
Are Your Hosts Trading or Plotting?

Telling P2P File-Sharing and Bots Apart

Ting-Fang Yen

Carnegie Mellon University, Pittsburgh, PA

tyen@andrew.cmu.edu

Michael K. Reiter

University of North Carolina, Chapel Hill, NC

reiter@cs.unc.edu

Abstract—Peer-to-peer (P2P) substrates are now widely
used for both file-sharing and botnet command-and-
control. Despite the commonality of their substrates, we
show that the different goals and circumstances of these
applications give rise to behaviors that can be distin-
guished in network flow records. Using features related
to traffic volume, “churn” among peers, and differences
between human-driven and machine-driven traffic, we
develop a technique for identifying P2P bots (the Plotters)
and, in particular, separating them from file-sharing hosts
(the Traders). Evaluations performed on traffic recorded
at the edge of a university network show that we can
achieve, e.g., 87.50% detection of Storm bots with a 0.47%
false positive rate. We also demonstrate the significant
extent to which Plotter behaviors would need to change
to evade our technique.

I. INTRODUCTION

Peer-to-peer (P2P) networks were used as botnet

communication channels as early as 2003 [1]. The

decentralized nature of these networks overcame the

single-point-of-attack limitation in centralized control,

making the botnet resilient to individual peer failures

and also harder to detect and take down. These mo-

tivations for using P2P substrates are similar to those

underlying the use of P2P protocols for file-sharing;

the takedown of Napster, for example, highlighted the

limitations of a centralized “command-and-control” in-

frastructure in that domain. It is thus not surprising that

P2P substrates now commonly support both activities.

A consequence of this common use of P2P tech-

nologies is that botnet command-and-control traffic will

tend to “blend into” a background of P2P file-sharing,

making it difficult to separate these two types of traffic.

In both cases, status information about available peers

needs to be maintained constantly to ensure the connec-

tivity of the network; peers experience a high connection

failure rate due to the dynamics of nodes joining and

leaving (i.e., “churn”); and peers participate in both

client and server activities. This commonality is punc-

tuated by the fact that one highly publicized and well-

studied P2P botnet, Storm, built its communication pro-

tocol based on the Overnet network, whose distributed

hash table implementation [2] is incorporated in both

eDonkey 1 and BitTorrent 2 file-sharing applications.

In light of this, the primary problem facing the detec-

tion of such bots is differentiating them from other P2P

hosts. In this work, we focus specifically on the problem

of P2P botnet detection given this challenge. We assume

the viewpoint of a network administrator who collects

flow records at the border of an enterprise network,

and who seeks to identify internal nodes that are P2P

bots. We construct a series of tests on network traffic

to separate P2P bots from P2P file-sharing hosts, to

which we will refer as Plotters and Traders, respectively,

throughout this paper. Our tests work exclusively on

traffic summaries (e.g., flow records) with no access

to individual packets (much less payloads), and so can

scale to very busy networks where per-packet logging

may not be cost-effective. Our technique is thus also

unaffected by encryption of bot payload contents.

Given the varied nature of malware behaviors, we

focus on characteristics of the traffic that do not depend

on particular attack activities performed by the infected

hosts (e.g., spam forwarding, DDoS), but rather that are

basic properties of Plotters that operate over P2P net-

works. At a high level, these characteristics include:

• Volume: Since Traders generally perform large

multi-media file transfers (e.g., MP3, movies), but

Plotters almost never do, traffic volume should be

a good indicator of suspicious activity. However, as

we will show in §V, examining volume alone yields

many false positives.

• Peer churn: The peer membership of a file-sharing

network is very dynamic, due to peers constantly

joining and leaving the network, the availability of

the desired file, and connections between hosts being

terminated soon after the completion of the file

transfer. Previous studies [3], [4], [5] also showed

1http://wiki.amule.org/index.php/FAQ eD2k-Kademlia
2http://bittorrent.org/beps/bep 0005.html

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.76

241

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.76

241

that most Traders appear only once a day, and remain

connected for short durations (minutes). Plotters, by

contrast, are likely to experience less churn in peer

membership, since they are required to maintain

connectivity to their peers to receive and execute

commands from the botmaster. The Plotter also can-

not control when network access will be available,

and so it is often opportunistic in communicating

with peers, i.e., whenever it has a chance. In addition,

each Plotter maintains a list of known peers with

which to communicate, such that they tend to contact

the same hosts repeatedly.

• Human-driven versus Machine-driven: Perhaps a

more basic difference between Plotters and Traders is

that, while file-sharing activities are mainly human-

driven, Plotters are almost entirely automated. This

causes much of their traffic to exhibit temporal sim-

ilarity that is rarely seen among those from human

activities. Previous studies on distinguishing humans

and bots in Internet chat rooms also observed that

human behaviors are more complex than bots [6].

We construct measures of each of these characteristics,

framing them into tests that distinguish Plotters from

Traders. To our knowledge, our work is the first to target

Plotters from the perspective of their commonality (or

the lack thereof) with other P2P protocols.

We use these tests to build a technique for separating

Plotters from Traders (and other hosts), and evaluate the

ability of our technique to identify Plotters within traffic

observed at the border of a university campus network.

Our results show that Storm bots can be identified with

up to 87.50% true positive rate and only 0.47% false

positives, despite the fact that Traders using the same

P2P substrate were present in our tests. We also perform

tests with Nugache bots, where we show that for a false

positive rate of 0.57%, we can detect 34.80% of the

bots. We will explore the reasons behind our lower —

though still substantial — detection rate in this case.

A final contribution of our work is to examine how

much malware behavior would need to change to evade

our technique. We quantify for each of our component

tests the degree to which Plotters would need to alter

their behaviors to evade them. The results suggest

that evading our technique would require significant

behavioral changes of existing botnets. Moreover, due

to the way in which our tests are constructed, it would

typically not be evident to the Plotters how much change

would be sufficient to evade them.

II. RELATED WORK

Much work to date has focused on detecting the

centralized command-and-control architecture utilized

by early botnets [7], [8], [9], [10], [11], [12]. But as

malware increasingly take advantage of peer-to-peer

networks as their main communication channel, i.e., the

Plotters, these approaches become largely ineffective,

since their basic assumptions about the malware control

architecture or protocol no longer hold true. Recent

efforts from the research community on understanding

Plotters, including Storm [1], [13], [14], [15], Nu-

gache [13], Waledac [16], [17], [18], and Conficker [19],

provided valuable insight to the operations of these

malware, but effective techniques to detect them and

future variants are still a subject of ongoing research.

Early work on disrupting Plotters (targeting Storm,

in particular) injected a large number of fake nodes

into the network to perform various Sybil attacks [15],

[20], [21], such as content poisoning or eclipsing certain

nodes from the rest of the P2P network. These studies

showed that the effectiveness of the attack depends on

the attack duration as well as the number of Sybils.

Kang et al. [22] developed a P2P monitor that infil-

trated the Storm botnet to identify the IP addresses of

infected hosts. They showed that the monitor was able to

detect bots behind firewalls or NAT devices, achieving

a broader coverage than others that actively crawl the

network. Wurzinger et al. [23] constructed network

intrusion detection signatures to identify botmaster com-

mands by examining bot binaries running in controlled

environments. Their observation is that changes in the

network behaviors of a Plotter are indications of it

having received commands from the botmaster. They

examine network traffic immediately preceding behavior

changes, and identify common substrings in the pay-

load that can be used as signatures. This approach is

hindered by Plotters that encrypt their communication,

and requires access to the malware binary.

Many approaches have also been proposed that detect

malware by examining the behavioral characteristics

of the network traffic. BotHunter [24] detects com-

promised hosts by identifying a series of events that

takes place when a vulnerable host is infected, and

which shows evidence of coordinated activities between

the infected host and the botmaster. However, since

they specifically focused on detecting events related to

certain suspicious behaviors, including scanning, binary

download, and control channel establishment, Plotters

not conforming to this profile would go undetected.

Other works correlated traffic characteristics to identify

hosts exhibiting similar network behaviors, such as per-

forming suspicious activities (e.g., scanning, spamming)

and sharing common communication contents [25],

exhibiting similar traffic statistics and suspicious ac-

242242

tivities [26], or contacting the same new destinations,

exchanging similar payload, and involving hosts of

similar software platform [27]. These approaches can

be evaded by changes in malware behavior, many of

which have already taken place, such as turning to social

engineering as an infection vector instead of scanning,

or using encryption to make payload analysis difficult.

Still others (e.g. [28]) use behavioral analysis to identify

P2P-bot behaviors exhibited over non-P2P protocols.

In contrast to previous work, we focus specifically

on distinguishing Plotters, whose command-and-control

channel is implemented in a P2P fashion, from Traders.

We do so by observing network-level characteristics

inherent to P2P applications, but that are able to distin-

guish Plotters from Traders due to the different goals

and circumstances behind how they utilize the P2P

protocol. For example, Plotters communicate over P2P

networks mainly for subtlety and resilience, instead

of large file exchanges. They are also incentivized to

maintain persistent connections to other peers in the

network, in contrast to Traders, who have been observed

to go offline after the completion of file transfers [5].

Jelasity et al. [29] studied techniques that can be

deployed by Plotters to evade P2P traffic detection.

However, they only consider the case where traffic

dispersion graphs (TDGs) [30] are used to identify P2P

traffic. The TDG-approach assumes a global view of the

network, constructing a communication graph between

all nodes to check if the average degree and the fraction

of nodes with both incoming and outgoing connections

are above a threshold. To evade such detection, the

authors specifically focused on reducing the number

of peers each Plotter contacts, such that most of the

botnet’s traffic are routed through a few fixed nodes.

While this approach may limit the number of detectable

Plotters using TDGs, its impact on other methods for

identifying P2P traffic (that do not require the commu-

nication graph) is not evaluated.

One of the characteristics explored in this work is the

difference between human-driven and machine-driven

traffic. This observation has also been applied in other

contexts, including cheat detection in online games [31],

distributed denial-of-service attack defenses [32], [33],

and chat bot detection in Internet chat rooms [6]. While

most approaches to identifying automated traffic were

host-based, Gianvecchio et al. [6] found that the network

traffic from human activities shows a higher entropy

than those from bots, for the case of Internet chat room

traffic. Lu et al. [34], [35] assume Plotter activities

to be more synchronized than human activities, and

detect Plotters by looking for hosts with similar byte

frequency distributions in their payload within the same

time window, e.g., one second. This approach can thus

be evaded with encryption. Giroire et al. [36] proposed

a method to detect centralized botnet command-and-

control traffic by monitoring persistent and regular

connections made to the same group of destination IP

addresses, i.e., the command-and-control server. Since

legitimate user traffic can also appear to be persistent

and regular, this approach requires whitelisting common

sites users visit, and is not suitable for detecting Plotters

that communicate over P2P.

Another line of work, orthogonal to ours, includes

techniques for identifying behaviors involving certain

operations of Plotters. Ramachandran et al. [37] ob-

served that botmasters lookup DNS blacklists to de-

termine whether their Plotters are blacklisted. The au-

thors thus monitor lookups to a DNS-based blacklist

to identify infected hosts. Fast-flux is a technique used

by botnets to hide the backend control server [38]. It

operates by using dynamic DNS to establish a proxy

network based on the infected hosts, such that a single

domain is associated with many different IP addresses.

Methods for identifying fast-flux include observing the

geographic diversity in the IPs associated with a do-

main and the heterogeneity of those hosts [39], [40],

[41]. Since fast-flux networks are often used to host

spam campaigns or phishing websites, Hu et al. [42]

also proposed to detect hosts participating in fast-flux

networks by identifying HTTP redirection activity.

III. DATA COLLECTION

In this work, we assume the role of a network

administrator that aims to identify Plotters internal to

her network, by observing only traffic crossing the

border of the network. The network traffic utilized in our

analysis is organized into bi-directional flow records by

Argus (http://www.qosient.com/argus), which is a real-

time flow monitor based on the RTFM flow model [43],

[44]. Argus inspects each packet and groups together

those within the same connection into one bi-directional

record. In particular, TCP and UDP flows are identified

by the 5-tuple (source IP address, destination IP address,

source port, destination port, protocol)3, and packets

in both directions are recorded as a summary of the

communication, namely, an Argus flow record. Each

Argus record includes the source and destination IP

addresses and ports, the protocol, the start and end times

of the flow, the packet and byte counts, and the first 64

3Since Argus records are bi-directional, the source and destination
IP addresses are swappable in the logic that matches packets to flows.
However, the source IP address in the record is set to the IP address
of the host that initiated the connection.

243243

bytes of the payload on the connection. This payload

is used solely for determining ground truth, that is,

determining whether the host is a Plotter or a Trader.

We use the following datasets in our analysis:

CMU dataset: This dataset consists of anonymized

network traffic obtained from the edge routers of the

Carnegie Mellon University (CMU) campus network,

which has two /16 subnets. The rate of this traffic is

about 5000 flows per second, and was collected from 9

a.m. to 3 p.m. over eight days in November 2007. We

focus on only TCP and UDP traffic in this dataset.

Trader dataset: We identified those hosts in the

CMU dataset that are participating in known P2P file-

sharing networks, i.e., the Traders, using the 64 bytes

of payload in each flow record available to us. Specif-

ically, we focus on the three popular file-sharing ap-

plications: Gnutella, eMule, and BitTorrent. Hosts run-

ning Gnutella were identified by the protocol keywords

“GNUTELLA”, “CONNECT BACK”, and “LIME” in

their payload. 4 eMule hosts were identified by the

initial byte ‘0xe3’ or ‘0xc5’, followed by various byte

sequences as specified in the protocol specification [45].

BitTorrent hosts were identified by the protocol key-

word “BitTorrent protocol”, web requests to trackers

beginning with “GET /scrape” or “GET /announce”,

and distributed hash table control messages with the

substrings “d1:ad2:id20” or “d1:rd2:id20”. 5

Plotter dataset: We also obtained Plotter traffic

traces gathered from honeynets running in the wild in

late 2007 [26]. These include a 24-hour trace of Storm,

which contains traffic from 13 bots, and a 24-hour trace

of Nugache, which contains 82 bots. Spamming and

scanning activities were blocked during the collection

of these traces, and so the remaining traffic consists

mostly of botnet control traffic, e.g., for peer discovery.

As we will describe in §V, these traces were used in

our evaluation, where they were overlaid onto the CMU

traffic by assigning them to randomly selected internal

hosts that are active in the CMU dataset.

IV. METHODOLOGY

Given network traffic observed at the border of an en-

terprise network, our goal is to identify internal Plotters,

where the main challenge in doing so is to distinguish

them from Traders. We construct a set of tests that

quantify the characteristics described in §I (volume,

peer churn, and human-driven versus machine-driven),

which aim to take advantage of the different goals and

circumstances behind how Plotters and Traders utilize

4http://rfc-gnutella.sourceforge.net/src/rfc-0 6-draft.html
5http://wiki.theory.org/BitTorrentSpecification

P2P networks. Each test takes as input a collection of

traffic, Λ, which involves a group S of internal hosts

over one day, and outputs a subset of hosts in S that

exhibit characteristics for which the test evaluates. In

the following, we detail the rationale behind each of

the characteristics, how they can be useful indicators

for distinguishing Plotters from Traders in particular,

and the construction of the corresponding test functions.

We then describe how multiple tests can be combined

to refine the results to narrow in on Plotters within the

local network.

A. Volume

The first distinguishing characteristic we consider be-

tween Plotters and Traders is the amount of traffic each

host contributes to the network. A common purpose

of Traders is to exchange data, and much of the data

found on popular P2P file-sharing applications are large

multi-media files (e.g., several MBytes in size [4]). By

contrast, the use of P2P architectures in Plotters is not

so much for the sharing of information as for resilience

and subtlety. Their traffic hence tends to be much lower

in volume. In fact, the Storm botnet was observed to use

the P2P protocol only for exchanging control messages,

while file transfers were performed over HTTP [1], [13].

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Average Bytes Sent Per Flow

CMU \ Traders

Traders

Storm

Nugache

Figure 1. Cumulative distribution of the average flow size per host
in each dataset over one day.

We examine traffic volume for a host in terms of the

average number of bytes per flow that it contributes to

the network (i.e., uploaded by the host). Compared to

the cumulative byte count, this metric is less likely to be

biased by the number of flows generated by a host, since

a Plotter that is chatty can accumulate a large byte count

over a short time window, while each individual flow

is quite light-weight. Figure 1 shows the cumulative

distribution of this value per host, plotted from a single

day of traffic from the CMU dataset, the Trader dataset,

and the Plotter traces. This figure shows that the amount

of data contributed by the Plotters (i.e., the Storm and

Nugache bots), is significantly smaller than Traders.

244244

Tests on Volume: By quantifying a host’s traffic

volume using the average number of bytes sent per flow,

we can define a test function θvol that uses this charac-

teristic to distinguish between Traders and Plotters. The

function takes as input a collection of traffic, Λ, which

involves a group S of internal hosts over one day, and

a threshold τvol. Hosts whose average flow size is less

than τvol are returned in the set Svol.

In practice, τvol can be set dynamically depending on

the current traffic makeup, for example, as the median

value observed across all hosts in S. This can make

it more difficult for a Plotter to masquerade itself as

a Trader; e.g., the amount of data it sends per flow

needs to be larger than the majority of the hosts in the

local network, though the Plotter would presumably be

unaware of that amount that it must exceed.

B. Peer Churn

Peer churn refers to the dynamics of peers joining

and leaving the network, and is a common phenomenon

among both Traders and Plotters. This characteristic is

often reflected in the high ratio of failed connections

observed in P2P networks [46], [47]. Previous studies

on P2P file-sharing networks have shown that peers are

often connected for only short durations (a few minutes

on average) [3], [4], [5], and many of them leave the

network permanently after requesting a single file [5].

We hypothesize that even though the dynamics of

peer membership is present in both systems, peer churn

is less significant among Plotters than among Traders.

This is because Plotters have motivation to keep up

persistent communications with each other and maintain

the connectivity of the botnet, since the botmaster needs

to be able to control her bots. The Plotter also cannot

control when network access will be available on the

infected machine, and so it is often opportunistic in ini-

tiating communications, i.e., whenever it has a chance,

making a Plotter’s network activities more persistent in

doing so. In addition, most Plotters store a list of known

peers with which it maintains communications, both for

bootstrapping itself into the network [1], [13], [14], [15],

[16] and to limit the number of active connections. Such

behaviors make it more likely for Plotters to contact the

same hosts than Traders, whose sets of peers are mainly

determined by file availability.

This observation allows us to characterize peer churn

using the set membership of the destination IPs that a

host contacts. We quantify this by the fraction of new

IP addresses that a host contacts in one day, or more

specifically, the ratio of (i) the number of IP addresses

that a host first contacts after its first hour of activity

on that day, and (ii) the total number of IP addresses

it contacts in that day. A higher percentage of new

contacts indicates a higher amount of churn. Figure 2

shows the percentage of new addresses contacted by

Plotters and Traders (in one-day’s worth of traffic from

the Plotter and Trader datasets). Most Nugache Plotters

do not contact any more new IPs after their first hour

of activity, while around 60% of the IPs contacted by

Storm Plotters were new. By contrast, the majority of

Traders contact more than 85% new destinations.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percentage of New IPs Contacted (%)

Traders

Storm

Nugache

Figure 2. Cumulative distribution of the percentage of new IPs
contacted by Traders and Plotters over one day.

Tests on Peer Churn: Similar to the tests for

volume, we also distinguish Plotters from Traders using

churn by performing a coarse separation between the

two sets of hosts. The test function for peer churn,

θchurn, identifies hosts that have a relatively “low” churn

(which are likely Plotters) using a threshold τchurn. By

taking as input a collection of traffic Λ involving hosts

S and a threshold τchurn, θchurn(Λ,S, τchurn) outputs a

set Schurn of hosts that contact a percentage of new IP

addresses less than τchurn.

In practice, a Plotter could attempt to evade detection

by increasing the fraction of new hosts it contacts, for

example, by performing random scanning or initiating

connections to different peers on its peer list at every

communication attempt. This approach is risky, since

it could make the Plotter detectable via other means

(e.g., by identifying scanning activities) and reduces

the stealthiness of the Plotter. We discuss evasion tech-

niques that can be carried out by Plotters and quantify

their induced costs in §VI.

C. Human-driven vs. Machine-driven

Several works on botnet detection have studied the

difference between human and machine-driven activi-

ties [48], [25], [27], [26], [34], [35]. Only a few of these

previous works have applied their technique to detecting

P2P Plotters [25], [26]. However, these approaches rely

245245

on the presence of specific attack activities performed

by the infected hosts, such as scanning.

We approach this problem by directly using timing-

related information to characterize the similarity of

machine-driven activities, for example, periodic keep-

alive/status messages exchanged between peers or

scheduled checks performed by the Plotters to download

new commands. Specifically, for each host, we examine

the interstitial time distribution of its “activities” to the

same destination IP, where an “activity” is a group of

flows that overlap in time, such as multiple connections

that are initiated in parallel. This distribution is observed

across all destinations contacted by the host, since we

do not know which ones are P2P peers. Since Plotters in

the same botnet are likely to run similar versions of the

bot binary, the timers used in triggering their activities

should also follow the same algorithm. Hence the per-

destination interstitial time distributions for Plotters

should not only stand out from those of Traders, whose

activities lack the regularity seen in automated traffic,

but also appear “similar” to each other.

Tests on Human-driven vs. Machine-driven: To

compare the per-destination interstitial time distribution

between hosts, we define a function, θhm, that uses

a non-parametric approach to construct a histogram

that approximates the underlying distribution for each

host [49]. The Earth Mover’s Distance [50] is then

applied as the distance metric for comparing distri-

butions. This allows us to identify clusters of hosts

who exhibit similar timing patterns in their network

traffic, where hosts whose traffic are mainly machine-

driven, e.g., Plotters, should have different interstitial

time distributions from hosts that are human-driven,

e.g., Traders, and thus fall within separate clusters.

• Constructing Histograms. Given a collection of the

observed interstitial time samples v(s) for a host s,

we approximate its underlying distribution by con-

structing a histogram. The choice of histogram bin

width is critical in this approximation, since a large

value leads to over-smoothing, and a small value

increases the sampling error. Moreover, applying a

fixed bin width makes it straightforward for a Plotter

to manipulate its traffic to evade detection.

In this work, we follow a method proposed by

Freedman et al. [49] to identify the optimal bin

width, whose goal is to minimize the mean-squared

error between the true distribution and the histogram.

They show that the bin width can be computed as a

function of the sample size |v(s)| (i.e., the number

of observed interstitial time values for host s) and

the “spread” of the samples, as represented by the

inter-quartile range of the sample values, IQR(v(s)).
Specifically, the bin width for host s, bs, is calculated

by bs = 2 × IQR(v(s)) × |v(s)|−1/3.

• Clustering Histograms. One of the metrics for com-

paring distributions is the Earth Mover’s Distance

(EMD) [50]. Briefly, EMD is defined as the amount

of work that is required to change one distribution

into the other by moving “distribution mass” around.

It is based on the transportation problem [51], where

the challenge is to find routes that will minimize the

cost of shipping goods from a group of suppliers I to

a group of consumers J . That is, find a set of routes

fij to minimize
∑

i∈I

∑
j∈J cijfij , where cij is the

cost of shipping from supplier i to consumer j. By

defining cij as the distance between the ith and jth

bins in the histograms, the “distribution masses” are

preferably moved between nearby bins. In this way,

EMD is especially useful when the distributions are

shifts of each other, but otherwise identical.

To find hosts whose network traffic exhibit similar

timing patterns, we perform clustering on the his-

tograms using an agglomerative hierarchical algo-

rithm, where each step merges the two existing clus-

ters for which the distance between host histograms,

averaged over all ways of drawing one host from the

first cluster and one from the second, is minimized

(average linkage clustering). This iterative process

constructs a hierarchical clustering tree with the

weight of each link being the distance (as described

above) between the two existing clusters it connects.

The final set of clusters is formed by cutting the top

σhm% links with the largest weights.

Figures 3(a) and 3(b) show the Earth Mover’s Dis-

tance among pairs of Storm and Nugache bots 6 from

our Plotter traces, when σhm is set to 2%. Compared to

pairs of Traders, as shown in Figures 3(c) and 3(d), the

Plotters have much “closer” distributions.

In addition to σhm, θhm also takes as input a threshold

parameter, τhm; θhm filters out clusters whose diameters

exceed τhm. Similar to the two previous tests, τhm can

be set dynamically as a function of the diameters across

all clusters. The output from the human-driven versus

machine-driven test, θhm(Λ,S, τhm, σhm), is the union of

the host clusters not filtered out in this way.

D. Combining the Tests

Each of the above tests, θvol, θchurn, and θhm, aims to

find Plotters using behavioral characteristics of a host’s

network traffic. Alone, each test may be too coarse to

6Specifically, here we used the top 25% Nugache bots in terms of
the number of flows they generate. We will return to this in §V-B

246246

0 20 40 60 80
0

0.5

1

1.5

2

Index of Host Pairs

E
a
rt

h
 M

o
v
e
r’
s
 D

is
ta

n
c
e

(a) Storm bots

0 20 40 60 80
0

0.5

1

1.5

2

Index of Host Pairs

E
a
rt

h
 M

o
v
e
r’
s
 D

is
ta

n
c
e

(b) Nugache bots

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Index of Host Pairs

E
a
rt

h
 M

o
v
e
r’
s
 D

is
ta

n
c
e

(c) BitTorrent hosts

0 20 40 60
0

2

4

6

8

10

12

Index of Host Pairs

E
a
rt

h
 M

o
v
e
r’
s
 D

is
ta

n
c
e

(d) Gnutella hosts

Figure 3. Earth Mover’s Distance between pairs of hosts within one day’s worth of traffic. σhm is set to 2%.

FindPlotters(Λ, S)

100: Svol ← θvol(Λ, S, τvol)
/∗ Returns hosts with low traffic volume ∗/

101: Schurn ← θchurn(Λ, S, τchurn)
/∗ Returns hosts with low peer churn ∗/

102: Shm ← θhm(Λ, Svol ∪ Schurn, τhm, σhm)
/∗ Returns hosts with similar timing patterns in their traffic ∗/

103: return Shm

Figure 4. The algorithm used to find suspected Plotters by com-
bining the tests on volume (line 100), peer churn (line 101), and
human-driven versus machine-driven traffic (line 102), described in
§IV-A, IV-B, and IV-C.

be effective at identifying Plotters. In §V, though, we

show that when used in combination, they can narrow

in on the Plotters, while largely eliminating other hosts.

Specifically, we combine the tests into an algorithm,

FindPlotters, shown in Figure 4. The algorithm takes

as input a collection of traffic Λ involving a set of hosts

S observed over one day, and outputs hosts who pass

our various tests, i.e., that are likely to be Plotters.

V. EVALUATION

We present an evaluation of the tests described in §IV,

using traffic from Plotters overlaid onto flow records

recorded at the edge of the CMU network (the CMU

dataset). For each day of traffic in the CMU dataset, we

overlay the bot traces by assigning them to randomly

selected internal hosts that are active during that day

(including possibly Traders). This makes our testing

scenario more realistic, since those hosts still exhibit

their normal behaviors, in addition to Plotter activities.

A. Initial Data Reduction

To serve as an initial data reduction step in our

analysis, we first deploy a simple method to filter out

hosts that are unlikely to be running P2P applications at

all, by considering only hosts that have relatively high

failed connection rates. Failed connection rate has been

utilized in previous works on identifying P2P traffic

(e.g., [46], [47]), and here we use it simply as a coarse

data-reduction step for eliminating hosts that are likely

not running P2P applications at all, i.e., that are neither

a Trader nor a Plotter.

Figure 5 shows the cumulative distribution of the

percentage of failed connections per host, plotted from

a single day of traffic from the CMU dataset, the

Trader dataset, and the Plotter traces. Only hosts that

initiated successful connections within that day were

included. There is a clear distinction between the curves

for the CMU\Trader and Trader datasets, pointing out

that P2P hosts do exhibit significantly higher failed

connection rates compared to non-P2P hosts. A closer

examination of the Traders with a small percentage of

failed connections (e.g., less than 10%) revealed that

they are BitTorrent hosts downloading Torrent files from

trackers over HTTP, but that are not otherwise involved

in P2P file-sharing activities.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percentage of Failed Flows (%)

CMU \ Traders

Traders

Storm

Nugache

Figure 5. Cumulative distribution of the percentage of failed
connections per host in each dataset over one day.

Surprisingly, the Plotter traces also exhibit very dif-

ferent failed connection rates. In particular, many of

the peer discovery messages sent by Nugache Plotters

in our trace were unsuccessful, because the remote

peer was either not active or not responding. This

causes all Nugache Plotters to have more than 65%

failed connections. Note that the curves for Storm and

Nugache in Figure 5 are generated from the Plotter

247247

traces only. When they are overlaid onto the CMU

dataset (§V-B), the percentage of failed flows can be

biased by the traffic from the CMU host to which we

assigned the Plotter traces.

As a data-reduction step to filter out those hosts who

are likely not involved in P2P activities—while retaining

hosts that are in fact running P2P applications—we use

the median value among hosts in the CMU dataset with

Plotters overlaid (and that initiated successful flows) as

the threshold for deciding which hosts to remove from

consideration. This value is determined anew for each

day of traffic. For example, for the case of Figure 5, the

threshold for failed connection rate would be roughly

5% (i.e., 5.75%, the median value for the CMU dataset,

then adjusted due to the overlaid Plotter data). Hosts

with failed connection rates higher than the threshold

are selected as “possibly P2P”. This approach not only

allows us to eliminate half of the hosts that are not likely

to be Plotters, but is also more difficult for a Plotter to

evade compared to setting a fixed threshold.

B. Identifying Plotters

We overlaid the Storm and Nugache Plotter traces

onto each day of traffic in the CMU dataset by assigning

them to originate from randomly selected internal hosts

in the CMU campus network active on that day. This

combined traffic is first passed through the initial data

reduction step, and then given as input to the tests,

where each returns a set of hosts that survived the test.

Figures 6, 7, 8 show ROC (Receiver Operating Char-

acteristic) curves for the volume, churn, and human-

driven vs. machine-driven tests. The input to the volume

and churn tests is the set S of hosts that passed the

initial data reduction step described in §V-A. The ROC

curves are generated by setting the threshold τvol to be

the 10, 30, 50, 70, or 90th percentile of the average

bytes sent per flow per host, and τchurn to be the 10,

30, 50, 70, or 90th percentile of the fraction of new IP

addresses contacted per host. The input to the human-

driven vs. machine-driven test, θhm, are those hosts that

were retained by one of the volume or churn tests (i.e.,

Svol ∪ Schurn) with their respective thresholds set at the

50th percentiles (and by the initial data reduction step).

To generate the ROC curve in Figure 8, the threshold

τhm for θhm is set to be the 10, 30, 50, 70, or 90th

percentile of the cluster diameters, and σhm is set to

be 2%, 5%, or 10%. We emphasize that each ROC

curve plots the true and false positive rates relative to

its input set (i.e., S for θvol and θchurn, and Svol ∪ Schurn

for θhm), as opposed to the overall CMU dataset with

Plotters overlaid, in order to highlight the independent

discriminating power of each test.

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

False Positive Rate (%)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

Storm

Nugache

Figure 6. ROC curves for the volume test θvol when the Storm and
Nugache traces are overlaid onto the CMU dataset, after filtering as in
§V-A. Results are averaged over the eight days in the CMU dataset.

0 20 40 60 80
30

40

50

60

70

80

90

100

False Positive Rate (%)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

Storm

Nugache

Figure 7. ROC curves for the churn test θchurn when the Storm and
Nugache traces are overlaid onto the CMU dataset, after filtering as in
§V-A. Results are averaged over the eight days in the CMU dataset.

Two observations from Figures 6–8 are evident. First,

the true positive rates for Storm are higher than Nugache

across all three tests, often reaching 100%. We will

explore the reasons for this difference at the end of

this section. The second observation is that alone, each

of the tests would be too coarse to be effective at

identifying Plotters, producing high false positive rates

that can reach to 90% (e.g., the volume test).

In combination, however, they can be powerful at

extracting Plotters from Trader-like hosts. To show

this, we utilized the tests together as in the algorithm

FindPlotters (Figure 4). To strike a balance between

the true positive and false positive rates, we use the

50th percentile among the hosts as the threshold for

both τvol and τchurn, the 70th percentile of the cluster

diameters for τhm, and 2% for σhm. Figure 9 shows how

the results are refined at each step, where the maximum

false positive rate (across tests for Storm and Nugache)

is reduced to 0.57% (i.e., 0.47% and 0.57% for Storm

and Nugache, respectively), while maintaining a true

248248

0 2 4 6
0

20

40

60

80

100

False Positive Rate (%)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

σ
hm

=2%

σ
hm

=5%

σ
hm

=10%

(a) Storm Plotters.

0 2 4 6
0

20

40

60

80

False Positive Rate (%)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

σ
hm

=2%

σ
hm

=5%

σ
hm

=10%

(b) Nugache Plotters.

Figure 8. ROC curves for the human-driven vs. machine-driven
test when the Storm and Nugache traces are overlaid onto hosts in
the CMU dataset, after filtering as in §V-A and by θvol and θchurn.
Results are averaged over the eight days in the CMU dataset.

positive rate of 87.50% for Storm and 34.80% for

Nugache. The percentage of Traders (from the Trader

dataset) that remain after each test is also shown for

comparison. The maximum percentage (across tests for

Storm and Nugache) of remaining Traders is 5.47%,

which comprises 13.14% of all the hosts returned by

FindPlotters.

We now return to the differences in detection rates

between Nugache and Storm. As shown in Figure 9,

most false negatives for Nugache resulted from θhm.

Further investigation into these results showed that

each test, but particularly θhm, tended to filter out less

communicative Plotters, as shown in Figure 10. At

present, we have been unable to confirm a reason behind

the large variance in the activity levels of the Nugache

bots in our trace, though those who originally recorded

the trace suggested that this may be due to the limited

viability of the Nugache botnet at the time this trace was

recorded.7 Further examination showed that a Plotter

7Guofei Gu, personal communication, October 2009.

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 (
%

)

S S
vol

 ∪ S
churn

S
hm

FP Rate (Max)

Storm TP Rate

Nugache TP Rate

Traders FP Rate (Max)

Figure 9. Results after applying the tests in sequence, averaged over
eight days in the CMU dataset with overlaid Plotter traffic.

that is unable to connect to a given peer may attempt to

contact several several other Plotters before approaching

the failed peer a second time, if it does so at all. These

uncertainties in the Plotter’s state before successfully

engaging in the botnet results in irregular behaviors that

render our tests less effective, as shown in Figures 6–8.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

(Number of flows)

All Nugache

Nugache after initial data reduction
Nugache in S

vol
 ∪ S

churn

Nugache in S
hm

Figure 10. Cumulative distribution of the number of flows generated
by the Nugache Plotters that remain after each test, in base-10 log
scale. Results are accumulated over the eight days in the CMU dataset.

VI. EVASION

A Plotter could attempt to change its network be-

haviors to evade our tests, e.g., by increasing its traffic

volume so that it will escape the volume test. However,

since the thresholds used in our tests are not fixed at

set values, but instead are dependent on traffic statistics

from all active hosts in the local network, a Plotter

would have difficulty in determining the precise thresh-

olds that will allow it to masquerade as a Trader.

Figures 11(a) and 11(b) show, for the volume test θvol

and churn test θchurn conducted on each day of traffic

in the CMU dataset, the detection threshold used (i.e.,

the median among the hosts) versus the median value

249249

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Day Index

A
v
e

ra
g

e
 B

y
te

s
 S

e
n

t
p

e
r

F
lo

w

τ
vol

Storm Median

Nugache Median

(a) The threshold τvol in the test θvol compared to values
observed from hosts with overlaid Plotter traffic.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

Day Index

N
e

w
 I

P
s
 C

o
n

ta
c
te

d
 (

%
)

τ
churn

Storm Median

Nugache Median

(b) The threshold τchurn in the test θchurncompared to values
observed from hosts with overlaid Plotter traffic.

Figure 11. Challenges for detected Plotters to evade θvol or θchurn.
Each of the eight days in the CMU dataset is shown.

among the Plotters that were detected, once assigned to

hosts. To evade the volume test, θvol, the median Storm

Plotter would need to generate more than 20 times

its original traffic volume per flow. The corresponding

multiplicative factor for the median Nugache Plotter is

roughly 1.3. To evade the churn test, θchurn, a Plotter can

either refrain from contacting hosts it had previously

communicated with, or generate connections to a large

number of new hosts it talks to only once. As an

example of the latter case, a Plotter who wants to

raise its percentage of new IPs from 60% to 90% (a

typical value of τchurn), while still maintaining the same

number of hosts with which it communicates, would

need to increase the fraction of new hosts it contacts by

a factor of 1.5. Such evasion attempts from Plotters that

increase their traffic volume or the number of new hosts

(such as through random scanning) can compromise

their stealthiness, making their presence in the network

observable through other means (e.g., scan detection) or

even by the owner of the infected machine.

0 30 sec 1 min 10 min 1 hr 3 hr
0

10

20

30

40

50

60

70

80

90

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

d

Storm
Nugache

Figure 12. Challenges for Plotters to evade θhm. The y-axis is the
true positive rate averaged over eight days of the CMU dataset with
overlaid Plotter traffic.

The human-driven vs. machine-driven test, θhm, clus-

ters hosts based on the distribution of their per-

destination interstitial activity times, and identifies hosts

that have similar timing patterns in their communica-

tions. Plotters belonging to the same botnet can avoid

falling into the same cluster or increase the cluster

diameter, for example, by having each Plotter select a

different frequency at which to contact peers. This could

affect our choice of bin width in histogram construction

— which is dependent on both the number of interstitial

time samples observed and the inter-quartile range of

the samples (see §IV-C) — and therefore alter the Earth

Mover’s Distance (EMD) between Plotters.

To quantify the operational cost for Plotters that want

to evade θhm, we simulated Plotters who, instead of

initiating communications at regular intervals, always

add (or subtract) a random delay before each activity. By

manipulating the distribution from which the interstitial

times are drawn, the Plotters may disrupt our algorithms

so that they no longer fall within the same cluster, or

that the cluster diameter exceeds the threshold τhm.

We use the same Plotter traces that were used in the

evaluation for this simulation, but add (or subtract) a

random delay before every activity a Plotter initiates

to a peer with which it had previously communicated.

The delay is drawn from a uniform distribution over

the interval ±d, for each activity. Figure 12 shows the

decay in the true positive rate as a function of d, ranging

from 30 seconds to three hours. This suggests that

Plotters must randomize their activities by minutes in

order to evade detection via this test, potentially slowing

the responsiveness of the botnet. Moreover, the per-

destination interstitial activity time distribution of other

machines in the local network affects the needed value

of d, which may be difficult for Plotters to measure.

250250

Since our tests focus on characteristics that describe

differences in Plotter and Trader behavior, a limitation

of this approach is in identifying Plotters that only

affect Traders, e.g., a Plotter binary that spreads through

P2P file-sharing networks. In this case, the Plotter

traffic could be obscured by activities from the Trader,

if the Trader is a heavy file-sharing user generating

high volumes of traffic, for example. One method of

distinguishing between Plotter and Trader traffic on a

host might be to separate traffic by application, such

as determined using port numbers. Traffic from each

port, or a group of associated ports, can then be applied

individually to the tests in §IV. While in our evaluations

the hosts to which we assigned bot traces were some-

times Traders, and were still effectively identified by the

FindPlotters algorithm, a more comprehensive study as

to how Plotters can selectively infect only Traders that

will obscure its traffic is part of ongoing work.

VII. CONCLUSION

In networks where P2P file-sharing is commonplace,

a challenge in identifying bots managed via P2P infras-

tructures is the similarities that their network behaviors

share with P2P file-sharing applications. In this paper

we developed a series of tests for separating the two

classes of P2P applications, and in particular for iden-

tifying bots within a network prior to their engaging in

overt attacks. Our tests work on flow records, without

access to individual packets. As such, our technique is

scalable to busy networks where packet capture (or even

packet header capture) is not cost-effective, and is also

immune to bot payload encryption.

Using bot traces and traces of traffic collected at the

edge of a university network, we showed that our tech-

nique enabled the identification of Storm and Nugache

bots with false positive rates of only 0.47% and 0.57%

on average, respectively. At these false positive rates,

we identified 87.50% of the implanted Storm bots, and

34.80% of the Nugache bots. Our lower detection rate

for Nugache derives from the low and variable activity

of the bots in our data (see §V-B), and so we believe

this number to be conservative. We further evaluated the

changes in bot behavior needed to evade our technique,

and found that bots would need to increase their average

flow size by roughly a factor of 1.3; increase the

fraction of new IP addresses they contact by a factor

of 1.5; or randomize their interstitial connection times

significantly (e.g., in a range of minutes). Moreover,

the bots would need to accomplish this despite other

traffic from the host it occupies, and since we defined

our tests’ thresholds relative to the background traffic,

the behavior necessary to evade detection in any given

network would typically be unknown to the attacker.

ACKNOWLEDGMENTS

We are grateful to Guofei Gu, Chris Lee, Wenke Lee and

Junjie Zhang for providing botnet traces for our evalua-

tions, and to Chas DiFatta, Mark Poepping and members

of the EDDY Initiative (http://www.cmu.edu/eddy/) for

facilitating access to the network traffic from Carnegie

Mellon University. This research was supported in part

by NSF awards 0326472, 0756998 and 0831245.

REFERENCES

[1] J. Grizzard, V. Sharma, C. Nunnery, and B. Kang, “Peer-
to-peer botnets: Overview and case study,” in Wksh. Hot
Topics in Understanding Botnets, 2007.

[2] P. Maymounkov and D. Mazieres, “Kademlia: A peer-
to-peer information system based on the xor metric,” in
Intern. Wksh. Peer-to-Peer Systems, 2002.

[3] D. Stutzbach and R. Rejaie, “Understanding churn in
peer-to-peer networks,” in ACM SIGCOMM Internet
Measurement Conf., 2006.

[4] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement
study of peer-to-peer file sharing systems,” in Multime-
dia Computing and Networking, 2002.

[5] K. Gummadi, R. Dunn, S. Saroiu, and S. Gribble,
“Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload,” in ACM Symp. Operating Systems
Principles, 2003.

[6] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang, “Measure-
ment and classification of humans and bots in internet
chat,” in USENIX Security Symp., 2008.

[7] J. Binkley and S. Singh, “An algorithm for anomaly-
based botnet detection,” in Wksh. Steps to Reducing
Unwanted Traffic on the Internet, 2006.

[8] E. Cooke, F. Jahanian, and D. McPherson, “The zombie
roundup: Understanding, detecting, and disrupting bot-
nets,” in Wksh. Steps to Reducing Unwanted Traffic on
the Internet, 2005.

[9] J. Goebel and T. Holz, “Rishi: Identify bot contaminated
hosts by IRC nickname evaluation,” in Wksh. Hot Topics
in Understanding Botnets, 2007.

[10] C. Livadas, B. Walsh, D. Lapsley, and T. Strayer, “Using
machine learning techniques to identify botnet traffic,” in
IEEE LCN Wksh. Network Security, 2006.

[11] P. Bächer, T. Holz, M. Kötter, and G. Wicherski, “Know
your enemy: Tracking botnets,” The Honeynet Project
and Research Alliance, Tech. Rep., 2005.

[12] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale
botnet detection and characterization,” in 1st Wksh. Hot
Topics in Understanding Botnets, 2007.

[13] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich,
“Analysis of the Storm and Nugache trojans: P2P is
here,” USENIX ;login, vol. 32, no. 6, 2007.

[14] P. Porras, H. Saidi, and V. Yegneswaran, “A multi-
perspective analysis of the Storm (Peacomm) worm,”
Computer Science Laboratory, SRI International, Tech.
Rep., 2007.

[15] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freil-
ing, “Measurements and mitigation of peer-to-peer-based
botnets: A case study on Storm worm,” in USENIX
Wksh. Large-Scale Exploits and Emergent Threats, 2008.

251251

[16] L. Borup, “Peer-to-peer botnets: A case study on
Waledac,” Master’s thesis, Technical University of Den-
mark, 2009.

[17] G. Sinclair, C. Nunnery, and B. B. Kang, “The waledac
protocol: The how and why,” in Intl. Conf. Malicious
and Unwanted Software, 2009.

[18] B. Stock, J. Goebel, M. Engelberth, F. C. Freiling, and
T. Holz, “Walowdac - analysis of a peer-to-peer botnet,”
in Euro. Conf. Computer Network Defense, 2009.

[19] P. Porras, H. Saidi, and V. Yegneswaran, “An analysis
of Conficker’s logic and rendezvous points,” Computer
Science Laboratory, SRI International, Tech. Rep., 2009.

[20] C. Davis, J. Fernandez, S. Neville, and J. McHugh,
“Sybil attacks as a mitigation strategy against the Storm
botnet,” in Intern. Conf. Malicious and Unwanted Soft-
ware, 2008.

[21] D. Ha, G. Yan, S. Eidenbenz, and H. Ngo, “On the effec-
tiveness of structural detection and defense against P2P-
based botnets,” in IEEE/IFIP Intern. Conf. Dependable
Systems and Networks, 2009.

[22] B. Kang, E. Chan-Tin, C. Lee, J. Tyra, H. Kang, C. Nun-
nery, Z. Wadler, G. Sinclair, N. Hopper, D. Dagon, and
Y. Kim, “Towards complete node enumeration in a peer-
to-peer botnet,” in ACM Symp. Information, Computer
and Communications Security, 2009.

[23] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel,
and E. Kirda, “Automatically generating models for bot-
net detection,” in European Symp. Research in Computer
Security, 2009.

[24] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,
“BotHunter: Detecting malware infection through IDS-
driven dialog correlation,” in USENIX Security Symp.,
2007.

[25] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting
botnet command and control channels in network traffic,”
in ISOC Network and Distributed System Security Symp.,
2008.

[26] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection,” in USENIX Se-
curity Symp., 2008.

[27] T. Yen and M. K. Reiter, “Traffic aggregation for mal-
ware detection,” in Conf. Detection of Intrusions and
Malware and Vulnerability Assessment, 2008.

[28] S. Chang and T. E. Daniels, “P2P botnet detection using
behavior clustering & statistical tests,” in 2nd Wksh.
Security and Artificial Intelligence, Nov. 2009.

[29] M. Jelasity and V. Bilicki, “Towards automated de-
tection of peer-to-peer botnets: On the limits of local
approaches,” in USENIX Wksh. Large-Scale Exploits and
Emergent Threats, 2009.

[30] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher,
S. Singh, and G. Varghese, “Network monitoring using
traffic dispersion graphs (TDGs),” in ACM SIGCOMM
Internet Measurement Conf., 2007.

[31] T. Schluessler, S. Goglin, and E. Johnson, “Is a bot at the
controls? Detecting input data attacks,” in Wksh. Network
and Systems Support for Games, 2007.

[32] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-
4-sale: Surviving organized DDoS attacks that mimic
flash crowds,” in USENIX Symp. Networked Systems
Design and Implementation, 2005.

[33] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Rat-
nasamy, “Not-a-bot: Improving service availability in the

face of botnet attacks,” in USENIX Symp. Networked
Systems Design and Implementation, 2009.

[34] W. Lu, M. Tavallaee, and A. Ghorbani, “Automatic dis-
covery of botnet communities on large-scale communi-
cation networks,” in ACM Symp. Information, Computer
and Communications Security, 2009.

[35] W. Lu, M. Tavallaee, G. Rammidi, and A. Ghorbani,
“BotCop: An online botnet traffic classifier,” in Commu-
nication Networks and Services Research Conf., 2009.

[36] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and
K. Papagiannaki, “Exploiting temporal persistence to
detect covert botnet channels,” in Intern. Symp. Recent
Advances in Intrusion Detection, 2009.

[37] A. Ramachandran, N. Feamster, and D. Dagon, “Re-
vealing botnet membership using DNSBL counter-
intelligence,” in Wksh. Steps to Reducing Unwanted
Traffic on the Internet, 2006.

[38] Honeynet Project, “Know your enemy: Fast-flux service
networks,” The Honeynet Project and Research Alliance,
Tech. Rep., 2008.

[39] T. Holz, C. Gorecki, F. Freiling, and K. Rieck, “Mea-
suring and detecting fast-flux service networks,” in ISOC
Network and Distributed System Security Symp., 2008.

[40] T. Holz and J. Nazario, “As the net churns: Fast-flux
botnet observations,” in Intern. Conf. Malicious and
Unwanted Software, 2008.

[41] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi,
“FluXOR : Detecting and monitoring fast-flux service
networks,” in Conf. Detection of Intrusions and Malware
and Vulnerability Assessment, 2008.

[42] X. Hu, M. Knysz, and K. Shin, “RB-Seeker: auto-
detection of redirection botnets,” in ISOC Network and
Distributed System Security Symp., 2009.

[43] N. Brownlee, C. Mills, and G. Ruth, “Traffic flow
measurement: Architecture,” RFC 2722, 1999.

[44] S. Handelman, S. Stibler, N. Brownlee, and G. Ruth,
“New attributes for traffic flow measurement,” RFC
2724, 1999.

[45] Y. Kulbak and D. Bickson, “The eMule protocol speci-
fication,” School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Tech. Rep., 2005.

[46] M. P. Collins and M. K. Reiter, “Finding peer-to-peer
file-sharing using coarse network behaviors,” in Euro-
pean Symp. Research in Computer Security, 2006.

[47] G. Bartlett, J. Heidemann, and C. Papadopoulos, “Inher-
ent behaviors for on-line detection of peer-to-peer file
sharing,” in IEEE Global Internet Symp., 2007.

[48] S. Racine, “Analysis of internet relay chat usage by
DDoS zombies,” Master’s thesis, Swiss Federal Institute
of Technology Zurich, 2004.

[49] D. Freedman and P. Diaconis, “On the histogram as a
density estimator: L2 theory,” Probability Theory and
Related Fields, vol. 57, no. 4, 1981.

[50] Y. Rubner, C. Tomasi, and L. Guibas, “A metric for
distributions with applications to image databases,” in
IEEE Intern. Conf. Computer Vision, 1998.

[51] G. B. Dantzig, “Application of the simplex method
to a transportation problem,” in Activity Analysis of
Production and Allocation. John Wiley and Sons, 1951,
pp. 359–373.

252252

