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Abstract. Several works have utilized network models to study peer-
to-peer botnets, particularly in evaluating the effectiveness of strategies
aimed at taking down a botnet. We observe that previous works fail to
consider an important structural characteristic of networks — assortativ-
ity. This property quantifies the tendency for “similar” nodes to connect
to each other, where the notion of “similarity” is examined in terms of
node degree. Empirical measurements on networks simulated according
to the Waledac botnet protocol, and on network traces of bots from a
honeynet running in the wild, suggest that real-world botnets can be sig-
nificantly assortative, even more so than social networks. By adjusting
the level of assortativity in simulated networks, we show that high assor-
tativity allows networks to be more resilient to takedown strategies than
predicted by previous works, and can allow a network to “heal” itself
effectively after a fraction of its nodes are removed. We also identify al-
ternative takedown strategies that are more effective, and more difficult
for the network to recover from, than those explored in previous works.

1 Introduction

Graph models from network theory have been applied to study properties of real-
world networks, including social, biological, and computer networks. Erdös-Rényi
random graphs [13] model networks where the edges are created with uniform
probability between every pair of nodes. Watts-Strogatz small-world graphs [38]
model networks where the diameter of the network is small, i.e., increasing log-
arithmically with the size of the network. Barabási-Albert scale-free graphs [2]
model networks with a few highly connected “hub” nodes and many leaf nodes.
These models can be used to analyze the spread of information (or infection)
within a network [30,38] and its resilience to node and edge failures [1,9,15], for
example.

Recently, several works have also applied graph models from network theory
to study peer-to-peer (P2P) botnets [10,11,41,19]. Each node in the network
represents an infected host, and edges reflect communications between the hosts.
Properties of the graph can quantify the botnet’s “usefulness”. For instance, the
diameter of the network measures the efficiency of bot communications, and
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the size of the largest connected component is the number of bots that are
reachable by the attacker and can carry out her instructions. Assuming that
P2P botnets are structured according to known models, these works aim to assess
the effectiveness of strategies to take down a botnet, i.e., decreasing the botnet’s
“usefulness”. For example, one strategy that was found to be effective for some
network topologies is to target nodes with high degree, i.e., that communicate
with many hosts [10,11,41].

We observe that previous works applying graph models to P2P botnets do not
consider an important property of networks — assortative mixing [25]. Assorta-
tivity refers to the tendency for a node to attach to other “similar” nodes, and
is commonly examined in terms of a node’s degree, i.e., high-degree nodes are
likely to be neighbors of other high-degree nodes. This property is also referred
to as degree correlation. The existence of this correlation between neighboring
nodes has been observed in many real-world networks [29,27,25]. More impor-
tantly, it has been found to be a property of growing networks [5,18], where the
network increases in size as nodes join over time, as is true in a botnet as more
hosts become infected.

In this work, we show that assortativity plays an important role in network
structure, such that neglecting it can lead to an over-estimation of the effective-
ness of botnet takedown strategies. By generating networks with varying levels
of degree correlation, we demonstrate that a higher level of assortativity allows
the network to be more resilient to certain takedown strategies, including those
found to be effective by previous works. Moreover, we note that bots are dy-
namic entities that can react and adapt to changes in the network, and so the
botnet can potentially “heal” itself after a fraction of its nodes are removed.
We specifically explore cases where nodes can compensate for lost neighbors
by creating edges to other nearby nodes, e.g., that are within h hops. This is
similar to the behavior of a P2P bot contacting known hosts on its peer-list,
which the bot maintains by constant exchanges with its neighbors [4,6,31,16,36].
Our simulations show that the graph can recover significantly after takedown
attempts, even when h is small, and that higher levels of assortativity can allow
the network to recover more effectively.

Another contribution of this work is in identifying alternative takedown strate-
gies that are more effective than those explored by previous works. Specifically,
we show that targeting nodes with both high degree and low clustering coeffi-
cient will decrease the connectivity and communication efficiency of the network
significantly, and also makes it considerably more difficult for the network to
recover from the takedown attempt. We further examine the effectiveness of ap-
plying this strategy “locally” where only a subset of nodes and edges is visible,
such as when traffic from only a single subnet can be observed.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 defines assortativity, studies this value in botnets, and describes our
algorithm for generating networks with varying levels of assortativity. The effect
of assortativity on network resilience and “healing” ability is investigated in
Sections 4 and 5. Discussion and conclusions are presented in Sections 6 and 7.
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2 Related Work

Botnet models. Several previous works have studied botnets using network
models. Cooke et al. [8] described three potential botnet topologies: centralized,
P2P, and random, and qualitatively discussed their design complexity, detectabil-
ity, message latency, and survivability. Other works [19,10] applied theoretical
network models to botnets, including Erdös-Rényi random graphs [13], Watts-
Strogatz small world graphs [38], and Barabási-Albert scale-free graphs [2]. This
allows the effectiveness of takedown strategies to be quantitatively evaluated us-
ing graph properties, such as the network diameter, the average shortest distance
between pairs of nodes, and the size of the largest connected component. Davis
et al. [11] compared Overnet, which is utilized by the Storm botnet [31,16], with
random and scale-free networks to justify the choice of structured P2P networks
made by bot-masters. They simulated takedown efforts on the networks by re-
moving nodes at random, in descending order of node degree, or in a “tree-like”
fashion by identifying nodes reachable from an initial node, and found Overnet
to be more resilient than other graph models.

To our knowledge, no previous work on botnet modeling has considered the
effect of degree assortativity in networks. This property, defined as the correlation
coefficient between the degrees of neighboring nodes [25], has been found to
be high in many real-world social, biological, and computer networks [26,29].
It has been studied analytically in the statistical physics literature, and found
to be an inherent property of growing networks where nodes join and edges
are created over time [5,18], since older nodes are likely to have higher degree
and tend to connect to each other. Studies in the statistical physics domain
focus on understanding the underlying interactions between nodes that would
result in a network that matches one empirically measured in the real world.
By contrast, a network of bots is elusive and difficult to quantify in practice.
Making assumptions about the graph structure or node correlation (e.g., that
there is none) is thus unfounded.

Network takedown strategies. The resilience of networks to attacks or fail-
ures have been explored in the physics branch of complex networks [1,15,9]. A
scale-free network, which consists of a few highly-connected “hub” nodes and
many “leaf” nodes, has been found to be particularly vulnerable to attacks
where high-degree nodes are removed first. A takedown strategy that targets
high-degree nodes is also recommended by previous works that studied botnet
models [10,11,41], particularly for unstructured P2P networks where there are
“super-peers” present.

Other types of takedown efforts on networks have also been explored in the
complex networks literature, such as cascaded node removals [37], removing
nodes according to their betweenness centrality, or removing edges instead of
nodes [15]. These works focus on the resilience of different network topolo-
gies, and do not take assortativity into account. Newman et al. [26] studied
the prevalence of assortativity in real-world networks. Even though their focus
is on measuring and generating assortative networks, they also showed, through
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simulation, that higher assortativity allows a network to have a larger connected
component after a small fraction of high-degree nodes are removed. However,
they did not explore other takedown strategies, the effect on other graph prop-
erties, or the network’s ability to “heal” itself. In this work, we explicitly study
the effect of assortativity on network resilience and the ability of dynamic net-
works (such as P2P botnets) to recover from takedown attempts.

3 Constructing and Measuring Assortative Networks

We first define degree assortativity, following the definition by Newman et al. [25],
and perform empirical analyses on the assortativity of real botnets by simulating
networks according to the Waledac botnet protocol [6] and examining a portion
of the Storm botnet [31,16,36]. We then describe our algorithm for adjusting
the level of assortativity in simulated networks, and the metrics we use to quan-
tify the “usefulness” of a network. The metrics are aimed at capturing notions
of communication efficiency between nodes and the number of reachable bots,
which are likely to be of importance to the bot-master.

3.1 Degree Assortativity

Degree assortativity, defined as the correlation coefficient between the degrees of
neighboring nodes, measures the tendency for nodes to be connected to others
who are “similar” in terms of their degree. For example, this property is especially
significant in social networks, where gregarious people are likely to be friends
with each other [27,17]. It is also found to be a property of growing networks,
where the network size increases as new nodes join and edges are created [5,18],
as is true for botnets as vulnerable nodes become infected.

We define assortativity following the definition of Newman et al. [25]. Let the
fraction of nodes in a network graph with degree k be denoted pk. If we choose an
edge from the graph at random, and follow it to one of its ends, the probability
that the node at which we arrive has a degree of k is proportional to k. This
is because we are more likely to end up at a node with high degree, which has
more edges connected to it. To account for the edge from which we arrived, the
remaining degree of the node is its degree minus one. The probability qk that we
arrive at a node with remaining degree k is then

qk =
(k + 1)pk+1∑∞

j=0 jpj
(1)

Let ej,k be the probability that a randomly selected edge connects nodes of re-
maining degree j and k, where

∑
j,k ej,k = 1. The assortativity γ of the network,

being the correlation coefficient between the degrees of neighboring nodes, is

γ =
1

σ2
q

∑

j,k

jk(ej,k − qjqk) (2)
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where σ2
q is the variance of the distribution of qk, i.e., σ

2
q =

∑
k k

2qk− [
∑

k kqk]
2.

A higher value of γ indicates that there is higher correlation between the degrees
of two neighboring nodes. In a random graph, where every pair of nodes is
connected with uniform probability, no correlation exists and γ = 0.

3.2 Degree Assortativity in Botnets

Even though high assortativity is found in many real-world networks, measuring
it in practice can be challenging due to difficulties in observing all interactions
between nodes in a large network. This is especially true for P2P botnets, since
infected hosts cannot always be identified, and obtaining a comprehensive view
of those hosts’ communications may require multiple administrative entities to
share sensitive information. While researchers have studied P2P botnets via
infiltration (e.g., [16]), this provides a limited view of only a subset of the botnet.

We expect that real P2P botnets are likely to be assortative. This is not only
because assortativity has been found to be a property of growing networks that
increase in size over time (e.g., when vulnerable hosts become infected and join
the botnet), but also due to the constant peer-list exchanges that occur between
neighboring bots, which makes the “edges” in a botnet far from being random.

We perform two experiments to estimate the level of assortativity in P2P
botnets. In the first, we simulate networks where nodes create and delete edges
according to the algorithm performed by Waledac bots, as described in previous
work that reverse-engineered the Waledac bot binary [4,6]. In the second, we
examine network traffic from Storm bots in a honeynet running in the wild.

Waledac botnet simulations. Waledac is a P2P botnet that communicates
over the HTTP protocol [4,6,35]. Similar to other P2P bots, each bot maintains
a fixed-length list of known peers with which it communicates in order to stay
connected to the botnet (and hence to the bot-master). A bot periodically ex-
changes peer-lists with other peers known to it, i.e., by randomly selecting hosts
from its peer-list. This allows the bot to learn about other hosts in the botnet
and to remove inactive nodes from its peer-list. As documented by Calvet et
al. [6], the Waledac binary comes with a hard-coded list of 200 boot-strapping
hosts. As the bot learns about other existing peers, its peer-list grows to a max-
imum of 500 entries, where each entry includes the IP address of the peer, as
well as the time at which activities from that peer was last observed. If the num-
ber of known peers exceeds 500, the bot only keeps track of 500 most recently
active hosts. During each peer-list exchange, each bot extracts 99 entries from
its peer-list, appends its own IP address and the current time to this shortened
list, and sends it to a host selected at random from its peer-list. In return, the
receiving host also responds with a list of hosts extracted from its own peer-list.

We simulated networks where nodes join and depart over time (e.g., due to
hosts becoming infected or patched), creating or deleting edges between each
other following the Waledac protocol as described above. Assuming a constant
rate of nodes joining the network in each round, we drew each node’s lifetime
from an exponential distribution [28,21], after which the node was removed from
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the network. Each simulated network was allowed to evolve this way until the
number of online nodes reached 5,000. This number represents a small botnet,
and follows the simulation settings in previous work on modeling botnets [10].

From this experiment, we found the assortativity of such networks to be quite
high. Over a total of 50 simulation runs, the average assortativity was 0.39 (with
a standard deviation of 0.036), which is higher than that of social networks [26].
This suggests that a botnet may be significantly assortative, and highlights the
importance of this property in considering botnet models.

Traffic from Storm bots in a honeynet. In addition to our simulations,
we also obtained network traffic from a honeynet running in the wild in late
2007 [14]. This dataset consists of a consecutive 24-hour trace from 13 hosts
participating in the Storm botnet [31,16,36].
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Fig. 1. The assortativity for 13 Storm bots
in a honeynet running in the wild

Figure 1 shows the assortativity
measured among the 13 Storm bots,
where snapshots of their communica-
tions were taken on an hourly basis.
The “degree” of a bot is represented
by 1) the number of distinct source
IP addresses from which it receives
packets (the in-degree), 2) the number
of distinct destination IPs to which it
sends packets (the out-degree), or 3)
the total number of distinct IPs with
which it interacts. Since the rest of the
Storm botnet is not directly observ-
able, we calculated the assortativity of
the sub-graph that consisted of the 13
Storm bots, i.e., by considering traffic
between only the 13 Storm bots. As shown in Figure 1, this value is quite high,
ranging from 0.48 to 0.84.

That said, we acknowledge that this limited dataset may not be representative
of the actual Storm botnet. For example, the high level of assortativity may be
due to certain aspects of the honeynet setup; e.g., the observable bots were placed
in the same local network and so may have been more likely to communicate
with each other. (Such localized measurements may be all that is available in
practice to a network administrator who can observe traffic from only a single
network. We will discuss the effectiveness of botnet takedown strategies using
only local information in Section 6.)

While we recognize the limitations of the above efforts to evaluate assortativity
in today’s botnets, the results of our analysis in Sections 4 and 5 suggest that
a botnet designer would want his botnet to be assortative for added resilience
and recoverability, further buttressing our belief that future botnets will leverage
this naturally occurring property.
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3.3 Generating Assortative Networks

To study the effect of assortativity on networks, we need to be able to generate
networks with varying levels of assortativity. One method for this is to rewire
edges in a given network [40]: At each step, select two edges at random, and shuf-
fle them so that the two nodes with larger remaining degrees are connected, and
the two nodes with smaller remaining degrees are connected. Repeating this step
will result in the network becoming increasingly assortative. However, rewiring
causes the shortest path length between nodes to increase rapidly [40], which
may bias the comparison between networks with different levels of assortativity.

We apply another method for constructing assortative networks, similar to
Newman et al. [26]. This method takes as input the number of nodes in the net-
work, the desired degree distribution pk, and the edge probabilities ej,k. Each
node in the network is assigned a degree drawn from pk. The remaining de-
gree distribution qk can then be calculated from pk, and edges are added by
connecting each pair of nodes of remaining degrees j and k with probability ej,k.
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Fig. 2. Edge probabilities ej,k as a normal
distribution centered at j with different val-
ues for the standard deviation σ

To control the level of assortativ-
ity in the resulting network, we spec-
ify ej,k as follows. For a fixed value
j, assume that ej,k follows a normal
distribution centered at j, where the
standard deviation σ is the adjustable
knob for tuning the level of assortativ-
ity. Figure 2 illustrates ej,k centered
at j. A smaller σ causes the normal
distribution to become more peaked,
where nodes with remaining degree j
have a higher probability of sharing
edges with other nodes of remaining
degree close to j, resulting in a more
assortative network.

In our simulations, pk is chosen so
that the resulting network is scale-
free, specifically, pk ∼ k−3. We focus on scale-free networks because it is represen-
tative of many real-world networks, including unstructured P2P networks [22].
Empirical analysis by Dagon et al. [10] also suggest that the Nugache P2P bot-
net [36] has a scale-free structure. We set the number of nodes to 5,000 to
represent a small botnet, following the simulation settings in previous work [10].
All of the edges are assumed to be undirected.

3.4 Metrics

We utilize the following two graph properties to quantify the “usefulness” of
a botnet: 1) the size of the largest connected component, and 2) the inverse
geodesic length. These metrics have been used by Dagon et al. [10] to compare
the utility of different botnet topologies, and were also used in analyzing the
resilience of various networks in the physics literature [15].
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The fraction S of nodes in the largest connected component is an upper bound
on the number of bots that are directly under the control of the attacker (as-
suming that she is part of one of the connected components). The more hosts
that can carry out the attacker’s commands, the larger the scale of the attack
that can be launched, e.g., denial-of-service attacks or spamming.

In addition to controlling many infected hosts, another property that is likely
to be of importance to the attacker is the efficiency of communication, i.e., how
long it takes for messages to be relayed through the botnet. We measure the
number of hops between pairs of nodes for this purpose. Specifically, let N be
the total number of nodes, V be the set of nodes, |V | = N , and d(u, v) be the
length of the shortest path between node u and node v. The average inverse
geodesic length [15] is defined as

L−1 =
1

N(N − 1)

∑

u∈V

∑

v �=u,v∈V

1

d(u, v)
(3)

Measuring the average inverse geodesic length is particularly useful in cases
where the graph may be disconnected, since the distance d(u, v) between two
nodes u and v that belong to separate connected components would be infi-
nite (and so its contribution to L−1 is zero). The larger L−1 is, the shorter the
distances between nodes, and hence more efficient their communication. In eval-
uating the effectiveness of network takedown attempts, we are more interested
in measuring the normalized average inverse geodesic length, which is defined as

L̂−1 =

∑
u∈V

∑
v �=u,v∈V

1
d′(u,v)

∑
u∈V

∑
v �=u,v∈V

1
d(u,v)

(4)

where d′(u, v) is the modified length of the shortest path between nodes u and
v, that is, after takedown efforts or after the network tries to heal itself. Note
that both the numerator and denominator in L̂−1 are summed over the original
set of nodes, V . Nodes that are removed have infinite distance to the rest of the
network, the inverse of which is zero, and so do not contribute to the sum in
Eqn. 4. The value that L̂−1 takes ranges from 0 to 1. A smaller value indicates
more disruption to network communication and lower communication efficiency.

We measure L̂−1 and S of a network before and after takedown to evaluate
the effectiveness of the takedown strategy (Section 4), and also measure them
after the network attempts to “heal” itself to assess the effectiveness of recovery
mechanisms (Section 5).

4 Network Resilience

In attempts to take down a P2P botnet, network administrators may wish to
prioritize their efforts to focus on the more “important” nodes first, i.e., nodes
whose removal will cause the most disruption to botnet operation. Using the two
metrics described in Section 3.4, we investigate the effectiveness of botnet take-
down strategies, and how they are sensitive to the assortativity of the network.
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4.1 Uniform and Degree-Based Takedown Strategies

We first focus on strategies explored in previous works that study botnet mod-
els [10,11,41,19]:

– Uniform takedown: removing nodes from the network by selecting them
uniformly at random.

– Degree-based takedown: removing nodes from the network in descending
order of node degree, that is, targeting high-degree nodes first.

Uniform takedown is similar to the process in which users and network admin-
istrators patch infected hosts as they are discovered, without coordinating bot
discoveries or patching activities. It has also been used to study random failures
in the context of communication networks or biological networks [1]. While most
networks are found to be resilient to uniform takedown, many are vulnerable to
a degree-based strategy. This targeted takedown strategy is especially effective
against scale-free networks, since the few highly-connected “hub” nodes respon-
sible for maintaining the connectivity of the network are removed first, e.g., the
“super-peers” that are found in unstructured P2P networks. The degree of a
node, interpreted as the number of hosts with which it communicates, has also
been used as an indicator of anomalies in network intrusion detection systems
(e.g., [23,33,34]). In practice, these takedown strategies do not necessarily re-
quire access to the entire network communication graph, but can be applied to
takedown efforts within a sub-graph as well, e.g., within a local network. We
further discuss implementation challenges in Section 6.
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Fig. 3. The normalized average inverse geodesic length L̂−1 after uniform or degree-
based takedown strategies

As described in Section 3.3, we adjust the standard deviation σ of the edge
probability distribution ej,k to generate networks of varying assortativity. For
a scale-free network with 5,000 nodes, we set σ to 1, 5, 10, and 15 to obtain
networks covering a range of assortativity from 0.04 to 0.87. Figures 3 and 4
show how networks with varying levels of assortativity respond to uniform and
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Fig. 4. The average fraction S of nodes in the largest connected component after
uniform or degree-based takedown strategies

degree-based takedown, when 2%, 4%, 6%, 8%, or 10% of nodes were removed
according to each strategy. The numbers are an average of 50 networks generated
for each value of σ. We omit the standard deviations from the plots since they
were generally small, that is, within 0.007 for both L̂−1 and S.

We find the degree-based strategy to be much more effective at taking down
a network compared to uniform takedown, in agreement with previous works.
However, as shown in Figure 3(b), the effectiveness of the degree-based strategy
is highly dependent on the level of assortativity of the network. A lower assorta-
tivity, e.g., toward the left of Figure 3(b), results in the network experiencing a
larger decrease in L̂−1 after takedown attempts. The difference between the de-
crease in L̂−1 for assortative and non-assortative networks grows as more nodes
are removed. A similar phenomenon can be observed in Figure 4(b) for the frac-
tion S of nodes in the largest connected component. With the exception of highly
assortative networks (e.g., greater than 0.6), the fraction of nodes retained in the
largest connected component increases with the level of assortativity. That is,
more bots remain reachable to the attacker in moderately assortative networks.

The higher resilience in assortative networks can be attributed to nodes of
similar degree “clustering” together. When the high-degree nodes are removed
due to the degree-based strategy, only a connected subset of neighboring nodes
are lost in effect. Moreover, since high-degree nodes tend to connect to each other,
fewer of their edges are attached to nodes of low degree — who would be prone
to isolation if their neighbors were removed. However, this also means that there
are fewer high-degree nodes that can act as “bridges” between clusters of nodes
with varying degrees. As more high-degree nodes are removed, the loss of those
“bridging” nodes eventually cancels out other factors contributing to resilience,
and the network can disintegrate, as shown on the far right of Figure 4(b).
These discrepancies in how networks are affected by the same takedown strategy
underline the importance of taking assortativity into account, both in evaluating
takedown strategies and in considering botnet network models.
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4.2 Other Takedown Strategies

While the degree-based strategy is much more effective than the uniform strat-
egy, the former is sensitive to the level of assortativity in the network, as shown
in Figures 3 and 4. In the search for a takedown strategy that would be effective
even for assortative networks, we explore alternative approaches based on other
graph properties, described below.

– Neighborhood connected components: We define the local neighbor-
hood of a node u to be those nodes reachable within h hops from it. Fig-
ure 5(a) shows an example of the neighborhood of node u within three hops,
where the edge labels indicate distances to u. If we were to remove u from
the network, its local neighborhood would be split into separate “connected
components”, as shown in Figure 5(b). The number of “connected compo-
nents” that remains in the neighborhood of a node can be an approximation
of its local importance, since communication between components may have
to be routed through u. Hence, as an alternative takedown strategy, we re-
move nodes in descending order of the number of connected components
in their local neighborhood. A similar metric has also been used to detect
hit-list worms [7].

– Closeness centrality: Closeness centrality for a node u is defined as the
sum of the inverse geodesic distance from u to all other nodes in the network.
A larger value indicates that the node is at a more “centered” location, and
has more influence over the spread of information within the network. In this
strategy, we remove nodes in descending order of their closeness centrality.

– Clustering coefficient with degree: The clustering coefficient measures
how dense the connections are between the neighbors of a node. For a node
u, it is defined as the number of edges that exist between u’s neighbors,
divided by the number of possible edges between u’s neighbors. In Figure 6,
this value for u is 4/10, while that for all other nodes is 1. A smaller value
means that the neighbors of umay be disconnected without u. Ignoring nodes
with the smallest degrees — in our tests, nodes with degree less than one-
fifth of the maximum degree — we remove nodes in increasing order of their
clustering coefficient, and among those with the same clustering coefficient,
in decreasing order of degree.

Figures 7 and 8 show the normalized average inverse geodesic length L̂−1 and
the fraction S of nodes in the largest connected component after each of the
above takedown strategies, for networks of different levels of assortativity. The
results are plotted after removing 2% or 10% of the nodes, and averaged over 50
networks generated for each level of assortativity. The standard deviations are all
within 0.02 for both L̂−1 and S. Compared with the uniform and degree-based
strategies discussed earlier, the clustering coefficient strategy is more effective at
decreasing the network communication efficiency, as shown in Figure 7, while the
connected components strategy seems more effective at lowering the connectivity
of the network, as shown in Figure 8. In both of these cases, the alternative
takedown strategy out-performs the degree-based strategy that previous works
found to be effective [10,11,41].
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(a)
Before removing node u.

(b)
After removing node u.

Fig. 5. An example of the connected components within the neighborhood of node u.
The edge labels indicate number of hops to u.

Fig. 6. An example of edges
between neighbors of node u

One of the reasons that the clustering coeffi-
cient strategy works well is because nodes that
“cluster” together in assortative networks are
likely to have higher clustering coefficient as well,
since their neighbors also have similar degree.
However, while the nodes at the center of a “clus-
ter” may have a clustering coefficient close to 1,
this value is likely to be much smaller for those

connecting the “cluster” to the rest of the network. For example, all nodes in
Figure 6 have a clustering coefficient of 1 except for node u, who turns out to
be the “bridge” between the two clusters of degree two and three nodes. The
removal of nodes with small clustering coefficient in this strategy is hence likely
to lower the communication efficiency within the network.
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(a) After removing 2% of the nodes.
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(b) After removing 10% of the nodes.

Fig. 7. The normalized average inverse geodesic length L̂−1 after removing 2% or 10%
of the nodes according to each takedown strategy
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(a) After removing 2% of the nodes.
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(b) After removing 10% of the nodes.

Fig. 8. The average fraction S of nodes in the largest connected component after
removing 2% or 10% of the nodes according to each takedown strategy

5 Network Recovery

The dynamism inherent in P2P networks means that each individual bot is re-
quired to adapt to changes in its surroundings, for example, due to newly infected
hosts joining the network or current peers going offline, even without takedowns
taking place. Such mechanisms would hence also provide opportunities for the
network to recover itself, i.e., restoring connectivity or reconstructing shortest
paths between nodes, in the face of takedown attempts.

While previous works tend to regard a botnet as a static entity, and eval-
uate changes to the network immediately after takedown efforts as a measure
of their effectiveness, we explicitly consider the ability of dynamic networks to
heal themselves. Specifically, we model a recovery process where nodes can “look
out” to a distance h and find peers that are within h hops. When a node loses a
neighbor, e.g., due to takedown, it compensates for that lost neighbor by creating
a new edge to a randomly selected node within distance h from it. This models
the edge creation process in a P2P botnet, where nodes discover others that are
“close” to it through peer-list exchanges with its neighbors [4,6,31,16,36,35]. The
h-neighborhood of a node u hence represents hosts on u’s peer-list, to which u
looks for maintaining connectivity with the rest of the botnet.

5.1 Recovering from Uniform and Degree-Based Strategies

We first consider the ability of botnets to recover after takedown attempts em-
ploying the uniform or degree-based strategies described in Section 4.1. We focus
on the L̂−1 metric, since it better illustrates the difference between networks of
varying levels of assortativity. Figure 9 shows the normalized average inverse
geodesic distance L̂−1 for networks after they attempt to recover from uniform
or degree-based takedown strategies, when 2% or 10% of the nodes are removed.
The numbers are averaged over 50 runs for each network, where the standard
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(a) Recovery after uniform takedown by
removing 2% nodes.
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(b) Recovery by degree-based takedown
by removing 2% nodes.
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(c) Recovery after uniform takedown by
removing 10% nodes.
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(d) Recovery after degree-based take-
down by removing 10% nodes.

Fig. 9. The normalized average inverse geodesic length after recovering from uniform
or degree-based takedown, when 2% or 10% of the nodes are removed, for various values
of the look-out distance h

deviations are all below 0.006. The look-out distance h was set to 2, 5, 7, and
10. As h increases, L̂−1 increases as well, even reaching above 1 in Figure 9(a),
i.e., the shortest distance between nodes becomes even shorter than before the
takedown! However, while the increase in L̂−1 for networks with lower assorta-
tivity falls flat after a small h (even decreasing slightly, as in Figure 9(d)), the
increase for networks with higher assortativity continues.

One reason for the continued recovery benefit enjoyed by assortative networks
is high-degree nodes “clustering” together, since nodes tend to connect to oth-
ers of similar degree. A node that is able to reach a high-degree node upon
“looking out” is likely to be able to reach other high-degree nodes as well at
a similar distance. This increases the probability that a compensation edge at-
taches to a high-degree node, hence shortening path lengths within the network
and resulting in a higher L̂−1. This phenomenon is more pronounced in net-
works recovering from uniform takedown (see Figures 9(a) and 9(c)), since fewer
high-degree nodes remain after the degree-based strategy.
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5.2 Recovering from Other Takedown Strategies

Figures 10 and 11 show how networks of high and low assortativity recover from
those alternative takedown strategies described in Section 4.2, when 2% or 10%
of the nodes were removed. The results are an average of 50 networks. The stan-
dard deviations are all within 0.009. We observe a trend similar to the recovery
from uniform and degree-based strategies, where networks with higher levels of
assortativity experience continued recovery benefits with the look-out distance
h (Figure 10(a) and 11(a)). Less assortative networks, on the other hand, do not
benefit much after a look-out distance of 2 or 3 (Figure 10(b) and 11(b)). Regard-
less of the takedown strategy, assortative networks have higher communication
efficiency after recovery, in terms of L̂−1, than less assortative networks.
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(a) Networks with assortativity at 0.87.
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(b) Networks with assortativity at 0.04.

Fig. 10. Recovery for networks of high and low assortativity when 2% of the nodes
were removed according to each strategy
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(a) Networks with assortativity at 0.87.
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Fig. 11. Recovery for networks of high and low assortativity when 10% of the nodes
were removed according to each strategy

In addition to being one of the most effective strategies (see Section 4.2), we
also find takedown attempts based on clustering coefficient with degree to be the
most difficult one for a network to recover from, as shown by low values of L̂−1
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in Figures 10 and 11. In fact, when 10% of the nodes were removed from the
same network, the L̂−1 after recovering from the degree-based and the clustering
coefficient strategies can differ by 0.2. This shows that the clustering coefficient
strategy can be a better alternative to one based solely on degree.

Besides creating compensation edges, a botnet may try to recover from take-
downs by re-structuring itself into alternative topologies that are more resilient.
Exploring how bots can perform this effectively in practice is part of future work.

6 Discussion

Applying takedown strategies in practice. Perhaps one of the reasons for
the widespread study of the degree-based strategy is that it can be applied easily
in practice. For example, if the degree of a node is interpreted as the number of
hosts with which it communicates in some time interval, then identifying a node’s
degree can be performed on the basis of flow records (e.g., Cisco Netflows) that
are collected from a router (or routers) that its traffic traverses. Notably, a node’s
degree can be determined solely by observing traffic to and from it, without
requiring knowledge about the entity at the other end of the communication.

Other graph properties, however, may not be so straightforward to measure.
For instance, takedown strategies based on clustering coefficient or neighborhood
connected components depend on observing communications between the neigh-
bors of a node, and may require collaboration between multiple administrative
domains. This can be performed using a method similar to that proposed by
Xie et al. to trace the origin of worm propagations [39]. Another approach is
to examine the peer-lists an infected host receives from its neighbors, assuming
that such data can be captured (i.e., it is not sent encrypted, and full packet
capture is enabled on the network). If a node u has two neighbors communicat-
ing with each other, those nodes should be listed on each other’s peer-lists, and
so the fact that they communicate with each other can be inferred by identifying
overlaps between u’s neighbors and peer-lists sent to u. Of course, in cases where
communications between some neighbors of an infected node are visible neither
directly nor by inference, takedown strategies requiring this information can be
applied considering only those neighbors for which communications are visible.

To examine the effect of applying takedown strategies locally, we generated
networks according to the method described in Section 3.3, and partitioned the
network randomly into k equal-sized portions. The clustering coefficient with
degree strategy (which we find to be the most effective, see Section 4.2) was then
applied separately in each partition, i.e., based on only those edges attached
to nodes in each partition. Figure 12 shows the normalized average geodesic
length L̂−1 and the fraction S of nodes in the largest connected component for
varying values of k, when 10% of all nodes are removed this way. The numbers
were averaged over 50 runs of this experiment. The standard deviations were
all within 0.027 for L̂−1 and 0.013 for S. As shown in the figure, the takedown
strategy becomes less effective as the number of network partitions increases,
though the difference is small. For example, splitting highly assortative networks
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(assortativity at 0.87) into 200 partitions only increases S by 5% compared to
the case when the network is not partitioned (i.e., k =1). We hence believe that
our suggested takedown strategies can be applied with reasonable effectiveness
in practice.
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Fig. 12. The fraction S of nodes in the largest connected component and the normal-
ized average inverse geodesic length L̂−1 after applying the clustering coefficient with
degree takedown strategy locally in each of the k network partitions and removing 10%
of the nodes

Modeling networks analytically. Rather than assuming a particular network
topology, e.g., random, scale-free, or small-world, or a specific level of assorta-
tivity, another approach to modeling networks is to specify a set of actions
governing the behavior of nodes at each step in time, and analytically determine
properties of the resulting network. This type of growing network models have
been used extensively in the physics domain of complex networks [3,24,32,18,12].
Given knowledge of individual bot behaviors and how they interact with each
other from P2P bot studies [4,6,31,16,36], it seems likely that analytical network
models from the physics literature can be adapted to characterize P2P botnets.
In fact, a recent work by Li et al. [20] used this approach to derive the degree
distribution of a botnet where new nodes joins the network by “copying” the
edges of an existing node that it chooses at random.

However, these analytical approaches do make other assumptions about the
underlying network that they attempt to model in order to simplify calculations.
Specifically, by assuming that both the age of the network t and the network
size N is large, t → ∞, N � 1, all actions experienced by a node are approx-
imated by the expected action, e.g., when a node creates one edge at random,
the degree of all other nodes increases by 1/N , where the denominator N is also
replaced by the expected value. These assumptions may not be applicable to
botnets in practice, since 1) network administrators will be equally, if not more,
concerned about infections in the early stages of a botnet when t is small; 2)
botnets have been found to consist of a few hundred or thousand nodes only,
and are commonly rented out in small numbers, e.g., for sending spam; 3) to
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a network administrator managing a local network, N certainly does not grow
indefinitely; and 4) approximating aspects of network growth using expected
values introduces error that could potentially be magnified by a bot designed
counter to assumptions that these approximations imply.
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Fig. 13. The expected assortativity, shown
in the dashed line, versus the actual average
value from simulations, with one standard
deviation shown with error bars

As a simple demonstration of the
separation between analytical models
and actual network growth, we exam-
ine a derivation by Callaway et al. [5]
of the assortativity of a simple net-
work growth model. In each time step,
the model assumes that one node joins
the network, and with probability δ
an edge forms between two nodes se-
lected at random. Their derivation of
the assortativity is based on a rate
equation specifying the expected in-
crease in the number of edges that
connect nodes of remaining degree j
and k at each time step, and makes
the same assumptions as described
above. Figure 13 shows the expected
assortativity of the network as ap-

proximated by Callaway et al. for various values of δ. The actual average values
from simulations are also plotted in the figure, with one standard deviation
shown as error bars. To generate these values, we generated 50 networks for
each value of δ, and set the number of time steps (i.e., number of nodes) to
1,000. Figure 13 shows that the expected assortativity as predicted by Callaway
et al. can differ from the actual average assortativity by an amount that ap-
proaches or, in some cases, exceeds one standard deviation. This suggests that
the simplifying assumptions typically employed in analytical models may cause
nontrivial deviations from practice.

7 Conclusion

Peer-to-peer (P2P) botnets, in contrast to their centralized counterparts, do not
have a single point-of-failure and are difficult to take down. Identifying and re-
moving those nodes that are “important” to the connectivity or communication
efficiency of a botnet is hence critical to disrupting its operation. Toward this
goal, several previous works have modeled P2P botnets using theoretical net-
work models [19,10,11]. These works compare the resilience of various network
topologies to uniform or degree-based node removals, and quantify the effective-
ness of these takedown strategies using graph properties, including the inverse
geodesic length or the fraction of nodes in the largest connected component.

We observe that previous works do not consider an important structural prop-
erty of networks, namely assortativity. Empirical measurements on networks sim-
ulated according to the Waledac botnet protocol and on network traffic from a
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portion of the Storm botnet suggest that this property can be quite high for bot-
nets in practice. We show that in omitting the presence of assortativity in botnet
models, and without considering the effect of dynamic networks actively recover-
ing from node failures, previous works may have over-estimated the effectiveness
of recommended takedown strategies. In addition, we identify alternative strate-
gies that are more effective than those in previous works for botnets with high
assortativity, and study the application of these strategies in a “local” setting
when only a subset of the network is visible.
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