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ABSTRACT
Although malleability is undesirable in traditional digital
signatures, schemes with limited malleability properties en-
able interesting functionalities that may be impossible to
obtain otherwise (e.g., homomorphic signatures). In this pa-
per, we introduce a new malleable signature scheme called
bounded vector signatures. The proposed scheme allows a
user to sign a multi-dimensional vector of values, along with
a description of the context within which the vector should
be interpreted. The scheme includes a unique malleability
property, which we refer to as the stretch property, that al-
lows the components of the signed vector to be increased
up to a pre-defined limit without access to the signing key.
Decreasing these values, however, remains computationally
infeasible. We prove the security of our construction under
the strong RSA and decisional Diffie-Hellman assumptions
in the random oracle model. Finally, we underscore the u-
tility of bounded vector signatures by discussing their use in
distributed systems security applications.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; K.6.5 [Management of Com-
puting and Information Systems]: Security and Protec-
tion

General Terms
Security

Keywords
Algebraic Signatures, Malleable Signatures, Vectors

1. INTRODUCTION
Typically, digital signature schemes must remain secure

against existential forgeries to achieve their purpose of ver-
ifying the authenticity of data. Therefore, it would seem as
though any malleability allowed by a signature scheme would
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be strictly harmful. However, several malleable signature
schemes, including homomorphic signatures, have been pro-
posed to achieve functionalities by allowing arbitrary parties
to perform a limited set of operations to alter the signed da-
ta in logical ways. Transitive signatures [32, 6, 33, 23], for
instance, allow a user with signatures on graph edges (x, y)
and (y, z) to produce a third signature on the transitive clo-
sure, (x, z), without access to the signing key.

Here, we propose a new type of malleable signature, called
bounded vector signatures. Intuitively, our scheme allows
a user to sign a vector of natural numbers, and includes
a unique malleability property that allows components of
these signed vectors to be increased, or stretched, up to a
pre-defined bound without access to the signing key. Fur-
thermore, each vector is associated with an arbitrary string,
which we refer to as the context, that describes the way to
interpret the values within the signed vector. To capture
the security of our scheme, we define shrink unforgeability,
which captures the inability of a computationally bounded
adversary to decrease the value of any of the signed vector
components.

The malleability property of our bounded vector signature
scheme is particularly useful in multiparty settings, which
are the primary focus of this paper. In such a setting, n
signers may produce partial signatures on vectors, and any
t ≤ n of those partial signatures can be efficiently combined
to form a full signature on a vector representing all signers.
In a typical, non-malleable signature scheme, these partially
signed vectors would have to be exactly the same for the
combiner to create a full signature. The malleability prop-
erty of our bounded vector signatures, however, allows the
signers to sign different vectors. In particular, the combiner
receives t partial signatures on different vectors, applies the
stretch operation to those signed vectors until all of them
are the same, and then combines them as before.

This form of malleability leads to very efficient solutions to
many problems that arise in the area of distributed systems
security. In these distributed systems problems, informa-
tion must be securely aggregated from multiple (potentially
untrusted) parties while simultaneously limiting communi-
cations overhead and interaction among the parties. To that
end, we show how our bounded vector signatures can be used
to sign a number of interesting data structures commonly
used in distributed environments, such as sets and interval-
s, with just a small constant number of elements (e.g., at
most four) of the underlying multiplicative group. More-
over, for each of these data structures we describe how the
malleability of our bounded vector signatures enables us to

277

© ACM, 2011. This is the authors' version of the work. It is posted here by permission of ACM for your personal use. 
Not for redistribution. The definitive version is available at http://dx.doi.org/10.1145/1966913.1966949.



non-interactively compute a full signature on exactly the
intersection or union of given partially signed sets or inter-
vals. We also discuss the application of these methods to
distributed systems problems, including distributed cache
reconciliation in content delivery networks [19, 9, 35], fault
tolerant computation in sensor networks [31], and group key
management [34, 42].

Related Work Malleable signatures, which can include ho-
momorphic signature schemes and are sometimes referred to
as algebraic signatures, were first discussed by Rivest during
a series of talks at Cambridge University. The concept was
later formalized by Johnson et al. [26], who described ho-
momorphic signature schemes for redacted documents and
set operations. Since then, new homomorphic signature
schemes have been introduced, including transitive signa-
ture schemes on graphs [23, 6, 32, 33] and signatures for
network coding [8, 22, 1]. Additionally, Kiltz et al. [28] in-
troduced a malleable signature scheme that allows a user to
append a message to a signature without requiring a signa-
ture on the appended message itself. Our bounded vector
signatures, like the append-only signatures of Kiltz et al.,
do not require a specific homomorphic property of the sig-
nature and instead rely upon a limited form of malleability.
We note that the functionality allowed by our vector signa-
tures is orthogonal to that provided by Kiltz et al.
The limited malleability allowed by our bounded vector

signatures is achieved through an RSA-like signature con-
struction, where the components of the vector being signed
are encoded in the exponent of the signature, rather than
the base. The first such construction was proposed by De
Jonge and Chaum [16] in a study of several RSA signature
variations. Gennaro et al. [21], and Hohenberger and Water-
s [25] have since used the construction, along with division-
intractable and chameleon hashes, to build hash-and-sign
signatures without random oracles. Perhaps the most closely
related construction to our own is the dynamic accumulator
scheme of Camenisch and Lysyanskaya [10], where identi-
ties are encoded as random primes in the exponent of the
accumulator. None of these constructions, however, were de-
veloped with the goal of malleability in the form we pursue
here, nor were they developed for use in multiparty settings
typical of distributed systems problems.

2. PRELIMINARIES
To begin, we introduce bounded vector signatures, and

define a new notion of unforgeability, called shrink unforge-
ability. Throughout the paper, we denote a d-dimensional
vector of natural numbers as v =< v1, . . . , vd >, where the
kth component is denoted as v[k]. Scalar values are denoted
by non-bolded variables. Furthermore, we use the symbol
$← to indicate sampling uniformly at random from a set of
values, and the symbol ← to indicate the output of an algo-
rithm.

2.1 Bounded Vector Signatures
A bounded vector signature scheme is a malleable signa-

ture on d-dimensional vectors wherein the components of
the signed vector may be altered, within a predetermined
bound, without access to the associated signing key. Specif-
ically, we consider a signature on a pair (v, c), where v ∈ Nd

is a d-dimensional vector in the natural numbers and c is a
context (i.e., a text description) within which the vector is

interpreted. As an example, v may represent distances in
d independent dimensions and c may describe the starting
point of the vector within that space. Furthermore, bounded
vector signatures have a unique property that allows arbi-
trary parties to increase the values of any component of the
signed vector up to a predefined limit without access to the
signing key. For the remainder of this paper, we refer to this
property as the stretch property.

Since we are most interested in distributed applications,
we present a multiparty version of our scheme. The mul-
tiparty bounded vector signature scheme follows the typi-
cal threshold signature paradigm wherein n signers, which
we denote as P1, . . . , Pn, may produce partial signatures on
vector-context pairs. Any subset of t distinct partial sig-
natures can then be combined to produce a full signature
that can be verified using a single verification key. Both the
partial and full signatures in the multiparty version of our
bounded vector signature scheme inherit the stretch prop-
erty. Therefore, it is possible to combine partial signatures
on different vectors by stretching them until they are iden-
tical, as long as their contexts are the same. In particular,
the resultant vector in the full signature will be equal to (at
least) the component-wise maximum from among all t vec-
tor signatures. For ease of exposition, we present the formal
description of our scheme and its instantiation in a multi-
party setting, and note that the single signer case may be
trivially instantiated by setting n = t = 1.

More formally, a bounded vector signature scheme is de-
fined by a tuple of algorithms BVS = (KeyGen,Sign, Stretch,
Combine,Verify) run by n signers P1, . . . , Pn. The input-
output specifications of these algorithms are as follows:

KeyGen(1κ, t, n, v̂): The key generation function takes as
input a security parameter 1κ, the threshold number t of
partial signatures necessary to form a final signature, the
number of signers n, and a d-dimensional vector v̂ containing
the maximum value (i.e., bound) for each dimension. The
algorithm outputs signing keys sk1, . . . , skn for each of the
signers P1, . . . , Pn, and a single verification key pk used to
verify the final signatures.

Sign(sk i, (v, c)): The signing algorithm takes in a signing
key sk i, along with a vector-context pair (v, c), where 0 ≤
v[k] ≤ v̂[k] for each dimension k. The context describes how
the verifier should interpret the signed value, such as the
starting point of the vector. The signing algorithm outputs
a partial signature on vector v associated with context c for
signer Pi, which we denote as σi.

Stretch((σ,v, c), k, a): The stretch algorithm takes a par-
tial or full signature σ on vector-context pair (v, c) and an
amount a to increment the value of the kth component. The
output of the algorithm is a new (partial or full) signature
σ′ on (v′, c), where v′[k] = min(v[k] + a, v̂[k]).

Combine((σi1 ,vi1 , ci1), . . . , (σit ,vit , cit)): The combine al-
gorithm takes as input a set of t partial signatures on vec-
tor context pairs (vij , cij ) from distinct signers. These sig-
natures must be associated with the same context c (i.e.,
cij = c), but may sign t different vectors. The algorithm
outputs a full signature σ on the component-wise maximum
values among the input signatures and their associated con-
text (i.e., (v′, c)), where v′[k] = max(vi1 [k], . . . ,vit [k]) for
all dimensions k.
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Verify(pk , σ, (v′, c′)): The verify algorithm takes in the veri-
fication key pk , a full signature σ, and a vector-context pair
(v′, c′) that is to be verified as being signed. If the signa-
ture is valid for the vector-context pair, then the algorithm
outputs 1. Otherwise, the algorithm outputs 0.

2.2 Security for Bounded Vector Signatures
Due to the malleable nature of our proposed signature

scheme, the traditional definition of existential unforgeabili-
ty under chosen message attack does not appropriately cap-
ture its security. Instead, we propose the notion of shrink
unforgeability under chosen message attack. This definition
captures the ability of untrusted parties to increase, but not
decrease, the values of any component of the signed vector
without access to the signing key. In the multiparty setting,
this restriction translates to a limitation on the values with-
in each component of the fully signed vector output from
the Combine procedure. Specifically, the adversary should
not be able to produce a full signature on a vector where
the value in the kth dimension is less than the tth smallest
value in that dimension from among all partial signatures
given as input to the Combine algorithm. The intuition here
is simply that the adversary would have to decrease at least
one value in order to create a full signature on a vector con-
taining values less than the tth smallest in each dimension,
which is disallowed by shrink unforgeability. This security
notion is formalized as follows.

Definition 1 (Shrink Unforgeability). Let BVS be
a bounded vector signature scheme, and let A be an algorith-
m with oracle access to n signing oracles representing the
signers P1, . . . , Pn. Each query (v, c) to oracle Oracleski

returns Sign(sk i, (v, c)). For any context c and dimension
k, let vc

1[k], . . . ,v
c
n[k] denote the minimum values queried

by A with context c to the n oracles, listed in nondecreasing
order. If A made queries on context c to only s < n oracles,
then we let vc

s+1[k] = · · · = vc
n[k] = v̂[k] + 1. The experi-

ment for shrink unforgeability under chosen message attack
is then defined as follows:

Experiment ExpSU-CMA
BVS (A):

(pk , sk1, . . . , skn)← KeyGen(1κ, t, n, v̂)
(v′, c′, σ′)← AOraclesk1 ,...,Oracleskn (pk)
Return 1 if Verify(pk , σ′, (v′, c′)) = 1 and either:

(1) A queried (∗, c′) to less than t signing oracles, or
(2) A queried (∗, c′) to at least t signing oracles and

for some dimension k, v′[k] < vc
′

t [k].

Let AdvSU-CMA
BVS (A) = Pr

[
ExpSU-CMA

BVS (A) = 1
]
, and define

AdvSU-CMA
BVS (T ) = maxA AdvSU-CMA

BVS (A) where the maximum
is taken over all adversaries A running in time at most T .

We briefly explain the adversary’s actions in this exper-
iment. An adversary is provided with n partial signature
oracles representing n signers. He can make partial signa-
ture queries on any (v, c) pairs he chooses in any order and
run the Combine algorithm to get full signatures from the
partial signatures he received. In the end, he successfully
breaks the shrink unforgeability if he outputs a valid signa-
ture on a pair (v′, c′) and either of the two following cases
occurred. The first case is when a forger A makes signature
queries of the form (∗, c′) to less than t signing oracles. In

this case, he should not be able to generate full signatures
on any pair of the form (∗, c′), since he did not collect e-
nough partial signatures. The second case is when A made
signature queries of the form (∗, c′) to at least t signing ora-

cles and there exists a dimension k such that v′[k] < vc′
t [k].

That is, vc′
t [k] is the smallest value in dimension k on which

a signature should be possible for context c′.

2.3 Strong RSA Assumption
Here, we briefly recall the definition of the strong RSA

assumption, which was first proposed by Barić and Pfitz-
mann [5]. In this paper we are primarily interested in the
following variant of the strong RSA problem where the input
is chosen as a random quadratic residue. It has been shown
that this variant is not any easier than the standard strong
RSA problem [13].

Let N be a positive integer that is the product of two dis-
tinct, random κ-bit primes p, q, letQRN denote the quadrat-
ic residues in Z∗

N , and let y be a random element of QRN .
Informally, given a random (N, y), the Strong RSA assump-
tion is that it is hard to compute a pair (x, e) such that e > 1
and xe ≡ y mod N . Specifically we denote the advantage
of an adversary B in solving the strong RSA problem as

AdvQR-SRSA(B) =Pr[ e > 1 and xe ≡ y mod N :

p, q
$← Primes ∩ {0, 1}κ, N ← pq,

y
$← QRN , (x, e)← B(N, y) ]

and we defineAdvQR-SRSA(T ) = maxB AdvQR-SRSA(B) where
the maximum is taken over all adversaries B executing in
time at most T .

2.4 Decision Diffie-Hellman Assumption
Our proof of security also makes use of the decisional

Diffie-Hellman (DDH) assumption in the quadratic residue
group QRN when N is the multiplication of two strong
primes. That is, it is difficult for an adversary to distinguish
a triple (ga, gb , gab) from (ga, gb , gc) for a, b, and c chosen
randomly and for a generator g of QRN . In particular, we
use a variant of the problem which says that DDH problem
is hard even when the factorization of N is known. It has
been shown that the DDH problem over QRN does not de-
pend on the hardness of factoring [27]. Formally, the DDH
advantage of an adversary D is defined as follows, where
SafePrimes are the primes p of the form p = 2p′ + 1 where
p′ is itself a prime:

AdvDDH(D) =
|Pr[ D(p, q, g, ga, gb , gab) = 1 :

p, q
$← SafePrimes ∩ {0, 1}κ, N ← pq, g

$← QRN ,

a, b
$← Zp′q′ where p′ = (p− 1)/2, q′ = (q − 1)/2 ] −

Pr[ D(p, q, g, ga, gb , gc) = 1 :

p, q
$← SafePrimes ∩ {0, 1}κ, N ← pq, g

$← QRN ,

a, b, c
$← Zp′q′ where p′ = (p− 1)/2, q′ = (q − 1)/2 ] |

Let AdvDDH(T ) = maxD AdvDDH(D) where the maximum
is taken over all adversaries D executing in time at most T .

Below, we refer to a triple (ga, gb , gab) as a valid DDH
triple, and (ga, gb , gc) as an invalid DDH triple.
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3. OUR CONSTRUCTION
In this section, we present a bounded vector signature

construction in the multiparty setting using the threshold
RSA signature scheme of Shoup [38] as the basis of our con-
struction. The novelty of our construction lies in the ob-
servation that values being signed can be moved from the
base of the signature to the exponent. By doing so, we can
encode each value in such a way that arbitrary parties can
increase this value by exponentiating the signature, but can-
not decrease the value without being able to take roots in
the RSA group. In particular, we encode the signature on
the value in a vector dimension as the distance from that
value to the maximum value for that dimension, and then
embed that distance as a root in the RSA group. Thus, by
exponentiating the signature by an exponent corresponding
to this dimension, the distance in that dimension can be de-
creased (and so the value in that dimension is increased).
The context portion of the signature acts as the base of the
RSA signature and provides the meaning behind the values
in the exponent. The context also ensures that vectors in
different contexts cannot be combined.

3.1 Construction Description
Here we discuss the operation of each algorithm in our

construction and provide the technical details in Figure 1.
The signature scheme is initialized by running the KeyGen

algorithm, which generates the public verification key and
the secret signing keys for each of the n signers. For the
multiparty setting, we consider a trusted dealer1 who gen-
erates two safe primes p = 2p′ + 1, q = 2q′ + 1, and a RSA
modulus N = pq. Each dimension k in the vector space
being signed is associated with a maximum value v̂[k] that
is given as input to the algorithm and a distinct prime ek
chosen by the dealer. The dealer also computes the signing

key sk =
∏d

k=1 e
−(v̂[k]+1)
k mod m, where m = p′q′. The

dealer then splits sk into n shares sk1, . . . , skn using stan-
dard polynomial secret sharing techniques [37]. Essentially,
this signing key encodes the maximum possible distance for
each dimension in the index.
The Sign algorithm allows a signer with signing key sk i to

produce a partial signature on a d-dimensional vector. The
signer first creates a context c, which is a text description
of the way the verifier should interpret the signed vector.
Practically speaking, the format of the context is applica-
tion specific, but its general purpose in our construction is
to ensure that vectors from different contexts cannot be com-
bined into a full signature. The output of the Sign algorithm

is a partial signature σi = H(c)n!ski
∏d

k=1 e
v[k]
k mod N , where

H(·) is a hash into the group QRN . The inclusion of n! in
the exponent is taken from the work of Shoup [38] to en-
sure that the Lagrange interpolation performed during the
Combine algorithm produces integers.
Given a partial or full signature on a vector v, an arbi-

trary party (without access to any signing key) can run the
Stretch algorithm to increase the value of any componen-
t of the vector up to the pre-determined maximum set by
the vector v̂ in the KeyGen algorithm. To do so, the par-
ty exponentiates the signature by the prime associated with
the desired dimension to increment the value in that dimen-
sion (i.e., decreasing the distance from the maximum). The

1Existing techniques for removing the assumption of a trust-
ed dealer may be applied to our construction (e.g., [15]).

output of the algorithm is a new partial or full signature
σ′ = (σ)e

a
k mod N , where k is the dimension being incre-

mented and a is the amount by which it is increased.
The Combine algorithm takes t partial signatures on po-

tentially different vectors from distinct signers and produces
a full signature from them. In order to properly combine
partial signatures on different vectors, the algorithm begin-
s by applying the Stretch operation on each dimension of
each partial signature to ensure all partial signatures pro-
vided as input sign the same vector. The resultant vec-
tor is actually the component-wise maximum among the
t signed vectors given as input. Once all partial signa-
tures embed the same vector, the Combine algorithm com-
putes (modified) Lagrange coefficients for each partial sig-
nature and interpolates the signing key sk in the exponen-
t. Thus, the output of the algorithm is a full signature

σ = H(c)sk
∏d

k=1 e
v[k]
k = H(c)

∏d
k=1 e

−(v̂[k]−v[k]+1)
k mod N on

the vector v. Notice that in addition to requiring all vectors
to be stretched to be identical, the context of these vectors
must also be the same for the Combine algorithm to success-
fully produce a full signature. It is also important to note
that this Combine procedure, after stretching, is exactly that
of Shoup [38], and so interested readers should refer to that
work for detailed technical explanation of the procedure.

Finally, the Verify algorithm takes as input a full signature
and a vector-context pair, and outputs 1 if the full signature
embeds the given vector-context pair. The verification pro-

cedure simply checks that H(c) = σ
∏d

k=1 e
v̂[k]−v[k]+1
k mod N ,

which only occurs if the signature encodes the given vector
components as the appropriate distance from the predeter-
mined maximum for each dimension.

We prove that this construction is shrink unforgeable un-
der the strong RSA and DDH assumption in the random or-
acle model. Since we modelH() as a random oracle, we addi-
tionally quantify the number of queries qh made toH() in the
adversary advantage. More formally, AdvSU-CMA

BVS (T, qh) =
maxA AdvSU-CMA

BVS (A) where the maximum is taken over all
adversaries A running time at most T and making at most
qh queries to H().

Theorem 1. Consider the above bounded vector signa-
ture construction with d dimensions and each vector dimen-
sion restricted to the range [0, v̂]. Then, ignoring terms neg-
ligible in κ,

AdvSU-CMA
BVS (T, qh)

≤ 2 · qh · d · v̂ ·
(

n

t− 1

)2(t−1)

·AdvQR-SRSA(T
′)

+ d · v̂ ·
(

n

t− 1

)2(t−1)

· (t− 1) ·AdvDDH(T
′′)

where T ′ = T ′′ = T+O(t(dv̂ log(n+d logn)+log(n!))) group
operations.

The proof of the theorem can be found in our accompa-
nying technical report [41].

3.2 Efficiency
With respect to space efficiency, the signing keys consist

of a group element in Zm, while the public key is made up of
an RSA modulus and d prime exponents. Both the partial
and full signatures in our construction are represented by a
single group element in QRN .
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KeyGen(1κ, t, n, v̂):

1. Dealer selects random κ-bit primes p = 2p′ + 1, q = 2q′ + 1 where p′ and q′ are themselves prime. Dealer
sets N = pq and m = p′q′.

2. The dealer chooses d distinct primes e1, . . . , ed with each ei > n and computes sk =
∏d

k=1 e
−(v̂[k]+1)
k mod m.

3. Dealer also selects t − 1 random integers a1, . . . , at−1 with each ai randomly selected from {0, ...,m − 1}
and computes a secret sharing polynomial f(x) = sk + a1x+ . . .+ at−1x

t−1 mod m.

4. Output is a public verification key pk = (N, e1, . . . , ed) and secret signing keys sk1, . . . , skn for each signer
Pi, where sk i = f(i) mod m.

Sign(sk i, (v, c)):

1. Output the partial signature σi = H(c)n!ski
∏d

k=1 e
v[k]
k mod N .

Stretch((σ,v, c), k, a):

1. If v[k] + a > v̂[k], set a = v̂[k]− v[k].

2. Output signature on stretched vector σ′ = σeak mod N .

Combine((σi1 ,vi1 , ci1), . . . , (σit ,vit , cit)):

1. Check that cij = cij′ for all j, j′ = 1, . . . , t.

2. For each dimension k of each partial signature σij :

i. Run Stretch((σij ,vij , cij ), k, a) with a = max(vi1 [k], . . . ,vit [k])− vij [k].

3. Compute modified Lagrange coefficients (n!)λij = (n!)
∏

j′ ̸=j(0−ij′ )∏
j′ ̸=j(ij−ij′ )

for each partial signature σij .

4. Compute w =
∏t

j=1 σ
(n!)λij

ij
= H(c)(n!)2

∏d
k=1 e

−(v̂[k]−v[k]+1)
k mod N .

5. Since gcd((n!)2,
∏d

k=1 e
(v̂[k]−v[k]+1)
k ) = 1, we use the extended Euclidean algorithm to compute α, β such

that α(n!)2 + β
∏d

k=1 e
(v̂[k]−v[k]+1)
k = 1.

6. Output the full signature σ = wαH(c)β = H(c)
∏d

k=1 e
−(v̂[k]−v[k]+1)
k mod N .

Verify(pk , σ, (v′, c′)):

1. Output 1 if H(c′) = σ
∏d

k=1 e
v̂[k]−v′[k]+1

k mod N . Otherwise, output 0.

Figure 1: Algorithms for our bounded vector signature construction.

The Sign and Verify algorithms require at most
∑d

k=1 v̂[k]
modular exponentiations in the group QRN . Likewise, the
Stretch algorithm requires a number of modular exponen-
tiations that is linear in the range of the dimension being
stretched. Finally, the Combine algorithm requires t modu-
lar exponentiations in QRN to perform the Lagrange inter-
polation, and two additional exponentiations to derive the
full signature using the coefficients from the extended Eu-
clidean algorithm.

4. EXTENSIONS
The basic bounded vector signature construction given in

the previous section may be extended in a variety of ways to
achieve additional functionalities. These extensions include
the ability to dynamically limit the use of the Stretch op-
eration and to verify partial signatures via robustness tech-
niques from the threshold signature literature. Here, we
briefly describe each of these extensions in turn.

4.1 Dynamically Limiting Malleability
The malleability properties of the basic bounded vector

signature construction allow anyone who possesses a partial
or full signature to produce valid signatures on any vec-
tor with components greater than those in the originally

signed vector, up to the maximum values specified during
the KeyGen procedure. In certain instances, however, it is
desirable to give each signer a degree of control over the use
of the Stretch operation and, consequently, the signatures
that other parties may produce. This can be accomplished
by each signer taking steps to limit the degree to which its
own partial signature can be stretched, and then leverag-
ing the threshold t to limit what full signatures can then be
produced using them.

Specifically, a signer i can create one bounded vector (par-
tial) signature on its intended vector vi, and another bound-
ed vector (partial) signature on the vector v′

i, where v̂[k]−
v′
i[k] ≥ vi[k] for all dimensions k. This second signature

can be viewed as bounding the extent to which the original
vector can be stretched to only those vectors that can be
simultaneously produced by both signatures. When v′

i[k] =
v̂[k] − vi[k] for all dimensions k, all malleability has been
removed from the partial signature.

Although the procedure above limits the malleability of
partial signatures, its effect on the full signatures produced
by Combine depends on the threshold t and its relation to the
number of signers n. One particularly interesting parameter-
ization allows us to ensure that a full signature (consisting of
two bounded vector signatures) can be produced on only the
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rth smallest value in each dimension k (i.e., value at rank r)
from among the n values vi[k], i ∈ {1 . . . n}. To implement
this, we set the threshold for the first bounded vector sig-
nature instantiation, to which signer i contributes a partial
signature for vi, to t1 = r. In the second bounded vector
instantiation, each signer contributes a partial signature for
v′
i where v′

i[k] = v̂[k] − vi[k], and we set the threshold to
t2 = n− r+ 1. The first partial signatures can be stretched
to increase the values vi[k] of the r − 1 smallest such val-
ues, while the second partial signatures can be stretched to
decrease the values v̂[k] − v′

i[k] of the n − r largest such
values. The respective full signatures only overlap at the
rank-r values in each dimension k, and consequently cannot
be altered via the Stretch algorithm. When r = 1, this is a
non-malleable signature on the component-wise minimums,
and when r = n, this is a non-malleable signature on the
component-wise maximums, for example. In Section 5, we
leverage this capability to perform intersection and union of
signed data structures.

4.2 Adding Robustness
The notion of robustness in threshold signature schemes

captures the inability of an adversary to produce incorrectly
formatted partial signatures, which may cause the Combine
algorithm to fail. Since the core of our bounded vector sig-
nature construction is based on the threshold RSA scheme
of Shoup [38], we can make use of the robustness techniques
presented therein. Broadly speaking, the robustness prop-
erty can be achieved by requiring the signer to prove, in zero
knowledge, that (i) the key used to sign the partial signa-
ture is the same as the one provided by the dealer, and (ii)
that the partial signature is properly formed according to
the algorithm description.
Specifically, the dealer chooses a random element g ∈

QRN . Note that with overwhelming probability g is a gen-
erator of QRN . He then computes and publishes the value
Gi = gski for each signer Pi. The partial signature σi is then
accompanied by a zero-knowledge proof that logH(c)(σ

2
i ) =

logg(G
2(n!)2

∏d
k=1 e

v[k]
k

i ), which can be accomplished using s-
tandard zero-knowledge techniques for proving the equality
of discrete logarithms [12, 11]. Furthermore, this proof can
be made non-interactive by using the Fiat-Shamir heuris-
tic [20]. Due to space considerations and the similarity of
our techniques with those of Shoup, we forgo a proof of the
simulatability of this zero-knowledge proof.

5. APPLICATIONS
Bounded vector signatures can be used to efficiently rep-

resent signatures on a variety of data structures while still
allowing certain operations on those data structures. These
efficient, malleable signatures are particularly important in
distributed systems applications, where disparate parties must
securely share information while limiting communications
overhead. Here, we describe two such data structures, name-
ly sets and intervals. For each data structure, we describe
how to represent it using our bounded vector signatures,
specify operations on those signed data structures enabled
by the Stretch operation, and suggest applications to prob-
lems in the area of distributed systems security.
The use of bounded vector signatures in the distributed

applications described below provides a number of benefits.
These include the compact representation of large groups of

items (e.g., sets and intervals) with a constant number of
group elements in QRN , the ability to represent aggregated
information from all members of a group as a single signa-
ture, non-interaction of the Combine and Stretch protocols,
and the ability to locally update the full signature on the
aggregated information. Furthermore, the threshold used
in the Combine algorithm acts as a voting mechanism for
the aggregated information, and may be of use in scenarios
where Byzantine fault tolerance is required. Unless other-
wise noted in this section, the bounded vector signatures are
parameterized with t = n.

5.1 Sets and Multisets
The set data structure allows for the storage of unordered

collections of unique items or values. In a multiset, this
concept is extended to allow multiple copies of items (i.e.,
associating a count with each item). Sets (resp., multisets)
are represented in our bounded vector signature scheme by
associating each item in the universe of possible items with
a dimension in the signed vector and limiting the maximum
value of the dimension to one (resp., the maximum per-item
count). In essence, the vector representing a set reflects the
presence or absence of each of the d items in the universe,
while a vector for a multiset dictates the count of each item.

One downside of this approach for signing sets and mul-
tisets is that it requires a number of dimensions equal to
the size of the universe of items represented, which may be
quite large. In those cases, we may instead use our bound-
ed vector signatures to encode the set in a Bloom filter [7].
Rather than associating each component of the vector with
a specific item, we instead use the outputs of hash functions
applied to the item to determine which dimensions to set to
one. To test membership, we check that all dimensions to
which the item hashes are set to one. In short, Bloom filters
allow for a compact representation of sets by trading off a
tunable probability of false positives when testing set mem-
bership (i.e., an item is reported as a member even though
it is not). Like simple sets, our bounded vector signatures
represent a Bloom filter using a d-dimensional vector with
maximum values for each dimension set to one, only in this
case the number of dimensions may be much smaller than
the number of items in the universe and is related to the
desired probability of false positives.

Operations on Signed Sets.
The stretch property of the underlying bounded vector

signatures allows us to perform the union operation among
multiple set signatures simply by performing the Combine
operation. As discussed in the previous section, Combine
effectively takes the maximum value in each dimension from
among the t partial signatures to form a final signature.
As it turns out, this exactly defines the union among the
signed sets. Furthermore, the security of our bounded vector
signature scheme ensures that while items may be added
to the (partially or fully) signed set, it is computationally
infeasible for an adversary to remove an item. If additions
to the fully signed set should not be permitted, then the
rank-order technique described in Section 4.1 can be used to
preclude this. The union operation and security guarantee
also hold for multisets and Bloom filters, as well.

The intersection operation is achieved by having each sign-
er produce a signature on a vector where each component
encodes the distance between the signed value and the max-
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imum allowable value in that dimension (i.e., the comple-
ment for sets or the number of copies of items not in the
multiset). As mentioned in Section 4.1, the Stretch oper-
ation on these signatures decreases the value being signed
by increasing the distance from the maximum. Therefore,
when Combine is run on these signatures, the largest value
that can be signed is, in effect, the minimum value in each
dimension. The security of bounded vector signatures en-
sures that the resultant signatures can have items removed
from the set (resp., multiset, Bloom filter), but not added.
Again, the technique of Section 4.1 can be used to preclude
removals from the fully signed intersection, if so desired.

Distributed Systems Applications.
Signatures on sets, multisets, and Bloom filters can be

used in a number of distributed data sharing applications,
including peer-to-peer systems [14, 30, 24, 36], distribut-
ed caches [19, 9, 35], blacklisting services [17, 40, 39], and
network flow monitoring systems [18]. In each of these ap-
plications, a collection of entities must provide users with an
aggregate view of the data that they maintain as a group.
These systems cannot assume interactivity, must provide an
efficient method of verification to the user, and must be able
to perform updates on the aggregated data without requir-
ing additional interaction.
As a concrete example, consider the problem of spam

blacklisting services, such as Spamhaus [40], SORBS [39],
and DNSBL [17], which aggregate information about IP ad-
dresses sending spam e-mail. These blacklists must aggre-
gate the IP addresses from several sources and provide users
with a method of verifying that the given list does indeed
represent that aggregate information (i.e., names have not
been spuriously added or removed, as the case may be).
The blacklists can be efficiently represented in a Bloom fil-
ter, signed by our bounded vector signature method, and
combined in a completely offline manner by the blacklist
providers to give users a single signature to verify the ag-
gregated blacklist. In the time between blacklist aggregation
events, the individual sources can continue adding or remov-
ing IP addresses from the aggregated blacklist through the
use of the Stretch operation without requiring additional in-
teractions, if such operations are allowed by the signature in-
stantiation. By contrast, traditional digital signatures would
force the user to verify the blacklists from each of the sources
independently and require the blacklist sources to continu-
ally generate new signatures on the published blacklists.

5.2 Intervals
Bounded vector signatures can also be used to represent

contiguous intervals of values, in addition to discrete sets of
items. There are potentially two ways in which to encode an
interval of values within a bounded vector signature scheme.
In the first, the signer creates 2-dimensional vectors, where
the components of the vector encode the left and right end-
points of the signed interval, respectively. In the second,
the signer may create two 1-dimensional vectors with each
vector encoding one of the endpoints. The primary trade-
off between these two methods is that in the first case the
range is efficiently encoded in a single group element, where-
as the second case allows for two unique parameterizations
of the bounded vector signatures for the vectors (e.g., two
different thresholds t). As we will show later in this section,
there are potential applications that are specific to both ap-

proaches. The concept of signing an interval can also be
expanded to an arbitrary number of dimensions by simply
increasing the dimensionality of the signed vector, or num-
ber of signatures in the case where each endpoint is a single
vector. Specifically, if we want to encode a d-dimensional
box (i.e., the Cartesian product of d intervals), we create a
2d-dimensional vector to encode the left and right endpoints
for the allowable range in each dimension.

Operations on Signed Intervals.
The use of bounded vector signatures provides the signer

with a number of options for encoding the endpoint val-
ues of the signed interval, which in turn enable different
functionalities. For example, if the signer were to encode
the left-most point in the interval as the value itself and
the right-most point as the distance to the maximum allow-
able value in the bounded vector scheme (i.e., the vector
⟨v[1], v̂[2] − v[2]⟩ with the restriction v[1] ≤ v̂[2] − v[2]),
then the resultant signed range could only be shrunk and
never expanded — this is equivalent to the dynamic mal-
leability limitation described in Section 4.1. On the other
hand, if the signer encoded the left-most point as the dis-
tance from the maximum and the right-most as the value
itself (i.e., ⟨v̂[1] − v[1],v[2]⟩ with v̂[1] − v[1] ≤ v[2]), then
the signed range could be expanded but never shrunk. No-
tice that if we set both endpoints to be encoded relative to
the same value (e.g., ⟨v[1],v[2]⟩ or ⟨v̂[1]−v[1], v̂[2]−v[2]⟩),
we can slide and expand the interval in one direction only.

The range encodings above, along with the Stretch oper-
ation on the underlying bounded vector signatures, allow a
combiner to efficiently compute the intersection and union of
signed intervals. To compute intersections, each signer en-
codes the endpoints of its signed interval such that the range
can only be shrunk. When the Combine algorithm is run
on these partial signatures, the combiner will be forced to
shrink the intervals to equal the smallest overlapping range
and so the output will be a full signature on the intersection.
For the union operation, the signers use an encoding that al-
lows expansion of the signed interval and the combiner will
expand all intervals such that the full signature will con-
tain the left and right-most points from among all partially
signed intervals. We note that this is slightly different from
the typical definition of union among intervals, since in our
system the union operation is allowed even if the intervals
do not overlap. The security of the bounded vector signa-
tures ensures that the full signature output by the combine
procedure cannot be altered to sign a value not found within
the intersection or union of the individual partially signed
intervals.

Distributed Systems Applications.
Like signatures on sets and multisets, our bounded vector

signature representations of intervals can be used to accom-
plish data sharing tasks within distributed systems for values
that have natural ordering properties. One example is a time
interval. For example, an approach to the management of
public-key certificates (e.g., [29]) employs an online revoca-
tion authority ORA to countersign, for short intervals, long-
term certificates created by a more trusted offline certificate
authority CA. In a traditional implementation of this idea,
both the signature by CA and the countersignature by ORA
would be implemented using separate signatures, resulting
in two signature verifications per use of the certificate. Our
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bounded vector signatures support the consolidation of these
two signatures into one: the CA provides to ORA a signed
certificate with a large validity period, which ORA can par-
cel out in small portions by “sliding” the ends of the validity
interval accordingly (rather than separately countersigning
each short validity interval).
A second area for using bounded vector signatures to rep-

resent intervals is sensor applications. Marzullo [31], for
example, considered a setting in which multiple sensors pro-
duce an interval in which it senses a value (e.g., temperature,
time) to lie, and where a sensor is correct if the interval it
returns contains the actual value (and is faulty otherwise).
His algorithm uses intervals from n sensors to produce the
tightest interval possible in which the actual value lies, pro-
vided that fewer than f sensors are faulty. A direct use
of our bounded vector signatures would permit each sensor
to sign its interval and subsequently combine these signed
intervals using this fault-tolerant intersection algorithm to
produce a signature on the tightest interval possible in which
the actual value lies. Others can be disallowed from tight-
ening the interval further using the rank-order techniques of
Section 4.1.
A third interesting application of signatures on intervals

is their use to represent a broad class of access-control struc-
tures used in key management tasks, like hierarchical access
controls [2, 4] and group key management [34, 42]. In these
settings, attributes that determine access can often be en-
coded within a d-dimensional space. For instance, in some
location-based access control schemes [3, 43], the dimension-
s encode the location of the entity in 3-dimensional space,
plus an extra dimension for time. A service provider can
sign subranges describing the allowable access attributes for
the entities in the distributed system and provide them with
their respective subranges as a non-interactive access token.
These entities can then derive a “key” 2 for any subspace of
their allowable attributes using the Stretch operation on the
signature given to them. Such a scheme can derive several
benefits from our bounded vector signatures, such as secu-
rity against key recovery [2], which roughly states that it
is infeasible for the adversary to derive a key for an access
attribute for which she does not have a token.

6. CONCLUSION
In this paper, we described a new malleable signature

scheme for signing vectors of natural numbers, which we call
bounded vector signatures. The primary contribution of our
scheme is a malleability property that allows arbitrary par-
ties to increase the value embedded in any component of the
signed vector without access to the signing key, while making
it computationally infeasible to decrease values. In the mul-
tiparty setting, this malleability property allows each signer
to sign a potentially different vector of values and yet still
produce a valid full signature representing the component-
wise maximum of any t vectors. We described an efficient
construction for our scheme and proved it secure under the
strong RSA and decisional Diffie-Hellman assumptions in
the random oracle model. Finally, we showed that bound-
ed vector signatures could be used to sign interesting data
structures, such as sets and intervals, and that the malleabil-

2Depending on the scheme in use, additional key derivation
steps may be necessary. For simplicity we just denote the
signature as a “key”.

ity of those signatures enabled efficient implementations of
standard operations on the signed structures. Moreover, we
illustrated the unique benefits of these malleable signatures
in providing compact and non-interactive solutions to sev-
eral problems in the area of distributed systems security.
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