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False Data Injection Attacks against State Estimation in Electric
Power Grids
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A power grid is a complex system connecting electric power generators to consumers through power transmis-
sion and distribution networks across a large geographical area. System monitoring is necessary to ensure
the reliable operation of power grids, and state estimation is used in system monitoring to best estimate the
power grid state through analysis of meter measurements and power system models. Various techniques
have been developed to detect and identify bad measurements, including interacting bad measurements
introduced by arbitrary, nonrandom causes. At first glance, it seems that these techniques can also defeat
malicious measurements injected by attackers.

In this article, we expose an unknown vulnerability of existing bad measurement detection algorithms
by presenting and analyzing a new class of attacks, called false data injection attacks, against state estima-
tion in electric power grids. Under the assumption that the attacker can access the current power system
configuration information and manipulate the measurements of meters at physically protected locations
such as substations, such attacks can introduce arbitrary errors into certain state variables without being
detected by existing algorithms. Moreover, we look at two scenarios, where the attacker is either constrained
to specific meters or limited in the resources required to compromise meters. We show that the attacker
can systematically and efficiently construct attack vectors in both scenarios to change the results of state
estimation in arbitrary ways. We also extend these attacks to generalized false data injection attacks, which
can further increase the impact by exploiting measurement errors typically tolerated in state estimation.
We demonstrate the success of these attacks through simulation using IEEE test systems, and also discuss
the practicality of these attacks and the real-world constraints that limit their effectiveness.
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1. INTRODUCTION

A power grid is a complex system connecting a variety of electric power generators
to customers through power transmission and distribution networks across a large
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Fig. 1. A power grid connecting power plants to customers via power transmission and distribution
networks.

geographical area, as illustrated in Figure 1 (adapted from National Security Telecom-
munications Advisory Committee (NSTAC) – Information Assurance Task Force
(IATF)). The security and reliability of power grids has critical impact on society. For ex-
ample, on August 14, 2003, a large portion of the Midwest and Northeast United States
and Ontario, Canada, experienced an electric power blackout, which affected an area
with a population of about 50 million people. The estimated total costs ranged between
$4 billion and $10 billion (U.S. dollars) in the United States, and totaled $2.3 billion
(Canadian dollars) in Canada [U.S.-Canada Power System Outage Task Force 2004].

1.1. System Monitoring and State Estimation

System monitoring is necessary to ensure the reliable operation of power grids. It pro-
vides pertinent information on the condition of a power grid based on the readings of
meters placed at important components of a power grid, such as substations. The meter
measurements may include bus voltages, bus real and reactive power injections, and
branch reactive power flows in every subsystem of a power grid. These measurements
are typically transmitted to a control center, where the control center staff, with the
assistance of computers, collect crucial system data and provide centralized monitor-
ing and control capability for the power grid. Measurements are usually stored in a
telemetry system, which is also known as Supervisory Control And Data Acquisition
(SCADA) system.

State estimation is used in system monitoring to best estimate the power grid state
through analysis of meter measurement data and power system models. State estima-
tion is the process of estimating unknown state variables in a power grid based on the
meter measurements. The control center staff use the output of state estimation as
they perform contingency analysis, in which they reason about potential operational
problems in the grid, the actions they may take to avoid those problems, and the po-
tential side effects of those actions. For example, they may choose to increase the yield
of a power generator in order to maintain reliable operation even in the presence of
faults (e.g., a generator breakdown).

State estimation uses power flow models. A power flow model is a set of equations
that depict the energy flow on each transmission line of a power grid. An AC power
flow model is a power flow model that considers both real and reactive power and is
formulated by nonlinear equations. State estimation using an AC power flow model
can be computationally expensive and does not always converge to a solution. Thus,
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power system engineers sometimes use a linearized power flow model, DC power flow
model, to approximate the AC power flow model [Li et al. 2008; Hertem et al. 2006].

1.2. Previous Defense against Bad Measurement in State Estimation

It is conceivable that an attacker may attempt to introduce malicious measurements
to achieve her goals. For example, the attacker may directly compromise substation
meters in a power system or hack computers that store meter measurements to inject
malicious data. If these bad measurements affect the outcome of state estimation, the
resulting misinformation can reduce the control center operators’ level of situational
awareness, thus helping the attacker reach or get closer to her malicious goals.

Power systems researchers have realized the threat of bad measurements and devel-
oped techniques for processing them (e.g., [Monticelli 1999; Mili et al. 1985; Monticelli
and Garcia 1983; Monticelli et al. 1986; Mili et al. 1984; Lin and Pan 2007]). These
techniques first detect if there are bad measurements, and then identify and remove
the bad ones if there are any. Some of these techniques (e.g., [Monticelli 1999; Monticelli
et al. 1986; Mili et al. 1984]) were targeted at arbitrary, interacting (i.e., correlated)
bad measurements. At first glance, it seems that these approaches can also defeat the
malicious measurements injected by attackers, since such malicious measurements
can be considered as interacting bad measurements.

1.3. False Data Injection Attacks

However, in the research reported in this article, we discover that if an attacker knows
the current configuration of the power system, all existing algorithms for bad measure-
ment detection and identification in DC power flow models have a common vulnerability
that allows an attacker to bypass their safeguards. The fundamental reason for this
failure is that all existing algorithms for bad measurement detection in DC power flow
models rely on the same assumption that “when bad measurements take place, the
squares of differences between the observed measurements and their corresponding
estimates often become significant [Lin and Pan 2007].” Our investigation indicates
that this assumption is not always true. If the attacker can determine the current
power system configuration, she can systematically generate bad measurements so
that the above assumption is violated, thus bypassing bad measurements detection.

In this article, to gain insights of the aforementioned vulnerability, we present and
analyze a new class of attacks, called false data injection attacks, against state esti-
mation in electric power grids. If the attacker can determine the current configuration
of a power system, she can inject malicious measurements that will mislead the state
estimation process without being detected by any of the existing techniques for bad
measurement detection. We also extend false data injection attacks to a generalized
version, which we referred to as generalized false data injection attacks. In such an
attack, an attacker can utilize the small measurement errors typically tolerated by
state estimation algorithms so that she can further increase the impact of false data
injection attacks without being detected.

In this article, as the first step in our research, we focus on attacks against state
estimation using DC power flow models. We present false data injection attacks from
the attacker’s perspective. We first show that it is possible for the attacker to inject
malicious measurements that can bypass existing techniques for bad measurement
detection. We then look at two plausible attack scenarios. In the first attack scenario,
the attacker is constrained to accessing some specific meters due to, for example,
different physical protection of the meters. In the second attack scenario, the attacker
is limited in the resources available to compromise meters. For both scenarios, we
consider two possible attack goals: random false data injection attacks, in which the
attacker aims to find any attack vector as long as it can lead to a wrong estimation of
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state variables, and targeted false data injection attacks, in which the attacker aims to
find an attack vector that can inject arbitrary errors into certain state variables. We
show that the attacker can systematically and efficiently construct attack vectors for
false data injection attacks in both attack scenarios with both attack goals.

We further look at generalized false data injection attacks, which are extensions to
false data injection attacks. The primary objective is to see if an attacker can achieve
more impact by taking advantage of the small measurement errors typically tolerated
by state estimation algorithms. As we did for false data injection attacks, we show how
an attacker can construct a valid attack vector to bypass detection and inject errors
to the outcome of state estimation in both attack scenarios with both attack goals.
Moreover, we quantify the possible gains that generalized false data injection attacks
offer through theoretical analysis.

We validate these attacks through simulation using IEEE test systems, including
IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-bus systems [Zimmerman and Murillo–
Sánchez 2007]. The simulation results demonstrate the success of these attacks. For
example, to inject a specific malicious value into one target state variable, the attacker
only needs to compromise 10 meters in most cases in the IEEE 300-bus system, which
has 1,122 meters in total. In addition, for generalized false data injection attacks, we
perform simulation on IEEE test systems to examine the additional impact an attacker
achieves beyond false data injection attacks. The simulation results show that even if
the attacker fails to launch the original false data injection attacks, she can still inject
errors to state estimation through the generalized version of attacks. Moreover, the
impacts on large systems are greater than those on small systems, and errors injected
to the estimates of certain state variables in large systems (e.g., IEEE 300-bus system)
are significantly larger than those injected to the estimates of other state variables.

1.4. Requirements and Practical Implications

False data injection attacks do pose strong requirements for the attackers. First, the
attackers must know the current configuration of the target power system, particularly
the topology of the system. This system configuration changes frequently due to planned
daily maintenance of power grid equipment and unplanned events such as unexpected
equipment outage. Normally such information is only available at the control centers of
power companies. Physical access to control centers is highly regulated and protected,
given the sensitivity of the control centers. Thus, it is nontrivial for the attackers to
obtain such configuration information to launch these attacks.

Another requirement for the attackers is the manipulation of the meter measure-
ments. The attackers need to physically tamper with the meters, or manipulate the
meter measurements before they are used for state estimation in the control center.
Many of these meters are located in places where there is protection against unau-
thorized physical accesses (e.g., substations). Thus, it is nontrivial to manipulate the
meter measurements.

The primary benefit of studying false data injection attacks is to expose the vulnera-
bility in existing state estimation techniques. The exact impact of such attacks depends
not only on the introduced errors, but also on how the measurement data (and thus
the measurement errors) will be used in the end applications. In a typical application
in the power grid today, control center personnel are usually involved in the decision-
making process. Experienced operators may be able to identify anomalies caused by
such attacks. Additional research is necessary to clarify the implication of such attacks
in different scenarios.

It should be noted that we assume DC power flow models in state estimation. For
large power systems, nonlinearities become prominent, so that the DC power flow
model is no longer accurate. Hence, false data injection attacks based on the DC power
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flow model may lead to limited impact on large power systems. However, the DC power
flow model is the starting point of our research, and the current results can serve as
the foundation for future research on more complicated models than the DC model. As
an example, following the preliminary version of this article [Liu et al. 2009], recent
work in Sandberg et al. [2010] considered the AC power flow model and proposed a
new targeted false data injection attack, whose goal is to manipulate one power flow
measurement without triggering alarms [Sandberg et al. 2010]. This attack requires
less knowledge about the system than the targeted attacks presented in this article.

1.5. Organization

The rest of the article is organized as follows. Section 2 gives some background infor-
mation and discusses related work. Sections 3 and 4 present the basic principles of
false data injection attacks and generalized false data injection attacks, respectively,
and provide approaches for implementing both random and targeted false data injec-
tion attacks in the two attack scenarios. Section 5 demonstrates the success of these
attacks through simulation. Section 6 concludes and points out some future research
directions.

2. PRELIMINARIES

Power System (Power Grid). A power transmission system (or simply a power system)
consists of electric generators, transmission lines, and transformers that form an elec-
trical network [Wood and Wollenberg 1996]. This network is also called a power grid.
It connects a variety of electric generators together with a host of users across a large
geographical area. Redundant paths and lines are provided so that power can be routed
from any power plant to any customer, through a variety of routes, based on the eco-
nomics of the transmission path and the cost of power. A control center is usually used
to monitor and control the power system and devices in a geographical area.

State Estimation. In order to ensure that a power system continues to operate even
when some components fail, power engineers use meters to monitor system compo-
nents. Those meters take measurements such as real power injections of buses and
real power flows of branches in the power system, and report their measurements
to the control center, which then estimates the state variables of power system us-
ing meter measurements. Examples of state variables include bus voltage angles and
magnitudes.1 After obtaining estimates of state variables, the control center can de-
cide whether or not the power system is operating properly. In simple terms, the state
estimation problem is to estimate power system state variables using meter measure-
ments.

A more precise definition of state estimation is given as follows. Let x = (x1, x2, . . . ,
xn)T and z = (z1, z2, . . . , zm)T denote state variables and meter measurements,
respectively, where n is the number of state variables, m is the number of meter mea-
surements, and m ≥ n. Further let e = (e1, e2, . . . , em)T denote measurement errors.
The state variables are related to the measurements through the model z = h(x) + e
[Monticelli 1999], where h(x) = (h1(x), . . . , hm(x))T and hi(x) is a function of x. Given
z, the state estimation problem is to find the estimate x̂ of x according to this model.

For state estimation using the DC power flow model, the relation between measure-
ments and state variables can be represented by a linear regression model,

z = Hx + e, (1)

1In DC power flow model, voltage magnitudes and reactive power flows are of little concern, and thus state
variables are usually voltage angles.
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where H is an m×n full rank matrix to allow estimating x from z [Wood and Wollenberg
1996]. Three statistical estimation criteria are commonly used in state estimation: the
maximum likelihood criterion, the weighted least-square criterion, and the minimum
variance criterion [Wood and Wollenberg 1996]. When meter error is assumed to be
normally distributed with zero mean, these criteria lead to an identical estimator (i.e.,
minimum mean squared error (MMSE) estimator) with the following matrix solution,

x̂ = (HTWH)−1HTWz, (2)

where W is a diagonal matrix whose elements are reciprocals of the variances of meter
errors. That is,

W =

⎡
⎢⎢⎢⎢⎣

σ−2
1

σ−2
2 ·

·
σ−2

m

⎤
⎥⎥⎥⎥⎦ , (3)

where σ 2
i is the variance of the i-th meter (1 ≤ i ≤ m).

Bad Measurement Detection. Bad measurements may be introduced due to various
reasons such as meter failures and malicious attacks. Techniques for bad measurement
detection have been developed to protect state estimation [Wood and Wollenberg 1996;
Monticelli 1999]. Intuitively, normal meter measurements usually give an estimate
of the state variables close to their actual values, while abnormal ones may “move”
the estimated state variables away from their true values. Thus, there is usually “in-
consistency” among the good and the bad measurements. Power systems researchers
proposed to calculate the measurement residual z − Hx̂ (i.e., the difference between the
vector of observed measurements and the vector of estimated measurements), and use
its 2-Norm ‖z − Hx̂‖ to detect the presence of bad measurements. Specifically, ‖z − Hx̂‖
is compared with a threshold τ , and the presence of bad measurements is inferred if
‖z − Hx̂‖ > τ . Note that there exist other bad measurement detection methods. For ex-
ample, the normalized infinity-norm of the residual may be used to detect the presence
of bad measurements [Abur and Expósito 2004]. In this article, we focus on 2-Norm
detector, since it is one of the most commonly used bad measurement detectors.

The selection of τ is a key issue. Assume that all the state variables are mutually
independent and the meter errors follow the normal distribution. It can be math-
ematically shown that ‖z − Hx̂‖2, denoted L(x), follows a χ2(v)-distribution, where
v = m− n is the degree of freedom. According to Wood and Wollenberg [1996], τ can be
determined through a hypothesis test with a significance level α. In other words, the
probability that L(x) ≥ τ 2 is equal to α. Thus, L(x) ≥ τ 2 indicates the presence of bad
measurements, with the probability of a false alarm being α.

2.1. Related Work

Many researchers have considered the problem of bad measurement detection and
identification in power systems (e.g., [Mili et al. 1985; Schweppe et al. 1970; Handschin
et al. 1975; Monticelli and Garcia 1983; Garcia et al. 1979; Xiang et al. 1982; 1983; Xiang
and Wang 1981; Quintana et al. 1982; Monticelli 1999; Monticelli et al. 1986; Mili et al.
1984; Asada et al. 2005; Gastoni et al. 2003; Chen and Abur 2006; Zhao and Abur 2005;
Chen and Abur 2005; Zhu and Abur 2007]). Early power system researchers realized
the existence of bad measurements and observed that a bad measurement usually led
to large normalized measurement residual. After the presence of bad measurements
is detected, they mark the measurement having the largest normalized residual as
the suspect and remove it [Schweppe et al. 1970; Handschin et al. 1975; Monticelli
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and Garcia 1983; Garcia et al. 1979; Xiang et al. 1982, 1983; Xiang and Wang 1981;
Quintana et al. 1982]. For example, Schweppe et al. [1970] proposed to filter one
measurement having the largest normalized residual at each loop, and then rerun
the same process on the reduced measurement set until the detection test is passed.
Handschin et al. [1975] proposed a grouped residual search strategy that can remove
all suspected bad measurements at one time.

It was found that the largest normalized residual criterion only worked well for
independent, non-correlated bad measurements called noninteracting bad measure-
ments [Monticelli 1999; Monticelli et al. 1986; Mili et al. 1984]. In practice, there
exist correlated bad measurements, which make the normalized residual of a good
measurement the largest. Such bad measurements are called interacting bad measure-
ments. The largest normalized residual method does not work satisfactorily in dealing
with interacting bad measurements. To address this problem, Hypothesis Testing
Identification (HTI) [Mili et al. 1984] and Combinatorial Optimization Identification
(COI) [Monticelli et al. 1986; Asada et al. 2005; Gastoni et al. 2003] were developed.
HTI selects a set of suspected bad measurements according to their normalized
residuals, and then decides whether an individual suspected measurement is good
or bad through hypothesis testing. COI uses the framework from the decision theory
to identify multiple interacting bad measurements. For example, Asada et al. [2005]
proposed an intelligent bad data identification strategy based on tabu search to deal
with multiple interacting bad measurements.

Recently, the focus in bad measurement processing has been on the improvement
of the robustness using phasor measurement units (PMUs) [Chen and Abur 2006;
Zhao and Abur 2005; Chen and Abur 2005; Zhu and Abur 2007]. For example, Chen
and Abur [2006] used PMUs to transform the critical measurements into redundant
measurements such that the bad measurements can be detected by the measurement
residual testing.

It seems that the approaches targeting at arbitrary, interacting bad measurements
(e.g., [Mili et al. 1984; Monticelli et al. 1986; Asada et al. 2005; Gastoni et al. 2003])
can also defeat the malicious ones injected by attackers, since such malicious mea-
surements are indeed arbitrary, interacting bad measurements. However, despite the
variations in these approaches, all of them use the same method (i.e., ‖z − Hx̂‖ > τ ) to
detect the existence of bad measurements. Although power engineers have realized the
vulnerability of this detection approach (e.g., nondetectability of topology errors [Wu
and Liu 1989]), our attempt is the first to consider this vulnerability from the per-
spective of attackers and systematically show how attackers can bypass detection and
inject errors into the output of state estimation even if they are restrained in accesses
and resources.

The preliminary version of this article [Liu et al. 2009] has attracted several re-
search groups to investigate how to defend against false data injection attacks (e.g.,
[Bobba et al. 2010; Sandberg et al. 2010; Kosut et al. 2010a; 2010c; 2010b; Dán and
Sandberg 2010]). In particular, Bobba et al. [2010] provided a lower bound on the num-
ber of meters that need to be protected to thwart the attacks, Sandberg et al. [2010]
introduced indices that quantify the least effort needed to achieve attack goals while
avoiding detection by defenders, and Kosut et al. [2010c] proposed a Bayesian frame-
work that leverages the knowledge of prior distribution on the states to detect false
data injection attacks. All those works are complementary to ours. There exists a con-
current work [Bobba et al. 2010] that also points to the existence of generalized false
data injection attacks. However, methods to generate attack vectors and the impacts
of the attacks are not touched. In this work, we not only show that it is possible for
the attackers to take advantage of the small errors tolerated by state estimation to
cause extended impact, but also show how the attacker can generate attack vectors for
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different combinations of scenarios and goals, and we give a detailed analysis on the
impacts of generalized false data injection attacks.

3. FALSE DATA INJECTION ATTACKS

We assume that there are m meters that provide m measurements z1, . . . , zm and there
are n state variables x1, . . . , xn. The relationship between these mmeter measurements
and n state variables can be characterized by an m × n matrix H, as discussed in
Section 2. In general, the matrix H of a power system is determined by the topology
and line impedances of the system. How the control center constructs H is illustrated
in Monticelli [1999]. We also assume that the attacker can have access to the matrix H
of the target power system, and can inject malicious measurements into compromised
meters to undermine the state estimation process.

As discussed earlier, we consider two possible attack goals: random false data injec-
tion attacks, in which the attacker aims to find any attack vector as long as it can result
in a wrong estimation of state variables, and targeted false data injection attacks, in
which the attacker aims to find an attack vector that can inject a specific error into
certain state variables. While the latter attacks can potentially cause more damage to
the system, the former are easier to launch, as shown in Section 5.

Besides describing the basic false data injection attacks, we also use the following
two plausible attack scenarios to facilitate the discussion on how the attacker can
construct attack vectors to bypass the current bad measurement detection approaches.
Note, however, that the false data injection attacks are not constrained by these attack
scenarios.

—Scenario I – Limited access to meters. The attacker is restricted to accessing some
specific meters due to different physical protections of meters. For example, meters
located in substations with physical perimeter control may be much harder to access
than those located in a locked box outside of a building.

—Scenario II – Limited resources available to compromise meters. The attacker is
limited in the resources required to compromise meters. For example, the attacker
only has resources to compromise up to k meters (out of all the meters). Due to the
limited resources, the attacker may also want to minimize the number of meters to
be compromised.

In the following, we first show the basic principle of false data injection attacks. We
then focus on the two attack scenarios and show how to construct attack vectors for
both random and targeted false data injection attacks.

3.1. Basic Principle

Let za represent the vector of observed measurements that may contain malicious
data. za can be represented as za = z + a, where z = (z1, . . . , zm)T is the vector of
original measurements and a = (a1, . . . , am)T is the malicious data added to the original
measurements. We refer to a as an attack vector. The ith element ai being nonzero
means that the attacker compromises the ith meter, and then replaces its original
measurement zi with a phony measurement zi + ai.

The attacker can choose any nonzero arbitrary vector as the attack vector a, and
then construct the malicious measurements za = z + a. The traditional bad measure-
ment detection approach computes the 2-Norm of the measurement residual to check
whether there exist bad measurements or not. However, as shown in Theorem 3.1, such
a detection approach can be bypassed if the attack vector a is a linear combination of
the column vectors of H.
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THEOREM 3.1. Suppose the original measurements z can pass the bad measurement
detection. The malicious measurements za = z + a can pass the bad measurement de-
tection if a is a linear combination of the column vectors of H, that is, a = Hc.

PROOF. x̂bad, the vector of estimated state variables obtained from za, is computed
by

x̂bad = (HTWH)−1HTWza = (HTWH)−1HTW(z + a)
= x̂ + (HTWH)−1HTWa.

If a = Hc (for any c), the 2-Norm of the measurement residual is

‖za − Hx̂bad‖ = ‖z + a − H(x̂ + (HTWH)−1HTWa)‖
= ‖z − Hx̂ + (a − H(HTWH)−1HTWa)‖
= ‖z − Hx̂ + (Hc − H(HTWH)−1HTWHc)‖
= ‖z − Hx̂ + (Hc − Hc)‖ = ‖z − Hx̂‖ ≤ τ, (4)

where τ is the detection threshold. Therefore, the 2-Norm of the measurement residual
of za is less than the threshold τ , and za can also pass the bad measurement detection.
The injected error is x̂bad − x̂ = (HTWH)−1HTWa = c

In this article, we refer to an attack in which the attack vector a equals Hc, where c
is an arbitrary nonzero vector, as a false data injection attack. By launching false data
injection attacks, the attacker can manipulate the injected false data to bypass the bad
measurement detection and also introduce arbitrary errors into the output of the state
estimation (since each element of c could be an arbitrary number).

3.2. Scenario I – Limited Access to Meters

We assume that the attacker has access to k specific meters. Intuitively, the attacker
can only modify the measurements of these k meters. As a result, the attacker cannot
simply choose any c and use a = Hc as the attack vector. For those meters that cannot
be accessed by the attacker, the injected errors must remain 0.

Formally, we let Imeter = {i1, . . . , ik} be the set of indices of the k meters that the
attacker has access to. The attacker can modify measurements zij , where i j ∈ Imeter. To
launch a false data injection attack without being detected, the attacker needs to find a
nonzero attack vector a = (a1, . . . , am)T such that ai = 0 for i /∈ Imeter (i.e., the attacker
cannot change the meters that she cannot access) and a is a linear combination of the
column vectors of H (i.e., a = Hc).

3.2.1. Random False Data Injection Attack. In a random false data injection attack, the
attacker aims to cause wrong estimation of state variables, where the errors injected
into the wrong estimation could be any value. Thus, the attack vector a should satisfy
the condition a = (a1, . . . , am)T = Hc with ai = 0 for i /∈ Imeter, where Imeter is the set of
indices of the meters that can be accessed by the attacker.

In the following, we develop a method for the attacker to construct such an attack
vector. We first show in Theorem 3.2 that c is redundant and can be eliminated from
our formulation, and a = Hc can be transformed into an equivalent but more straight-
forward form, which only has one variable a. This equivalent form will allow us to
easily generate an attack vector a that satisfies the above condition.

THEOREM 3.2. a = Hc if and only if Ba = 0, where B = H(HTH)−1HT − I.

PROOF. Let P = H(HTH)−1HT and B = P − I. According to Brockwell and Davis
[1991], for any a ∈ Rm, Pa = a if and only if a is a linear combination of column vectors
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of H (i.e., a = Hc). Therefore,

a = Hc ⇔ Pa = a ⇔ Pa − a = 0 ⇔ (P − I)a = 0 ⇔ Ba = 0. (5)

This means a satisfies a = Hc if and only if it satisfies Ba = 0.

Generating a. The attacker needs to find a nonzero attack vector a such that Ba = 0
and ai = 0 for i /∈ Imeter. Represent a as a = (0, . . . , 0, ai1 , 0, . . . , 0, ai2 , 0, . . . , 0, aik,

0, . . . , 0)T , where ai1 , ai2 , . . . , aik are the unknown variables. Let B = (b1, . . . , bm), where
bi (1 ≤ i ≤ m) is the ith column vector of B. Thus,

Ba = 0 ⇔ (. . . , bi1 , . . . , bi2 , . . . , bik, . . .)(0, . . . , 0, ai1 ,

0, . . . , 0, ai2 , 0, . . . , 0, aik, 0, . . . , 0)T = 0.

Let the m× k matrix B′ = (bi1 , . . . , bik) and the length k vector a′ = (ai1 , . . . , aik)
T . We

have

Ba = 0 ⇔ B′a′ = 0. (6)

If the rank of B′ is less than k, B′ is a rank-deficient matrix, and there exist infinite
number of nonzero solutions a′ that satisfy B′a′ = 0 [Meyer 2001]. According to Meyer
[2001], the solution is a′ = (I − B′−B′)d, where B′− is the Matrix 1-inverse of B′ and d
is an arbitrary nonzero vector of length k. With a nonzero solution a′, the attacker can
generate the attack vector a by filling 0s as the remaining elements in a.

If the rank of B′ is k, then B′ is not a rank-deficient matrix and B′a′ = 0 has a unique
solution a′ = 0 [Meyer 2001]. This means that no error can be injected into the state
estimation, and the attack vector does not exist. In other words, the attacker cannot
launch the attack. In Section 5 we show that the chance that the attack vector exists
increases as k increases. Moreover, we prove in Theorem 3.3 that the attack vector
always exists if k > m− n.

THEOREM 3.3. Let k be the number of specific meters that can be accessed by the
attacker. If k > m− n, the attacker can always generate an attack vector that satisfies
the condition a = (a1, . . . , am)T = Hc with ai = 0 for i /∈ Imeter, where Imeter is the set of
indices of meters that can be accessed by the attacker.

PROOF. When generating an attack vector, the attacker needs to look at the rank of
matrix B′. If rank(B′) < k, then the attack vector exists. Otherwise, the attack vector
does not exist. Thus, in the following, we prove that if k > m − n, rank(B′) is always
less than k.

H is an m × n full rank matrix and P = H(HTH)−1HT is a projection matrix of H.
According to Meyer [2001], rank(P) = rank(H) = n, and rank(B) = rank(P − I) = m−n.
Note that B′ is a submatrix of B. Hence, rank(B′) ≤ rank(B) < k.

Therefore, B′ is a rank-deficient matrix and there exist infinite number of nonzero
solutions for a′ that satisfy B′a′ = 0. With a nonzero solution a′, the attacker can
generate the respective attack vector a by filling 0s as the remaining elements in a.

When k > m−n, the attacker does not need to compute the matrices B and B′ to obtain
the attack vector. Instead, the attacker can perform elementary column operations on
H to generate the attack vector. Appendix 6 shows the details.

3.2.2. Targeted False Data Injection Attack. In a targeted false data injection attack, the
attacker not only wants to inject errors into state estimation, but also wants to precisely
control the errors injected into the estimation of certain chosen state variables. In
some sense, targeted false data injection attacks can be viewed as an advanced form of
random attack.
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This attack can be represented mathematically as follows. Let Ivariable = {i1, . . . , ir},
where r < n, denote the set of indexes of the r target state variables chosen by the
attacker. (That is, the attacker has chosen xi1 , xi2 , . . . , xir to compromise.) In this attack,
the attacker intends to construct an attack vector a such that the resulting estimate
x̂bad = x̂ + c, where c = (c1, c2, . . . , cn)T and ci for i ∈ Ivariable is the specific error that
the attacker has chosen to inject to x̂i. In other words, the attacker wants to replace
x̂i1 , . . ., and x̂ir with x̂i1 + ci1 , . . ., and x̂ir + cir , respectively.

We consider two cases for the targeted false data injection attack: A constrained
and an unconstrained case. In the constrained case, the attacker wants to launch a
targeted false data injection attack that only changes the target state variables but
does not pollute the other state variables. The constrained case represents the situation
where the control center (software or operator) may know ways to verify the estimates
of the other state variables. In the unconstrained case, the attacker has no concerns
on the impact on the other state variables when attacking the chosen ones. In the
following, we show how an attacker generates an attack vector for the constrained and
unconstrained cases, respectively.

Constrained Case. The construction of an attack vector a becomes rather simple in
the constrained case. The error injected into the estimates x̂ of state variables is c. Let
Ivariable denote the set of indexes of the target state variables chosen by the attacker.
Every element ci in c is fixed, which is either the chosen value when i ∈ Ivariable, or 0
when i /∈ Ivariable. Therefore, the attacker can substitute c back into a = Hc, and check
if ai = 0 for all i /∈ Imeter. If yes, the attacker succeeds in constructing the (only) attack
vector a. Otherwise, the attack is impossible.

Unconstrained Case. To launch a targeted false data injection attack in the un-
constrained case, the attacker need to generate an attack vector a that satisfies the
following three conditions: (1) a = Hc; (2) ai = 0 for all i /∈ Imeter; and (3) ci of c is the
specific value chosen by the attacker, where i ∈ Ivariable. To generate such an attack
vector, we first show that a = Hc can be converted into an equivalent form without
having c, and then generate a based on the equivalent form.

THEOREM 3.4. a = Hc if and only if Bsa = y, where Bs = Hs(HT
s Hs)−1HT

s − I,
Hs is the submatrix of H containing columns whose indices are not in Ivariable,
b = ∑

j∈Ivariable
h jc j , and y = Bsb.

PROOF. Assume that the number of target variables is r. Let cs = (c j1 , . . . , c jn−r )
T ,

where ji /∈ Ivariable for 1 ≤ i ≤ n − r.

a = Hc ⇔ a =
∑

i /∈Ivariable

hici +
∑

j∈Ivariable

h jc j = Hscs + b ⇔ a − b = Hscs

⇔ Hs
(
HT

s Hs
)−1HT

s (a − b) = Hs
(
HT

s Hs
)−1HT

s Hscs = Hscs = a − b

⇔ Hs
(
HT

s Hs
)−1HT

s − I
)
a = (

Hs
(
HT

s Hs
)−1HT

s − I
)
b

⇔ Bsa = Bsb ⇔ Bsa = y. (7)

Hence, a satisfies a = Hc if and only if a satisfies Bsa = y.

Generating a. The attacker needs to find an attack vector a such that Bsa = y where
ai = 0 for i /∈ Imeter. There are k unknown elements in a at positions i1, . . . , ik. We
follow the same reasoning as in Section 3.2.1 to denote B′

s = (bsi1
, . . . , bsik

) and a′ =
(ai1 , . . . , aik)

T . Then we have

B′
sa′ = y ⇔ Bsa = y. (8)
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If the rank of B′
s is the same as that of the augmented matrix (B′

s|y), B′
sa′ = y is a

consistent equation, and there exist infinite solutions a′ = B′−
s y + (I − B′−

s B′
s)d that

satisfy B′
sa′ = y, where B′−

s is the Matrix 1-inverse of B′
s and d is an arbitrary nonzero

vector of length k [Meyer 2001]. The attacker can generate an attack vector a from any
a′ �= 0.

If the rank of B′
s is not the same as the rank of the augmented matrix (B′

s|y), then the
relation B′

sa′ = y is not a consistent equation, and thus has no solution. This means
that the attacker cannot generate an attack vector to inject the specific errors into the
chosen state variables.

How the attacker chooses specific errors c j for j ∈ Ivariable affects the feasibility
of launching targeted attacks. Note that y = Bsb = Bs

∑
j∈Ivariable

h jc j . If the attacker
chooses c j such that Bs

∑
j∈Ivariable

h jc j is a linear combination of columns of B′
s or

Bs
∑

j∈Ivariable
h jc j = 0, then the rank of the augmented matrix (B′

s|y) is the same as
that of B′

s and the attacker can generate an attack vector. Otherwise, the attacker
cannot generate an attack vector.

3.3. Scenario II – Limited Resources Available to Compromise Meters

In Scenario II, we assume the attacker has resources to compromise up to k meters.
Unlike Scenario I, there is no restriction on what meters can be chosen. For the sake
of presentation, we call a length-m vector a k-sparse vector if it has at most k nonzero
elements. Thus, the attacker needs to find a k-sparse, nonzero attack vector a that
satisfies the relation a = Hc. As in Scenario I, we consider both random and targeted
false data injection attacks in Scenario II.

Note that the existence conditions of the attacks follow the same criteria as in Sce-
nario I. Thus, we focus on investigating how the attacker can construct attack vectors.

3.3.1. Random False Data Injection Attack. With the resources to compromise up to k
meters, the attacker may use a brute-force approach to construct an attack vector. That
is, the attacker may try all possible as consisting of k unknown elements and m − k
zero elements. For each candidate a, the attacker may check if there exists a nonzero
solution of a such that Ba = 0 using the same method as discussed in Section 3.2.1. If
yes, the attacker succeeds in constructing an attack vector. Otherwise, the attacker has
to try the next candidate. However, the brute-force approach could be time consuming.
In the worst case, the attacker needs to examine

(m
k

)
candidate attack vectors.

To improve the time efficiency, the attacker may take advantage of the following
observation. Since a successful attack vector is a linear combination of the column
vectors of H (i.e., a = Hc), the attacker can perform column transformations to H to
reduce the number of nonzero elements in the transformed column vectors. As this
process continues, more column vectors in the transformed H will have fewer nonzero
elements. The column vectors with no more than k nonzero elements can be used as
attack vectors. In particular, when the matrix H is a sparse matrix (which is usually the
case in real power systems), it does not take many column transformations to construct
a desirable attack vector.

A Heuristic Approach. We give a heuristic approach to exploit this observation. The
attacker can initialize a size-n priority queue with the n column vectors of H. The
attacker then repeats the following process: Take the column vector t with the minimum
number of nonzero elements out of the queue. If t is a k-sparse vector, the algorithm
returns and t can be used as the attack vector. If not, for each column vector s in the
queue, the attacker checks if linearly combining t and s can result in a column vector
with less zero elements than t. If yes, the attacker appends the resulting vector to the
queue. The attacker repeats this process until a k-sparse vector is found or the set is
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empty. It is easy to see that a k-sparse vector constructed in this way must be a linear
combination of some column vectors of H, and can serve as an attack vector.

The heuristic approach could be quite slow for a general H. However, it works pretty
efficiently for a sparse matrix H, which is usually the case for real-world power systems.
For example, in our simulation, when k = 4 in the IEEE 300-bus test system, it takes
the heuristic approach about 110ms on a regular PC to find an attack vector.

The heuristic approach does not guarantee the construction of an attack vector even
if it exists, nor does it guarantee the construction of an attack vector that has the
minimum number of nonzero elements. Nevertheless, it runs pretty quickly when it
can construct an attack vector, and thus could still be a useful tool for the attacker.

Ideally, in order to reduce the attack costs, the attacker would like to compromise as
few meters as possible. In other words, the attacker wants to find the optimal attack
vector a with the minimum number of nonzero elements. The attacker may use the
brute-force approach, discussed at the beginning of Section 3.3.1 with k being 1 initially,
and gradually increase k until an attack vector is found. Apparently, such an attack
vector gives the optimal solution with the minimum number of compromised meters.
There are possibilities to improve such a brute-force approach, for example, by using a
binary search in identifying the minimum k.

3.3.2. Targeted False Data Injection Attack. We follow the notation used in Scenario I to
describe the targeted false data injection attack. Let Ivariable = {i1, . . . , ir}, where r < n,
denote the set of indexes of the r target state variables chosen by the attacker. In this
attack, the attacker intends to construct an attack vector a to replace x̂i1 , . . ., and x̂ir
with x̂i1 + ci1 , . . ., and x̂ir + cir , respectively, where ci1 , . . . , cir are the specific errors to be
injected. Similar to Scenario I, we consider both constrained and unconstrained cases.

Constrained Case. As discussed earlier, in the constrained case, the attacker intends
to only change the estimation of the chosen target state variables, but does not modify
the others. Thus, all elements of c are fixed. So the attacker can substitute c into
the relation a = Hc. If the resulting a is a k-sparse vector, the attacker succeeds in
constructing the attack vector. Otherwise, the attacker fails. The attack vector derived
in the constrained case is the only possible attack vector; there is no way to further
reduce the number of compromised meters.

Unconstrained Case. In the unconstrained case, only the elements ci of c for i ∈
Ivariable are fixed; the other c j for j /∈ Ivariable can be any value. According to Eq. (7),
a = Hc ⇔ Bsa = y. (Note that the derivation of Eq. (7) does not assume any specific
compromised meters. Thus, Eq. (7) also holds in the unconstrained case in Scenario II.)

To construct an attack vector, the attacker needs to find a k-sparse attack vector a
that satisfies the relation Bsa = y. A closer look at this problem reveals that it is the
Minimum Weight Solution for Linear Equations problem [Garey and Johnson 1979],
which is an NP-complete problem: Given a matrix A and a vector b, compute a vector x
satisfying Ax = b such that x has at most knonzero elements. Several efficient heuristic
algorithms have been developed to deal with this problem, for example, the Matching
Pursuit algorithm [Natarajan 1995; Pati et al. 1993; Lovisolo et al. 2005]; the Basis
Pursuit algorithm [Chen 1995; Georgiev and Cichoki 2004]; and the Gradient Pursuit
algorithm [Blumensath and Davies 2008]. The attacker can use these algorithms to
find a near optimal attack vector. In our simulation, we choose the Matching Pursuit
algorithm, since it is the most widely used algorithm for computing the sparse signal
representations and has an exponential rate of convergence [Huggins and Zucker 2007].

The attacker may want to minimize the number of meters to be compromised, that is,
to find an attack vector a with the minimum number of nonzero elements that satisfies
a = Hc such that the chosen elements in c have the specific values. This problem is
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the MIN RVLS= problem [Amaldi and Kann 1998]: Given a matrix A and a vector
b, compute a vector x satisfying Ax = b such that x has as few nonzero elements as
possible. The Matching Pursuit algorithm can again be used to find an attack vector,
since this problem is the optimization version of the minimum weight solution for
linear equations problem.

3.4. Impact Analysis

In this section, we analyze the impact introduced by false data injection attacks. Note
that the analysis is not limited to the two scenarios discussed earlier. Instead, it ap-
plies to any false data injection attacks that inject errors into state variables through
compromised meter measurements.

3.4.1. Problem Formulation. Since the state estimation problem is commonly solved as
a weighted least squares problem [Monticelli 1999], the vector x̂bad of the estimated
state variables obtained from observed measurements za can be represented as

x̂bad = (HTWH)−1HTWza, (9)

where W is a diagonal matrix whose elements are reciprocals of the variances of meter
errors (see Section 2). Therefore,

‖za − Hx̂bad‖ = ‖Hx̂bad − za‖ = ‖(H(HTWH)−1HTW − I)(z + a)‖ = ‖F(z + a)‖,
where F = H(HTWH)−1HTW − I. If ‖Fa‖ = 0, ‖za − Hx̂bad‖ = ‖Fz‖ = ‖z − Hx̂‖. On
the other hand, it follows from Eq. (9) that

‖x̂bad − x̂‖ = ‖(HTWH)−1HTW(z + a) − (HTWH)−1HTWz‖ = ‖Qa‖,
where Q = (HTWH)−1HTW. Assume Imeter = {i1, . . . , ik} is the set of indices of meters
that are compromised by the attacker. Further represent F as F = (f1, . . . , fm). Since
the attacker can only inject errors into the meters that she compromises (i.e., ai = 0
for i /∈ Imeter), ‖Qa‖ = ‖Q′a′‖ and ‖Fa‖ = 0 ⇔ ‖F′a′‖ = 0, where F′ = (fi1 , . . . , fik),
Q′ = (qi1 , . . . , qik), and a′ = (ai1 , . . . , aik)

T . Let Ivariable = { j1, . . . , jr} denote the set
of indexes of target state variables chosen by the attacker. (Ivariable consists of the
indexes of all state variables when the attacker does not target at any specific state
variables.) The error introduced by the attacker can be obtained by solving the following
optimization problem:

Maximize ‖Q′′a′‖
s.t. ‖F′a′‖ = 0,

where Q′′ is a submatrix of Q′ and is formed by the j1-th,. . . , jk-th row of Q′.

3.4.2. Injected Error. Note that when F′ is a full rank matrix (i.e., Rank (F′) = k),
‖F′a′‖ = 0 has a unique solution a′ = 0 [Meyer 2001]. Therefore, ‖Q′′a′‖ = 0 and no
error can be injected into the state estimation. However, when F′ is a rank deficient
matrix (i.e., Rank (F′) < k), the amount of introduced error is unbounded, as shown in
Theorem 3.5.

THEOREM 3.5. For false data injection attacks, if Rank (F′) < k, the maximum of
the 2-Norm of error an attacker can introduce to the outcome of state estimation is
unbounded.

PROOF. We need to maximize ‖Q′′a′‖ under the condition that ‖F′a′‖ = 0. If F′
is a rank deficient matrix, there exist nonzero solutions a′ that satisfy F′a′ = 0 and
a′ = (I − F′−F′)d, where F′− is the Matrix 1-inverse of F′ and d is an arbitrary nonzero
vector of length k. Thus, ‖Q′′a′‖ = ‖Q′′[(I − F′−F′)d]‖. Note that d can be any nonzero
vector. Therefore, the 2-Norm of injected error ‖Q′′a′‖ is unbounded.
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4. GENERALIZED FALSE DATA INJECTION ATTACKS

In this section we extend false data injection attacks to a generalized version, which we
referred to as generalized false data injection attacks. The primary objective is to see if
an attacker can achieve higher impacts by taking advantage of the small measurement
errors typically tolerated by state estimation algorithms.

As for false data injection attacks, we consider both random and targeted generalized
false data injection attacks. In random generalized false data injection attacks, the
attacker aims to mislead the control center to get wrong estimates of state variables,
whereas in targeted generalized false data injection attacks, the attacker aims to make
the estimates of selected state variables to be specific values. For both random and
targeted false data injection attacks, we show how an attacker constructs an attack
vector in Scenarios I and II, respectively.

4.1. Basic Principle

Similar to false data injection attacks, we consider a power system consisting of m
meters and n state variables for generalized false data injection attacks. Recall that
the compromised measurements za can be represented as za = z + a, where z is the
vector of original measurements and a is the attack vector. x̂bad, the estimated state
variables obtained from za, can be represented as x̂ + c, where c is the introduced error
and x̂ is the true estimate. Therefore, the 2-Norm of the measurement residual of za is

‖za − Hx̂bad‖ = ‖z + a − H(x̂ + c)‖
= ‖z − Hx̂ + (a − Hc)‖
≤ ‖z − Hx̂‖ + ‖(a − Hc)‖.

Let τ denote the detection threshold and τa = τ − ‖z − Hx̂‖. If ‖a − Hc‖ ≤ τa, then
‖za − Hx̂bad‖ ≤ τ and the attacker can bypass the detection. We refer to an attack in
which the attack vector a satisfies ‖a − Hc‖ ≤ τa as a generalized false data injection
attack. That is, in false data injection attacks, the attack vector a should satisfy the
condition ‖a − Hc‖ = 0, while the generalized false data injection attacks relax this
condition so that any vector a that satisfies ‖a − Hc‖ ≤ τa can be used as the attack
vector.

4.2. Scenario I – Limited Access to Meters

Let Imeter = {i1, . . . , ik} represent the set of indices of the k meters whose measure-
ments can be compromised by the attacker. Thus, the attacker can only change the
measurement of the i jth meter to a wrong value, where i j ∈ Imeter.

4.2.1. Random Generalized False Data Injection Attacks. Assume a − Hc = t, where t is a
length-mvector that reflects the difference between a and Hc. The attacker can bypass
detection as long as ‖t‖ = ‖a − Hc‖ ≤ τa. In random generalized false data injection
attacks, the vector c (i.e., the errors introduced to the state variables) can be any value.
Note that a can be represented as a = (0, . . . , 0, ai1 , 0, . . . , 0, ai2 , 0, . . . , 0, aik, 0, . . . , 0)T ,
where ai1 , ai2 , . . . , aik are the unknown variables to be determined. Following Eqs. (5)
and (6), we can obtain an equivalent form of the relation a − t = Hc as follows:

a − t = Hc ⇔ B(a − t) = 0 ⇔ Ba = Bt ⇔ B′a′ = Bt. (10)

where B = (b1, . . . ., bm) = H(HTH)−1HT − I, B′ = (bi1 , . . . , bik), a′ = (ai1 , . . . , aik)
T , and

t is a vector whose 2-Norm is less than τa (i.e., ‖t‖ ≤ τa). Thus, the attacker can solve a′
from equation B′a′ = Bt to get the attack vector a. Details are given in the Appendix.

4.2.2. Targeted Generalized False Data Injection Attacks. By launching targeted generalized
false data injection attacks, the attacker intends to inject specific errors into the
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estimation of chosen state variables, while resulting in small residuals. We also
consider both constrained and unconstrained cases.

In the constrained case, the attacker modifies the target state variables but keeps
the other state variables unchanged. Note that the introduced error c is a fixed vector,
and thus the attacker can directly substitute c into a = Hc + t and adjust t to obtain
the attack vector a. Specifically, the attacker can first use a zero vector as the initial
t = (t1, . . . , tm)T . Let f = ( f1, . . . , fm)T = Hc. For 1 ≤ i ≤ m, if fi �= 0 and i /∈ Imeter, then
the attacker can set ti to − fi. Finally, the attacker checks whether the 2-Norm of the
updated t is less than τa or not. If yes, the attack vector equals to Hc + t. Otherwise,
the attack vector does not exist.

In the unconstrained case, the attacker modifies the target state variables without
any concern about the impact on the other state variables. This means only the elements
ci of c for i ∈ Ivariable are fixed, and the other elements c j for j /∈ Ivariable can be
any values, where Ivariable = {i1, . . . , ir} denote the set of indexes of the r target state
variables chosen by the attacker. Note that a−t = Hc = ∑

i /∈Ivariable
hici +

∑
j∈Ivariable

h jc j .
Let b = ∑

j∈Ivariable
h jc j and Hs = (h j1 , . . . , h jn−r ), where ji /∈ Ivariable for 1 ≤ i ≤ n − r.

Following Eqs. (7) and (8), a − t = Hc can be transformed into the following equivalent
forms:

a − t = Hc ⇔ Bs(a − t) = Bsb ⇔ Bsa = Bs(t + b) ⇔ B′
sa′ = Bs(t + b), (11)

where Bs = (bs1 , . . . , bsm) = Hs(HT
s Hs)−1HT

s − I, B′
s = (bsi1

, . . . , bsik
), a′ = (ai1 , . . . , aik)

T ,
and t is a vector whose 2-Norm is less than τa. Hence, the attacker can solve a′ from
equation B′

sa′ = Bst + Bsb to get the attack vector a. Details are given in the Appendix.

4.3. Scenario II – Limited Resources Available to Compromise Meters

In Scenario II, the attacker can compromise up to k meters, but there is no restriction
on what meters can be compromised. The attacker needs to find a k-sparse, nonzero
attack vector a that satisfies the inequality ‖a − Hc‖ ≤ τa.

For random generalized false data injection attacks and targeted generalized false
data injection attacks in the unconstrained case, the attacker needs to find a k-sparse
vector a that satisfies equation Ba = Bt and Bsa = Bs(t + b), respectively. The attacker
can directly reduce the problem to the Minimum Weight Solution for Linear Equations
problem by using any vector with 2-Norm less than or equal to τa as t. After the
reduction, the attacker can take advantage of existing algorithms such as Matching
Pursuit [Natarajan 1995; Pati et al. 1993; Lovisolo et al. 2005]; Basis Pursuit [Chen
1995; Georgiev and Cichoki 2004]; and Gradient Pursuit [Blumensath and Davies 2008]
to find a k-sparse solution for equation Ba = Bt or Bsa = Bs(t + b).

For targeted generalized false data injection attacks in the constrained case, the
attack vector a should be a k-sparse vector that satisfies a = Hc + t. Note that the
introduced error c is a fixed vector. Thus, if Hc is k-sparse, then t = 0 and a = Hc.
Otherwise, assume that there are q (k < q ≤ m) nonzero elements in Hc. The attacker
first adjusts t such that q − k nonzero elements in Hc can be canceled when t is added
to Hc, and then checks whether the 2-Norm of t is less than or equal to τa. If yes, Hc + t
is an attack vector. Otherwise, the attack vector does not exist.

4.4. Impact Analysis

In this section we analyze the impact introduced by generalized false data injection
attacks, particularly the additional errors beyond the (original) false data injection
attacks. Note that our results are not limited to the above two attack scenarios, but
are applicable to any generalized false data injection attacks, where errors are injected
into a set of state variables through a set of compromised meters.
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4.4.1. Problem Formulation. According to Section 3.4.1, ‖x̂bad − x̂‖ = ‖Qa‖ = ‖Q′′a‖.
Note that

‖za − Hx̂bad‖ = ‖F(z + a)‖ ≤ ‖Fz‖ + ‖Fa‖,
where F = H(HTWH)−1HTW − I. Let τa = τ−‖Fz‖. If ‖Fa‖ ≤ τa, then ‖za−Hx̂bad‖ ≤ τ .
Therefore, the error introduced by the attacker can be obtained by solving the following
optimization problem:

Maximize ‖Q′′a′‖
s.t. ‖F′a′‖ ≤ τa.

4.4.2. Injected Error. When Rank (F′) < k, the amount of error injected by false data in-
jection attacks is unbounded. Note that generalized false data injection attacks include
false data injection attacks, and thus the amount of error introduced by generalized
attacks is also unbounded.

When Rank (F′) = k, the original false data injection attacks cannot introduce errors
to the output of state estimation, as discussed in Section 3.4. However, as shown in
Theorem 4.1, generalized false data injection attacks can still inject nonzero errors,
and the 2-Norm of the injected errors is bounded by a constant.

THEOREM 4.1. Suppose Rank (F′) = k. In generalized false data injection attacks, the
maximum of the 2-Norm of injected error is τa

√
λmax, where λmax is the largest eigenvalue

of matrix D = [
√

(F′TF′)T]−1(Q′′TQ′′)(
√

F′TF′)−1.

PROOF. In generalized false data injection attacks,

‖Q′′a′‖2 = a′T(Q′′TQ′′)a′ (12)

and

‖F′a′‖2 = a′T(F′TF′)a′. (13)

F′TF′ is a nonsingular k × k matrix, since F′ is full rank. Let w =
√

F′TF′a′. Thus,
a′ = (

√
F′TF′)−1w. Substituting w =

√
F′TF′a′ and a′ = (

√
F′TF′)−1w into Eqs. (12)

and (13), we can obtain

‖Q′′a′‖2 = wT[
√

(F′TF′)T]−1(Q′′TQ′′)(
√

F′TF′)−1w,

and

‖F′a′‖2 = wT[
√

(F′TF′)T]−1(
√

F′TF′)w = wTw.

Let D = [
√

(F′TF′)T]−1(Q′′TQ′′)(
√

F′TF′)−1 and y = w
τa

. Thus,

‖Q′′a′‖2 = wTDw = τ 2
a (yTDy) (14)

and

‖F′a′‖2 = wTw = τ 2
a (yTy).

Therefore, the maximum amount of injected error can be obtained by solving the fol-
lowing optimization problem:

Maximize yTDy
s.t. yTy ≤ 1.

Note that y �= 0 and matrix D is a symmetric matrix (i.e., DT = D). Let λmax and νmax
denote the largest eigenvalue of D and the eigenvector associated with the largest
eigenvalue, respectively. According to the Rayleigh–Ritz theorem [Golub and Van Loan
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Table I. Summary of Original and Generalized False Data Injection Attacks

Attacks Scenarios Goals Results
Random B′a′ = 0, B′ is rank deficient.

Limited access Targeted constrained a = Hc, c is fixed
Targeted unconstrained Bs

′a′ = y, rank(B′
s) = rank(B′

s|y)
Basic Random Ba = 0, a is k-sparse.

Limited resources Targeted constrained a = Hc, c is fixed.
Targeted unconstrained Bsa = y, a is k-sparse.
Random B′a′ = Bt, ‖t‖ ≤ τa

Limited access Targeted constrained a = Hc + t, c is a fixed and ‖t‖ ≤ τa
Generalized Targeted unconstrained B′

sa′ = Bs (t + b), ‖t‖ ≤ τa
Random Ba = Bt, ‖t‖ ≤ τa, and a is k-sparse.

Limited resources Targeted constrained a = Hc + t, c is a fixed and ‖t‖ ≤ τa
Targeted unconstrained Bs a = Bs (t + b), ‖t‖ ≤ τa, and a is k-sparse.

1989], yTDy ≤ λmaxyTy, and yTDy = λmaxyTy when y = νmax. The eigenvectors of
matrix D are orthogonal to each other, since D is a symmetric matrix [Golub and
Van Loan 1989]. Hence, νT

maxνmax =1 and the maximum value of yTDy equals λmax.
Substituting λmax into Eq. (14), we can obtain the maximum error

max ‖Q′′a′‖ = τa

√
λmax (15)

with a′ = (
√

F′TF′)−1w= (
√

F′TF′)−1τay= (
√

F′TF′)−1τaνmax.

We have presented false data injection attacks and the generalized versions in this and
the previous sections. In the following, we summarize in Table I the main results, par-
ticularly the attack existence conditions, to facilitate the understanding of the overall
situation.

5. EXPERIMENTAL RESULTS

In this section we validate both original and generalized false data injection attacks
through experiments using IEEE test systems, including the IEEE 9-bus, 14-bus, 30-
bus, 118-bus, and 300-bus systems. The IEEE 9-bus, 14-bus, 30-bus, and 118-bus rep-
resent portions of American Electric Power System (in the Midwestern U.S.) in the
early 1960s, while the IEEE 300-bus system was developed by the IEEE Test Systems
Task Force in 1993 [Christie 1999].

In our experiments, we simulate attacks against state estimation using the DC
power flow model. We extract the configuration of the IEEE test systems (particularly
matrix H) from MATPOWER, a MATLAB package for solving power flow prob-
lems [Zimmerman and Murillo–Sánchez 2007].2 We perform our experiments based on
matrix H and meter measurements obtained from MATPOWER. For each test system,
the state variables are voltage angles of all buses, and the meter measurements are
real power injections of all buses and real power flows of all branches.

5.1. Objectives of Experimental Evaluation

For false data injection attacks in Scenario I, we have shown that the attacker cannot
always generate valid attack vectors to inject random (or specific) errors into estimates
of all state variables (or target state variables). Therefore, in our experiments, we are
primarily interested in the possibility of generating valid attack vectors, and show how
likely the attacker can find valid attack vectors to attack the IEEE test systems.

For false data injection attacks in Scenario II, we pointed out that generating attack
vectors for Scenario II is an NP-complete problem. Although it seems difficult for the
attacker to find an optimal attack vector in Scenario II due to the NP hardness, we

2In MATPOWER, the shift injection vector is set to 0 for state estimation to use the DC power flow model.
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Fig. 2. Probability of finding an attack vector for random false data injection attacks.

would like to check experimentally if the attacker can take advantage of existing tools
to find a near-optimal attack vector within a practical time window. We also want to
see the minimum effort the attacker needs to spend compromising meters in order to
launch false data injection attacks.

For generalized false data injection attacks, when F′ is a rank deficient matrix,
both false data injection attacks and their generalized versions can achieve similar
impacts. However, when F′ is a full rank matrix, an attacker cannot launch false data
injection attacks but can launch generalized attacks (Theorem 4.1). Therefore, in our
experiments for generalized attacks, we focus on the latter situation (i.e., F′ is a full
rank matrix). We would like to investigate how much the attacker can affect the output
of state estimation even if the attacker fails to launch false data injection attacks.

5.2. False Data Injection Attacks: Scenario I

As mentioned earlier, in Scenario I, the attacker is limited to accessing k specific meters.
In other words, the attacker can only modify the measurements of these k meters. Our
evaluation objective in this scenario is mainly two-fold. First, we would like to see how
likely the attacker can use these k meters to achieve her attack goal. Second, we want
to see the computational effort required for finding an attack vector. In our evaluation,
we consider (1) random false data injection attacks; (2) targeted false data injection
attacks in the unconstrained case; and (3) targeted false data injection attacks in the
constrained case.

Based on our evaluation objective, we use two evaluation metrics: the probability that
the attacker can successfully construct an attack vector given the k specific meters, and
the execution time required to either construct an attack vector or conclude that the
attack is infeasible.

We perform the experiments as follows. For random false data injection attacks, we let
the parameter k range from 1 to the maximum number of meters in each test system.
(For example, k ranges from 1 to 490 in the IEEE 118-bus system.) For each k, we
randomly choose k-specific meters to attempt an attack vector construction. We repeat
this process 100 times for both IEEE 118-bus and 300-bus systems and 1,000 times for
the other systems,3 and estimate the success probability pk as pk = # successful trials

# trials .
Let Rk denote the percentage of the specific meters under the attacker’s control (i.e.,
k

# meters ). Figure 2 shows the relationship between pk and Rk for random false data

3It takes significantly more time to exhaustively examine the IEEE 118-bus and 300-bus systems with all
possible ks. We reduce the number of trials for them so that the simulation can finish within a reasonable
amount time.
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Fig. 3. Probability of finding an attack vector for targeted false data injection attacks (unconstrained case).

injection attacks. We can see that pk increases sharply as Rk becomes larger than a
certain value in all systems. For example, pk of the IEEE 300-bus system increases
quickly when Rk exceeds 20%. Moreover, the attacker can generate the attack vector
with the probability close to 1 when Rk is large enough. For example, pk is almost 1
when Rk passes 60% and 40% in the IEEE 118-bus and 300-bus systems, respectively.
Finally, larger systems have higher pk than smaller systems for the same Rk. For
example, pk is about 0.6 for IEEE 300-bus system and 0.1 for IEEE 118-bus system
when the attacker can compromise 30% of the meters in both systems.

For targeted false data injection attacks in the unconstrained case, we also let the
parameter k range from 1 to the maximum number of meters in each test system,
and perform the following experiments for each k. We randomly pick 10 target state
variables for each test system (8 for the IEEE 9-bus system, since it only has 8 state
variables). For each target state variable, we use twice its real estimate as the injected
error and perform multiple trials (1,000 trials for the IEEE 9-bus, 14-bus, and 30-bus
systems, 100 trials for the IEEE 118-bus system, and 20 trials for the IEEE 300-bus
system).4 In each trial, we randomly choose k meters and test if an attack vector
that injects false data into this target variable can be generated. If yes, we mark the
experiment as successful. After these trials, we can compute the success probability
pk,v for this particular state variable v as pk,v = # successful trials

# trials . Finally, we compute the
overall success probability pk as the average of pk,vs for all the chosen state variables.

Figure 3 shows the relationship between pk and Rk for targeted false data injection
attacks in the unconstrained case. We observe the same trend in this figure as in
Figure 2, though the probability in this case is in general lower than that in Figure 2.
For example, pk increases sharply as Rk passes 60% for both the IEEE 118-bus and
300-bus systems. Moreover, for both systems, the probability that the attacker can
successfully generate the attack vector is larger than 0.6 when Rk passes 70%. For
targeted false data injection attacks, larger systems also tend to have higher pk than
smaller systems for the same Rk.

It is critical to note that Figures 2 and 3 represent the success probabilities of “blind
trials”. In this case, an attacker needs to compromise 30 to 70% of the meters to get
a reasonable probability to construct an attack vector. However, as shown later in
Section 5.3.1, when an attacker targets the “weakest link” of a power system, she only
needs to compromise a few meters in these test systems.

4In this case, it take even more time than random false data injection attacks to exhaustively examine the
IEEE 118-bus, and 300-bus systems with all possible ks. Thus, we reduce the number of trials for these two
systems so that the simulation can finish within a reasonable amount time.
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Table II. Timing Results in Scenario I (ms)

Targeted attack
Test system Random attack (unconstrained)
IEEE 9-bus 0.17–2.4 0.21–2.2
IEEE 14-bus 0.16–5.6 0.26–11.3
IEEE 30-bus 0.35–14.9 0.24–31.4
IEEE 118-bus 0.34–867.9 0.42–1,874.5
IEEE 300-bus 0.55–8,549.6 0.73–18,510

The targeted false data injection attack in the constrained case is the most challeng-
ing one for the attacker. Due to the constraints on the specific meters, the targeted
state variables, and the necessity of no impact on the remaining state variables, the
probability of successfully constructing an attack vector is in fact very small, though
nonzero. We perform experiments for this case slightly differently. We randomly pick
6 sets of meters for the IEEE 118-bus and 300-bus systems. In each set, there are 350
meters and 700 meters for the IEEE 118-bus and 300-bus systems, respectively. We
then check the number of individual target state variables that can be affected by each
set of meters without affecting the estimation of the remaining state variables. The
results show that the attacker can affect 8 to 11 and 13 to 16 individual state variables
in the IEEE 118-bus and 300-bus systems, respectively. Thus, though the targeted false
data injection attack in the constrained case is hard, it is still possible to modify some
target state variables.

In Scenario I, all attacks can be performed fairly quickly. When the attack is feasible,
it takes little time to actually construct an attack vector. Table II shows the execution
times required by the random and the targeted false data injection attacks in the
unconstrained case. The time required for the targeted false data injection attack in
the constrained case is even less, since the computation is just the multiplication of
a matrix and a column vector. For example, the time required for the IEEE 300-bus
system ranges from 1.2ms to 11ms.

5.3. False Data Injection Attacks: Scenario II

In Scenario II, the attacker has resources to compromise up to k meters. Compared with
Scenario I, the restriction on the attacker is relaxed in the sense that any k meters
can be used for the attack. Similar to Scenario I, we would also like to see how likely
the attacker can use the limited resources to achieve her attack goal, and at the same
time, examine the amount of computation required for attacks. We use two evaluation
metrics in our experiments: (1) number of meters to compromise in order to construct
an attack vector; and (2) execution time required for constructing an attack vector.

Due to the flexibility for the attacker to choose different meters to compromise in
Scenario II, the evaluation of Scenario II generally requires more experiments to obtain
the evaluation results. In the following, we examine (1) random false data injection at-
tacks; (2) targeted false data injection attacks in the constrained case; and (3) targeted
false data injection attacks in the unconstrained case, respectively.

5.3.1. Results of Random False Data Injection Attacks. Random false data injection attacks
are the easiest among the three types of attacks under evaluation, mainly due to the
least constraints that the attacker has to follow. We perform a set of experiments
to construct attack vectors for random false data injection attacks in the IEEE test
systems. We assume the attacker wants to minimize the attack cost by compromising
as few meters as possible. This means the attacker needs to find the attack vector
having the minimum number of nonzero elements.

The brute-force approach is too expensive to use for finding such an attack vector due
to its high time complexity. Thus, in our experiments, we use the heuristic algorithm
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Table III. Random False Data Injection Attacks

# meters to
Test system compromise Execution time (ms)
IEEE 9-bus 4 0.88
IEEE 14-bus 4 3.47
IEEE 30-bus 4 4.31
IEEE 118-bus 4 19.58
IEEE 300-bus 4 110.51

discussed in Section 3.3.1 to find an attack vector that has near minimum number of
nonzero elements for the IEEE test systems.

Table III shows the results. In all test systems, the number of meters that need to be
compromised is surprisingly small. For all test systems, the attacker can construct an
attack vector for random false data injection attacks by only compromising 4 meters,
with execution time ranging from 0.88ms to about 110ms. We looked into the experi-
mental data, and found that this is mainly due to the fact that the H matrices of all
these IEEE test systems are sparse. For example, the H matrix of the IEEE 300-bus
system is a 1,122×300 matrix, but most of the entries are 0s. In particular, the sparsest
column in H only has 4 nonzero elements. This column is selected by the algorithm as
the attack vector. Note that power systems with sparse H matrices are not rare cases.
In practice, components in a power system that are not physically adjacent to each
other are usually not connected.

5.3.2. Results of Targeted False Data Injection Attacks in Constrained Case. Similar to Scenario
I, targeted false data injection attacks in the constrained case are the most challenging
among all types of attacks due to all the constraints the attacker has to follow in attack
vector construction. In the constrained case, the attacker aims to change specific state
variables to specific values and keep the remaining state variables as they are.

In our experiments, we randomly choose l (1 ≤ l ≤ 10) target state variables and
generate the specific errors for each of them. The specific error is set to be twice as much
as the real estimates of the state variables. We then examine how many meters need
to be compromised in order to inject the specific errors (without changing the other
nontarget state variables) into target state variables. For each value of l, we perform
the above experiment 1,000 times to examine the distribution of the number of meters
that need to be compromised.

Figure 4 shows the results of the IEEE 300-bus system. We use a box plot5 to show
the relationship between the number of target state variables and the number of
meters to compromise. In the worst case, to inject specific errors into as many as 10
state variables, the attacker needs to compromise 55 to 140 meters in the IEEE 300-
bus system. Given 1,122 meters in the IEEE 300-bus system, the attacker only needs
to compromise a small fraction of the meters to launch targeted false data injection
attacks even in the constrained case.

We also exhaustively examine a special situation of targeted false data injection
attacks in the constrained case. Specifically, for each state variable, we examine the
number of meters that need to be compromised if the attacker aims at this variable.
Figure 5 shows the results. We can see that the attacker can inject specific errors into
any single state variable using less than 35 meters for the IEEE 118-bus system and
less than 40 meters for the IEEE 300-bus system. For all systems, the median values
of the number of compromised meters is around 10.

5In these box plots, each box shows the first, the second, and the third quartiles. The whiskers that extend
from the box cover the minimum and maximum points.
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Fig. 4. Constrained case: Number of meters to compromise to inject false data into l target state variables
in IEEE 300-bus system.

Fig. 5. Constrained case: Number of meters to compromise to inject false data into one target state variable.

In the constrained case, since c is fixed, the attack vectors can be computed directly.
Thus, the execution time in all the experiments is very short. For example, it costs only
0.45ms on the test computer to generate an attack vector that injects false data into
10 state variables in the IEEE 300-bus system.

5.3.3. Results of Targeted False Data Injection Attacks in Unconstrained Case. In the uncon-
strained case, the attacker wants to inject specific errors into specific state variables,
but the attacker does not have to keep the other state variables unchanged. As dis-
cussed in Section 3.3.2, we use the Matching Pursuit algorithm [Natarajan 1995; Pati
et al. 1993; Lovisolo et al. 2005] to find attack vectors. We perform the same set of exper-
iments as in Section 5.3.2 to obtain the two evaluation metrics: the number of meters
to compromise and the execution time. Note that in the unconstrained case, it takes
significantly more time to construct an attack vector than the previous experiments.
Thus, we show more detailed results on execution time in this case.

Figure 6 shows the relationship between the number of meters to compromise and the
number of specific state variables to compromise for the IEEE 300-bus system. Figure 7
shows the corresponding execution time of the Matching Pursuit algorithm for finding
an attack vector successfully. We can see that the attacker needs to compromise 60
to 140 meters for the IEEE 300-bus system, if the attacker wants to inject specific
error into as many as 10 state variables. These meters can be quickly identified within
6 seconds.

We also exhaustively examine the special situation of injecting a specific error into a
single state variable for all the IEEE test systems, as in the constrained case. Figures 8
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Fig. 6. Unconstrained case: Number of meters to compromise to inject false data into l target state variables
in IEEE 300-bus system.

Fig. 7. Unconstrained case: Execution time of finding an attack vector to inject false data into l target state
variables in IEEE 300-bus system.

Fig. 8. Unconstrained case: Number of meters to compromise to inject false data into one target state
variable.

and 9 show the number of meters to compromise for these systems and the correspond-
ing execution time, respectively. As shown in Figures 8 and 9, for example, the attacker
can inject a specific error into any single state variable of the IEEE 300-bus system by
compromising at most 27 meters, and it costs less than 1.4 seconds to find the attack
vector.
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Fig. 9. Unconstrained case: Execution time of finding an attack vector to inject false data into one target
state variable.

These experimental results indicate that the false data injection attacks are practical
and easy to launch if the attacker has the configuration information of the target system
and can modify the meter measurements.

5.4. Generalized False Data Injection Attacks

For generalized false data injection attacks, we would like to see what an attacker
may achieve beyond false data injection attacks. Hence, we focus on the case when an
attacker fails in launching false data injection attacks but is still able to launch the
generalized version of attacks.

5.4.1. Experiment Setup. For false data injection attacks, the attack probability pk is
almost 0 if the attacker cannot compromise more than 10% of the meters. Therefore,
to examine the extra impact of generalized false data injection attacks, we require
that the number of compromised meters is not larger than 0.1 × m in all the following
experiments, where m is the total number of meters in the system. Also, we generate
the diagonal matrix W by using random numbers that range from 250 to 1,000 as
diagonal elements.6 To be consistent with our analysis, we do not limit our attention
to any specific attack scenarios and goals, but look at general situations where errors
are injected to a set of state variables through a set of compromised meters. In all our
experiments, we set τ to 100 and let τa range from 0.1τ to τ to see how the change of
τa affects the impact of the generalized attacks. Note that τ is a parameter chosen by
system operators based on the noise in their system. Thus, different systems may have
different τ values. Herein, we use a fixed τ for the purpose of illustration. We also use
the 2-Norm of injected errors as the evaluation metric.

5.4.2. Impact on All State Variables. We first evaluate the impact of generalized false data
injection attacks on all state variables. We randomly choose r f × m meters and assume
they are compromised by an attacker, where r f is a parameter between 0.01 and 0.1,
denoting the fraction of compromised meters. We then calculate the maximum error
that can be injected into the outcome of state estimation using Eq. (15). For each r f ,
We repeat the above trial 1,000 times and record the average of the results.

Figure 10 shows the average maximum injected error for different r f and systems
when τa = 0.1τ . We can see that the maximum injected error increases as the system
becomes large. In particular, the injected error is less than 1 for the IEEE 9-bus system
but exceeds 10 for the IEEE 300-bus system. Larger systems have higher injected

6MATPOWER does not provide W of the test systems. Hence, we use random numbers close to diagonal
elements of W in example 3.7 of Monticelli [1999] as diagonal elements of our W.
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Fig. 10. Maximum impact of generalized false data injection attacks on all state variables.

Fig. 11. Maximum impact of generalized false data injection attacks on all state variables as τa changes for
300-bus system.

errors, and thus they are more vulnerable to generalized attacks than smaller systems.
Figure 11 shows the maximum injected errors on all state variables as τa changes from
0.1τ (i.e., 10) to τ (i.e., 100) for the IEEE 300-bus system. Larger τa and higher r f can
result in higher injected error.

According to Theorem 4.1, the maximum injected error is τa
√

λmax, where λmax is
the largest eigenvalue of matrix D = [

√
(F′TF′)T]−1(Q′′TQ′′)(

√
F′TF′)−1. Note that D has

three factor matrices (i.e., [
√

(F′TF′)T]−1, Q′′TQ′′, and (
√

F′TF′)−1). We would like to
find out which factor matrix is more sensitive to the system change. We randomly
select 0.1 × m meters and calculate the maximum eigenvalues of each factor matrix.
We repeat this process 1,000 times and record the average of the results as shown in
Table IV. Note that the eigenvalue of [

√
(F′TF′)T]−1 is equal to that of (

√
F′TF′)−1, since

[
√

(F′TF′)T]−1 = (
√

F′TF′)−1.
Table IV shows that the maximum eigenvalue of Q′′TQ′′ increases more quickly than

that of [
√

(F′TF′)T]−1/(
√

F′TF′)−1 as the system becomes large. Such an increase is quite
significant for the IEEE 300-bus system. In particular, the maximum eigenvalue of
Q′′TQ′′ is about 450 times more than that in the IEEE 9-bus system, whereas the
maximum eigenvalue of [

√
(F′TF′)T]−1/(

√
F′TF′)−1 is less than twice as much as that in
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Table IV. Maximum Eigenvalues of the Matrices that form D

Test system [
√

(F′TF′)T]−1/(
√

F′TF′)−1 Q′′TQ′′
IEEE 9-bus 1.3870 0.0055
IEEE 14-bus 1.5170 0.0171
IEEE 30-bus 1.6903 0.0487
IEEE 118-bus 2.0808 0.0713
IEEE 300-bus 2.4353 2.7643

Fig. 12. Empirical CDF curves of maximum injected errors for IEEE 118-bus system.

Fig. 13. Empirical CDF curves of maximum injected errors for IEEE 300-bus system.

the IEEE 9-bus system. This observation reveals that the factor matrix Q′′TQ′′ is more
sensitive to the system change than the other factor matrices. Note that the dramatic
increase of the maximum eigenvalue of Q′′TQ′′ for the IEEE 300-bus system is visually
consistent with the sharp raise of the maximum errors injected into the system as
shown in Figure 10.

5.4.3. Impact on Individual State Variables. We further look at the impact of generalized
false data injection attacks on individual state variables. For each state variable, we
randomly choose k meters and assume that those meters are compromised by an at-
tacker, where k is set to 0.01 × m, 0.05 × m, and 0.1 × m in our experiments. We then
calculate the maximum injected error based on Eq. (15). We repeat this process 1,000
times and use the average of the results as the maximum impact of generalized attacks
on that state variable.

Figures 12 and 13 show the empirical cumulative distribution function (CDF) curves
of maximum injected errors when τa = 0.1τ . A point (x, y) on the curve indicates that
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Fig. 14. Empirical CDF curves of maximum injected errors as τa changes for IEEE 118-bus system.

Fig. 15. Empirical CDF curves of maximum injected errors as τa changes for IEEE 300-bus system.

y% state variables have the maximum injected error less than or equal to x. For all
state variables in the IEEE 118-bus system and most of the state variables in the IEEE
300-bus system, the maximum injected error is quite small (e.g., when k = 0.1m, the
error injected into any state variable of the IEEE 118-bus system is less than or equal
to 0.7 and about 90% state variables of the IEEE 300-bus system are injected with
errors that are less than or equal to 2). However, some state variables of the IEEE
300-bus system still have large injected errors, which can be as high as 8.5. Figures 14
and 15 show the empirical CDF curves of maximum injected error for different values
of τa when k equals to 0.1 × m. Again, larger τa achieves higher injected error.

As shown in Table IV and Figure 10, the maximum injected error is related to
the maximum eigenvalue of Q′′TQ′′. Hence, we perform an experiment to examine
the maximum eigenvalue of Q′′TQ′′. We randomly choose k meters, where k is set to
0.01 × m, 0.05 × m, and 0.1 × m in our experiment. For each state variable, we generate
the corresponding Q′′TQ′′ using the method discussed in Section 4.4.1, and calculate
the maximum eigenvalue of Q′′TQ′′. We repeat this process 1,000 times and record the
average of the results.

Figures 16 and 17 show the empirical CDF curves of eigenvalues of Q′′TQ′′ for the
IEEE 118-bus and 300-bus systems when τa = 0.1τ , respectively. We can observe
the same tendency as shown in Figures 16 and 17. For the IEEE 118-bus system,
the maximum eigenvalue of Q′′TQ′′ is quite small (e.g., no state variable results in
an eigenvalue that is larger than 0.01). However, for the IEEE 300-bus system, a few
state variables can achieve large eigenvalues that are near 1.
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Fig. 16. Eigenvalue of Q′′TQ′′ for IEEE 118-bus system.

Fig. 17. Eigenvalue of Q′′TQ′′ for IEEE 300-bus system.

6. CONCLUSION AND FUTURE WORK

In this article we identified a previously unknown vulnerability in the current tech-
niques aimed at detecting and identifying bad measurements for state estimation in
electric power grids. We investigated the implications of this vulnerability through
presenting and analyzing a new class of attacks, called false data injection attacks,
against state estimation in electric power systems. Under the assumption that the
attacker can access the current power system configuration information and manip-
ulate the measurements of meters at physically protected locations, such attacks can
introduce arbitrary errors into certain state variables without being detected by ex-
isting techniques. We considered two attack scenarios, where the attacker is either
constrained to some specific meters, or limited in the resources required to compromise
meters. We showed that the attacker can systematically and efficiently construct attack
vectors in both scenarios, which can not only change the results of state estimation,
but also modify the results in a predicted way. We also extended false data injection
attacks to generalized false data injection attacks, and used both theoretical analysis
and simulation to show that an attacker can gain more impact than false data injection
attacks by launching generalized false data injection attacks. Despite the theoretical
capability of these attacks, we also pointed out that such attacks are strictly limited by
real-world constraints, and do not pose immediate threats to our power grids.

In our future work, we would like to extend our results to state estimation using
AC power flow models. Moreover, we would also like to investigate the possibility of
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adapting network anomaly detection techniques to defend against false data injection
attacks.

Appendix. Generating an Attack Vector via Elementary Operations in Random False Data
Injection Attacks in Scenario I

In this Appendix, we show how the attacker can construct an attack vector using
elementary column operations when k > m− n. Let Īmeter = { j|1 ≤ j ≤ m, j /∈ Imeter},
and H = (h1, . . . , hn), where hi = (h1,i, . . . , hm,i)T for 1 ≤ i ≤ n. For a random j ∈ Īmeter
(i.e., the meter not under the attacker’s control), the attacker first scans H to look for
a column vector whose jth element is not zero. If the attacker can find such a vector,
the attacker swaps it with h1. Then, the attacker can construct an m× (n − 1) matrix
H1 = (h1

1, . . . , h1
n−1) by performing column transformations on H (to zero out the jth

element in all column vectors):

h1
i =

{
h1− hj,1

hj,i+1
hi+1, if hj,i+1 �= 0, 1 ≤ i ≤ n − 1

hi+1, if hj,i+1 = 0, 1 ≤ i ≤ n − 1
(16)

If the jth element is zero for all the column vectors of H, then h1
i = hi for 1 ≤ i ≤ n−1.

As a result, the jth row of H1 are all zeros. The attacker repeats this process to the
reduced matrix H1, and the reduced matrices thereafter, using a different element in
Īmeter until all elements in Īmeter are exhausted. Finally, the attacker can get a matrix
having at least one column vector, since m− k ≤ n − 1. The column vectors of the final
matrix are linear combinations of the column vectors of H, and the m − k rows with
index j ∈ Īmeter of this matrix consist of all 0s. Any column vector can be used as an
attack vector.

Note that the preceding approach looks similar to traditional Gaussian elimina-
tion [Meyer 2001], since they both use elementary matrix operations to eliminate
nonzero elements of a matrix. The difference between them is that Gaussian elimina-
tion reduces a given matrix to either triangular or echelon form, whereas our approach
does not convert the original matrix into triangular or echelon form. We generate a
reduced matrix after each iteration instead, attempting to find a linear combination of
column vectors of the original matrix.

Solving a′ for Random Generalized Attacks in Scenario I

The attacker needs to solve a′ from B′a′ = Bt to get the attack vector a. As discussed
earlier, if the rank of B′ is not the same as that of the augmented matrix (B′|Bt), then
B′a′ = Bt is not consistent and thus has no solution for a′.

To ensure equal ranks, the attacker can manipulate t such that Bt is a linear
combination of columns of the matrix B′, and thus the rank of B′ is the same
as that of the augmented matrix (B′|Bt). A simple way is to let t = (0, . . . , 0, ti1 ,
0, . . . , 0, ti2 , 0, . . . , 0, tik, 0, . . . , 0)T , where (ti1, . . . , tik)

T can be any vector whose 2-Norm
is less than τa. By choosing a proper t, the attacker can solve a′ from the equation
and a′ = B′−(Bt) + (I − B′−B′)d, where B′− is the Matrix 1-inverse of B′ and d is any
nonzero vector of length k. The attacker can construct an attack vector a from any
a′ �= 0. Note that if B′ is a full rank matrix, B′−B = I and a′ = B′−(Bt).

Solving a′ for Targeted Generalized Attacks in Scenario I

The attacker needs to solve a′ from equation B′
sa′ = Bst + Bsb to get the attack vector

a. The equation B′
sa′ = Bs(t + b) has no solution if the rank of B′

s is not the same as
that of the augmented matrix (B′

s|Bs(t + b)). This means that the attacker needs to
make B′

s and (B′
s|Bs(t + b)) have the same rank in order to find an attack vector.
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Note that b is a fixed vector. If the rank of B′
s is equal to that of the augment matrix

(B′
s|Bsb), the attacker can set t = (0, . . . , 0, ti1 , 0, . . . , 0, ti2 , 0, . . . , 0, tik, 0, . . . , 0)T , where

(ti1 , . . . , tik)
T can be any vector whose 2-Norm is less than τa. Consequently, Bst is a linear

combination of columns of the matrix B′
s and rank((B′

s|Bst + Bsb)) = rank((B′
s|Bsb)) =

rank (B′
s). Thus, the attack vector a can be obtained by computing a′ from equation

B′
sa′ = Bs(t + b).
If the rank of B′

s is not the same as that of (B′
s|Bsb), the attack vector does not

necessarily exist. The attacker can treat t + b as a whole to determine the existence
of an attack vector. Specifically, let t + b = w = (w1, . . . , wm) and b = (b1, . . . , bm)T .
The attacker first sets w = (0, . . . , 0, wi1 , 0, . . . , 0, wi2 , 0, . . . , 0, wik, 0, . . . , 0)T , where
wi1 , . . . , wik can be any nonzero value. As a result, Bsw is a linear combination of
columns of the matrix B′

s and the rank of B′
s equals that of (B′

s|Bsw). Then the attacker
determines whether the attack vector exists or not by checking the 2-Norm of t. Note
that t = w − b = (−b1, . . . , wi1 − bi1 , . . . , wi2 − bi2 , . . . , wik − bik, . . . ,−bm)T . Thus,

‖t‖ =
√ ∑

i �=i1,...,ik

b2
i +

∑
i=i1,...,ik

(wi − bi)2 ≥
√ ∑

i �=i1,...,ik

b2
i . (17)

Therefore, if
√∑

i �=i1,...,ik b2
i <= τa, the attacker can choose proper value for wi1 , . . . , wik

to make ‖t‖ less than or equal to τa (e.g., set wi1 = bi1 , . . . , wik = bik). Hence, the attack
vector can be constructed by solving a′ from equation B′

sa′ = Bs(t + b). However, if√∑
i �=i1,...,ik b2

i > τa, ‖t‖ is always larger than τa and the attacker cannot generate the
attack vector.
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