UBC code. As a reference point, the

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:14 M. Abd-El-Malek et al.

Linux NFSv3 client code is ∼13,000 SLOC. The NetBSD FSVA proxy contains ∼2500
SLOC—recall it currently lacks UBC and migration support.

4.1. Interproxy Interface

For performance reasons, the two VMs communicate using efficient inter-VM com-
munication mechanisms. Hypervisors usually provide two such mechanisms: shared
memory and event notification. FSVAs use these mechanisms to implement inter-VM
IPC. Control is signaled via event notification. A shared memory region contains a
ring with fixed-size request and response structures containing the VFS arguments
and responses. In addition to that space, regular and memory-mapped read and write
operations dynamically map pages across VMs to eliminate memory copies. VFS op-
erations with variable sized arguments, such as filenames, sometimes may use extra
dynamically-shared pages to store their data. But this is uncommon, as the fixed-sized
IPC slots contain a data array that is usually sufficient to contain most of the arguments
(e.g., filenames up to 64 bytes).

The majority of VFS operations have a simple implementation structure. The user
OS proxy’s VFS handler finds a free slot on the IPC ring, encodes the operation and its
arguments in a generic format, and signals the FSVA of a pending request via an event
notification. Upon receiving the notification, the FSVA decodes the request and calls
the FS’s VFS handler. Responses are handled in a reverse fashion. To avoid deadlocks
like those described in Section 2.1 and Section 2.2, the user OS proxy does not perform
any memory allocations in its IPC path.

Table I lists the interface between the user OS and FSVA proxies. Most of the IPCs
correspond to VFS calls such as mount, getattr, and read. As described in the following,
there is also an IPC to support migration and two IPCs to support a unified buffer cache.

There are two types of application I/O: ordinary read/write and memory mapped
read/write. For ordinary I/O, the application provides a user-space buffer. The user OS
proxy creates a sequence of grants for the application buffer—each grant covers one
page—using Xen’s shared memory facility. No hypercalls are involved in this operation.
The grants are then passed in the I/O IPC. The FSVA proxy maps the grants into the
FSVA address space using Xen hypercalls, calls the FS to perform I/O directly to/from
the buffer, unmaps the grants using Xen hypercalls, and sends the I/O response to
the user. The user OS proxy then can recycle the grants. As an optimization, if less
than 4 kb of data is read or written, data is copied back and forth using trampoline
buffers—pages that are shared during bootstrap—as the cost of the shared memory
hypercalls is not amortized over the small access size (see Section 5.4).

Memory mapped I/O is handled in a similar fashion, except that the roles of grant
issuer and user are reversed. When an application memory access causes the OS page
fault handler to read an FS page, the user OS proxy performs a map page IPC to the
FSVA. In response, the FSVA proxy calls the FS to bring the relevant page into the
buffer cache, pins the page, and returns a grant for the page. The user OS proxy then
maps that grant into its buffer cache. The grant is unmapped once the user OS evicts
the page.

4.2. Unified Buffer Cache

To maintain a UBC, the user OS proxy must be notified of page allocations and accesses
in the FSVA. We added hooks to Linux to inform the FSVA of these events. When
either event occurs, the FSVA proxy queues a notification. A list of these notifications
is piggybacked to the user OS proxy on the next reply.

Linux allocates buffer cache pages in only one function, making it simple for us to
capture allocation events. For page access events, there are two ways in which a page
is marked as accessed. First, when an FS looks up a page in the page cache, the search

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:15

function automatically marks the page as accessed in a kernel metadata structure. We
added a hook to this function. Second, the memory controller sets the accessed bit for
page table entries when their corresponding page is accessed. However, since all FSVA
accesses to FS pages are through the search functions, we ignore this case. (Application
access to memory mapped files will cause the user OS, not the FSVA, page table entries
to be updated.)

A subtle UBC side-effect is that decreasing the number of FSVA-free pages affects
the dirty page write-back rate. To maintain the same write-back behavior, we have
modified the FSVA function that determines the write-back rate such that it uses the
user OS’s number of free pages; this value is piggybacked on every request.

While the majority of FSVA memory allocations occur in the buffer cache, metadata
allocations (e.g., for inodes and directory entries) must increase the FSVA memory.
Otherwise, the FSVA will evict buffer cache pages, decreasing performance. We con-
tinuously monitor the size of the Linux slab—where metadata is allocated—and grow
(shrink) the FSVA as the slab grows (shrinks). The change in slab size is piggybacked
on responses and the user OS changes its size accordingly.

4.3. Migration

There are three steps to migrating a user-FSVA VM pair. First, the two VMs’ memory
images must be simultaneously migrated, maintaining the low unavailability of Xen’s
live migration. Second, given how Xen migration works, the user-FSVA IPC connection
and the shared memory mappings must be reestablished. Third, in-flight requests and
responses that were affected by the move must be reexecuted.

We modified Xen’s migration facility to simultaneously copy two VMs’ memory im-
ages. To maintain live migration’s low downtime, we synchronize the background trans-
fer of the two images and the suspend/resume events. Since the user VM depends on
the FSVA, the user VM is suspended first and restored second.

When a VM is resumed, its connections to other VMs are broken. Thus, the user OS
and FSVA proxies must reestablish their IPC connection and shared memory mappings.
We use Xen’s batched hypercall facility to speed up this process. A side-effect is that the
FSVA proxy must maintain a list of all shared pages to facilitate this reestablishment.
The user OS proxy performs a special restore grants IPC to retrieve this list from the
FSVA.

When a user VM is resumed, its applications may attempt to access a memory-
mapped page whose mapping has not yet been restored. This access would cause an
application segmentation fault. To avoid this, we modified the hypervisor migration
code to zero out user VM page table entries that point to another VM. So, application
attempts to access the page will cause an ordinary page fault into Linux, and the user
OS proxy will block the application until the page’s mapping is reestablished.

Because the user-FSVA IPC connection is broken during migration, in-flight requests
and responses must be resent. To enable retransmission, the user OS retains a copy of
each request until it receives a response. To ensure exactly-once IPC semantics, unique
request IDs are used and the FSVA maintains a response cache. Read operations are
assumed to be idempotent and hence the response cache is small. The FSVA garbage
collects a response upon receiving a new request in the request ring slot corresponding
to that response’s original request.

4.4. Reducing Communication Overhead

Our design goal of supporting unmodified FSs does not come for free. It forces all VFS
calls to be sent to the FSVA. In turn, FSVA performance is highly dependent on the
IPC layer’s performance.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:16 M. Abd-El-Malek et al.

There are two ways to reduce the communication overhead: decreasing the IPC cost
or decreasing the IPC frequency. This section explores both alternatives.

4.4.1. Decreasing IPC Cost. There are two components to IPC: data transfer and control
transfer. Data transfer is fast (less than 1 μs) since requests and responses are small3

and are stored in a shared memory region. Control transfer has two elements: VM-
level scheduling and context switching, and signaling. If the user VM and FSVA are
concurrently executing on different cores, then there are no VM-level scheduler and
context switch latencies. But the two VMs must still signal each other of the pending
request or response.

The standard Xen mechanism for inter-VM signaling employs event chan-
nels [Barham et al. 2003]. The Xen “send event” hypercall sends an interprocessor
interrupt (IPI) to the CPU executing the other VM. Upon receipt of an IPI, the CPU
invokes the OS’s interrupt handler. This is effectively a thread context switch, since the
current processor state must be saved before executing the interrupt handler thread.
In Linux, the interrupt handler typically masks off other interrupts and cannot sleep.
Thus, the interrupt handler is not capable of executing general-purpose kernel code
that may block. The Xen event channel interrupt handler signals a worker thread,
which then handles the operation. This involves a second thread context switch. In a
Linux 64-bit x86 environment, a thread context switch costs ∼3.5 μs. Thus, a one-way
inter-VM signal costs 7 μs in thread switch times. There are also additional overheads
in sending the IPI (∼2 μs).

The Xen event channel mechanism was designed for I/O devices, in which a two-way
IPC signaling overhead of 18 μs would be insignificant when compared to device access
time. But this overhead is too high for FSVAs, where many frequent VFS operations
(e.g., getattr, permission) execute in less than 1 μs.

When multiple processors are available, a well-known technique for reducing IPC
cost is to use polling as a signaling mechanism. Using polling, our IPC can avoid the
expensive thread context switches. This decreases the null IPC latency from 21 μs to
4 μs (Section 5.4). Unfortunately, polling is energy-inefficient during idle periods.

Fortunately, x86 processors include instructions that provide polling-like latency
with events-like energy efficiency. These instructions were introduced to enable energy-
and performance-efficient interprocess synchronization. The monitor and mwait in-
structions put a processor in low-energy mode until a write occurs to a specific memory
address. These are privileged instructions, so we added a new Xen hypercall that wraps
these instructions. The mwait-based IPC has similar latency to the polling IPC, with a
slight increase due to the hypercall cost (Section 5.4).

4.4.2. Decreasing IPC Frequency. Dedicating a processor core provides efficient perfor-
mance (Section 5.3). But, dedicating a core to the FSVA may not always be feasible
or desirable. We know how efficient performance can be achieved without dedicating a
processor core to the FSVA.

During FSVA performance tuning, we found the permission VFS handler to be one
of the biggest sources of performance overhead. This VFS handler is responsible for
performing access control checks and is called in most FS system calls, often more
than once (e.g., for every namespace component during pathname-to-inode translation).
In most FSs, the FS-specific permission handler calls the generic OS access control
function, which compares the Unix user ID with the file owner ID and mode permission.
Given the simplicity of this check, the IPC overhead dwarfs the VFS operation execution
time. Fortunately, the Unix access control semantics is common across most Unix OSs

3Requests and responses are 512 bytes, including piggybacked UBC messages. Data operations (e.g., read
and readdir) use additional shared memory.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:17

and FSs. Thus, for many FSs, we can avoid the permission IPCs because the generic
user OS permission handler is sufficient.

With the permission IPC eliminated, some of our benchmarks see a 30% perfor-
mance improvement (Section 5.3), similar to the benefits of dedicating a core. Thus,
relaxing our design principle of passing all VFS calls can alleviate the need to dedicate
a processor core to the FSVA. Although this requires FS modifications (e.g., to indicate
that a user OS VFS handler is sufficient), the performance improvements make this
worthwhile.

4.4.3. Discussion. We believe it is reasonable to expect FS developers to make very
minor changes to optimize their FS for FSVAs. For example, handling the permission
VFS call in the user OS requires a one-line change for each FS: to tell the FSVA proxy
that the user OS can use its own permission handler. Given the significant performance
benefits for such a minor change, we recommend that FSs take such a route.

For legacy FSs or where such FS modifications are not feasible, efficient performance
can still be provided by dedicating a processor core and using our optimized IPC layer.

5. EVALUATION

This section evaluates our FSVA prototype. First, it describes examples of using FSVAs
to address FS portability. Second, it quantifies the performance and memory overheads
of our FSVA prototype. Third, it illustrates the efficacy of the inter-VM unified buffer
cache and live migration support.

5.1. Experimental Setup

Experiments are performed on a dual quad-core 1.86 GHz Xeon E5320 machine with
8 GB of memory, a 10K rpm 146 GB Seagate Cheetah ST3146755SS disk connected to
a Fusion MPT SAS adaptor, and a 1 Gb/s Broadcom NetXtreme II BCM5708 Ethernet
NIC. Our NFS server is a single quad-core 1.86 GHz Xeon E5320 machine with 4 GB
of memory, a 10K rpm 73 GB Seagate Cheetah ST373455SS disk using the same Fu-
sion SAS adaptor and Broadcom NIC, running the Linux kernel-level NFSv3 server
implementation.

We used Xen version 3.4-unstable. Linux VMs run the 64-bit Debian testing distribu-
tion, with either our modified 2.6.18 kernel (based on the Xen-maintained Linux kernel
tree) or 2.6.28 kernel (based on the vanilla Linux repository). We compiled the Linux
kernels with gcc 4.3.3, without debugging symbols. NetBSD VMs run 64-bit NetBSD
5.99.5, compiled with gcc 4.1.3 with debugging symbols enabled.

By default, ext2 and ext3 randomly allocate block groups for top-level directories.
This caused a variance as high as (15%) in our results across runs. In order to have
repeatable results, we used the oldalloc mount option for ext2 and ext3, which forces a
deterministic, but slower, block group allocation algorithm. When running benchmarks
on a local FS, the FS was given a 108 GB raw disk partition. The NFS server exported
an 18 GB ext2 partition (mounted with the oldalloc option).

Unless otherwise noted, a VM was given 2 GB of memory. When running FSVA
experiments, the inter-VM unified buffer cache allowed us to specify a total of 2 GB for
both the user VM and the FSVA; the user-FSVA VM pair do not benefit from any extra
caching. Similarly, except when otherwise noted, the FSVA and user OS VMs were
pinned to the same CPU in order to ensure comparable CPU access to the non-FSVA
experiments.

5.2. Portable FSs via FSVAs

The efficacy of the FSVA architecture in addressing the FS portability problem
is demonstrated with two case studies: one inter-OS and one intra-OS. First, we

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:18 M. Abd-El-Malek et al.

demonstrate inter-OS FS portability through a Linux user OS using a NetBSD log-
structured file system (LFS) implementation [Rosenblum and Ousterhout 1992]. Sec-
ond, we demonstrate intra-OS FS portability through a Linux 2.6.18 user accessing
the ext4 FS running in a Linux 2.6.28 FSVA.

5.2.1. Linux User Using NetBSD LFS. Linux does not include an LFS implementation.
There are stale third-party kernel- and user-level implementations, but they are not
full-featured and have not been ported to modern kernel versions (!). NetBSD includes
a kernel-level LFS implementation. Using an FSVA, a Linux 2.6.28 user OS can use the
unmodified NetBSD LFS implementation (see Figure 1). We ran a random I/O bench-
mark in the Linux user OS, using a 200 MB test file and a 512 byte write unit size. When
running over the NetBSD LFS FSVA, the benchmark achieved 19.4 MB/s. In contrast,
when running over a Linux ext3 FSVA, the benchmark only achieved 0.44 MB/s. Such
improved random write performance is the hallmark of the LFS approach.

5.2.2. Linux 2.6.18 User Using Linux 2.6.28 ext4fs. The Linux 2.6.28 kernel (released in
December 2008) includes a new FS: ext4. In contrast to its widely-used ext3 predecessor,
ext4 adds extents, delayed allocation, and journal checksumming. Using FSVAs, a user
OS running a Linux 2.6.18 kernel (released in September 2006) can use a Linux 2.6.28
ext4 FSVA. Compared to ext3, the ext4 FSVA provided over a 4 X improvement in
Postmark performance. Thus, FSVAs enable a Linux OS with a 2-year-old kernel to
gain the benefits of ext4 immediately, without having to upgrade.

5.3. Macrobenchmarks

To quantify FSVA overheads, we used three FS-intensive macrobenchmarks: Postmark,
IOzone, and a Linux kernel compilation. To focus on FSVA overheads, both the user OS
and the FSVA used an identical OS: Linux with a 2.6.28 kernel. Otherwise, differences
in internal OS policies add variables to the comparisons. For example, eviction and
write-back policies are different in the 2.6.18 and 2.6.28 kernels, and NetBSD performs
fewer permission VFS calls than Linux due to its whole-pathname name cache, in
contrast to Linux’s per-pathname-component name cache.

We ran the macrobenchmarks over four FSs: ext2, ext3, NFS, and ReiserFS. Five
system configurations were used. “baremetal” denotes a Linux OS running directly
on the hardware without a hypervisor and “domU” denotes a Linux OS running as a
paravirtualized Xen guest. In both cases, the FS executes “natively” in the OS kernel.
“FSVA” denotes the FS running in an FSVA and the user OS sending all VFS operations
to the FSVA. “FSVA-user-OS-permission” denotes the user OS directly handling the
permission VFS call (Section 4.4). “FSVA-mwait” denotes the user OS and FSVA exe-
cuting on separate cores with our new mwait-based IPC mechanism used for inter-VM
signaling (Section 4.4).

Of the five system configurations, we are most interested in the performance differ-
ence between “FSVA-user-OS-permission” and “domU”. This difference represents the
FSVA architecture overhead when the FS is FSVA-optimized through a very small FS
change. Similarly, comparing the “FSVA-mwait” and “domU” results shows the over-
head of the FSVA architecture when no FS changes are made and the FSVA runs on
a dedicated processor. We are also interested in the performance difference between
“baremetal” and “domU”; this is the performance overhead of virtualization. We ex-
pect processor, VMM, and OS improvements to decrease this overhead over time, as
virtualization continues its increasing adoption.

Each experiment was run three times; means and standard deviations are
shown. Before each experiment, the FS partition was reformatted and caches were
flushed.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:19

Fig. 3. Postmark results. The results are normalized on the domU results.

5.3.1. Postmark. The Postmark benchmark measures performance for small file work-
loads akin to e-mail and netnews [Katcher 1997]. It measures the number of trans-
actions per second, where a transaction is either a file create or file delete, paired
with either a read or an append. Files are created with sizes randomly varying from
500 bytes to 9.77 KB. Appends use access sizes that randomly vary from 1 byte to the file
size. Reads access the entire file. Default parameters were used, except for benchmark
sizing: 50,000 files, 50,000 transactions, and 224 subdirectories.

Figure 3 shows that FSVAs result in less than 10% reduction in Postmark perfor-
mance for all tested FSs, compared to the native kernel-level domU results, when the
permission VFS called is handled in the user OS or when a processor core is dedi-
cated to the FSVA. ext2 and ext3 have much faster absolute performance, and thus the
absence of either optimization leads to greater relative overhead (20% and 23%, respec-
tively) than the other file systems, because the IPC latency has a constant cost. The
FSVA overhead for NFS and ReiserFS is less than 5% even without either optimization.
Virtualization adds at most 10% overhead compared to the baremetal performance.

5.3.2. IOzone. The IOzone benchmark supports a wide range of sequential/random
workloads.4 We used IOzone to measure sequential I/O performance. A 10 GB file was
sequentially written and read, using 64 KB record sizes. The file was much larger than
the VM memory size, so the numbers reflect out-of-(FSVA)-cache performance.

Figure 4 shows that for each FS, there was less than 2.5% difference among the
various configurations. These results indicate that virtualization and use of FSVAs do
not impact streaming I/O throughput, even when the user VM and FSVA share a single
CPU core and the permission VFS call is always sent to the FSVA.

5.3.3. Linux Kernel Build. This benchmark consists of building the Linux 2.6.28 kernel.
The kernel archive was copied to the FS, unarchived, and compiled. Approximately

4http://www.iozone.org.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:20 M. Abd-El-Malek et al.

Fig. 4. IOzone results. The results are normalized on the domU results.

Fig. 5. Linux kernel compile runtime. The results are normalized on the domU results.

1000 source files were compiled in our kernel configuration file. (This benchmark will
be made available upon publication.)

Figure 5 shows the results. Virtualization adds substantial overhead (6–18%) to
the Linux kernel compilation, due to the many hypercalls involved with the frequent

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:21

Table II. FSVA Microbenchmarks
Latencies are in μs.

Operation Latency (μs)
Null hypercall 0.24
Send event (hypercall+IPI) 2.09
Create grant 0.21
Destroy grant 0.36
Map grant 1.99
Unmap grant 2.19
4 KB memcpy 0.80
Thread switch 3.52
Null IPC (diff core) 21.21
Null IPC (same core) 16.70
Null IPC (diff core, polling) 4.04
Null IPC (diff core, mwait) 4.34

program execution. When using FSVAs, the overhead varies significantly based on
the configuration. With a separate CPU core and mwait, the overhead is ≤7%. For the
single core configuration where all VFS calls are sent to the FSVA, 20%–40% slowdowns
occur. The culprit for these slowdowns is the frequent permission IPCs. For example,
for the ext3 case, permission IPCs account for 60% of the 9,508,636 IPCs. For all FSs
tested, the permission VFS handler is very simple: it calls the generic OS access control
handler. Thus, IPC overheads are highlighted. By handling the permission VFS call in
the user OS, the FSVA overhead for the single-core configuration is less than 15% for
all FSs.

5.4. Microbenchmarks

To understand the causes of the FSVA overhead, we used high-precision processor cycle
counters to measure a number of events. Table II lists the results: the median of ten
runs. The send event operation refers to sending an event notification to another VM. A
VM mapping another VM’s grant performs the map grant hypercall, and then performs
an unmap grant hypercall once it is done with the page. Note that it is more efficient
to share a single page through two memory copies (say, over a dedicated staging area)
than through the grant mechanism. However, since Xen allows batched hypercalls, the
grant mechanism is faster than memory copies when sharing more than one page due
to the amortized hypercall cost.

A traditional Xen IPC requires two event notifications, each consisting of an inter-
processor interrupt (IPI) and two thread switches (Section 4.4). Those four operations
correspond to 18 μs of the 21.21 μs null IPC latency we observed. The remainder of the
IPC latency goes towards locking the shared IPC ring, copying the request and response
data structures onto the ring, and other miscellaneous operations. When two VMs are
pinned to the same core, Xen avoids sending an IPI and only does a VM context switch,
leading to a slightly faster IPC (16.70 μs. The OS thread switches still occur, since the
OS still executes its normal interrupt-handling routine once the VM is scheduled.

When inter-VM signaling is achieved by polling or our new mwait hypercall, the
null IPC latency drops to 4.04 μs and 4.34 μs, respectively. The extra latency for the
mwait-based IPC is due to the cost of a hypercall. Thus, avoiding the VM and thread
context switches is crucial in reducing the IPC latency, and our mwait-based IPC has
similar performance to the polling-based IPC but without its energy inefficiency.

5.5. Memory Overhead

There is a memory overhead to using FSVAs, with two components: memory for the
FSVA OS image and memory for duplicated metadata. Of course, the particular values
for this memory overhead will vary depending on the particular OS image and the

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:22 M. Abd-El-Malek et al.

0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

0 100 200 300 400 500

R
A

M
 (

M
B

)

Time (s)

FSVA
User
Total

st
ar

t U
BC

read 900 MB
from file

use 800 MB of
anonymous pages

read 500 MB
from file

Fig. 6. Unified buffer cache. This figures shows the amount of memory consumed by the user and FSVA
VMs. As applications shift their memory access pattern between file system and virtual memory usage, the
unified buffer cache dynamically allocates memory among the two VMs while maintaining a constant total
memory allocation.

amount of metadata in use. As concrete examples, we report the memory overhead
when running the reported macrobenchmarks.

The Linux 2.6.28 FSVA uses 72 MB of memory for the OS image. Our FSVA proxy sets
aside 64 MB of memory for an initial extra reservation. Then, during benchmark exe-
cution, we observed 112–136 MB of additional memory allocated for metadata. Thus,
the total memory overhead was 248–272 MB. This can be reduced in two ways. First,
the Linux kernel can be fine-tuned and extra functionality can be removed. For bench-
marking purposes, we used the same Linux 2.6.28 kernel in all experiments. But, when
running as a Xen paravirtualized guest, the kernel can be substantially trimmed down.
Second, as described in the Section 4.2, we currently do not put pressure on the size of
the metadata allocated in the FSVA.

5.6. Unified Buffer Cache

To demonstrate the unified buffer cache, we ran an experiment with an application
alternating between FS and virtual memory activity. The total memory for the user
VM and FSVA is 1 GB. Both VMs are started with 1 GB of memory. Once the user and
FSVA kernel modules are loaded, however, the FSVA returns most of its memory to
Xen, thereby limiting the overall memory usage to slightly over 1 GB.

Figure 6 shows the amount of memory each VM consumes. Starting with a cold
cache, the application reads a 900 MB file through memory mapped I/O. This causes
the FSVA’s memory size to grow to 900 MB, plus its overhead. The application then
allocates 800 MB of memory and touches these pages, triggering Linux’s lazy memory
allocation. As the allocation proceeds, the user VM evicts the clean FS pages to make
room for the virtual memory pressure. These eviction decisions are sent to the FSVA;
the FSVA then returns the memory to the user VM. Linux evicts a a large batch of file
pages initially, then trickles the remainder out.

In the third phase, the application performs a 500 MB ordinary read from a file. This
requires FS pages to stage the data being read. Since the application has not freed its
previous 800 MB allocation, and swapping is turned off for this experiment, the virtual
memory pages cannot be evicted. The result is that only the remaining space (just over
200 MB) can be used to stage reads; the unified buffer cache constrains the FSVA to
this size. Page eviction batching is responsible for the dips in the figure.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:23

5.7. Migration

To evaluate the FSVA’s effect on unavailability during live migration, we wrote a simple
benchmark that continuously performs read operations on a memory-mapped file. This
allows us to measure the slowdown introduced by migrating the user-FSVA VM pair.
Every microsecond, the benchmark reads one byte from a memory-mapped file and
sends a UDP packet containing that byte to another machine. This second machine
logs the packet receive times, providing an external observation point.

To establish baseline live migration performance, we ran our benchmark against
the root NFS filesystem of a single VM with 512 MB of memory. During live migration,
there was 0.29 s unavailability. We then repeated this test against the same FS exported
from an FSVA to a user VM. The two VMs’ memory allocation was set to 512 MB
plus the overhead of the FSVA’s operating system, which was approximately 92 MB.
Unavailability increased to 0.51 s. This increase is caused by the extra OS pages that
need to be copied during the suspend phase and the overhead of our IPC layer and
shared memory restoration. We believe this overhead is relatively independent of the
overall memory size, but were unable to run larger migration experiments due to
limitations in preallocated shadow page tables that Xen uses during migration.

6. ADDITIONAL RELATED WORK

6.1.1. File Systems and VMs. Several research projects have explored running an FS in
another VM, for a variety of reasons. POFS provides a higher-level file system interface
to a VM, instead of a device-like block interface, in order to gain sharing, security, modu-
larity, and extensibility benefits [Pfaff 2007]. VPFS builds a trusted storage facility out
of untrusted legacy FSs [Weinhold and Härtig 2008]. XenFS provides a shared cache
between VMs and shares a single copy-on-write FS image among VMs [Williamson
2009]. Our FSVA architecture adapts these ideas to address the portable FS imple-
mentation problem. The differing goals lead to many design differences. We maintain
OS and virtualization features such as a unified buffer cache and migration. By de-
fault, we pass all VFS calls to the FSVA to remain FS-agnostic, whereas they try to
handle many calls in the user OS to improve performance. We use separate FSVAs
for each user VM to maintain virtualization features, such as migration and resource
accounting, whereas POFS and XenFS focus on using a single FS per physical machine
to increase efficiency.

Parallax runs storage VMs in a shared infrastructure to provide a block-level VM
storage interface that includes features such as efficient snapshotting [Meyer et al.
2008]. Ventana [Pfaff et al. 2006] is a distributed FS that provides an FS-level VM
storage interface. In contrast, FSVAs provide a FS-level interface to existing FS imple-
mentations that is targeted towards a single user VM.

VNFS [Zhao et al. 2006] optimized NFS performance for the case when a client
is physically colocated with a server, using shared memory and hypervisor-provided
communication. VNFS is NFS-specific and hence assumes file system cooperation at
both VMs. For example, VNFS lets NFS clients directly read file attributes from an NFS
server’s shared memory. Most of their optimizations cannot be used in an FS-agnostic
architecture like FSVA.

Table III contrasts the FSVA design with those related systems.

6.1.2. OS Structure. The FSVA architecture is an application of microkernel concepts.
Microkernels execute OS components in privileged servers. Doing so allows indepen-
dent development and flexibility. Traditional microkernels, however, require significant
changes to OS structure. FSVAs leverage VMs and existing hypervisor support to avoid
the upfront implementation costs that held back microkernels.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:24 M. Abd-El-Malek et al.

Table III. Comparing Design Decisions and Capabilities of File System (FS) VMs
The FSVA design is the only one that maintains a unified buffer cache, virtualization features, and file system
semantics for arbitrary file systems. POFS [Pfaff 2007] and XenFS [Williamson 2009] implement a specialized
virtualization-optimized file system; they do not support arbitrary file systems. VNFS [Williamson 2009]
optimizes NFS access for NFS clients physically colocated with a server; the stateless NFS nature allows
the VNFS layer to simply recreate all NFS connections on a migration, thus preserving that virtualization
feature. Resource accounting and performance isolation are not affected by VNFS any more than if the NFS
operations had gone through the local networking layer. VPFS [Weinhold and Härtig 2008] is the only other
system that supports arbitrary file systems, but it performs caching in the user OS; this fails to preserve the
file system semantics.

User OS Shares File system Maintains Maintains Maintains
System caching FS VM scope FS semantics UBC VMM features
POFS Yes Yes Single FS Yes No No
XenFS Yes Yes Single FS Yes No No
VNFS Yes Yes NFS Yes No Yes

(with minor changes)
VPFS Yes No Arbitrary FS No No n/a

(microkernel)
FSVA No No Arbitrary FS Yes Yes Yes

LeVasseur et al. [2004] reuse existing device drivers in different OSs by running
them in a VM. Soft devices simplify device-level development by reusing Xen’s narrow
paravirtualized device interface [Warfield et al. 2005]. FSVAs share both approaches’
aims of leveraging existing kernel code and simplifying OS support. In addition, FSVAs
deal with a richer FS interface while retaining OS and virtualization features.

6.1.3. Fast Inter-VM Communication. Fido [Burtsev et al. 2009] enables zero-copy inter-
VM data movement through a single shared address space. FSVAs avoid data copies
by using hypervisor shared memory hypercalls. Adopting Fido’s single address-space
approach would eliminate the need for the shared memory hypercalls. Fido’s op-
timization is data-centric and orthogonal to our control-centric mwait-based IPC
mechanism.

7. CONCLUSION

FSVAs offer a solution to the file system portability problem, leveraging the virtual-
ization and multicore processor technology trends. A file system is developed for one
OS and bundled with it in a preloaded VM. Users run their preferred OS and use
the FSVA like any other file system. The file system is isolated from both kernel- and
user-space differences in user OSs, because it interacts with just the single FSVA OS
version. In contrast to previous approaches, FSVAs accommodate existing file system
implementations and provide more robust isolation from the user OS.

We presented an FSVA design with minimal performance overheads and no visi-
ble semantic changes for the user. File system semantics are maintained without file
system modifications, thus supporting legacy file systems implementations. OS and vir-
tualization features, such as a unified buffer cache and VM migration, are maintained,
thus encouraging user adoption.

An FSVA prototype demonstrates efficient performance using multicore processors.
Case studies and other experiments demonstrate that the FSVA approach works for a
range of unmodified file system implementations across distinct OSs. Few changes are
made to the OS and VMM, thus encouraging vendor adoption.

For the FSVA approach to be viable, the user OS and FSVA proxies must be
maintained by OS vendors. Our design encourages vendor adoption through de-
sign principles that simplify the proxies’ implementation and ensure a stable FSVA
interface.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

File System Virtual Appliances: Portable File System Implementations 9:25

ACKNOWLEDGMENTS

We thank David G. Andersen, Orran Krieger, and Jonathan M. McCune for their useful feedback. We thank
Chris Behanna (Panasas), Derrick Brashear (OpenAFS), Nitin Gupta (Panasas), Roger Haskin (GPFS),
Sam Lang (PVFS), Rob Ross (PVFS), and Brent Welch (Panasas) for sharing their file system development
experience. We thank Ben Pfaff (POFS), Mark Williamson (XenFS), and Xin Zhao (VNFS) for sharing their
code.

REFERENCES

ABD-EL-MALEK, M., WACHS, M., CIPAR, J., SANGHI, K., GANGER, G. R., GIBSON, G. A., AND REITER, M. K. 2009. File
system virtual appliances: Portable file system implementations. Tech. rep., Parallel Data Lab, Carnegie
Mellon University.

BARHAM, P., DRAGOVIC, B., FRASER, K. , HAND, S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A.
2003. Xen and the art of virtualization. In Proceedings of the 9th ACM Symposium on Operating Systems
Principles. 164–177.

BERSHAD, B. N. AND PINKERTON, C. B. 1988. Watchdogs: Extending the UNIX File System. In Proceedings of
the USENIX Annual Technical Conference. 267–275.

BORDEN, T. L., HENNESSY, J. P., AND RYMARCZYK, J. W. 1989. Multiple operating systems on one processor
complex. IBM Syst. J. 28, 1, 104–123.

BURTSEV, A., SRINIVASAN, K., RADHAKRISHNAN, P., BAIRAVASUNDARAM, L. N., VORUGANTI, K., AND GOODSON, G. R.
2009. Fido: Fast inter-virtual-machine communication for enterprise appliances. In Proceedings of the
USENIX Annual Technical Conference.

CALLAGHAN, B. AND LYON, T. 1989. The automounter. In Proceedings of the USENIX Annual Technical Confer-
ence. 43–51.

CARNS, P. H., LIGON III, W. B., ROSS, R. B., AND THAKUR, R. 2000. PVFS: A parallel file system for Linux clusters.
In Proceedings of the Annual Linux Showcase and Conference. 317–327.

CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C., PRATT, I., AND WARFIELD, A. 2005. Live
migration of virtual machines. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation. 273–286.

CLEMENTS, P. AND NORTHROP, L. 2001. Software Product Lines: Practices and Patterns. Addison-Wesley, Boston,
MA.

EBLING, M., MUMMERT, L., AND STEERE, D. 1994. Overcoming the network bottleneck in mobile computing. In
Proceedings of the IEEE 1st Workshop on Mobile Computing Systems and Applications (WMCSA).

EIFELDT, H. 1997. POSIX: A developer’s view of standards. In Proceedings of the USENIX Annual Technical
Conference. 24–24.

EISLER, M., CORBET, P., KAZAR, M., NYDICK, D. S., AND WAGNER, C. 2007. Data ONTAP GX: A scalable storage
cluster. In Proceedings of the USENIX Conference on File and Storage Technologies. 23–23.

FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I., WARFIELD, A., AND WILLIAMS ON, M. 2004. Reconstructing I/O.
Tech. rep., Computer Laboratory, University of Cambridge.

FUSE. FUSE: Filesystem In userspace. http://fuse.sourceforge.net.
GINGELL, R. A., MORAN, J. P., AND SHANNON, W. A. 1987. Virtual memory architecture in SunOS. In Proceedings

of the USENIX Annual Technical Conference. 81–94.
GUPTA, D., CHERKASOVA, L., GARDNER, R., AND VAHDAT, A. 2006. Enforcing performance isolation across virtual

machines in Xen. In Proceedings of the 9th ACM/IFIP/USENIX International Conference On Middle-
ware. 342–362.

KANTEE, A. 2009. Rump file systems: Kernel code reborn. In Proceedings of the USENIX Annual Technical
Conference.

KATCHER, J. 1997. PostMark: A new file system benchmark. Tech. rep., Network Appliance, Inc.
KLEIMAN, S. R. 1986. Vnodes: An architecture for multiple file system types in Sun Unix. In Proceedings of

the USENIX Annual Technical Conference. 238–247.
LEVASSEUR, J., UHLIG, V., STOESS, J., AND GOTZ, S. 2004. Unmodified device driver reuse and improved system

dependability via virtual machines. In Proceedings of the 6th Annual Symposium on Operating Systems
Design and Implementation.

MAZIERES, D. 2001. A toolkit for user-level file systems. In Proceedings of the USENIX Annual Technical
Conference.

MEYER, D. T., AGGARWAL, G., CULLY, B., LEFEBVRE, G., FEELEY, M. J., HUTCHINSON, N. C., AND WARFIEL D, A.
2008. Parallax: virtual disks for virtual machines. In Proceedings of the SIGOPS European Conference
on Computer Systems (Euro-Sys). 41–54.

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

9:26 M. Abd-El-Malek et al.

PADIOLEAU, Y., LAWALL, J., HANSEN, R. R., AND MULLER, G. 2008. Documenting and automating collateral
evolutions in Linux device drivers. In Proceedings of the SIGOPS European Conference on Computer
Systems (Euro-Sys). 247–260.

PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOLSKY, D., AND ZELENKA, J. 1995. Informed prefetching and
caching. In Proceedings of the ACM Symposium on Operating Systems Principles. 79–95.

PFAFF, B. 2007. Improving virtual hardware interfaces. Ph.D. thesis, Stanford University.
PFAFF, B., GARFINKEL, T., AND ROSENBLUM, M. 2006. Virtualization aware file systems: Getting beyond the

limitations of virtual disks. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation. 353–366.

REDHAT. 2004. Bug 111656: In 2.4.20.-20.7 memory module, rebalance laundry zone() does not respect gfp
mask GFP - NOFS. https://bugzilla.redhat.com/show bug.cgi?id=111656.

ROSENBLUM, M. 2004. The reincarnation of virtual machines. Queue 2, 5, 34–40.
ROSENBLUM, M. AND OUSTERHOUT, J. K. 1992. The design and implementation of a log-structured file system.

Trans. Comput. Syst. 10, 1, 26–52.
SAPUNTZAKIS, C. AND LAM, M. S. 2003. Virtual appliances in the collective: A road to hassle-free computing. In

Proceedings of the 9th Workshop on Hot Topics in Operating Systems (HOTOS). 55–60.
SCHMUCK, F. AND HASKIN, R. 2002. GPFS: A shared-disk file system for large computing clusters. In Proceedings

of the USENIX Conference on File and Storage Technologies. 19.
SILVERS, C. 2000. UBC: An efficient unified I/O and memory caching subsystem for NetBSD. In Proceedings

of the USENIX Annual Technical Conference. 54–54.
SMITH, J. E. AND NAIR, R. 2005. The architecture of virtual machines. Comput. 38, 5, 32–38.
THEKKATH, C. A., WILKES, J., AND LAZOWSKA, E. D. 1994. Techniques for file system simulation. Softw. Pract.

Exper. 24, 11, 981–999.
WALDSPURGER, C. 2002. Memory resource management in VMware ESX server. In Proceedings of the Annual

Symposium on Operating Systems Design and Implementation. 181–194.
WARFIELD, A., HAND, S., FRASER, K., AND DEEGAN, T. 2005. Facilitating the development of soft devices. In

Proceedings of the USENIX Annual Technical Conference. 22–22.
WATSON, A., BENN, P., AND YODER, A. G. 2001. Multiprotocol data access: NFS, CIFS, and HTTP. Tech. rep.,

Network Appliance, Inc.
WEBBER, N. 1993. Operating system support for portable filesystem extensions. In Proceedings of the USENIX

Annual Technical Conference. 219–228.
WEINHOLD, C. AND HÄRTIG, H. 2008. VPFS: Building a virtual private file system with a small trusted computing

base. In Proceedings of the SIGOPS European Conference on Computer Systems (Euro-Sys). 81–93.
WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G., MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B. 2008. Scalable

performance of the Panasas parallel file system. In Proceedings of the USENIX Conference on File and
Storage Technologies. 1–17.

WILLIAMSON, M. 2009. XenFS. http://wiki.xensource.com/xenwiki/XenFS.
YANG, J., SAR, C., TWOHEY, P., CADAR, C., AND ENGLER, D. 2006. Automatically generating malicious disks using

symbolic execution. In Proceedings of the IEEE Symposium on Security and Privacy. 243–257.
ZADOK, E. AND NIEH, J. 2000. FiST: A language for stackable file systems. In Proceedings of the USENIX

Annual Technical Conference. 55–70.
ZHAO, X., PRAKASH, A., NOBLE, B., AND BORDERS, K. 2006. Improving distributed file system performance in

virtual machine environments. Tech. rep., University of Michigan.

Received June 2011; revised December 2011; accepted January 2012

ACM Transactions on Storage, Vol. 8, No. 3, Article 9, Publication date: September 2012.

