
Revisiting the Case for a Minimalist Approach
for Network Flow Monitoring

Vyas Sekar
Carnegie Mellon University

Pittsburgh, PA

vyass@cs.cmu.edu

Michael K Reiter
UNC Chapel Hill
Chapel Hill, NC

reiter@cs.unc.edu

Hui Zhang
Carnegie Mellon University

Pittsburgh, PA

hzhang@cs.cmu.edu

ABSTRACT

Network management applications require accurate estimates of a
wide range of flow-level traffic metrics. Given the inadequacy of
current packet-sampling-based solutions, several application-specific
monitoring algorithms have emerged. While these provide bet-
ter accuracy for the specific applications they target, they increase
router complexity and require vendors to commit to hardware prim-
itives without knowing how useful they will be to meet the needs
of future applications.

In this paper, we show using trace-driven evaluations that such
complexity and early commitment may not be necessary. We re-
visit the case for a “minimalist” approach in which a small num-
ber of simple yet generic router primitives collect flow-level data
from which different traffic metrics can be estimated. We demon-
strate the feasibility and promise of such a minimalist approach
using flow sampling and sample-and-hold as sampling primitives
and configuring these in a network-wide coordinated fashion using
cSamp. We show that this proposal yields better accuracy across a
collection of application-level metrics than dividing the same mem-
ory resources across metric-specific algorithms. Moreover, because
a minimalist approach enables late binding to what application-
level metrics are important, it better insulates router implementa-
tions and deployments from changing monitoring needs.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network monitoring, network management

General Terms

Measurement, Management

Keywords

Traffic Monitoring, Sampling, Data Streaming, Anomaly Detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’10, November 1–3, 2010, Melbourne, Australia.
Copyright 2010 ACM 978-1-4503-0057-5/10/11 ...$10.00.

1. INTRODUCTION
Flow monitoring supports vital network management tasks such

as traffic engineering [18], anomaly detection [28, 29], account-
ing [14, 17], identifying and analyzing end-user applications [12,
22], understanding traffic structure [43], detecting worms, scans,
and botnet activities [44, 41, 35], and forensic analysis [42]. These
require accurate estimates of different traffic metrics relevant to
each application.

High traffic rates exceed the monitoring capabilities of routers,1

and since traffic is scaling at least as fast as routers’ capabilities,
some form of sampling or data reduction is necessary in commod-
ity solutions. (There are high-end solutions for full packet cap-
ture [3]. These are expensive and require specialized instrumenta-
tion.) The de-facto standard is NetFlow [11, 2] which uses packet
sampling. Each packet is sampled with some probability and the
selected packets are aggregated into flows.2 NetFlow-style moni-
toring is sufficient for applications such as traffic volume estimation
that require only a coarse view of traffic, but several studies have
shown the inadequacy of packet sampling for many of the fine-
grained monitoring applications mentioned earlier (e.g., see [34,
21, 15, 26, 7, 35, 17]).

A consequence of these results is that several research efforts
have focused on developing application-specific monitoring tech-
niques. This is exemplified by the proliferation of data stream-
ing algorithms for computing specific traffic metrics, e.g., comput-
ing the flow size distribution [26], entropy estimation [30], super-
spreader detection [41], degree histogram estimation [44], change
detection [25], and so on.

While this body of work has made valuable algorithmic contribu-
tions, this shift to application-specific approaches is undesirable for
two practical reasons. First, having many application-specific pro-
posals increases the implementation complexity and possibly the
resource requirements of routers. Second, the set of applications
is a moving target, as both normal and anomalous traffic patterns
change over time. This requires router vendors and network man-
agers to commit to a fixed set of application-level metrics without
knowing if these will meet future requirements.

In this work, we reflect on these developments and ask a funda-
mental question:

Is such complexity and early commitment necessary?

Are there simpler alternatives that can provide the requisite fidelity

and generality?

1Our arguments apply to non-router-based monitoring solutions as
well.
2A flow is a sequence of packets with the same IP 5-tuple 〈 srcip,
dstip, srcport, dstport, protocol 〉.

328

© ACM, 2010. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/1879141.1879186.

Figure 1: A minimalist approach runs a few collection algo-

rithms. Applications can use the collected data later (pos-

sibly offline). NetFlow/packet sampling is a minimalist ap-

proach, but it is not well-suited for many applications. An

application-specific architecture implements many focused al-

gorithms. These work well for the specific applications, but in-

crease complexity and are not robust to changing demands. We

demonstrate a minimalist alternative that performs favorably

compared to application-specific approaches over a wide spec-

trum of applications.

Approach and Intuition: We revisit the case for a minimalist ap-
proach that retains the simplicity of NetFlow, where routers only
need to support a few monitoring primitives, but still provide cov-
erage over a wide spectrum of applications.

To understand how we can achieve this, we can think of each
monitoring application as being composed of two logical phases:
(1) a collection phase that needs to operate at line rates and (2) an
estimation phase to compute different traffic metrics that need not
strictly work at line rates. Application-specific alternatives tightly
couple these two components, only retaining counters and statistics
relevant to a specific application context (Figure 1). In contrast, we
envision a minimalist approach that decouples the collection and
estimation phases as much as possible.

A key question is whether such an approach can provide estima-
tion accuracy comparable to application-specific alternatives. One
rationale to suggest that it can, is that the primary bottleneck for
monitoring is keeping counters in fast memory (SRAM). Instead
of splitting the available memory across different applications, we
can aggregate it, and run a few simple primitives with high-enough
sampling rates to obtain accurate estimates of traffic metrics for a
wide spectrum of applications. In other words, when we look at
each application in isolation, application-specific strategies are ap-
pealing. However, when we consider a portfolio of applications in
aggregate, a minimalist approach might be a better alternative.

Contributions and Implications: Our goal is not to design an op-
timal minimalist approach. Rather, our objective is to establish a
feasible instance.

We present a practical minimalist approach in Section 4 that
combines sample-and-hold [17], flow sampling [21], and cSamp [39].
Our choice of these specific primitives is guided by the understand-
ing that monitoring applications fall into two broad classes that ana-

lyze (1) volume structure (e.g., traffic engineering) or (2) communi-

cation structure (e.g., security applications). Flow sampling is ide-
ally suited for the latter class [21, 34, 32] and sample-and-hold for
the former [17]. cSamp provides a framework to efficiently lever-
age the available monitoring resources at routers to meet network-
wide monitoring goals.

We use trace-driven analysis to evaluate this design against sev-
eral application-specific approaches (Section 6): detecting heavy
hitters [17], superspreaders [41], and large traffic changes [25];
computing entropy [30] and the outdegree histogram [44]; and es-
timating the flow size distribution [26]. When our approach has the
same total memory resources as that used by the different application-
specific algorithms in aggregate, it provides comparable or bet-
ter estimation accuracy across the entire spectrum of applications.
Moreover, by delaying the binding to specific applications, it en-
ables computation of not-yet-conceived measures that will be in-
teresting in the future.

Our work shows the promise of a minimalist approach even with
a simple combination of existing techniques. We believe that this
has significant implications for router vendors, network operators,
and measurement researchers. First, it can reduce router complex-
ity without compromising a vendor’s ability to satisfy its customers’
demands. Second, it helps insulate network deployments from the
changing needs of monitoring applications. Finally, we hope that
these results motivate further research in developing better mini-
malist primitives and estimation algorithms, and in understanding
their fidelity for different applications.

2. BACKGROUND AND RELATED WORK

Packet sampling: Router vendors today use uniform packet sam-
pling [11]: a router selects a subset of packets, and aggregates
the sampled packets into flow reports. However, packet sampling
has inherent limitations. There are known biases toward sampling
larger flows (e.g., [21, 26, 34]) and several studies have questioned
its accuracy for many management applications (e.g., see [34, 21,
15, 26, 7, 35, 17]).

Application-specific approaches: The limitations of packet sam-
pling have motivated many application-specific data streaming al-
gorithms. The high-level approach is to use a small number of
SRAM counters that track traffic statistics pertinent to each appli-
cation and then estimate the relevant application-level metrics from
these counters. These include algorithms for estimating the flow
size distribution [26, 36], identifying heavy hitters [17], entropy es-
timation [30], superspreader detection [41], degree histogram esti-
mation [44], and change detection [25]. However, these approaches
are tightly coupled to the specific applications and report summary
statistics only relevant to these applications. Thus, it is difficult to
estimate other measures of interest from these reports. Therefore,
these lack the generality to serve as minimalist primitives.

Some data structures (e.g., sketches [13]) provide more general-
ity. However, these have two limitations. First, they are designed
primarily for coarse volume queries and less suited for fine-grained
tasks like entropy estimation and superspreader detection. Second,
sketches operate with a specific “flowkey” over one or more fields
of the IP 5-tuple (srcip, dstip, srcport, dstport, protocol). Each
flowkey of interest requires a separate instance. However, it is of-
ten necessary to analyze combinations of two or more fields for
diagnostic purposes (e.g., for investigating anomalies). Having a
separate instance for each combination incurs high overhead. Fur-
thermore, this needs prior knowledge of which flowkeys will be
useful, which may not be known until after the operator begins to
investigate specific events.

329

Selective sampling: Some approaches assign different sampling
rates for different classes of packets [27, 35]. Others only log flows
with pre-specified patterns (e.g., [45, 1, 4, 33, 8]). While these ap-
proaches provide some flexibility, they need to know the specific
classes and sampling rates to meet the applications’ requirements.
In contrast, we envision a minimalist approach that is largely ag-
nostic to the specific types of analyses that may be performed.

Network-wide measurements: Many studies have stressed the
importance of network-wide measurements to meet operational re-
quirements as applications and attacks become more distributed [18,
28, 29]. For example, understanding peer-to-peer traffic [12], de-
tecting botnets [35] and hit-list worms [32], understanding DDoS
attacks [38], and network forensics [42] inherently require a network-
wide view aggregated from multiple vantage points. In this respect,
recent proposals show the benefits of moving beyond router-centric
solutions to network-wide monitoring solutions [9, 39].

3. DESIGN CONSIDERATIONS
Given this background, we synthesize key requirements for a

flow monitoring architecture and derive guiding principles for a
minimalist approach, echoing the charter of the IETF PSAMP work-
ing group [5].

3.1 Requirements

Minimize router complexity: Given the hardware and develop-
ment costs involved in modern router design, we want to keep
router implementations as simple as possible.

Generalize to many applications: The monitoring infrastructure
should cover a wide spectrum of applications and ideally be robust
to future application needs.

Enable diagnostics: The monitoring architecture should support
diagnostic “drill-down” tasks; e.g., by providing the capability to
give different views into traffic structure.

Provide network-wide views: The monitoring architecture should
provide network-wide capabilities as these are increasingly crucial
for several aspects of network management and traffic analysis.

3.2 Design Principles

A few, simple, and generic primitives: A natural way to reduce
router complexity is to have a few primitives that are easy to imple-
ment but powerful enough to support many management tasks.

Decouple collection and computation: Now, how can we provide
generality and support diagnostics with a few monitoring primi-
tives? We believe that this best achieved by decoupling the collec-
tion and computation phases involved in the monitoring tasks. Note
that this is already implicit in network operations today: routers ex-
port NetFlow reports to a (logically) central collector and operators
analyze this data. We retain this operational model; routers run
some collection algorithms and export the collected flow reports.
Once we have the flow-level reports, we can compute any traffic
metric of interest and provide different views required for further
diagnosis.

Network-wide resource management: To provide network-wide
capabilities, we need a framework that assigns monitoring respon-
sibilities across routers to satisfy network-wide monitoring goals.
At the same time, this framework should be resource-aware and
respect the constraints (e.g., SRAM capacity) of individual routers.

3.3 Challenges
Given the above considerations, two questions remain:

1. Concrete Design: What primitives should be implemented
on routers to support a range of applications? How should
monitoring responsibilities be assigned to meet network-wide
measurement goals?

2. Performance: Does the intuitive appeal of a minimalist ap-
proach translate into quantitative benefits for a wide spec-
trum of applications?

In addressing these challenges, our goal is not to look for an
“optimal” minimalist approach. (In fact, it is not clear if we can
formally reason about optimality without committing to a fixed set
of applications.) Rather, we want to look for a feasible instance
that covers a broad spectrum of applications. We present one such
proposal in the next section.

4. ARCHITECTURE
The first challenge above requires that we choose a small set

of generic collection primitives that runs on each router and de-
sign a framework to manage them intelligently across a network
of routers. Our specific proposal combines three ideas: flow sam-
pling [21] and sample-and-hold [17] as single router sampling al-
gorithms, and cSamp [39] for network-wide management. Keys et
al. designed a system for providing traffic summaries and detect-
ing “resource hogs” [23] using a combination of flow sampling and
sample-and-hold, similar to our approach. We extend their work in
two significant ways. First, we show how to combine these primi-
tives with the network-wide capabilities of cSamp [39] in contrast
to the single-vantage-point view in their work. Second, we look
beyond simple traffic summaries and demonstrate that this combi-
nation can support a much wider range of applications.

4.1 Router Primitives

Choice of primitives: Flow monitoring applications can be divided
into two broad classes: (1) those that require an understanding of
volume structure; e.g., heavy-hitter detection and traffic engineer-
ing that require an understanding of the number of packets/bytes
per-port or per-src and (2) those that depend on the communication

structure; e.g., security applications and anomaly detection appli-
cation that require an understanding of “who-talks-to-whom”. Our
choice of primitives is guided by these two broad classes. Flow
sampling is well suited for security and anomaly detection appli-
cations that analyze communication structure [21, 34, 32]. Sim-
ilarly, sample-and-hold is well suited for traffic engineering and
accounting applications that analyze volume structure [17]. Thus,
these two primitives effectively complement each other in their ca-
pabilities. We do note that there are other proposals for capturing
the communication structure (e.g., [35, 27]) and volume structure
(e.g., [13, 15, 24]), and flow sampling and sample-and-hold may
not necessarily be the optimal primitives. Our goal is to pick a
feasible point in this design space and quantitatively compare it to
application-specific approaches.

For the following discussion, a flow is defined by the 5-tuple:
〈srcip, dstip, srcport, dstport, protocol〉. We use flow sampling and
sample-and-hold at this 5-tuple granularity. The collected flows can
be sliced-and-diced after the fact by projecting from this general
definition to others (e.g., per destination port, per source address).

Sample-and-Hold (SH): Sample-and-hold (SH) [17] keeps near-
exact counts of “heavy hitters” — flows with high packet counts.
SH works as follows. For each packet, the router checks if it is

330

tracking this packet’s flowkey, defined over one or more fields of
the IP 5-tuple. If yes, the router updates that counter. If not, the
flowkey for this packet is selected with probability p, and the router
keeps an exact count for this selected flowkey subsequently. Since
this requires per-packet counter updates, the counters are kept in
SRAM [17].

To configure SH, we specify the flowkey(s) (e.g., srcport, sr-
cip, or 5-tuple), the anticipated total number of packets for a spe-
cific time interval (numpkts), and the number of flows that can be
logged (L) depending on the SRAM constraint. To ensure that the
number of flow entries created does not exceed the SRAM capac-
ity, we use numpkts in configuring SH to set the packet sampling
probability p = L

numpkts
.3 In our minimalist design, we use one

instance of SH and configure it to operate at the 5-tuple granularity.

Hash-based flow sampling (FS): Flow sampling (FS) picks flows
rather than packets at random [21]. One way to implement FS is
as follows. Each router has a sampling manifest — a table of one
or more hash ranges indexed using a key derived from each packet
header. On receiving a packet, the router computes the hash of the
packet’s 5-tuple (i.e., the flowkey). Next, it selects the appropriate
hash range from the manifest and selects the flow if the hash falls
within this range. If the flow is selected, then the router uses its
hash as an index into a table of flows and updates the byte and
packet counters for the flow. The hash function maps the input 5-
tuple uniformly into the interval [0, 1]. Thus, the size of each hash
range determines the flow sampling rate for each category of flows
in the manifest.

Similar to SH, FS requires per-packet table lookups; the flow ta-
ble must therefore be implemented in SRAM. It is possible to add
a packet sampling stage to make DRAM implementations possi-
ble [24]. For simplicity, we assume that the counters are stored in
SRAM.

4.2 Resource Management
Having chosen FS and SH as our minimalist primitives, we ad-

dress the following question. Given a fixed amount of SRAM avail-
able for monitoring on each router, how should we divide it be-
tween these primitives?

Combining FS-SH on a single router: Consider a single router
with a fixed amount of SRAM that can hold L flow counters. A
simple way to split L is to give a fraction f to FS and the remaining
1− f to SH. We show in Section 6 that f ≈ 0.8 is a good choice.

Network-wide case: The above split works for the single router
case. Next, we see how we can manage the monitoring resources
across a network of routers. Network-wide management tasks are
typically specified in terms of Origin-Destination pairs, specified
by an ingress and egress router (or PoP). OD-pairs are convenient
abstractions that naturally fit many of the objectives (e.g., traffic
engineering) and constraints (e.g., routing paths, traffic matrix) in
network management. A natural extension of the single router hy-
brid primitive to the network-wide case is to consider the resource
split per OD-pair [9, 39].

Here, we observe a key difference between FS and SH. It is pos-
sible to coordinate FS instances by assigning non-overlapping re-
sponsibilities across routers on a path [39]. However, because SH
logs heavy hitters, the same set of heavy hitters will be reported

3Estan and Varghese use SH to track heavy hitters who contribute
more than a fraction 1

x
to the total traffic volume. In their pro-

posal, p is set to O×x
numpkts

, where O is an oversampling factor [17].

Our configuration can be viewed as determining x and O from the
memory budget L.

across routers on a path. Thus, replicating SH across routers on a
path duplicates measurements and wastes router resources.

To address this issue, we make a distinction between ingress and
non-ingress routers. Ingresses implement both FS and SH, sharing
the aggregate memory as in the single router case. At each such
ingress router, the SH resources are split between the OD-pairs
originating at the ingress, in proportion to the anticipated number
of packets per OD-pair.4 Non-ingress routers only implement FS.
In order to distribute FS responsibilities across the network, we use
cSamp [39], which we describe next.

Overview of cSamp: We choose cSamp because, for a given set
of router resource constraints, it provides a framework to optimize
fine-grained network-wide monitoring goals; it leverages the avail-
able monitoring capacity efficiently by avoiding redundant mea-
surements; and it naturally load balances responsibilities to avoid
hotspots.

The inputs to cSamp are the flow-level traffic matrix (approxi-
mate number of flows per OD-pair), router-level path(s) for each
OD-pair, the resource constraints of routers, and an ISP’s objec-
tive function specified in terms of the fractional flow coverages
per OD-pair (i.e., the fraction of flows on this OD-pair that are
logged). These input parameters are typically available to network
operators [18]. The output is a set of sampling manifests specifying
the monitoring responsibility of each router in the network. Each
sampling manifest contains entries of the form 〈OD , [start , end]〉,
where [start , end] ⊆ [0, 1] denotes a hash range and OD is an
identifier for an OD-pair. In the context of the FS algorithm, this
means that the OD-pair identifier is used as the “key” to get a hash
range from the sampling manifest.5

The main idea is to bootstrap routers with the same hash func-
tion but assign non-overlapping hash ranges per OD-pair. Thus, the
flows sampled by different routers do not overlap. This coordina-
tion also makes it possible to optimally achieve network-wide flow
coverage goals. Next, we describe the optimization model used in
cSamp to assign FS responsibilities across a network.

Each OD-PairODi (i = 1, . . . ,M) is characterized by its router-
level path Pi and the estimated number Ti of IP-level flows per
measurement epoch (e.g., five minutes).6 Each router Rj is con-
strained by the available memory for maintaining flow counters. Lj

captures this constraint, and denotes the number of flows router Rj

can record and report per epoch. dij denotes the fraction of flows
of ODi that router Rj logs. For i = 1, . . . ,M , let Ci denote the
fraction of flows on OD i that is logged.

cSamp can support a variety of network-wide objectives. Here
we describe its use for one particular goal: achieving the best flow
coverage subject to maximizing the minimum fractional flow cov-
erage per OD-pair. First, the largest possible minimum fractional
coverage per OD-pair, mini{Ci}, subject to the resource constraints
is found. Next, this value is used as the parameter α to the linear
program shown below (in Eq (1)–(4)) and the total flow coverage∑

i(Ti ×Ci) is maximized, i.e.,

4We use packets and not flows since the SH configuration depends
on the number of packets in the traffic. In practice, we need only
approximate estimates to divide the available memory resources.
5This formulation assumes that routers in the middle of the net-
work can infer the OD-pair from packet headers using MPLS labels
or ingress-egress prefix maps [6]. cSamp can also be implemented
without OD-pair identifiers [40]. For clarity, we describe the sim-
pler approach using OD-pairs.
6For simplicity, we assume that each OD-pair has one route, though
cSamp accommodates multi-path routing [39].

331

Figure 2: Overview of our network-wide approach

Maximize
∑

i
(Ti × Ci), subject to

∀j, ∑
i:Rj∈Pi

(dij × Ti) ≤ Lj (1)

∀i, Ci =
∑

j:Rj∈Pi
dij (2)

∀i, ∀j, dij ≥ 0 (3)

∀i, α ≤ Ci ≤ 1 (4)

The rationale behind this objective is as follows. Maximizing the
minimum coverage provides fairness in allocating resources across
OD-pairs. Since it is hard to ascertain which OD-pairs might show
interesting traffic patterns, allocating resources fairly is a reason-
able choice. Given a fair allocation, we use the residual resources
efficiently to achieve maximum aggregate coverage. The optimal
solution d∗ = {d∗ij} to this optimization problem is then translated
into the sampling manifests specifying the FS responsibilities for
each router.

Example configuration: Figure 2 shows how the different compo-
nents are combined in the network-wide case. There are three OD-
pairs P1, P2, and P3 originating at the left-most router. We envi-
sion a configuration module at the network operations center which
disseminates configurations to the routers. This module takes into
account the prevailing network conditions, routing policies, router
constraints, and the flow monitoring objectives to generate the FS
and SH configurations for each router. In the example, the ingress
router is assigned SH responsibilities for P1, P2, and P3. The non-
ingress routers are not assigned any SH responsibilities for these
OD-pairs. (The other edge routers could be assigned SH responsi-
bilities for OD-pairs for which they are the origin, but these are not
shown.) The FS responsibilities are generated using cSamp. Each
router is assigned FS responsibilities only for the paths of OD-pairs
on which it lies, and these are specified as non-overlapping hash
ranges per OD-pair.

5. EVALUATION METHODOLOGY
Our goal is to compare the minimalist design from the previous

section against an application-specific architecture when both ap-
proaches are given the same total resource budget. In order to do
so, we need to specify the different applications of interest, the cor-
responding application-specific algorithms, and the configurations
for determining the resources provisioned for each algorithm.

First, we describe the different applications, the corresponding
data streaming algorithms, and accuracy metrics in Section 5.1.

Application Accuracy/Error Algorithm Parameters
Metric (defaults)

FSD WMRD [26] fsd (0.7)
estimation
(5-tuple)

Heavy hitter Top-k detection [17] hh, k (0.3, 50)
detection rate
(5-tuple,sip,dip,
sport,dport
sip-dip)

Entropy Relative Error [30] ǫ, δ (0.5, 0.5)
estimation
(5-tuple,sip,
dip,sport,dport)

Superspreader Detection [41] K , b, δ
detection accuracy (100, 4, 0.5)

Change falsepos + [25] h, q , θ
detection falseneg (10, 1024, 0.05)
(sip,dip)

Deg. histogram JS-divergence [44] –
estimation

Table 1: Summary of applications, accuracy metrics, algo-

rithms, and default parameters. The parentheses in the first

column specify the flowkey(s) for the application (e.g., FSD

uses 5-tuple; heavy-hitter has six flowkeys). fsd and hh are

expressed as a fraction of the number of distinct IP flows per

epoch. ǫ, δ denote error tolerances. K , b means that any IP

contacting ≥ K distinct IPs is a superspreader and any IP con-

tacting ≤ K
b

distinct destinations is a false positive. h is the

number of hash functions and q is the number of counters per

hash function in the sketch data structure, and θ is the change

detection threshold.

Then, in Section 5.2, we describe how we normalize the resource
usage of the minimalist and application-specific algorithms. We
explain our assumptions and justify why these are conservative in
that we underestimate the performance of an equivalently provi-
sioned minimalist approach. Finally, in Section 5.3, we describe
the configuration parameters for the different algorithms and the
estimation phase for the minimalist approach in Section 5.4.

5.1 Applications and Accuracy Metrics
We pick a set of diverse monitoring applications that span the

spectrum of traffic engineering, security, and anomaly detection
tasks of interest to network operators. Table 1 summarizes the ap-
plications and the corresponding application-specific algorithms,
accuracy metrics, and configuration parameters. The table also
shows the default parameters we use in each case.

Flow size distribution (FSD) estimation: Let F denote the to-
tal number of flows in a traffic stream and Fl be the number of
flows of size l pkts per flow. The FSD estimation problem is to
determine ∀l = 1 . . . z , φl = Fl

F
, where z is the largest flow

size. Understanding the FSD is useful for many management tasks
such as estimating gains from caches, configuring flow-switched
networks, attack detection, and traffic matrix estimation [15, 26].
We use the data streaming and expectation-maximization algorithm
proposed by Kumar et al. [26]. (We choose this because Kumar
et al. show that their approach is significantly better than prior ap-
proaches based purely on packet sampling [15].)

332

The accuracy metric for FSD estimation is the weighted mean
relative difference (WMRD) between the true FSD {Fl} and the

estimated FSD {F̂l} [26]. The WMRD is defined as
∑

l |Fl−F̂l |
∑

l
Fl+F̂l

2

.

Heavy-hitter detection: The goal here is to identify the top k items
(e.g., srcip, srcport) with the most traffic volume. These are used
by operators to understand application patterns and resource hogs,
as well as for traffic engineering and accounting.

We use the SH algorithm [17] described earlier. We configure
it to run with six instances, one each for the following flowkeys:
source port, destination port, source address, destination address,
5-tuple, and source-destination address pairs. The accuracy metric
is the top-k detection rate – the set intersection between the exact
top-k and estimated top-k heavy hitters. Our minimalist approach
also uses SH; the main difference is that we use only one instance
of SH that runs at the 5-tuple granularity and use offline projections
to determine heavy hitters for the other flowkeys.

Entropy estimation: The entropy of traffic distributions (e.g., dis-
tribution of pkts per dstport) is useful for anomaly detection [29]
and traffic classification [43]. In particular, entropy-based analysis
captures fine-grained properties that cannot be obtained with just
volume-based analysis. The entropy of a random variable X is
H (X) = −∑N

i=1 Pr(xi) log2 (Pr(xi)), where x1, . . . , xN is the
range of values for X , and Pr(xi) is the probability that X takes
the value xi. It is useful to normalize the entropy between zero and

one as Hnorm(X) = H(X)
log2(N0)

, where N0 is the number of distinct

xi values observed in a given measurement epoch [29].
We use the data streaming algorithm proposed by Lall et al. [30].

We consider five distributions: 5-tuple, src port, dst port, src ad-
dress, and dst address. The accuracy metric is relative error — if
the actual value is Hnorm and the estimated value is Ĥnorm , the

relative error is
|Hnorm−Ĥnorm |

Hnorm
.

Superspreader detection: Security applications like scan, worm,
and botnet detection need to detect “superspreaders” – source IPs
that contact a large number of distinct destination IPs. Note that
this is different from heavy-hitter detection; we want to find sources
talking to many unique destinations rather than sources generating
a large volume of traffic.

We use the one-level superspreader detection algorithm proposed
by Venkataraman et al. [41]. The algorithm has three parameters
K , b, and δ; the goal is to detect all hosts that contact ≥ K distinct
destinations with probability ≥ 1− δ, and guarantee that a source
that contacts ≤ K

b
distinct destinations is reported with probability

≤ δ. The accuracy metric is the detection accuracy: the num-
ber of true superspreaders detected. (For brevity, we do not re-
port the false positive rate since it was zero for the minimalist and
application-specific approaches in almost all cases.)

Change detection: Change detection is used to detect DDoS at-
tacks, flash crowds, and worms [25]. At a high-level, the goal is to
detect IP addresses or ports whose behavior deviates significantly
from some expected behavior based on a history-based forecast
model. The problem can be formally described as follows.

Suppose we bin a traffic stream into measurement epochs (t =
1, 2, . . .). Let It = β1, β2, . . . be the input traffic stream for epoch
t . Each packet βi is associated with a flowkey yi and a count ci
(e.g., #bytes or just 1 if we are counting packets). Obsy(t) =∑

i:yi=y
ci denotes the aggregate count for flowkey y in epoch

t . Let Fcasty(t) denote the forecast value (e.g., using exponen-
tially weighted moving average, EWMA) for item y in epoch t .
The forecast error for y then is Erry(t) = Obsy(t) − Fcasty(t).
F2Err t =

∑
y Erry(t)

2 is the second moment of the forecast er-

rors. The goal is to detect all ys with Erry(t) ≥ θ ×
√
F2Err t ,

where θ is a user-defined threshold. We define the change detection

accuracy as the sum of the false positive (flowkeys whose volume
did not change significantly but were incorrectly reported) and false
negative rates (flowkeys that changed but were not reported).

We use the sketch-based change detection algorithm proposed
by Krishnamurthy et al. [25] as sketches have a natural “linearity”
property that makes them well-suited for change detection. We use
an EWMA model Fcast(t) = γObs(t) + (1 − γ)Fcast(t − 1),
with γ = 0.9. Note that since we are only interested in the rel-
ative performance of the minimalist vs. sketch-based approaches,
the specific forecast model we use is not important. We consider
two instances to identify changes in (1) the number of packets per
source address and (2) the number of packets per destination ad-
dress.

Degree histogram estimation: The outdegree d of a source IP is
the number of distinct IPs it contacts in a measurement epoch. We
construct the degree histogram as follows. For bucket i, let mi de-
note the number of sources with outdegree d such that 2i ≤ d ≤
2i+1 − 1. The goal is to estimate these mi values. A specific
application is to detect botnets involved in coordinated scans [44]
by detecting changes in the outdegree histogram. The outdegree
distribution is independently useful for understanding traffic struc-
ture. We use the sampling algorithm proposed by Gao et al. [44].
Given the exact distribution {m1,m2, . . .} and an estimated distri-
bution {m̂1, m̂2, . . .}, we use the Jensen-Shannon (JS) divergence

between the two distributions as the accuracy metric.7

5.2 Assumptions and Justification
In order to compare the minimalist and application-specific ap-

proaches, we need to normalize their total resource footprints. We
discuss our assumptions along three dimensions: hardware imple-
mentation, processing requirements, and memory use. We justify
why our specific assumptions are conservative in that they under-
estimate the performance of our minimalist approach.

Hardware feasibility: We assume that both the application-specific
algorithms and the minimalist primitives have feasible implemen-
tations that can operate at line rates. Some application-specific al-
gorithms require a simple array of counters (e.g., [25, 44]), while
others (e.g., [17, 30, 41]) and the minimalist primitives FS, SH [21,
17] involve key-value data structures. Previous work has demon-
strated that it is possible to efficiently implement such key-value
data structures in routers [20, 37, 31].

Processing requirements: There are two processing components:
online collection and offline computation. By construction, the on-
line collection overhead of the minimalist approach is lower. In
the application-specific architecture, each packet requires as many
counter updates as the number of application instances. (Further,
each different flowkey for heavy-hitter detection, entropy estima-
tion, and change detection requires separate updates.) With the
minimalist approach, each packet requires only two updates, one
for FS and one for SH.

We currently run estimation algorithms on the collected flow
data without further sampling. Thus, the offline processing cost of
the minimalist approach could be higher because the application-
specific schemes only need to process compact summaries. We
believe that offline processing costs are not a serious issue, given
the costs/capabilities of commodity hardware today. That said, our

7Gao et al. [44] use the Kullback-Leibler (KL) divergence. How-
ever, it is not always well-defined. The JS divergence is based on
KL divergence, but is always well-defined.

333

estimation procedures can be augmented with additional directed
sampling, if necessary, to reduce the offline compute cost.

Memory consumption: For FS and SH, the flow record (the IP 5-
tuple and other meta-data) need not be maintained in SRAM; these
can be offloaded to DRAM. Only the counters tracking the byte or
packet counts need to be in SRAM [31].

In terms of data structures, the above monitoring algorithms use
either counter arrays or key-value structures. For example, FS and
SH maintain key-value pairs, whereas sketch and FSD algorithms
use a simple array of counters. In general, key-value structures use
more memory than counter arrays. In order to normalize the re-
source consumption across the minimalist and application-specific
approaches, we assume that each flow counter (i.e., the key-value
pair) for the minimalist approach uses 4× the memory required by
a counter used in the application-specific approaches. For example,
if we have an aggregate SRAM capacity of 20000 bytes and each
packet counter requires 2 bytes of SRAM, the application-specific
approach can keep 10000 per-flow counters whereas the minimal-
ist approach can only have 2500 per-flow counters. We justify why
this 4× factor is conservative.

1. Each counter for the application-specific algorithms is typi-
cally at least 2 bytes [46]. We ran experiments with a sparse
hash data structure [19] and found that it can store 106 flow
counters in 8 MB, i.e., 8 bytes per counter. In other words,
a commodity, software only implementation of a key-value
structure uses only 8

2
= 4× the memory required by an ar-

ray of counters.

2. Some of the application-specific algorithms (e.g., entropy es-
timation, heavy hitter detection) also require key-value style
counters. We conservatively assume that these incur no over-
head compared to an array of counters. That is, if each entry
in a counter array is 2 bytes, we assume that it takes 8 bytes
to store one key-value pair for the minimalist primitives but
only 2 bytes to store one key-value pair for the application-
specific algorithms.

3. With smarter hardware for storing flow counters such as counter
braids [31], the memory requirement of the minimalist ap-
proach will be even lower. For example, maintaining 1 mil-
lion flow counters using counter braids only requires 1.4 MB
of memory, i.e., an effective overhead 1.4

2
× ≪ 4×.

Summarizing the above discussion, we see that: the hardware re-
quirements of our primitives are similar to the application-specific
algorithms; the online processing overhead of the minimalist ap-
proach is strictly lower; and the minimalist primitives have at most
a 4× memory overhead. Thus, for the rest of the paper, we only
consider the conservative 4× memory overhead to generate an equiv-
alent resource configuration for the minimalist approach. In other
words, given the same amount of available SRAM the minimalist
algorithms can only maintain one-fourth as many flow counters as
the application-specific approach.

5.3 Configuring the different algorithms

Application-specific case: To configure the different algorithms,
we follow the guidelines and recommended parameters from the
literature:

1. The FSD estimation algorithm uses an array of fsd×F coun-
ters, where F is the number of distinct flows in a measure-
ment interval. Following the guidelines of Kumar et al. [26],
we set fsd = 0.7.

2. We configure the heavy-hitter detection algorithm with hh×
F counters with hh = 0.3, divide these equally among the
six instances, and focus on the top-50 detection rate.

3. The entropy estimation algorithm is an (ǫ, δ) approximation,
i.e., the relative error is at most ǫ with probability at least
1−δ. The number of counters it uses increases as we require
tighter guarantees (lower ǫ and δ). However, Lall et al. [30]
show that in practice it works well even with loose bounds.
Thus, we set ǫ = δ = 0.5.

4. For superspreader detection, we set K = 100 and b = 4.
Again, since loose bounds work well in practice, we set δ =
0.5.

5. The sketch data structure has three parameters: h , the num-
ber of hash functions; q , the size of the counter array per hash
function; and the detection threshold θ. Following Krishna-
murthy et al. [25], we set h = 10, q = 1024, and θ = 0.05.

6. For degree histogram estimation, we use the same configura-
tion as Gao et al. [44].

Minimalist case: The minimalist approach has two configuration
parameters: the number of flow records it can collect (L) and, for
ingress routers, the FS-SH split (f). To determine L, we configure
the application-specific algorithms using the above guidelines. For
each trace, we measure the total number of counters used across
the different application-specific algorithms and scale it down by a
factor of 4 as discussed earlier to calculate the value of L to be used
for that setup. We set f = 0.8, giving 80% of the resources on each
router to the FS component.

5.4 Estimation phase in minimalist approach
The estimation phase for the minimalist approach is conceptually

simple. Since we have the actual flow records (i.e., the 5-tuples
along with the packet counts), we can run exact estimation algo-
rithms. For example, we can compute the flow size distribution of
the reported flows and use that as our estimate of the true flow size
distribution. Similarly, we can compute the observed (normalized)
entropy of different flowkey combinations from the reported flows
and use it as the estimate of the true (normalized) entropy.

The only issue is how to use the flow reports from the FS and SH
components for the different estimation tasks. We use the follow-
ing heuristic. First, we take the union of the flow records reported
by SH (after normalizing packet counts by the sampling rate [17])
and the flow records reported by FS.8 We compute the FSD and
entropy, and detect heavy hitters or changes per-source (or destina-
tion), on this merged set of flow records. Second, we use the set
of flow records reported by FS for detecting superspreaders and to
compute the outdegree histogram. Again, we note that our proce-
dures for merging the flow reports from the FS and SH components
for various estimation tasks are only heuristics and may not be op-
timal. Finding the optimal estimator for specific application-level
metrics from a given set of collection primitives is an interesting
direction of future work.

Note that the minimalist approach exports the actual flow records.
Thus, it is possible to run any estimation procedure on these flow
records to compute any application metric, even unforeseen ones.

8If the same flow is reported by both FS and SH, we use the FS
record because the packet count in FS is exact.

334

Trace Description Avg # pkts Avg # flows
(millions) (thousands)

Caida 2003 OC-48, large ISP 6 400
Univ-2 UNC, 2003 2.5 91
Univ-1 USC, 2004 1.6 93

Caida 2007-2 OC-12 1.3 45
Caida 2007-1 OC-12 0.7 30

Table 2: Traces used in the single router experiments; averages

are over 5-minute epochs

6. TRACE-DRIVEN EVALUATION
In this section, we compare the minimalist approach against the

different application-specific algorithms using packet and flow-level
traces collected from different settings. We start with a single router
evaluation and then proceed to a network-wide evaluation.

6.1 Single Router Case
Using trace-driven evaluations, we answer the following ques-

tions:

• How does the accuracy of the minimalist approach compare
with the application-specific approaches when configured with
the aggregate memory used by the application-specific algo-
rithms? (Section 6.1.1)

• How sensitive is individual application performance to the
amount of memory available to the minimalist approach?
(Section 6.1.2)

• How does the success of the minimalist approach depend
on the set of application-specific algorithms that are imple-
mented on the router (we call this an application portfolio)?
That is, when does it make sense to adopt a minimalist ap-
proach instead of implementing each application-specific al-
ternative? (Section 6.1.3)

• How should we split resources between FS and SH? (Sec-
tion 6.1.4)

Table 2 summarizes the five different one-hour packet header
traces (binned into 5-minute epochs) used for the single-router eval-
uation.

6.1.1 Accuracy: minimalist vs. application-specific

We use the default parameters from Table 1 and run the mini-
malist approach configured with the total normalized memory used
by the six algorithms. Then we compute the relative accuracy dif-
ference for each application. Let Accspecific denote the accuracy
of the application-specific algorithm and let Accminimalist denote
the accuracy of the minimalist approach for that application. The

relative accuracy difference is
Accminimalist−Accspecific

Accspecific
. By construc-

tion, a positive value indicates that the accuracy of the minimalist
approach is better; a negative value indicates otherwise.9

All the algorithms are inherently randomized; we present the
results over five independent runs with different seeds. Figure 3
shows the relative accuracy difference using a box-and-whiskers
plot for the different traces. Each box shows the 25%ile, median,
and 75%ile values. The whiskers extend to the most extreme data

9Some metrics denote “error” while others denote “accuracy”. For
error metrics (FSD, entropy, degree histogram, change detection)
the relative accuracy as defined is negative when the minimalist
approach performs better. For ease of presentation, we reverse the
sign of the numerator in these cases.

points not considered outliers. This corresponds to a length of at
most 1.5× the difference between the 25%ile and 75%ile values.

The result shows that the median value of this metric is posi-
tive in most cases; i.e., the minimalist approach outperforms the
application-specific alternative in most applications. Further, even
the 25%ile is positive in many cases; i.e., the minimalist approach
consistently outperforms the application-specific approaches. Only
in heavy-hitter detection (Figure 3(b)) does the minimalist approach
perform worse; even then the median accuracy gap is at most 0.08.
This result gives a high-level answer to the second challenge from
Section 3:
The minimalist approach provisioned with the total resources used

by the six applications performs better than or comparable to the

application-specific approaches.

We now proceed to answer to two natural questions: (a) what if
we consider each application class in isolation and (b) what types
of application portfolios does the minimalist approach perform fa-
vorably in. For brevity, we only present the results from the Caida
2003 trace.

6.1.2 Application Sensitivity

In the following experiments, we try 2-3 configurations for each
application-specific algorithm. For each configuration, we con-
sider a minimalist approach provisioned with G times as much
memory as that used by the algorithm in isolation. For exam-
ple, if the application-specific algorithm uses 10000 counters at 2
bytes/counter, the minimalist approach has G×10000×2 bytes of
SRAM.

As before, we focus on the relative accuracy difference between
the minimalist and application-specific approach. Figure 4(a) plots
the relative accuracy difference between the minimalist approach
and the FSD estimation algorithm. We show three different con-
figurations with the FSD algorithm using fsd = 0.7, 1, and 1.5.
For some configurations (e.g., fsd = 1.5, G = 1), the minimalist
approach performs worse. The large negative values of the met-
ric result from the low WMRD values at these points. Since we
normalize the difference by the WMRD of the application-specific
case, the relative difference gets magnified. The absolute accuracy
of the FSD algorithm improves (i.e., the WMRD goes down) as it
is provisioned with more resources (not shown). For example, for
the configuration fsd = 1.5 and G = 1, the WMRD for the FSD
algorithm was 0.02 and the WMRD for the minimalist approach
0.05. Both values are small for many practical purposes [26].

Figure 4(b) shows similar results for heavy-hitter detection, with
hh set to 0.3, 0.5, and 0.7. For clarity, we average the relative
accuracy difference across the six heavy-hitter instances. The min-
imalist approach is worse than the application-specific approach.
However, as G increases, the accuracy gap closes significantly.
One reason for the poor accuracy of the minimalist approach is
that we configure the SH algorithm to operate at the 5-tuple granu-
larity and then subsequently project results to other dimensions. In
fact, the minimalist approach performs better if we only consider
the 5-tuple granularity (Figure 3(b)). The relative accuracy for the
other flowkeys is negative because the application-specific SH in-
stances can directly determine heavy hitters without going through
this projection step. We could also configure the SH algorithm in
the minimalist approach to operate at multiple flowkeys. We trade-
off a small reduction in accuracy for a significant reduction in on-
line processing overhead complexity since we only need to run one
instance of the SH algorithm instead of six instances.

Entropy estimation (Figure 4(c)) with ǫ = δ set to 0.2 and 0.5
and superspreader detection (not shown) show similar trends. If
we consider each application in isolation, the minimalist approach

335

 Univ1 Univ2 Caida07 Caida07,2 Caida03

0.8

0.85

0.9

0.95

R
e

la
ti
v
e

 a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

(a) FSD (fsd = 0.7)

 Univ1 Univ2 Caida07 Caida07,2 Caida03

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

R
e

la
ti
v
e

 a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

5−tuple

SrcIP

DstIP

Src−DstIP

SrcPort

DstPort

(b) Heavy hitter (hh = 0.3)

 Univ1 Univ2 Caida07 Caida07,2 Caida03
−1

−0.5

0

0.5

1

R
e

la
ti
v
e

 a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

5−tuple SrcIP DstIP SrcPort DstPort

(c) Entropy (ǫ = δ = 0.5)

 Univ1 Univ2 Caida07 Caida07,2 Caida03

−0.05

0

0.05

0.1

R
e

la
ti
v
e

 a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

(d) Superspreader (K , b, δ=100, 4, 0.5)

 Univ1 Univ2 Caida07 Caida07,2 Caida03
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

R
e

la
ti
v
e

 a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

(e) Degree histogram

 Univ1 Univ2 Caida07 Caida07,2 Caida03
−2

−1.5

−1

−0.5

0

0.5

1

R
e

la
ti
v
e

 a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

SrcIP

DstIP

(f) Change Detection

Figure 3: Each result shows a box-whiskers plot with the median, 25%ile, 75%ile, and extreme values. A positive value on the y-axis

means that the accuracy of the minimalist approach was better; a negative value indicates otherwise. For most applications, the

minimalist approach outperforms the application-specific alternatives. In the cases where the performance is worse, it is only worse

by a small relative margin.

Sketch+Histogram HH+Entropy+SS All − FSD FSD All
−0.5

0

0.5

1

Application portfolio

R
el

at
iv

e
ac

cu
ra

cy
 d

iff
er

en
ce

FSD HH Entropy Superspreader Deg. Histogram ChangeDetection

Figure 5: Effect of application portfolio on the relative accu-

racy difference. The portfolios are in increasing order of mem-

ory usage from left to right.

performs worse. But, the gap closes as G increases and the mini-
malist approach eventually outperforms the application-specific al-
gorithm.

6.1.3 Sensitivity to Application Portfolio

Next, we evaluate the effect of varying the application portfolio.
That is, we consider the case where the router implements only a
subset of the six applications described earlier. For a fixed port-
folio, we use the default configurations from Table 1 and run the
minimalist approach configured with the aggregate resources con-
tributed by only the applications within this portfolio. The relative

accuracies are computed with respect to the default configurations
for the different applications (even for those not in the portfolio).
For example, the configuration labeled “Sketch + Histogram” uses
resources only from sketch-based change detection and degree his-
togram estimation (the least resource-intensive applications). At
the other extreme, the configuration labeled “All” uses the aggre-
gate resources (as in Figure 3).

Figure 5 shows the portfolios in increasing order of memory us-
age. For clarity, we show averages across the different flowkeys
for heavy-hitter detection, entropy estimation, and change detec-
tion. We observe two effects. First, for larger application portfolios
(i.e., as the requirements of management applications increase), a
minimalist approach is actually a better alternative as the relative
accuracy difference becomes positive for almost all applications.
Second, if there are some resource-intensive applications (e.g., FSD
estimation), then it is better to adopt a minimalist approach because
it benefits all potential applications, even those not specified in the
current application portfolio.

6.1.4 Split between FS and SH

So far, we fixed the FS-SH split to be f = 0.8. Figure 6 shows
the effect of varying f . The x-axis is f , the fraction of resources
allocated to FS. For most applications, increasing f improves the
accuracy of the minimalist approach, but there is a diminishing re-
turns effect. For heavy-hitter detection, as expected, giving more
resources to SH helps, but the improvement is fairly gradual. In
light of this, the 80-20 split is a reasonable tradeoff across the dif-
ferent application classes.

336

1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1
R

e
la

tiv
e
 a

cc
u
ra

cy
 d

iff
e
re

n
ce

Resource magnification factor (G)

FSD − 0.7

FSD − 1.0

FSD − 1.5

(a) FSD

1 2 3 4 5 6 7 8 9 10
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

R
e
la

tiv
e
 a

cc
u
ra

cy
 d

iff
e
re

n
ce

Resource magnification factor (G)

HH − 0.3

HH − 0.5

HH − 0.7

(b) Heavy hitter

1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

R
e

la
tiv

e
 a

cc
u

ra
cy

 d
iff

e
re

n
ce

Resource magnification factor (G)

Entropy − 0.2

Entropy − 0.5

(c) Entropy

Figure 4: Exploring the sensitivity of applications in isolation. The zero line represents the point at which the minimalist approach

starts to outperform the application-specific approach. The resource magnification factor captures the sharing effect of aggregating

resources across applications.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
ac

cu
ra

cy
 d

iff
er

en
ce

Fraction of resources allotted to flow sampling

FSD

HH

Entropy

SuperSpreader

DegHist

Figure 6: Varying the split between FS and SH

6.2 Network-wide evaluation

Dataset and Setup: We use a one-hour snapshot of flow data col-
lected across eleven routers from the Internet2 backbone. There are
roughly 1.4 million distinct flows and 9.5 million packets in aggre-
gate per 5-minute interval. We map each flow entry to the corre-
sponding network ingress and egress points [18]. Unlike the packet
traces used earlier, these are flow records with sampled packet counts
(with 1-in-100 sampling). We assume that the sampled flow records
represent the actual traffic and use the sampled counts as the actual
packet counts. Also, IP-addresses in the dataset are anonymized
by zero-ing out the last 11 bits. We treat each anonymized IP as a
unique IP. Thus, the entropy and outdegree measures are computed
at this granularity. Since we are only interested in the relative per-
formance, this dataset is still valuable for understanding network-
wide effects.

In a network-wide setting, operators often want to compute the
different traffic metrics such as FSD, entropy, heavy hitters, etc.,
over multiple spatial views [22, 43, 45, 29]. For example, we might
want to understand traffic patterns on a per-ingress basis, or a per
OD-pair basis, or over the entire network.

As such, we configure the application-specific algorithms on a
per-ingress basis. That is, at each node, we run these algorithms
only on packets originating from this node and ignore transit or
terminating traffic. (In this topology, each node is an ingress for
some traffic and there are no pure transit nodes that do not originate
any traffic.) For example, the FSD algorithm at ATLA estimates
the FSD for the traffic originating at ATLA and the superspreader
algorithm at ATLA tracks only the source IPs that originate traffic
at ATLA.

From this configuration, we obtain the total memory usage at
each node by the application-specific algorithms. The coordinated
minimalist approach from Section 4 operates on a per OD-pair
granularity using this equivalent per-router memory (after scaling
it down by the 4× normalization factor). Given the flow records re-
ported for each OD-pair, we estimate the traffic metrics over three
spatial views: per-ingress, per-OD, and network-wide.

Per-ingress results: Figure 7 shows, for each ingress, the relative
accuracy difference between the coordinated minimalist approach
and the application-specific algorithms configured per ingress. Re-
call that a positive value indicates that the accuracy of the mini-
malist approach was better; a negative value indicates otherwise.
As with the single router evaluation, we see that the minimalist ap-
proach outperforms the application-specific algorithms, except in
heavy-hitter detection. (SNVA looks different from the others in
the magnitude of the relative accuracy metric, but not in the qual-
itative sense that the minimalist approach is still better. While we
have not been able to conclusively explain this observation, we no-
ticed that the traffic volumes for SNVA were an order of magnitude
lower than the rest. We suspect that this as a potential cause for the
anomalous behavior.)

One potential concern is the high variability in the relative ac-
curacy in some cases (e.g., DNVR and SNVA in Figure 7(c)). In
each of these cases, we analyzed the raw accuracy values and found
that the variability in fact comes from the application-specific case.
That is, the accuracy of the minimalist approach has low variance,
but the application-specific case can have a higher variance.10

Network-wide result: Next, we consider the application metrics
on a network-wide basis. As a point of comparison, we consider an
uncoordinated minimalist approach. Here, each node has the same
resources as the coordinated case, but independently runs FS and
SH on the traffic it sees.

Given the per-ingress results for the application-specific algo-
rithms obtained earlier, we compute network-wide estimates by
merging the reports from each ingress. While computing the network-
wide FSD and the outdegree histogram, we need to normalize the
per-ingress outputs by the number of flows and source IPs seen at
each ingress. For example, to obtain the network-wide FSD, we
take each per-ingress FSD and normalize it by the number of flows
originating at that ingress. (One concern with merging per-ingress
results to get the network-wide distributions is the risk of “double

10The high variance in the application-specific case is not an inher-
ent flaw — the variance decreases with more memory. But as Fig-
ure 5 shows, adding a few memory-intensive applications makes
the case for the minimalist approach stronger.

337

ATLA CHIN DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

0.5

1

1.5

2

R
e
la

ti
v
e
 a

c
c
u
r
a
c
y
 d

if
fe

r
e
n
c
e

(a) FSD (fsd = 0.7)

ATLA CHIN DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

R
e

la
ti
v
e

 a
c
c
u

r
a

c
y
 d

if
fe

r
e

n
c
e

5−tuple
SrcIP
DstIP
Src−DstIP
SrcPort
DstPort

(b) Heavy hitter (hh = 0.3)

ATLA CHIN DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

−2

−1.5

−1

−0.5

0

0.5

1

R
e
la

ti
v
e
 a

c
c
u
r
a
c
y
 d

if
fe

r
e
n
c
e

5−tuple
SrcIP
DstIP
SrcPort
DstPort

(c) Entropy (ǫ = δ = 0.5)

ATLA CHIN DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

R
e
la

ti
v
e
 a

c
c
u
r
a
c
y
 d

if
fe

r
e
n
c
e

(d) Superspreader (K , b, δ=100, 4, 0.5)

ATLA CHIN DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
e
la

ti
v
e
 a

c
c
u
r
a
c
y
 d

if
fe

r
e
n
c
e

(e) Degree histogram

ATLA CHIN DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 a
c
c
u

r
a

c
y
 d

if
fe

r
e

n
c
e

SrcIP
DstIP

(f) Change Detection

Figure 7: Result showing the relative accuracy difference between the coordinated minimalist approach and the application-specific

algorithms per ingress router (denoted by the abbreviated city names of the PoPs in the Internet2 backbone). A positive value

indicates that the accuracy of the minimalist approach was better; a negative value indicates otherwise.

Application App Uncoord Coord
(error metric) Specific minimalist minimalist
FSD (WMRD) 0.16 0.19 0.02
Heavy hitter (miss rate) 0.02 0.3 0.04
Entropy (relative error) n/a 0.03 0.02
Superspreader (miss rate) 0.02 0.04 0.009
Deg. histogram (JS) 0.15 0.03 0.02

Table 3: Absolute error for network-wide metrics. Lower val-

ues imply better performance.

counting” some flows or sources. Because the per-ingress setup
implicitly partitions the network-wide traffic into non-overlapping
subsets, we can simply merge reports from the different ingresses
for each application without worrying about double counting.) How-
ever, we cannot estimate the network-wide entropy from the per-
ingress entropy values as this does not give us sufficient informa-
tion. For the coordinated approach, we simply take the union of the
flow records obtained for each OD-pair and run the estimation pro-
cedures on this merged set of the flow records. The estimation step
for the uncoordinated case proceeds similarly, but needs additional
processing to remove duplicate flow reports.

Table 3 compares the application-specific, uncoordinated, and
coordinated approaches for the network-wide case in terms of the
absolute error values. (The entropy row is empty for the application-
specific column because of the aforementioned reason.) There are
two main observations. First, the coordinated approach has the low-
est error overall. The benefits of coordination are particularly sig-
nificant for the heavy-hitter and FSD estimation applications. Sec-
ond, while the uncoordinated approach provides some generality

(e.g., it can also provide per OD-pair estimates whereas the per-
ingress application-specific algorithms cannot), it performs worse
in this evaluation. One reason is that the per-ingress application-
specific algorithms are implicitly coordinated and avoid ambigu-
ity/biases when we merge the results for the network-wide case.
The uncoordinated minimalist approach does not have this property
and multiple sources of ambiguity/bias arise when we merge flow
reports from multiple routers: (i) different routers may have differ-
ent sampling rates as they see different traffic volumes, (ii) flows
traversing longer paths get higher sampling probabilities, and (iii)
large flows are reported multiple times by SH. An additional prac-
tical benefit of the coordinated approach is that the merging and
estimation algorithms are simpler and more accurate.

Per OD-pair results: Finally, we consider the different application
metrics on a per OD-pair basis. Note that the application-specific
alternatives as configured cannot provide per OD-pair results. They
work at a coarse per-ingress level and we cannot compute the ap-
plication metrics on a more fine-grained per-OD basis. Again, this
is not an inherent limitation of application-specific approaches; we
can also configure them on a per-OD basis. However, this signifi-
cantly increases the complexity since we need an instance per ap-
plication per OD-pair. Thus, we only consider the minimalist ap-
proaches for this result.

Figure 8 shows four application metrics for the per OD-pair case.
Since superspreader detection and change detection are meaningful
only when viewed across all OD-pairs, we do not consider these.
Also, we focus on the top-10 heavy hitters per OD-pair. The CDFs
show that the coordinated approach performs well across most OD-
pairs. The 80th percentile of the WMRD, heavy-hitter miss rate,

338

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
O

D
−

p
a

ir
s

FSD WMRD

Coordinated

Uncoordinated

(a) FSD

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
O

D
−

p
a

ir
s

Number of top−10 heavy hitters missed

Coordinated

Uncoordinated

(b) Heavy hitter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
O

D
−

p
a

ir
s

Error in entropy estimation

Coordinated

Uncoordinated

(c) Entropy

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
O

D
−

p
a

ir
s

JS−divergence of degree histogram

Coordinated

Uncoordinated

(d) Degree histogram

Figure 8: Comparing the coordinated and uncoordinated approaches on a per-OD basis.

average relative error in entropy estimation, and JS-divergence for
the degree histogram are 0.1, 2, 0.05, and 0.03 respectively. The
corresponding results for the uncoordinated case are 0.4, 5, 0.15,
and 0.06. Further, the OD-pairs where the coordinated approach
has poor accuracy have low traffic volume (not shown), which in-
dicates that it performs very well for the dominant traffic patterns.
The results for network-wide and per OD-pair views demonstrate
the benefits of a systematic coordinated approach for network-wide
monitoring.

6.3 Summary of main results

• The accuracy of the minimalist approach configured with the
aggregate resources used by the six different applications
is better than or comparable to the application-specific ap-
proaches.

• With large application portfolios or if there are one or more
resource-intensive applications in the portfolio, there is a clear
win for a minimalist approach vs. application-specific ap-
proaches.

• A 80-20 split between FS and SH is a reasonable tradeoff
across the spectrum of applications.

• In a network-wide setting, a coordinated minimalist approach
provides more flexibility and better accuracy while project-
ing results to different spatial views compared to uncoordi-
nated and application-specific approaches.

7. DISCUSSION

Bandwidth overhead: In the application-specific architecture, each
router only reports summary estimates of the various traffic metrics
(e.g., FSD, entropy). Thus the bandwidth overhead for aggregating
these reports is negligible. A practical concern with our proposal
is the bandwidth overhead for transferring flow records to a logi-
cally centralized collector. We give a back-of-the-envelope calcula-
tion to estimate the worst-case overhead. The Internet2 dataset has
roughly 1.7GB of 1-in-100 packet-sampled flow data per PoP per
day. This conservatively translates into 170 GB per PoP per day or
0.6GB per PoP per five minutes for full flow capture. (This is con-
servative because we are normalizing the number of flows by the
packet sampling rate.) Suppose, we collect this data every five min-
utes with a near real-time requirement that the data be sent before
the start of the next five-minute interval. The bandwidth per PoP
required for full flow capture would be 0.6×8 Gbits

300 seconds
= 0.016 Gbps.

Given OC-192 backbone line rates of 10 Gbps today, it is not un-
reasonable to expect ISPs to use ≪ 1% of the network bandwidth
per PoP for measurement traffic to aid network management.

Adaptation: Another natural question is how does our minimalist
approach deal with network dynamics. Estan et al. [16] and Keys
et al. [23] have in-depth discussions on how to adapt the sampling
rates for packet sampling, FS, and SH to changing traffic condi-
tions. Our previous work discusses how cSamp can adapt to net-
work dynamics [39]. We can leverage these existing techniques to
make the minimalist approach robust to network dynamics.

Beyond monitoring 5-tuples: Some settings require more fine-
grained monitoring capabilities that look beyond flow-level statis-
tics. These include analyzing end-to-end performance metrics (e.g.,
loss, throughput, latency), deep packet inspection for signature match-
ing, and on-demand analysis (e.g., analyze hosts that show specific
patterns). Our minimalist primitives as described in this paper do
not provide these capabilities. However, we believe that the broad
principles underlying a minimalist approach will still apply and
assume more importance with more complex monitoring require-
ments. One possible solution is to include other flexible primitives
that provide such capabilities [10, 45] in the minimalist framework.

8. CONCLUSIONS
This paper is a reflection on recent trends in network monitoring.

There is a growing demand for estimating a wide variety of traffic
metrics to support different network management applications. The
inadequacy of current packet-sampling-based solutions has given
rise to a proliferation of many application-specific algorithms, each
catering to a narrow application.

In contrast to these application-specific alternatives, we revisit
the case for a minimalist architecture for flow monitoring. Such
an architecture dramatically reduces router complexity and enables
router vendors to focus their energies on building efficient imple-
mentations of a small number of primitives. Further it allows late
binding to what traffic metrics are important, thus insulating router
implementations from the changing needs of flow monitoring ap-
plications.

We demonstrated a proof-of-concept minimalist approach that
combines flow sampling, sample-and-hold, and cSamp. We showed
that this approach performs favorably across a wide spectrum of ap-
plications compared to application-specific approaches. Our pro-
posal is by no means “optimal” or the final word in this problem
space — the goal of this paper was to demonstrate the feasibility

of a minimalist approach. In this respect, there are three avenues
for future work: (i) developing better minimalist primitives, (ii) de-
signing estimation algorithms that optimally leverage the data col-
lected across different primitives, and (iii) providing formal mod-
els to reason about application requirements and performance. We
hope that our work motivates further research in these directions.

339

Acknowledgments

We thank Ramana Kompella, Jeff Pang, and Amar Phanishayee
for their feedback on this work. We would also like to thank Ab-
hishek Kumar and Jim Xu for sharing their implementation of the
FSD estimation algorithm. This work was supported in part by the
National Science Foundation under grant numbers ANI-0331653,
CNS-0756998, and CNS-0433540, the U.S. Army Research Office
under grant number DAAD190210389.

9. REFERENCES

[1] Flexible Netflow. http:
//www.cisco.com/en/US/products/ps6965/

products_ios_protocol_option_home.html,.

[2] Juniper cflowd. http://www.juniper.net/
techpubs/software/junos/junos91/

swconfig-policy/cflowd.html.

[3] Narus Intercept Solution. http://www.narus.com/
index.php/solutions/intercept.

[4] NetFlow Input Filters.
http://www.cisco.com/en/US/docs/ios/12_

3t/12_3t4/feature/guide/gtnfinpf.html.

[5] Packet Sampling, IETF Working Group Charter.
http://www.ietf.org/html.charters/psamp/

charter/.

[6] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker.
Loss and Delay Accountability for the Internet. In Proc.

ICNP, 2007.

[7] D. Brauckhoff, B. Tellenbach, A. Wagner, A. Lakhina, and
M. May. Impact of Traffic Sampling on Anomaly Detection
Metrics. In Proc. IMC, 2006.

[8] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
Proc. ACM SIGMOD, 2003.

[9] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and
P. Thiran. Reformulating the Monitor Placement problem:
Optimal Network-Wide Sampling. In Proc. CoNeXT, 2006.

[10] L. D. Carli, Y. Pan, A. Kumar, C. Estan, and
K. Sankaralingam. PLUG: Flexible Lookup Modules for
Rapid Deployment of New Protocols in High-speed Routers.
In Proc. SIGCOMM, 2010.

[11] B. Claise. Cisco Systems NetFlow Services Export Version
9. RFC 3954.

[12] M. P. Collins and M. K. Reiter. Finding Peer-to-Peer
File-sharing using Coarse Network Behaviors. In Proc.

ESORICS, 2006.

[13] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
Journal of Algorithms, 55, 2005.

[14] N. Duffield, C. Lund, and M. Thorup. Charging from
sampled network usage. In Proc. IMW, 2001.

[15] N. Duffield, C. Lund, and M. Thorup. Estimating Flow
Distributions from Sampled Flow Statistics. In Proc. of ACM

SIGCOMM, 2003.

[16] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a
Better NetFlow. In Proc. ACM SIGCOMM, 2004.

[17] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting. In Proc. ACM SIGCOMM,
2002.

[18] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold,
J. Rexford, and F. True. Deriving Traffic Demands for

Operational IP Networks: Methodology and Experience. In
Proc. ACM SIGCOMM, 2000.

[19] Google sparse hash project. http:
//code.google.com/p/google-sparsehash/.

[20] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood.
Fast Hash Table Lookup Using Extended Bloom Filter: An
Aid to Network Processing. In Proc. ACM SIGCOMM, 2005.

[21] N. Hohn and D. Veitch. Inverting Sampled Traffic. In Proc.

IMC, 2003.

[22] T. Karagiannis, D. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel Traffic Classification in the Dark. In Proc. ACM

SIGCOMM, 2005.

[23] K. Keys, D. Moore, and C. Estan. A Robust System for
Accurate Real-time Summaries of Internet Traffic. In Proc.

SIGMETRICS, 2005.

[24] R. Kompella and C. Estan. The Power of Slicing in Internet
Flow Measurement. In Proc. IMC, 2005.

[25] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen.
Sketch-based change detection: Methods, evaluation, and
applications. In Proc. ACM IMC, 2003.

[26] A. Kumar, M. Sung, J. Xu, and J. Wang. Data Streaming
Algorithms for Efficient and Accurate Estimation of Flow
Distribution. In Proc. ACM SIGMETRICS, 2004.

[27] A. Kumar and J. Xu. Sketch Guided Sampling – Using
On-Line Estimates of Flow Size for Adaptive Data
Collection. In Proc. IEEE Infocom, 2006.

[28] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
Network-Wide Traffic Anomalies. In Proc. ACM

SIGCOMM, 2004.

[29] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies
using traffic feature distributions. In Proc. ACM SIGCOMM,
2005.

[30] A. Lall, V. Sekar, J. Xu, M. Ogihara, and H. Zhang. Data
Streaming Algorithms for Estimating Entropy of Network
Traffic. In Proc. ACM SIGMETRICS, 2006.

[31] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and
A. Kabbani. Counter Braids: A Novel Counter Architecture
for Per-Flow Measurement. In Proc. SIGMETRICS, 2008.

[32] M. P. Collins and M. K. Reiter. Hit-list Worm Detection and
Bot Identification in Large Networks Using Protocol Graphs.
In Proc. RAID, 2007.

[33] H. Madhyastha and B. Krishnamurthy. A Generic Language
for Application-Specific Flow Sampling. ACM CCR,
38(2):7–15, Apr. 2008.

[34] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is
Sampled Data Sufficient for Anomaly Detection? In Proc.

IMC, 2006.

[35] A. Ramachandran, S. Seetharaman, and N. Feamster. Fast
Monitoring of Traffic Subpopulations. In Proc. IMC, 2008.

[36] B. Ribeiro, D. Towsley, T. Ye, and J. Bolot. Fisher
information of sampled packets: an application to flow size
estimation. In Proc. IMC, 2006.

[37] S. Kumar and P. Crowley. Segmented Hash: An Efficient
Hash Table Implementation for High Performance
Networking Subsystems. In Proc. ACM ANCS, 2005.

[38] V. Sekar, N. Duffield, K. van der Merwe, O. Spatscheck, and
H. Zhang. LADS: Large-scale Automated DDoS Detection
System. In Proc. USENIX ATC, 2006.

[39] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. Kompella,
and D. G. Andersen. cSamp: A System for Network-Wide
Flow Monitoring. In Proc. NSDI, 2008.

340

[40] V. Sekar, A. Gupta, M. K. Reiter and H. Zhang. Coordinated
Sampling sans Origin-Destination Identifiers: Algorithms
and Analysis. In Proc. COMSNSETS, 2010.

[41] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New
Streaming Algorithms for Fast Detection of Superspreaders .
In Proc. NDSS, 2005.

[42] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang.
Worm Origin Identification Using Random Moonwalks. In
Proc. IEEE Symposium on Security and Privacy, 2005.

[43] K. Xu, Z.-L. Zhang, and S. Bhattacharya. Profiling Internet
Backbone Traffic: Behavior Models and Applications. In
Proc. ACM SIGCOMM, 2005.

[44] Y. Gao, Y. Zhao, R. Schweller, S. Venkataraman, Y. Chen, D.
Song and M.-Y. Kao. Detecting Stealthy Attacks Using
Online Histograms. In Proc. IWQoS, 2007.

[45] L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: Towards
Programmable Network MEasurement. In Proc. SIGCOMM,
2007.

[46] Q. Zhao, J. Xu, and Z. Liu. Design of a novel statistics
counter architecture with optimal space and time efficiency.
In Proc. ACM SIGMETRICS, 2006.

341

