
Summary-Invisible Networking:
Techniques and Defenses

Lei Wei, Michael K. Reiter, and Ketan Mayer-Patel

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
{lwei,reiter,kmp}@cs.unc.edu

Abstract. Numerous network anomaly detection techniques utilize traffic
summaries (e.g., NetFlow records) to detect and diagnose attacks. In this pa-
per we investigate the limits of such approaches, by introducing a technique by
which compromised hosts can communicate without altering the behavior of the
network as evidenced in summary records of many common types. Our tech-
nique builds on two key observations. First, network anomaly detection based on
payload-oblivious traffic summaries admits a new type of covert embedding in
which compromised nodes embed content in the space vacated by compressing
the payloads of packets already in transit between them. Second, point-to-point
covert channels can serve as a “data link layer” over which routing protocols can
be run, enabling more functional covert networking than previously explored. We
investigate the combination of these ideas, which we term Summary-Invisible
Networking (SIN), to determine both the covert networking capacities that an
attacker can realize in various tasks and the possibilities for defenders to detect
these activities.

Keywords: network anomaly detection, flow records, covert channels, botnet
command and control.

1 Introduction

Due to existing router support for collecting flow records, there is increasing attention
being devoted to performing network anomaly detection using flow logs. A typical flow
record format (e.g., CISCO NetFlow) provides summary statistics (numbers of packets
and bytes) for packets sharing the same addressing information (source and destination
addresses and ports) in an interval of time. Other, more fine-grained summarization ap-
proaches, such as a-b-t records [17], further reconstruct connections and characterize
their behaviors, e.g., as interactive, bulk file transfer, or web-like, on the basis of packet
sizes and interleavings of packets in each direction. Such summarization approaches
have proven useful for traffic classification (e.g., [20]) and diagnostics of various types
(e.g., [32]), including of some security-relevant anomalies. For example, even simple
flow logs have been shown to be useful for finding peer-to-peer traffic masquerading
on standard ports (e.g., HTTP port 80) (e.g., [4]), various kinds of malware activities
(e.g., [30,11,5,40]), and even for identifying the origin of worms [38]. Other anomaly
detection techniques couple examination of summary records and limited payload in-
spection to find botnet command-and-control (C&C) channels [15,13,39]. Indeed, a

M. Burmester et al. (Eds.): ISC 2010, LNCS 6531, pp. 210–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Summary-Invisible Networking: Techniques and Defenses 211

community of security analysts now holds an annual workshop devoted to the use of
flow records for such purposes (http://www.cert.org/flocon/).

In this paper we explore the limits of analysis using such traffic summaries for se-
curity purposes, by taking the attacker’s perspective and investigating to what extent
an attacker who compromises machines in an enterprise, for example, can perform his
activities in a way that is undetectable in summary records. Because we cannot foresee
every potential approach to summarization that might be employed, we take an extreme
position to ensure that the attacker’s activities will remain invisible to any summariza-
tion technique that does not inspect application payload contents. As such, the attacker
will be invisible to any summary-dependent detector, i.e., for which detecting the at-
tacker’s behavior in summary records is a necessary ingredient, even if it employs pay-
load inspection in other stages of its processing. For example, several botnet detectors
leverage anomalous behavior exhibited in summary records, either to focus the attention
of subsequent analysis [39] or to correlate with anomalies from other sources [14,15,13]
to find infected machines. Suppressing evidence of botnet activities in the summary
records, then, provides an avenue for potentially circumventing detection.

To implement this invisibility in summary records with certainty, we disallow alter-
ing the flow-level behavior of the network at all. The challenge, then, is to demonstrate
what the attacker can accomplish under this constraint. To provide such a demonstra-
tion, we introduce Summary-Invisible Networking (SIN), a networking technique that
piggybacks on existing traffic to enable data interchange among compromised hosts
(SINners). SIN is designed to be invisible in traffic summaries, in the sense that a log
of summary records collected in the infected network should be unchanged by the pres-
ence of compromised hosts executing SIN. To accomplish this, SIN must operate under
stringent constraints:

• The number of packets between any source and destination must remain the
same. Increasing the number of packets between sources and destinations would be
evidenced in flow records that report packet counts, for example. In order to avoid
this, a SIN network must perform all signaling and data exchange using packets that
the hosts would already send.
• The sizes of packets must remain the same. Increasing the sizes of packets would

be evidenced in flow records that contain flow or packet byte statistics.
• The timing of packets must be preserved. Because some summarization tech-

niques (e.g., [17]) take note of interstitial packet timings, the timing of packets must
remain essentially unchanged, and so a SIN network must involve only lightweight
processing.
• SINners must transparently interoperate with uncompromised hosts. The be-

havior of a SINner as observed by uncompromised hosts must be indistinguishable
from that of an uncompromised host, lest the different behaviors induce uncom-
promised hosts to behave differently or detect the SINner outright. In particular, a
SINner must covertly discover other SINners in such a way that does not interfere
with regular interaction with uncompromised hosts.
• SINners must satisfy application demands faithfully, even for each other. Hosts

perform application-level tasks (e.g., serving or retrieving content), interference with
which can affect applications and, in turn, the behavior of the system as viewed in

http://www.cert.org/flocon/

212 L. Wei, M.K. Reiter, and K. Mayer-Patel

event logs (including summary records) or by human users. Thus, a SINner must
continue to faithfully perform tasks requested of it by its user(s) and other nodes.

In order to meet these requirements, SIN builds a covert network that piggybacks on
existing network traffic, leveraging two key observations: First, to preserve the size of
each original packet it sends, a SINner compresses the original application payload to
make room to insert SIN data; the receiving SINner then extracts the SIN data and re-
stores the payload to its original form before delivering the packet. Second, mechanisms
for discovering other SINners and embedding data in packets already being sent enables
the establishment of a “data link layer”, over which we can layer a routing protocol, for
example. This routing protocol will need to accommodate the fact that SIN is purely
opportunistic: unless the host is already sending a packet to a particular other host, data
cannot be sent to that host. In this and other respects, our work can build from prior
routing protocols for delay-tolerant networks [9,18].

Using these observations, we design a framework for SIN networking and evaluate
it in this paper. Our evaluation primarily focuses on the use of SIN as a command-and-
control (C&C) channel for botnet-like activity that would evade detection by summary-
dependent anomaly detectors. Our evaluation shows that SIN networks should enable
a sufficiently patient attacker to coordinate malfeasant activities among compromised
nodes, but that routing protocols that better utilize available SIN capacity could benefit
from further research.

We then turn our attention to approaches that might be used to detect SIN networks.
Though SIN is premised on payload-agnostic detectors, our work provides an incentive
to identify lightweight, payload-sensitive measures to find SIN networks, and so we
explore what those might be. The results show that SIN networking within some proto-
cols can be detected through lightweight payload inspection, but that further research is
required to do so in others.

2 Related Work

Our motivation for studying SIN networking is to understand the limits of network
anomaly detection approaches that are dependent on traffic summaries. We are not
the first to examine these limitations. For example, Collins et al. [6] evaluated the ex-
tent to which five proposed payload-agnostic anomaly detectors — Threshold Random
Walk [19], server address entropy [24], protocol graphs [5], and client degree (i.e., num-
ber of addresses contacted) — could limit bot harvesting and reconnaissance activities
on a large network while maintaining a specified maximum false alarm rate. Here we
take a distinctly different perspective than all past studies of which we are aware, by
focusing on the ability of attacker’s nodes to communicate with each other (e.g., to
conduct botnet C&C) while avoiding detection by any payload-agnostic detector.

While our motivation derives from examining limitations of payload-agnostic detec-
tors, some efforts have embraced the need to examine packet contents in order to iden-
tify malware outbreaks, e.g., [23,22,36,29,34,27,21]. A significant class of this type of
work focuses on finding byte-level similarities in packets that suggest the frequent oc-
currence of similar content (e.g., [22,29,27,21]). Our SIN network design necessitates
no such byte-level similarities, and so we do not expect that these approaches would be

Summary-Invisible Networking: Techniques and Defenses 213

effective at detecting SIN networking (nor were they intended for this purpose). Other
approaches that strive to detect deviations from past byte-value distributions for an ap-
plication (e.g., [23,36,34]) may be more successful at detecting SIN networks. We will
discuss such approaches to efficiently examining payload contents that might be suited
to detecting SIN networks in §6.

Because the opportunity to transmit packets between any two SINners is sporadic
and depends entirely on the shape of the traffic in the legitimate network, the prob-
lem of routing in such a context can be modeled as a sort of delay-tolerant network
(DTN) [9,18]. Since DTNs were introduced, there has been a large body of work on
routing in such environments (e.g., [33,8]). Many of these schemes might apply to SIN
networking. There are, however, several significant differences between the nature of
the opportunistic model in the SIN context and the model used to develop and evalu-
ate these schemes. First, buffer space at the intermediate nodes in the SIN network is
perhaps less constrained that has been assumed in previous DTN frameworks, since we
generally assume participating nodes in the SIN network have adequate resources and
moreover are compromised. A second difference is that the mix of contact opportuni-
ties between any two nodes in the network is not based on, e.g., mobility, but instead
inherits the contact mix exhibited by the legitimate traffic that drives the SIN network.
Finally, there is no control over how much can be sent for any given contact opportunity
since the size of the SIN payload is dependent on the compression ratio achieved on the
original payload content.

3 Goals and Assumptions

We consider a network in which monitoring produces summary traffic records. For
our purposes, a traffic summary is any log format that is insensitive to the byte values
that comprise the application payloads of TCP/IP packets. More precisely, define a
characterizing feature vector c(p) defined on TCP/IP packets such that c(p) = c(p′)
if p and p′ differ only in the contents of their application payloads (and, of course, their
TCP checksums). For the purposes of this paper, we define this characterizing feature
vector most generally to be c(pi) = 〈ti, si, hi〉 where ti is the time the packet i was
transmitted, si is the size of the packet, and hi is the header of the packet outside of the
application payload. A summary record r is defined by r ← f(c(p1), . . . , c(pn)) for
some function f and for packets p1, . . . , pn.

A particularly common type of summary record is a flow record. A flow record sum-
marizes a collection of packets sharing the same protocol and addressing information
(source and destination IP addresses and ports) observed in a short interval of time.
Such a record generally includes this information, the number of packets observed, the
number of bytes observed, a start time and duration of the flow. Other header informa-
tion could also be collected about the flow, such as the logical-or of the TCP flags in the
packets that comprise the flow (as is available in some versions of NetFlow). However,
we require that whatever is collected be invariant to the application payload contents
of the packets that comprise the flow (since our techniques change payloads). When
convenient to simplify discussion, we will use flow monitoring as an example of traffic
summarization.

214 L. Wei, M.K. Reiter, and K. Mayer-Patel

We assume that an adversary is able to compromise a collection of computers, in
such a way that the attacker’s malware on each such computer can intervene in that
computer’s networking functions at the IP layer. That is, we presume that the attacker’s
malware can intercept each outbound IP datagram and modify it prior to transmission.
Similarly, a compromised machine can intercept each inbound IP datagram and modify
it prior to delivering it to its normal processing. On most modern operating systems,
these capabilities would require a compromise of the O/S kernel.

The goal of SIN networking is to implement an overlay network among compro-
mised machines that is unnoticeable to traffic summarization techniques. Collected traf-
fic records must be unchanged by the presence of SIN, and so SIN should not alter the
number or size of packets sent on the network, or the destination of any packet. Subject
to this constraint, it should enable communication among compromised computers to
the extent enabled by the cover traffic into which this communication must be included.

4 A SIN Network Framework

In this section we describe a protocol framework for SIN networking. We emphasize,
however, that this is only one possible approach to SIN, and we believe a contribution of
this paper is identifying SIN networking as a challenge for which improved approaches
can be developed (and new defenses can be explored). We will populate this framework
with particular protocols, and evaluate their performance on various tasks, in §5.

4.1 Neighbor Discovery

A “neighbor” of one SINner is another SINner to which it sends or from which it re-
ceives IP packets directly. Since our requirements for invisibility in traffic summaries
requires that a SINner send packets to only destinations to which its host would already
send, a SINner must discover which of those hosts are also compromised. To do so,
it must piggyback discovery on those already-existing packet exchanges, in a way that
does not interfere with the regular processing of those packets, in the event that the
neighboring host is not a SINner.

To accomplish this, a SINner can employ any available covert storage channel, such
as known channels in the IP or TCP packet header (e.g., [16,28,1,12,26,25]). Murdoch
and Lewis [26] develop a robust implementation based on TCP initial sequence num-
bers, for example. This technique generates initial sequence numbers distributed like
those of a normal TCP implementation, but that would enable SINners knowing a
shared key to recognize as a covert signal. Moreover, since discovery need not be im-
mediate, the signal could be spread over multiple packets. An alternative would be to
exploit covert storage channels in application payloads, which would be undetectable in
traffic summaries by definition. Covert timing channels (e.g., [3]) would risk detection
owing to the availability of timestamps t1, . . . , tn to the summarization function f (see
§3). They may nevertheless be effective since the information being conveyed is small
(effectively one bit) and can be conveyed over the course of multiple packets.

When a SINner receives a packet in which it detects the discovery signal (or, for ro-
bustness, multiple packets from the same source bearing the signal), it adds the source

Summary-Invisible Networking: Techniques and Defenses 215

IP address of the packet to a neighbor table. If it has not yet indicated its own par-
ticipation in the SIN network to this neighbor, it takes the opportunity to do so in the
next packet(s) destined for that address, i.e., by embedding the discovery signal in those
packets. Since virtually all traffic elicits some form of response packet, the neighbor re-
lation would typically be symmetric: if IP address a2 is listed in the neighbor table at
the SINner with IP address a1, then a1 is (or soon will be) listed in the neighbor table
at the SINner with address a2.

After discovering a neighbor, the SINner can estimate its transmission capacity to
this neighbor by observing the packets sent to it over time. To estimate this capacity, the
SINner compresses each application payload to that neighbor (possibly in the normal
course of executing a routing protocol, see §5) and collects the size of the vacated space
in the packet. These per-packet capacities can be accumulated over whatever interval of
time is appropriate, say per day, to determine an estimate of the capacity to that neighbor
on each day. Each node stores these estimates for each neighbor in its neighbor table.

Each SINner augments the IP addresses and capacity estimates in its neighbor table
with other information, as described in §4.2. §5.1 and §5.2 discuss how this information
is used in particular routing protocols.

4.2 Naming

When a host is compromised, the SIN malware generates an identifier for the SINner
that will permit other SINners to name it (e.g., as the destinations for objects). While
the SINner could adopt another, existing identifier for the host (e.g., its IP address),
we consider a different alternative here. Reusing an existing, well-known host identi-
fier would enable any other SINner in the SIN network to potentially locate all other
SINners in the network, if coupled with a link-state routing protocol as we explore in
§5. While we do not incorporate robust defenses against SIN network infiltration (e.g.,
by law enforcement) in our design or against learning other participants in the event of
such infiltrations, permitting a single infiltrated SINner to learn common identifiers for
all SIN participants would make SINner location just too easy. (Note, however, that we
cannot prevent a SINner from knowing the IP addresses of its neighbors.)

For this reason, the identifier that a SINner generates for itself is a new random
value of a fixed length. Since the SINner will transmit this identifier to others in a
manner described below and since, as we will see in §4.4, transmission capacity is at
a premium, we opt for identifiers that are not too long, specifically of length 4 bytes
(B). Since identifiers are chosen at random, a 4B identifier should suffice to ensure no
identifier collisions with probability at least 1 − 1/232−2n in a network with up to 2n

SINners, e.g., with probability at least 0.999 for a SIN network of 211 = 2048 nodes.
Once a SINner discovers a neighbor (§4.1), it transmits its identifier to that neighbor

in packets already destined to it. To do so, the sender compresses the existing applica-
tion payload, and uses the vacated space to insert the identifier. A small header precedes
the identifier; it simply indicates that this packet holds the sending SINner’s identifier.
Each sent packet is made to be exactly the same size of the original packet, which is
necessary to ensure that our approach is summarization-invisible. Upon collecting the
identifier for a neighbor, the SINner inserts the identifier into the neighbor table, so that
it is associated with the IP address of that neighbor.

216 L. Wei, M.K. Reiter, and K. Mayer-Patel

4.3 Data Object Model

Fig. 1. SIN message
header in experiments
(object length is con-
tained in the first 4
bytes of the object it-
self)

Our design of a SIN network enables the transmission of objects
from one SINner to another. The object is assumed to begin with
its length (e.g., in its first four bytes), and so is self-describing in
this respect. An object is transmitted in the SIN network using
a collection of point-to-point messages, each from one SINner u
to a neighbor v. Each such message is embedded in an imminent
packet from u to v.

An object has an identifier that will be included in each SIN
header for a message containing bytes of that object. The object
identifier for an application data object is a hash of the object
contents. In this way, it can serve as both a tag to identify bytes
for the same object (i.e., for reassembly), and as a checksum to
detect corruptions (though this is admittedly probably unneces-
sary). Data objects are framed at byte granularity; i.e., arbitrary
byte ranges can be sent, and so each SIN header also includes the starting byte offset
and the length of the byte range being transmitted. Since, as will be shown in §4.4, SIN
capacity is at a premium, we want to reduce the header size as much as is reasonable.
The SIN header for an IP packet that we employ in the rest of our evaluation is 18B in
length. (See Figure 1.)

4.4 Available Capacity

There is reason to be skeptical of the capacity offered by compressing packet payloads.
Client-server traffic poses a challenge to two-way covert communication via this tech-
nique, since typically only flows in one direction (e.g., downloads from a web server,
versus requests to the server) are sufficiently large to offer the possibility of substantial
residual capacity after compression. Peer-to-peer traffic, on the other hand, does not
suffer from this limitation, but since it usually consists of media files that are already
compressed, its packets might not be very compressible.

To understand the capacity offered by modern networks via this technique, we logged
traffic over two days on our department network, recording the size to which each packet
payload could be compressed using the zlib library. Only packets that could be com-
pressed were kept, as other packets are useless for our purposes. In particular, this dis-
carded all encrypted packets, despite the fact that SIN capacity might be available in the
plaintext protocol (and could be utilized by SINners at the encryption/decryption end-
points). After recording these traces, we found all 〈IP address, port〉 pairs that acted as
servers in our traces, in the sense of accepting initial SYN packets in a three-way TCP
handshake that went on to complete. For each pair, we calculated the payload sizes of
all inbound packets, the sizes of those payloads compressed (individually), the payload
sizes of all outbound packets, and the sizes of those payloads compressed. By summing
each of these four categories of values over all 〈IP address, port〉 pairs with the same
port value, we gain an understanding of how much available capacity each server port
contributes. The 15 ports contributing the most available SIN capacity, summed over
both inbound and outbound directions, are shown in log scale in Figure 2. This figure

Summary-Invisible Networking: Techniques and Defenses 217

also confirms the asymmetry of SIN capacities, in that for most of these ports, there is
at least an order of magnitude difference between the SIN capacities in the inbound and
outbound directions.

445 497 7951 631 139 2049 80 8810 8649 993 873 9100 53 9618 8682
10

0

10
5

10
10

Port numbers

48
 h

ou
r

ca
pa

ci
ty

 (
by

te
s)

Fig. 2. Server ports that contributed the
most SIN capacity over 14:56 Thu Sep
3 – 14:06 Sat Sep 5; left bar is inbound
traffic, right bar is outbound; bar height
denotes total bytes, black area denotes
SIN capacity

Despite the limitations introduced by client-
server communication patterns, the possibility of
substantial capacity remains for SIN networking
since it need not rely on bidirectional point-to-
point communication. To demonstrate this, we
used a larger dataset collected over three weeks,
referred to as Dataset1 in this paper. This data
was collected during the summer of 2009; sum-
mer is the time of lowest network utilization on
a college campus, and thus we believe our capac-
ity results to be conservative. Dataset1 includes
traffic from over 8000 hosts, including both inter-
nal and external addresses. Since the IP addresses
were anonymized, however, we are unable to further characterize particular nodes in
the dataset.

100kB 200kB 400kB 700kB 1MB 2MB
0

10

20

30

40

50

P
ai

rw
is

e
ca

pa
ci

tie
s

(M
eg

ab
yt

es
)

Edge capacity threshold θ

 304
nodes

 198
 nodes

 136
 nodes

17 nodes

 45
 nodes

 114
 nodes

Fig. 3. Max-flow (selected nodes)

We used Dataset1 to build a graph consisting
of vertices that represent hosts in the network, and
directed edges labeled by the average daily ca-
pacity in Dataset1 from the source host to the
destination host, i.e., capacity available for covert
payload due to compressing packets. Then, for a
given capacity threshold θ, we deleted all edges of
capacity less than θ in the above graph, and then
computed the largest strongly connected compo-
nent in the graph that remained. Finally, we re-
inserted all edges between nodes in that strongly
connected component, and computed the maximum flow [10] sizes in this graph for
each ordered pair of nodes, i.e., in which the first node is the “source” and the second
node is the “sink”. Intuitively, if exactly the nodes in the strongly connected component
were SINners, then these maximum flow sizes are theoretically the SIN capacity from
one SINner to another.

0 50 100 150 200 250 300
0

5

10

15x 10
8

Hours passedN
um

be
r

of
 p

ac
ke

ts
 e

xc
ha

ng
ed

Fig. 4. Cumulative packets over time in
Dataset1 between nodes in 114-node
component

Figure 3 shows the distribution of those maxi-
mum flow sizes (over all ordered pairs of nodes
in the strongly connected component) for dif-
ferent levels of θ, each represented as a box-
and-whiskers plot. The box illustrates the 25th,
50th, and 75th percentiles; the whiskers cover
points within 1.5 times the interquartile range.
Above each box-and-whiskers plot is the number
of nodes in the strongly connected component for
that value of θ. As this graph shows, the maxi-
mum flow sizes often far exceed the threshold θ,

218 L. Wei, M.K. Reiter, and K. Mayer-Patel

implying that there is much capacity to be gained by routing over multiple paths be-
tween pairs of nodes. That said, even when there are significant capacities between
nodes, one cannot conclude that the latencies of communication between them should
be small. The capacity realized by any particular routing protocol might be far less.
Moreover, the number of hops between the two nodes might be large, and other work-
load effects, e.g., congestion, can substantially increase object transmission latencies.

In §5, we will focus on the 114-node connected component determined by θ =
700kB/day. Though botnets typically consist of more hosts, we limit our attention to
this 114-host component as a relatively well-connected core that, e.g., could poten-
tially bridge other infected but sporadically connected hosts in the network. (Botnets
like Storm, Nugache and Waledac are structured hierarchically, with relatively well-
connected bots playing such roles [31,2].) In Figure 4 we plot the packet volume of
Dataset1 over time, restricted to packets between nodes in this component. We will
plot results as a function of packets processed from this trace, and so Figure 4 enables
one to translate these results to real time.

5 Evaluation of SIN for Attacker Workloads

The available SIN capacity demonstrated in §4.4 is practically a threat only to the extent
that it can be realized by actual routing protocols, and for tasks that an adversary might
wish to perform. In this section, therefore, we instantiate the framework described in §4
with a state-of-the-art delay-tolerant routing protocol, namely the Delay Tolerant Link
State Routing (DTLSR) protocol [18,7]. We use trace-driven simulations to evaluate
the performance it achieves in tasks that are characteristic of activities an attacker might
want to perform using a SIN network. We will focus on tasks motivated by botnet C&C.

Very briefly, DTLSR is an adaptation of classical link-state routing to DTNs. Like
link-state protocols, DTLSR floods link-state updates (in our parlance, neighbor-table
broadcasts) through the network. Each node uses these updates to maintain a graph rep-
resenting its view of the network topology, and uses a modified shortest path algorithm
to find the best path to the destination. Unlike typical link-state protocols, however, the
link-state information conveyed in DTLSR is used to predict when links should become
available and with what capacities (versus to remove unavailable links). Our choice of
DTLSR derives from our conjecture that it is well-suited to SIN networking, where we
generally expect the connectivity in the cover network (and thus in the SIN network) to
be relatively predictable on the basis of history. If true, then neighbor-table broadcasts,
which include historically derived capacity estimates, should be useful for making rout-
ing decisions. We will briefly evaluate this conjecture later.

5.1 Flooding and Neighbor Table Broadcast

The neighbor tables described in §4.1–§4.2 support a primitive form of broadcast com-
munication in the SIN network, i.e., by flooding. For any given broadcast, each SINner
holds (i) the byte ranges (and byte values) of the broadcasted object it has received —
in the case of the broadcast sender, this is just the entire object — and (ii) for each of
its neighbors, the byte ranges of the broadcasted object that its neighbor should already

Summary-Invisible Networking: Techniques and Defenses 219

have, because it previously either sent those bytes to or received those bytes from that
neighbor. When an IP packet destined to a neighbor is imminent, the application pay-
load is compressed and the next available bytes of the broadcasted object (not already
possessed by the neighbor) are included in the vacated space, preceded by the header
described in §4.3 with the destination field set to a particular value designating this as
a broadcast. As always, any packet is always ensured to be of the same length as the
original packet, by padding if necessary.

In DTLSR, a key application of flooding is to propagate the neighbor tables them-
selves to all SINners. This is done by flooding each SINner’s neighbor table periodi-
cally; we call this a neighbor-table broadcast. The SINner’s neighbor table consists of
SIN capacity estimates to each SIN neighbor per epoch, where an epoch is a specified
time interval (e.g., 8-9am on weekdays, or on Mondays specifically) and the capacity
estimate is derived from historical data for previous instances of that interval. Neighbor
tables include epoch capacity updates only for those that have changed significantly
from the estimates previously conveyed for them. Initially, before capacity estimates to
a neighbor are determined, a SINner simply includes the neighbor’s SIN identifier in its
next neighbor table update.

We stress that the IP addresses of a SINner’s neighbors are not included in this broad-
cast; only their SIN identifiers and capacity estimates are included. Excluding these IP
addresses is motivated by the desire to not disclose the IP addresses of all participants
to each SINner, so as to make it more difficult for an infiltrator to passively discover
all SINners. Alternatively, IP addresses could be included to short-circuit the discovery
process in some cases, but here we employ the more conservative approach.

10 20 40 80 100 200 400 800 1000 2000 2500
0

20

40

60

80

100

S
IN

 n
et

w
or

k
si

ze
s

kn
ow

n
to

 e
ac

h
S

IN
ne

r

Number of SIN packets exchanged (x 200000)

Fig. 5. Neighbor-table broadcast la-
tency, 114 SINners (Dataset1)

In Figure 5, we demonstrate the progress of
neighbor-table broadcasts performed among the
same 114 SINners identified in §4.4 and using
Dataset1 restricted to these SINners as the cover
traffic. This figure shows progress as a function of
the number of packets processed from the trace.
The neighbor tables in this test included a capac-
ity estimate per hour of each weekday for each
neighbor, i.e., 168 estimates per neighbor. This
box-plot shows the distribution of the number of
SINners of which each SINner is aware, assum-
ing that each SINner “awakens” at the beginning
of the trace and initiates its neighbor-table broad-
cast. As this graph shows, after about 8× 106 packets are exchanged among those 114
SINners — or about two hours if translated by using Figure 4 — the median SINner
knows about 100 SINners.

5.2 Unicast Routing

A type of botnet activity conducted through a C&C channel is bots sending or respond-
ing to commands; for this, a point-to-point unicast protocol is needed. As in a broad-
cast, bytes of a unicasted object can be inserted into the spaces vacated by compressing
application payloads of IP packets. In each such packet, the object bytes are preceded

220 L. Wei, M.K. Reiter, and K. Mayer-Patel

by the header described in §4.3. Upon receiving bytes of a unicast object (as an inter-
mediate SINner on the path), the SINner buffers these bytes for forwarding.

We implemented DTLSR routing to use the expected delay of message delivery as
the objective to minimize. Each SINner models the network as a graph for each hour of
each day of the week (e.g., 1-2pm on Mondays). (We examine other granularities in our
accompanying technical report [37].) That graph is directed and weighted, where the
weight on the edge from SINner u to SINner v represents the expected capacity directly
from u to v in the hour the graph represents, based on historical activity in the same
hour on the same day of the week. Upon receiving s bytes of an object, u computes the
path yielding the minimum expected delay for these s bytes to reach their destination,
via a modified Dijkstra’s algorithm that builds a shortest path tree from u iteratively.

700kB 700kB 1MB 1MB 2MB 2MB

10
4

10
6

10
8

P
ai

rw
is

e
C

ap
ac

iti
es

 (
by

te
s)

Edge capacity threshold θ

45 nodes114 nodes 17 nodes

maxflow DTLSR maxflow DTLSR maxflow DTLSR

Fig. 6. Realized pairwise daily SIN ca-
pacities (Dataset1)

Pairwise capacities. The first test we perform
using the DTLSR unicast protocol is to examine
to what extent it can achieve the pairwise poten-
tial capacities shown in Figure 3. To do so, we
computed a trace-driven simulation of DTLSR per
pair of SINners in some of the connected compo-
nents depicted in that figure. We focused on the
smaller components since the number of needed
simulations grows quadratically in the number of
SINners in the component. So as to perform a fair
comparison with Figure 3, in these tests we used
Dataset1, though restricted to only to its first two days of traffic, to reduce the time
consumed per pair of SINners.

The results of this test are shown in Figure 6. This figure includes both the distri-
bution of potential (maxflow) capacities taken from Figure 3 and the distribution of
realized SIN capacity using DTLSR. This figure shows that the average daily capacities
realized by DTLSR are roughly at least an order of magnitude lower than those shown
in Figure 3. The reasons for this are (at least) two-fold: First, in DTLSR, a SINner
forwards bytes for a particular destination to only one of its neighbors in any epoch.
(In contrast, a maximum flow is calculated utilizing all links neighboring each node.)
Second, due to cover traffic packets departing a SINner prior to SIN bytes reaching that
SINner, many opportunities for transmitting SIN data are missed.

Data exfiltration. The next attacker workload that we consider is one in which the
attackers “stream” as much data as possible to a single SINner by repeatedly perform-
ing 10kB unicasts. This workload might reflect a scenario in which the SINners are
exfiltrating data covertly from an infected organization, using the unicast destination
as a drop site. This test used the same 114-SINner component, and the destination was
selected arbitrarily from this component.

In this experiment we witnessed an average throughput of 52.43MB per hour for
the first 70 hours to the destination. That said, the amount of data received from each
sender varies dramatically. This is primarily due to some senders being in advantageous
positions relative to others in the topology, but the fact that some SINners have much
smaller outbound capacities than others also contributes to this disparity.

Summary-Invisible Networking: Techniques and Defenses 221

6 Detection of SIN Networks

If used to implement a botnet C&C channel, for example, SIN networking will inter-
fere with the detection of this channel by summary-dependent detectors. This naturally
raises the question as to what can be done to defend against SIN networks. One ap-
proach would be to try to prevent SIN networking by first patching all hosts to com-
press all outbound traffic (and decompress inbound traffic), so that a summary-based
detector trains on summaries with no “room” for extra SIN payload. While potentially
a long-term solution, this approach poses obvious incremental deployment difficulties.

We evaluated two approaches to detect SIN networks by trying to detect packet com-
pression. Our first attempt involved trying to detect the delays associated with compres-
sion and was at best unreliable [37]. While SIN networking is premised on the notion
that network defenders collect only summary information about their networks, our sec-
ond approach nevertheless involved analyzing packet contents to detect a change in the
byte-value distribution for a particular application’s communication. Our compression
of application payloads and insertion of SIN data risks changing the byte frequency
distribution, and so it would seemingly be detectable by mechanisms that monitor this
distribution [23,36,34]. In order to test this, we built a detector similar to PayL [36], an
intrusion-detection system that detects attempts to infect a server by monitoring byte-
value n-grams in server query packets. Instead of limiting our attention to server queries,
however, we considered building byte-value n-gram distributions for query packets and
response packets independently, to see if the insertion of SIN payloads within those
packets would alter the byte-value n-gram distributions of either type of packets in a
detectable way (without inducing a large number of false alarms).

Here we report the results of trying to detect SIN data in web traffic, as we con-
jectured that the rich content and media types available on web servers would make
it difficult to identify individual SIN packets. (Tests on DNS traffic are described in
our technical report [37].) For web sites hosting various media formats (videos, images,
text), the byte-value n-gram distribution calculated over all response packets would gen-
erally differ too much from that of individual packets (which typically include content
of only one media type) to make it a useful detector. Instead, for web server responses
we borrowed an approach used in Anagram [35], in which we simply record which n-
grams occurred in the training data for that site, rather than tracking their distribution.

To conduct this test, we used wget to retrieve all the contents of www.unc.edu,
and built training and testing data from server response packets using K-fold cross-
validation with K = 5. As such, the results reported below are the average of five tests,
each using a nonoverlapping 20% of these response packets as testing data and the
remaining 80% for training. We also believe that our choice of 80% for training repre-
sents reality, in the following two senses. First, training a network-based SIN detector,
even one with a different model per server IP address and port, on the entire contents
of every server that it witnesses, would likely be untenable; more likely, it would train
on what is actually retrieved from each site during the training period, which would
typically be less than the entirety of the site. Second, for a site that is updated more
than www.unc.edu, there will be a gap between the current content of the site and the
content on which the detector was trained.

222 L. Wei, M.K. Reiter, and K. Mayer-Patel

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Detection Rate

T
ru

e
D

et
ec

tio
n

R
at

e

High Entropy SIN data
Low Entropy SIN data

Fig. 7. ROC curve for 4-gram detector

For testing, we determined the number of n-
grams in a response packet that was not seen dur-
ing training, and raised an alarm on that packet if
a threshold number of such n-grams had not been
seen in training. Typically all possible 1-grams,
2-grams and 3-grams were observed in training,
rendering the model useless, and so we conducted
tests using 4-grams. We tested on both response
packets from www.unc.edu drawn from our
corpus as described above, and on these packets
after SIN contents were added. For the latter, in
one test we embedded low-entropy SIN data (all zeroes) and in one test we embedded
high-entropy SIN data (random bytes). The ROC curves for these tests are shown in
Figure 7. This plot shows that SIN detection based on 4-gram detection was quite poor
when tested on high-entropy SIN data (the equal error rate is roughly 20%) and was
abysmal when tested on low-entropy SIN data.

The failure of our 4-gram detector suggests perhaps trying 5-grams, as was done
in Anagram [35]. Anagram, however, recorded 5-grams from requests to an academic
web server; since such requests are far less varied in content type than web responses, it
was feasible to record the 5-grams witnessed in requests. For web responses, we project
that well more than 100GB would be needed to record the 5-grams witnessed. Such an
architecture would preclude monitoring efficiently, moreover. A second deterrent is that
using higher n-grams to detect SIN data would presumably still trigger false positives
on any new high-entropy data object not seen during training. As such, n-gram analysis
might not be effective for servers with dynamic content.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Compression ratio

normal packets
normal packets with SIN data (high entropy)
normal packets with SIN data (low entropy)

Fig. 8. CDF of compression test

We thus turned to another natural idea for
detecting SIN traffic in web-server responses: a
SIN network presumably is required to increase
the entropy of the application payloads on which
it piggybacks, since packets carry both the infor-
mation of the original application and the SIN in-
formation. One way to detect this is to monitor
the compression ratios of payloads. To explore
this avenue, we repeated the above tests, except
calculating the compression ratios of the packet
payloads from www.unc.edu, both without and
with SIN data embedded (and in the latter case, for both low-entropy and high-entropy
SIN data).

Since we do not believe a per-packet detector is feasible for this measure — e.g., a
single video response packet will be incompressible — we plot the CDF of the com-
pression ratios to gain insight into whether a monitor that computes an aggregate com-
pression ratio might work. (Because our dataset does not reflect real browsing, it is
difficult to project what sort of aggregate measure might work, however.) The results,
shown in Figure 8, suggest that a web server that sends high-entropy SIN data might
be detectable, though it is more questionable whether a server sending low-entropy SIN

Summary-Invisible Networking: Techniques and Defenses 223

data would be. This presents a tradeoff to the adversary between conveying information
as compactly as possible and keeping its traffic as undetectable as possible. We plan to
further investigate this tradeoff in future work.

7 Conclusion

Summary-Invisible Networking (SIN) is a type of covert networking that strives to re-
main invisible to anomaly detection systems that examine traffic summaries. We pre-
sented a framework for SIN networks and showed the potentially achievable networking
capacity that this framework permits. We evaluated its performance on tasks suggestive
of what an adversary might attempt with a SIN network. We also examined approaches
to detect SIN networks by payload analysis, with mixed results.

Acknowledgements. We are grateful to Alex Everett, James Gogan, Fabian Monrose,
and Sid Stafford for their assistance in collecting the network traffic traces utilized
in this research. We are also grateful to John McHugh and Nikola Vouk for helpful
discussions. This work was supported in part by NSF awards CT-0756998 and CT-
0831245.

References

1. Ahsan, K., Kundur, D.: Practical data hiding in TCP/IP. In: Workshop on Multimedia and
Security at ACM Multimedia 2002 (December 2002)

2. Borup, L.: Peer-to-peer botnets: A case study on Waledac. Master’s thesis, Technical Univer-
sity of Denmark (2009)

3. Cabuk, S., Brodley, C.E., Shields, C.: IP covert timing channels: Design and detection. In:
CCS, pp. 178–187 (2004)

4. Collins, M.P., Reiter, M.K.: Finding peer-to-peer file-sharing using coarse network behaviors.
In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 1–17.
Springer, Heidelberg (2006)

5. Collins, M.P., Reiter, M.K.: Hit-list worm detection and bot identification in large networks
using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 276–295. Springer, Heidelberg (2007)

6. Collins, M.P., Reiter, M.K.: On the limits of payload-oblivious network attack detection. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 251–270.
Springer, Heidelberg (2008)

7. Demmer, M., Fall, K.: DTLSR: Delay tolerant routing for developing regions. In: Workshop
on Networked Systems for Developing Regions, pp. 1–6 (2007)

8. Erramilli, V., Crovella, M.: Forwarding in opportunistic networks under resource constraints.
In: ACM MobiCom Workshop on Challenged Networks (September 2008)

9. Fall, K.: A delay-tolerant network architecture for challenged internets. In: SIGCOMM, pp.
27–34 (2003)

10. Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J. Mathematics 8,
399–404 (1956)

11. Gao, Y., Zhao, Y., Schweller, R., Venkataraman, S., Chen, Y., Song, D., Kao, M.-Y.: Detect-
ing stealthy attacks using online histograms. In: 15th IEEE Intern. Workshop on Quality of
Service (June 2007)

224 L. Wei, M.K. Reiter, and K. Mayer-Patel

12. Giffin, J., Greenstadt, R., Litwack, P., Tibbetts, R.: Covert messaging through TCP times-
tamps. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 194–208.
Springer, Heidelberg (2003)

13. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network traffic for
protocol and structure independent botnet detection. In: USENIX Security (2008)

14. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting malware in-
fection through ids-driven dialog correlation. In: USENIX Security (August 2007)

15. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command and control channels in
network traffic. In: NDSS (February 2008)

16. Handel, T.G., Sandford II, M.T.: Hiding data in the OSI network model. In: Anderson, R.
(ed.) IH 1996. LNCS, vol. 1174, pp. 23–38. Springer, Heidelberg (1996)

17. Hernández-Campos, F., Nobel, A.B., Smith, F.D., Jeffay, K.: Understanding patterns of TCP
connection usage with statistical clustering. In: MASCOTS, pp. 35–44 (September 2005)

18. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: SIGCOMM, pp. 145–158
(2004)

19. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using sequential
hypothesis testing. In: IEEE Symp. Security and Privacy (May 2004)

20. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel traffic classification in
the dark. In: SIGCOMM (August 2005)

21. Karamcheti, V., Geiger, D., Kedem, Z., Muthukrishnan, S.: Detecting malicious network
traffic using inverse distributions of packet contents. In: Workshop on Mining Network Data,
pp. 165–170 (2005)

22. Kim, H.A., Karp, B.: Autograph: Toward automatic distributed worm signature generation.
In: USENIX Security (August 2004)

23. Kruegel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network intrusion
detection. In: Symp. Applied Computing (March 2002)

24. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions. In:
SIGCOMM, pp. 217–228 (2005)

25. Lucena, N.B., Lewandowski, G., Chapin, S.J.: Covert channels in IPv6. In: Danezis, G.,
Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 147–166. Springer, Heidelberg (2006)

26. Murdoch, S.J., Lewis, S.: Embedding covert channels into TCP/IP. In: Barni, M., Herrera-
Joancomartı́, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp.
247–261. Springer, Heidelberg (2005)

27. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures for poly-
morphic worms. In: IEEE Symp. Security and Privacy (May 2005)

28. Rowland, C.H.: Covert channels in the TCP/IP protocol suite. First Monday 2(5) (1997)
29. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: OSDI

(December 2004)
30. Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagl, J., Levitt, K.,

Wee, C., Yip, R., Zerkle, D.: GrIDS – a graph based intrusion detection system for large
networks. In: 19th National Information Systems Security Conf., pp. 361–370 (1996)

31. Stover, S., Dittrich, D., Hernandez, J., Dietrich, S.: Analysis of the Storm and Nugache tro-
jans: P2P is here. USENIX;login 32(6) (2007)

32. Terrell, J., Jeffay, K., Smith, F.D., Gogan, J., Keller, J.: Exposing server performance to
network managers through passive network measurements. In: IEEE Internet Network Man-
agement Workshop, pp. 1–6 (October 2008)

33. Vadhat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical
Report CS-200006, Department of Computer Science, Duke University (2000)

34. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and signature
generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 227–246.
Springer, Heidelberg (2006)

Summary-Invisible Networking: Techniques and Defenses 225

35. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resistant to
mimicry attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 226–
248. Springer, Heidelberg (2006)

36. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson,
E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer,
Heidelberg (2004)

37. Wei, L., Reiter, M.K., Mayer-Patel, K.: Summary-invisible networking: Techniques and de-
fenses. Technical Report TR09-019, Department of Computer Science, University of North
Carolina at Chapel Hill (2009)

38. Xie, Y., Sekar, V., Maltz, D., Reiter, M.K., Zhang, H.: Worm origin identification using ran-
dom moonwalks. In: 2005 IEEE Symp. Security and Privacy, pp. 242–256 (May 2005)

39. Yen, T.-F., Reiter, M.K.: Traffic aggregation for malware detection. In: Zamboni, D. (ed.)
DIMVA 2008. LNCS, vol. 5137, pp. 207–227. Springer, Heidelberg (2008)

40. Yen, T.-F., Reiter, M.K.: Are your hosts trading or plotting? Telling P2P file-sharing and bots
apart. In: ICDCS (2010)

	Summary-Invisible Networking: Techniques and Defenses
	Introduction
	Related Work
	Goals and Assumptions
	A SIN Network Framework
	Neighbor Discovery
	Naming
	Data Object Model
	Available Capacity

	Evaluation of SIN for Attacker Workloads
	Flooding and Neighbor Table Broadcast
	Unicast Routing

	Detection of SIN Networks
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

