
Beyond Output Voting:
Detecting Compromised Replicas Using

HMM-Based Behavioral Distance
Debin Gao, Michael K. Reiter, Senior Member, IEEE Computer Society, and Dawn Song

Abstract—Many host-based anomaly detection techniques have been proposed to detect code-injection attacks on servers. The vast

majority, however, are susceptible to “mimicry” attacks in which the injected code masquerades as the original server software,

including returning the correct service responses, while conducting its attack. “Behavioral distance,” by which two diverse replicas

processing the same inputs are continually monitored to detect divergence in their low-level (system-call) behaviors and hence

potentially the compromise of one of them, has been proposed for detecting mimicry attacks. In this paper, we present a novel

approach to behavioral distance measurement using a new type of Hidden Markov Model, and present an architecture realizing this

new approach. We evaluate the detection capability of this approach using synthetic workloads and recorded workloads of production

web and game servers, and show that it detects intrusions with substantially greater accuracy than a prior proposal on measuring

behavioral distance. We also detail the design and implementation of a new architecture, which takes advantage of virtualization to

measure behavioral distance. We apply our architecture to implement intrusion-tolerant web and game servers, and through

trace-driven simulations demonstrate that it experiences moderate performance costs even when thresholds are set to detect stealthy

mimicry attacks.

Index Terms—Intrusion detection, replicated system, output voting, system call, behavioral distance.

Ç

1 INTRODUCTION

MANY host-based anomaly detection systems have been
proposed to detect server compromises, e.g., code

injection attacks exploiting buffer overflow or format-string
vulnerabilities [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. These
systems detect intrusions by monitoring the execution of a
program to see if its behavior conforms to a model that
describes its normal behavior. Constructing such a model
for accurate intrusion detection is challenging, especially
due to mimicry attacks [11], [12], [13], [14]. In a mimicry
attack, the injected attack code masquerades as the original
server software, including returning the correct service
responses, so that the anomaly detector cannot differentiate
execution of the attack code from execution of the original
server program. Output voting in a replicated system that
detects [15], [16], [17] or masks [18], [19], [20], [21], [22], [23],
[24] intrusions by comparing server outputs cannot detect
such attacks either. A replicated system that employs
only output voting will thus allow a compromised server
that generates the correct output to conduct other types

of attacks, e.g., to attack other machines in the local
network.

Behavioral distance [25], [26] has been proposed to detect
carefully crafted mimicry attacks that would evade detection
by a system that utilizes traditional host-based anomaly
detection or output voting. This approach compares the low-
level behaviors (e.g., system calls) of two diverse replicas
when processing the same, potentially malicious, inputs. If
the two replicas are diverse and vulnerable only to different
exploits, a successful attack on one of them might induce a
detectable increase in the behavioral distance. This makes
mimicry attacks potentially more difficult, because to avoid
detection, the behavior of the compromised process must be
close to the behavior of the uncompromised one. The initial
proposal for behavioral distance [25] is based on measuring
the evolutionary distance (ED) [27] between replicas’ ob-
servable behaviors.

In this paper, we present an alternative approach based on
a novel Hidden Markov Model (HMM) for computing
behavioral distance, and present the design, implementation,
and evaluation of a novel architecture using HMM-based
behavioral distance to detect attacks. An HMM models a
doubly stochastic process; there is an underlying stochastic
process that is not observable (it is “hidden”) but that
influences another that produces a sequence of observable
symbols. When applied to our problem of computing
behavioral distance, the observed symbols are process
behaviors (e.g., emitted system calls), and the hidden states
correspond to aggregate tasks performed by the processes
(e.g., read from a file).

An interesting and important observation is that since
these hidden tasks should be the same (if the processes are

96 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

. D. Gao is with the School of Information Systems, Singapore Management
University, 80 Stamford Road, Singapore 178902.
E-mail: dbgao@smu.edu.sg.

. M.K. Reiter is with the Department of Computer Science, University of
North Carolina at Chapel Hill, Campus Box 3175, Sitterson Hall, Chapel
Hill, NC 27599-3175. E-mail: reiter@cs.unc.edu.

. D. Song is with the Computer Science Division, University of California,
Berkeley, 675 Soda Hall, Berkeley, CA 94720-1776.
E-mail: dawnsong@cs.berkeley.edu.

Manuscript received 8 Feb. 2008; revised 23 June 2008; accepted 8 July 2008;
published online 21 July 2008.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2008-02-0029.
Digital Object Identifier no. 10.1109/TDSC.2008.39.

1545-5971/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

running the same program on different platforms) or at least
similar (if the processes are running different programs that
offer the same functionality, e.g., two different web servers),
it should be possible to reliably correlate the simultaneous
observable behaviors of the two processes when no attack is
occurring, and to notice an increased behavioral distance
when an attack succeeds on one of them. Perhaps surpris-
ingly, our technique uses a single HMM to model both
processes simultaneously, in contrast to traditional uses of
HMMs for anomaly detection (e.g., [28] and [29]), where an
HMM models a single process.

We detail the behavioral distance calculation and model

construction algorithms for our HMM-based anomaly

detector and evaluate an implementation of it by calculating

behavioral distances between processes executing different

web servers (Apache,1 Abyss,2 and MyServer3) on different

platforms (Linux and Windows). Since a significant motiva-

tion for this work is constraining mimicry attacks, we also

provide an algorithm for estimating the best mimicry attack

against our HMM, and evaluate the false-alarm rate when

the behavioral-distance threshold is set to detect this

estimated-best mimicry. In order to make a fair comparison

between our new approach and previous approaches, we

first evaluate detection capability of the HMM approach

using synthetic web workloads. We show that our new

approach yields better results than the ED approach [25], in

many cases offering substantial improvement in the false-

alarm rate. We additionally evaluate the false-alarm rate of

the system using recorded workloads of production web

and game servers. We show, for example, that a web server

using the HMM-based behavioral distance, when config-

ured to detect the “best” mimicry attacks, yielded as few as

three false alarms when processing a recorded workload of

over two million client requests. Similarly configured, a

game server yielded 14 false alarms when processing

39,000 recorded game events. As such, we argue that the

HMM approach offers substantially superior properties for

calculating behavioral distance for anomaly detection.

We also present the design, implementation, and

evaluation of a novel architecture to detect mimicry attacks

using behavioral distance. We address the systems issues

necessary to make this technique practical by presenting a

complete architecture based on virtualization for monitor-

ing the system-call behaviors of diverse replicas, and for

efficiently evaluating their behavioral distance either on or

off the critical path of responding to clients. In particular,

we detail the various components of the architecture, how

they communicate, and the responsibilities of each.

We demonstrate our architecture through the implemen-

tation and evaluation of a web server and a game server.

These servers present distinct challenges in many ways. For

example, the web server is a typical request-response server,

making it convenient to compute the distance between

replicas’ behaviors when processing the same request. In

contrast, the game server’s responses are not in one-to-one

correspondence with client requests, which makes it neces-

sary to pair the low-level behaviors of replicas via alternative

means for computing their behavioral distances. The typical

workload and performance requirements for these servers

are also quite different, e.g., a typical web server generates

relatively long responses of a few kilobytes to a few hundred

kilobytes, and throughput is critical as it may need to provide

service to a large number of users simultaneously. In contrast,

the game server generates much shorter responses of less

than a hundred bytes long, and is required to do so primarily

with a short latency. Consequently, our evaluation sheds light

on the suitability of our architecture for two very different

types of servers.

In an evaluation of performance overhead of our

architecture, our web server’s throughput drops to about

50 percent compared to a standalone web server on the same

physical machine without any protection mechanism, and

players experience an overhead of 8 to 86 milliseconds (ms)

in additional latency for our game server with 128 to

1,024 concurrent players.
In summary, this paper makes the following contribution:

. We present a novel approach for measuring beha-

vioral distance using a new type of HMM.
. With the evaluation using synthetic web workloads

and recorded traces of production web and game

servers, we show that this new approach based on

HMM detects intrusions with substantially greater
accuracy than previous approaches [25].

. We demonstrate the design and implementation of a
novel architecture employing behavioral distance

using a web server and a game server.
. We show that the proposed architecture using

behavioral distance is practical for real servers and

able to detect compromised servers with moderate

overhead.

2 RELATED WORK

N-variant systems [30] are closely related to our work. An

N-variant system executes a set of automatically diversified

variants on the same inputs, and monitors their behavior to

detect divergence. By constructing variants so that an

anticipated type of exploit can succeed on only one variant,

the exploit can be rendered detectable. The construction of

these variants usually requires a special compiler or a

binary rewriter, but perhaps more importantly, it detects

only anticipated types of exploits, against which the replicas

are diversified. Similarly, Cavallaro [31] proposes monitor-

ing a process and a diversification of the process to detect

behavioral divergences triggered by memory error exploits,

to provide deterministic protection. The system we propose

here, instead, uses behavioral distance to detect potentially

unforeseen types of compromises of one of two off-the-shelf

servers.
HMMs have been studied for decades and used in a wide

variety of applications, owing to two features: First, HMMs
are very rich in mathematical structure and, hence, can form
the theoretical basis for a wide range of applications.

GAO ET AL.: BEYOND OUTPUT VOTING: DETECTING COMPROMISED REPLICAS USING HMM-BASED BEHAVIORAL DISTANCE 97

1. http://httpd.apache.org.
2. http://www.aprelium.com.
3. http://www.myserverproject.net.

Second, when applied properly, HMMs work very well in

practice for many important applications. One of the most

successful applications of HMMs is in speech recognition

[32]. HMMs have also been used in intrusion detection

systems, e.g., to model the system-call behavior of a single

process [28], [33], and to model privilege flows [29].

However, these HMMs are designed to model the behavior

of a single process, as opposed to the joint behavior of two

processes as we require here.
Variations of ordinary HMMs might seem to be more

suited to our needs. For example, “pair HMMs” [34] and

“generalized pair HMMs” [35] have been used to model

joint distributions, specifically to predict the gene structures

of two unannotated input DNA sequences. However, these

variations of HMMs only model two observable sequences

where symbols are drawn from the same alphabet. In our

case, not only are the alphabets—i.e., the system calls on

diverse platforms—different, but the correspondences

between these alphabets are not known and are not one-

to-one. As such, we have been unable to directly adapt

these prior techniques to our problem, and have devised a

custom solution, instead.
Numerous systems have employed output voting to

detect some types of server compromises. For example,

the HACQIT system [36], [37] uses two web servers,

the Microsoft Internet Information Server (IIS) and the

Apache web server, to detect, isolate, and possibly recover

from software failures. If the status codes of the replica

responses are different, the system detects a failure. This

idea was extended by Totel et al. to do a more detailed

comparison of the replica responses [38]. They realized

that web server responses may be slightly different even

when there is no attack, and proposed a detection

algorithm to detect intrusions with a higher accuracy.

These projects specifically target web servers and analyze

only server responses. Consequently, they cannot detect a

compromised replica that responds to client requests

consistently, while attacking the system in other ways.

Our system, in contrast, monitors low-level behaviors

(system calls) of the replicas, and is applicable to virtually

any services (not just web servers).
There are also a long list of techniques proposed for host-

based intrusion detection by dynamically monitoring system

calls. Some rely on control-flow information by monitoring

the sequence of system calls made [1], [2], [4], [6], [7], [10],

and other use data-flow information by monitoring system-

call arguments [39], [40], [41], [42], [43]. Our work is different

from these approaches that we introduce diversity into a

replicated system for intrusion detection.

3 BEHAVIORAL DISTANCE MEASUREMENT USING A

HIDDEN MARKOV MODEL

In this section, we first explain the motivation for this new

approach using HMMs for measuring behavioral distance.

After that, we will present the new HMM and its use in

measuring behavioral distance in detail. In the end, we will

discuss some implementation issues.

3.1 Motivation for Our Approach

To motivate our approach, we first briefly describe the
problem we are trying to solve. In a nutshell, the problem is
to assign a distance to a pair of system-call sequences

S1 ¼ hs1;1; s1;2; . . . ; s1;l1i S2 ¼ hs2;1; s2;2; . . . ; s2;l2i ð1Þ

emitted by two processes while processing the same input.
Here, each si;j denotes the system-call number (a natural
number) of the jth system call by the ith process. The
distance should indicate whether these sequences reflect
similar activities. Note that we make use of only the
system-call numbers and not the system-call arguments
and return values, for simplicity. Consequently, only
attacks modifying the control flow in one replica, or more
specifically, changing its system-call behavior, can be
detected. Attacks exploiting system-call arguments, persis-
tent interposition attacks [44], and non-control-data attacks
[45] will not change this distance. Though restricting our
attention to only system-call numbers does simplify our
task, producing the distance between two system-call
sequences is complicated by the fact that the processes
might be running on diverse platforms, and so the set of
system calls C1 ¼ fs1;jg1�j�l1 on the first platform can be
different from the set C2 ¼ fs2;jg1�j�l2 on the second
platform. Moreover, even a shared symbol c 2 C1 \ C2 has
different semantics on the two platforms. Of course,
generally l1 6¼ l2.

The Evolutionary Distance (ED) approach [25] to
computing the distance of (1), roughly speaking, was to
consider all possible ways of inserting dummy symbols �
into them to generate an alignment:

s01;1; s
0
1;2; . . . ; s01;l0

1

D E
s02;1; s

0
2;2; . . . ; s02;l0

2

D E
; ð2Þ

where l01 � l1, l02 � l2, and l01 ¼ l02. The distance for alignment
(2) was simply

P
j distðs01;j; s02;jÞ, where distð�Þ was a table of

distances between system calls learned from training
sequences (pairs of system-call sequences output by the
processes in a benign environment). The distance for (1),
then, was the distance of the alignment with the smallest
distance.

Though we have omitted numerous details of the ED
approach, one limitation is immediately apparent: it does
not take adequate account of the order of system calls in
each sequence. For example, reversing the two sequences
(1) yields the same ED. Since system-call order is known to
be important to detecting intrusions (e.g., [1], [4], [7], and
[10]), this is a significant limitation.

Our use of an HMM for calculating the behavioral
distance of sequences (1) addresses this limitation. We use a
single HMM to model both processes, and so a pair of
system calls ½s1;�; s2;��, one from each process, is an observable
symbol of the HMM. Each such observable symbol can be
emitted by hidden states of the HMM with some finite
probability. Intuitively, if the system calls in an observable
symbol perform similar tasks, then the probability should be
high; otherwise, the probability should be low. This
probability serves the same purpose as the distð�Þ table in
the ED approach. However, in HMM-based behavioral
distance, the probability of emitting the same observable
symbol is generally different for different hidden states,
whereas in ED-based behavioral distance, a universal distð�Þ
table is used for every system-call pair in the system-call

98 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

sequences. In this way, our HMM model better accounts for
the order of system calls.

The way in which we use our HMM is slightly different
from the use of HMM in many other applications. For
example, in HMM-based speech recognition, the primary
algorithmic challenge is to find the most probable state
sequence (what is being said) given the observable symbol
sequence (the recorded sounds). However, in behavioral
distance, we are not concerned about the tasks (the hidden
states) that gave rise to the observed system-call sequences,
but rather are concerned only that they match. Therefore,
the main HMM problem we need to solve is to determine
the probability with which the given system-call sequences
would be generated (together) by the HMM model—we
take this probability as our measure of the behavioral
distance. We show how to calculate this probability
efficiently in Section 3.2.

3.2 The Hidden Markov Model

In this section, we introduce our HMM and describe how it
is used for behavioral distance calculation. We begin in
Section 3.2.1 with an overview of the HMM. We then
present our algorithm for calculating the behavioral
distance in Section 3.2.2, and describe the original construc-
tion of the HMM in Section 3.2.3.

3.2.1 Elements of the HMM

Our HMM � ¼ ðQ; V ;A;BÞ consists of the following
components:

. A set Q ¼ fq0; q1; q2; . . . ; qN ; qNþ1g of states, where q0

is a designated start state, and qNþ1 is a designated
end state.

. A set V ¼ f½x; y� : x 2 C1 [f�g; y 2 C2 [f�gg of out-
put symbols. Recall that C1 and C2 are the sets of
system calls4 observed on platforms 1 and 2,
respectively, and that � denotes a designated
dummy symbol.

. A set A ¼ faig0�i�N of state transition probability
distributions. Each ai : f1; . . . ; N þ 1g ! ½0; 1:0� satis-
fies

P
j aiðjÞ ¼ 1:0. aiðjÞ is the probability that the

HMM, when in state qi, will next enter qj. We will
typically denote aiðjÞ with ai;j. We stipulate that
a0;Nþ1 ¼ 0, i.e., the HMM does not transition directly
from the start state to the end state. Note that ai is
undefined for i ¼ N þ 1, i.e., there are no transitions
from the end state. Similarly, ai;0 is undefined for all i,
since there are no transitions to the start state.

. A set B ¼ fbig1�i�N of symbol emission probability
distributions. Each bi : ðC1 [f�gÞ � ðC2 [f�gÞ !
½0; 1:0� satisfies

P
½x;y� bið½x; y�Þ ¼ 1:0. bið½x; y�Þ is the

probability of the HMM emitting ½x; y� when
in state qi. We require that for all i, bið½�; ��Þ ¼ 0.
Note that neither b0 nor bNþ1 is defined, i.e., the start
and end states do not emit symbols.

As we discussed in Section 3.1, we will take our measure
of behavioral distance to be the probability with which the
HMM � “generates” the pair of system-call sequences of
interest. This probability is computed with respect to the

following experiment, which we refer to as “executing”
the HMM:

1. Initialize � with q0 as the current state.
2. Repeat the following until qNþ1 is the current state:

a. If qi is the current state, then select a new state qj
according to the probability distribution ai and
assign qj to be the new current state.

b. After transitioning to the new state qj, if
qj 6¼ qNþ1, then select an output symbol ½x; y�
according to the probability distribution bj and
emit it.

Specifically, we define an execution � of HMM � to
consist of a state sequence qi0 ; qi1 ; . . . ; qiT , where i0 ¼ 0 and
iT ¼ N þ 1, and observable symbols ½xi1 ; yi1 �; . . . ; ½xiT�1

; yiT�1
�.

The experiment above assigns to each execution a prob-
ability, i.e., the probability the experiment traverses exactly
that sequence of states and emits exactly that sequence of
observable symbols; we denote by Pr�ð�Þ the probability of
execution � when executing HMM �.

For an HMM �, there are many executions that generate
the given pair of sequences ½S1; S2� as in (1). We use
Ex�ð½S1; S2�Þ to denote the set of executions of � that
generate ½S1; S2�. The probability that � generates the
sequences ½S1; S2� (1), which we denote Pr�ð½S1; S2�Þ, is the
probability that �, in the experiment above, emits pairs
½xi1 ; yi1 �; . . . ; ½xiT�1

; yiT�1
� such that

hxi1 ; xi2 ; . . . ; xiT�1
i hyi1 ; yi2 ; . . . ; yiT�1

i

is an alignment (as in (2)) of those sequences (1). Note that

Pr� ½S1; S2�ð Þ ¼
X

�2Ex� ½S1;S2�ð Þ
Pr�ð�Þ:

In addition, we define the most probable execution generating
½S1; S2� to be

arg max
�2Ex� ½S1;S2�ð Þ

Pr�ð�Þ:

When convenient, we will use t to denote an iteration
counter, i.e., the number of iterations of Step 2 in the
experiment above that have been executed. So, for example,
when we say that � is “in state qi after t iterations,” this
means that after t iterations have been completed in the
experiment, qi is the current state. Trivially, q0 is the state
after t ¼ 0 iterations, and if the state is qNþ1 after t iterations,
then execution halts (i.e., there is no iteration tþ 1).

3.2.2 Computing Pr�ð½S1; S2�Þ
Pr�ð½S1; S2�Þ is the probability that system-call sequences S1

and S2 are generated (in the sense of Section 3.2.1) by the
HMM �, which is used as the behavioral distance between
S1 and S2.5 If Pr�ð½S1; S2�Þ is greater than a threshold value,
the system-call sequences will be considered as normal;
otherwise, an alarm is raised indicating that an anomaly is
detected. In this section, we describe an algorithm for
computing Pr�ð½S1; S2�Þ efficiently using dynamic program-
ming, given �, S1, and S2. How we build � itself is the topic
of Section 3.2.3.

GAO ET AL.: BEYOND OUTPUT VOTING: DETECTING COMPROMISED REPLICAS USING HMM-BASED BEHAVIORAL DISTANCE 99

4. In Section 3.3, we discuss letting C1 and C2 be sets of system-call
sequences, or phrases. For simplicity of exposition, however, we describe our
algorithms assuming C1 and C2 are sets of individual system calls.

5. Note that although we call this behavioral distance, it generally does not
have the mathematical properties of a distance. For example, behavioral
distance has the positivity property (all distances are nonnegative), but does
not obey symmetry or the triangle inequality.

Given an HMM �, there are many ways it can generate
S1 and S2, i.e., there are many different executions that yield
an alignment of S1 and S2. In fact, if we assume that ai;j and
bið½x; y�Þ are nonzero for x 6¼ � or y 6¼ �, any state sequence
of sufficient length generates an alignment of S1 and S2

with some nonzero probability. Moreover, even for one
particular state sequence, there are many ways of generat-
ing S1 and S2 with � being inserted at different locations.

It may first seem that to calculate Pr�ð½S1; S2�Þ we need to
sum the probabilities of all possible executions, and the large
number of executions makes the algorithm very inefficient.
However, we can use induction to find Pr�ð½S1; S2�Þ, instead.
The idea is that if we know the probability of generating
½S�1 ; S�2 �, where S�1 and S�2 are prefixes of S1 and S2,
respectively, then Pr�ð½S1; S2�Þ can be found by extending
the executions that generate S�1 and S�2 .

To express this algorithm precisely, we introduce the
following random variables in an execution of the HMM �.
Random variable Statet is the state after t iterations. (It
is undefined if the execution terminates in less than
t iterations.) Random variable Out�t1 is the sequence of
system calls from C1 in the first components of the emitted
symbols (less �) through t iterations. That is, if in the (up to)
t iterations, � emits ½s01;1; s02;1�; . . . ; ½s01;‘; s02;‘�, where ‘ � t, then
Out�t1 is the sequence of non-� values in hs01;1; . . . ; s01;‘i (with
their order preserved). Similarly, the random variable Out�t2

would be the non-� values in hs02;1; . . . ; s02;‘i. Now define

�ðu; v; iÞ ¼ Pr�
_
t�0

Statet ¼ qi ^
Out�t1 ¼ PreðS1; uÞ ^
Out�t2 ¼ PreðS2; vÞ

0
@

1
A

0
@

1
A;

where PreðS; uÞ denotes the u-length prefix of S. That is,
�ðu; v; iÞ is the probability of the event that simulta-
neously qi is the current state, exactly the first u system
calls for process 1 have been emitted, and exactly the first
v system calls for process 2 have been emitted. Clearly,
�ðu; v; iÞ is a function of S1, S2, and �. Here, we do not
specify them as long as the context is clear. We solve for
�ðu; v; iÞ inductively, as follows:

Base cases:

�ð0; 0; iÞ ¼
1; if i ¼ 0;

0; otherwise

�

�ðu; v; 0Þ ¼
1; if u ¼ v ¼ 0;

0; otherwise:

�

Induction:

�ðu; 0; iÞ ¼
XN
j¼0

�ðu� 1; 0; jÞaj;ibi ½s1;u; ��
� �

; for u; i > 0;

�ð0; v; iÞ ¼
XN
j¼0

�ð0; v� 1; jÞaj;ibi ½�; s2;v�
� �

; for v; i > 0;

�ðu; v; iÞ ¼
XN
j¼0

�ðu� 1; v� 1; jÞaj;ibi ½s1;u; s2;v�
� �

þ
XN
j¼0

�ðu� 1; v; jÞaj;ibi ½s1;u; ��
� �

þ
XN
j¼0

�ðu; v� 1; jÞaj;ibi ½�; s2;v�
� �

; for u; v; i > 0:

For example, �ð1; 0; iÞ is the probability that qi is the

current state and all that has been emitted is one system call

for process 1 ðs1;1Þ and nothing (except �) for process 2.

Since bjð½�; ��Þ ¼ 0 for all j 2 f1; . . . ; Ng, the only possibility

is that q0 transitioned directly to qi, which emitted ½s1;1; ��.
As a second example, to solve for �ðu; v; iÞ where u,

v > 0, there are three possibilities, captured in the last

equation above:

. The first u� 1 and v� 1 system calls from S1 and
S2, respectively, have been output, and � is in
some state qj. (This event occurs with probability
�ðu� 1; v� 1; jÞ.) � then transitions from qj to qi
(with probability aj;i) and emits ½s1;u; s2;v� (with
probability bið½s1;u; s2;v�Þ).

. The first u� 1 and v system calls from S1 and S2,
respectively, have been output, and � is in some
state qj. (This event occurs with probability
�ðu� 1; v; jÞ.) � then transitions from qj to qi (with
probability aj;i) and emits ½s1;u; �� (with probability
bið½s1;u; ��Þ).

. The first u and v� 1 system calls from S1 and S2,
respectively, have been output, and � is in some
state qj. (This event occurs with probability
�ðu; v� 1; jÞ.) � then transitions from qj to qi (with
probability aj;i) and emits ½�; s2;v� (with probability
bið½�; s2;v�Þ).

After �ðu; v; iÞ is solved for all values of u 2 f0; 1; . . . ; l1g,
v 2 f0; 1; . . . ; l2g, and i 2 f1; . . . ; Ng, where l1 and l2 are the

lengths of S1 and S2, respectively, we can calculate

Pr� ½S1; S2�ð Þ ¼
XN
i¼1

�ðl1; l2; iÞai;Nþ1:

The solution above solves for Pr�ð½S1; S2�Þ from the

beginning of the system-call sequences. (That is, �ðu; v; iÞ
of smaller u- and v-indices are found before that of larger

u- and v-indices.) It will also be convenient to solve for

Pr�ð½S1; S2�Þ from the end of the sequences. To do that, we

define

�ðu; v; iÞ ¼ Pr�
_
t�0

Statet ¼ qi ^
Out>t1 ¼ PostðS1; uÞ ^
Out>t2 ¼ PostðS2; vÞ

0
@

1
A

0
@

1
A:

Here, PostðS; uÞ denotes the suffix of S that remains after

removing the first u elements of S. Analogous to the

preceding discussion, random variable Out>t1 is the se-

quence of system calls from C1 in the first components of

the emitted symbols (less �) in iterations tþ 1 onward (if

any), and similarly for Out>t2 . So, �ðu; v; iÞ is the probability

of the event that qi is the current state after some iterations

and subsequently exactly the last l1 � u system calls of S1

are emitted, and exactly the last l2 � v system calls of S2 are

emitted. The induction for �ðu; v; iÞ works in a similar way,

and Pr�ð½S1; S2�Þ ¼ �ð0; 0; 0Þ.
In this algorithm, the number of steps taken to calculate

Pr�ð½S1; S2�Þ is proportional to l1 � l2 �N2. Therefore, the

proposed algorithm is efficient as the numbers of system

calls and HMM states grow.

100 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

3.2.3 Building �

In this section, we describe how we build the HMM �. We do
so using training data, that is, pairs ½S1; S2� of sequences of
system calls recorded from the two processes when proces-
sing the same inputs. Of course, we assume that these training
pairs reflect only benign behavior, and that neither process is
compromised during the collection of the training samples.
We first present an algorithm to adjust the HMM parameters
for one training example ½S1; S2�, and then show how we
combine the results from processing each training sample to
adjust the HMM when there are multiple training samples.

Building � is a typical expectation-maximization pro-
blem. There is no known way of solving for such a maximum
likelihood model analytically; therefore, a refinement pro-
cedure is used. The idea is that for each training sample
½S1; S2�, we find the expected values of certain variables,
which can, in turn, be used to adjust the parameters of � to
increase Pr�ð½S1; S2�Þ. Here, we will demonstrate this method
for updating the ai parameters of �; a similar treatment for
the bi parameters can be found in Supplemental
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2008.39.

The initial instance of � is created with a fixed number of
states N and random ai and bi distributions. To update the
ai;j parameters in light of a training sample ½S1; S2�, we find
(for the current instance of �) the expected number of times
� transitions to state qi, and the expected number of times it
transitions from qi to qj when generating ½S1; S2�. To compute
these expectations, we first define two conditional probabil-
ities, �ðu; v; iÞ and �ðu; v; i; jÞ for i � N , j � N þ 1, as follows:

�ðu; v; iÞ

¼ Pr�
_
t�0

Statet ¼ qi ^
Out�t1 ¼ PreðS1; uÞ ^
Out�t2 ¼ PreðS2; vÞ

0
B@

1
CA
����� Out>0

1 ¼ S1 ^
Out>0

2 ¼ S2

 !0
B@

1
CA

�ðu; v; i; jÞ

¼ Pr�
_
t�0

Statet ¼ qi ^
Statetþ1 ¼ qj ^
Out�t1 ¼ PreðS1; uÞ ^
Out�t2 ¼ PreðS2; vÞ

0
BBB@

1
CCCA
����� Out>0

1 ¼ S1 ^
Out>0

2 ¼ S2

 !0
BBB@

1
CCCA:

That is, �ðu; v; iÞ is the probability of � being in state qi
after emitting u system calls for process 1 and v system
calls for process 2, given that the entire sequences for
process 1 and process 2 are S1 and S2, respectively.
Similarly, �ðu; v; i; jÞ is the probability of being in state qi
after emitting u system calls for process 1 and v system
calls for process 2, and then transitioning to state qj, given
the entire system-call sequences for the processes. Each of
these conditional probabilities pertains to one particular
subset of executions that generate S1 and S2. As explained
in Section 3.2.2, there are many executions in the HMM
that are able to generate S1 and S2; out of these executions,
there are some that are in state qi (respectively, transition
from qi to qj) after emitting u system calls for process 1 and
v system calls for process 2. Note that it may or may not be
the case that ½s1;u; s2;v� was emitted by state qi, and that

�ðu; v; iÞ ¼
XNþ1

j¼1

�ðu; v; i; jÞ:

We can calculate these quantities easily as follows:

�ðu; v; iÞ ¼ �ðu; v; iÞ�ðu; v; iÞ
Pr� ½S1; S2�ð Þ

�ðu; v; i; jÞ ¼ �ðu; v; iÞai;j
Pr� ½S1; S2�ð Þ

�
bj ½s1;uþ1; ��
� �

�ðuþ 1; v; jÞ þ
bj ½�; s2;vþ1�
� �

�ðu; vþ 1; jÞ þ
bj ½s1;uþ1; s2;vþ1�
� �

�ðuþ 1; vþ 1; jÞ

0
B@

1
CA:

Let the random variable Xi be the number of times
that state qi is visited when emitting ½S1; S2�. We calculate
the expected value of Xi, denoted IEðXiÞ, as follows: Let
the random variable Xu;v

i be the number of times that qi
is the current state when exactly the first u system calls
of S1 and the first v system calls of S2 have been
emitted. Since qi can be visited at most once for a fixed u
and v, Xu;v

i can take on only values 0 and 1. As such,
IEðXu;v

i Þ ¼
P

x2f0;1g xPrðXu;v
i ¼ xÞ ¼ �ðu; v; iÞ. Then, by lin-

earity of expectation

IEðXiÞ ¼
Xl1
u¼0

Xl2
v¼0

IE Xu;v
i

� �
¼
Xl1
u¼0

Xl2
v¼0

�ðu; v; iÞ;

where l1 and l2 are the lengths of S1 and S2, respectively.
Similarly, if Xi;j is the number of transitions from qi to qj
when generating ½S1; S2�, then

IEðXi;jÞ ¼
Xl1
u¼0

Xl2
v¼0

�ðu; v; i; jÞ:

With these expectations calculated, we can update the ai
parameters of the HMM �, using the Baum-Welch method
[46], as follows:

ai;j IEðXi;jÞ=IEðXiÞ:

This equation shows how the ai parameters of � can be

updated to increase the probability of generating one pair

of sequences. When there are more than one pair of

sequences ð½Sð1Þ1 ; S
ð1Þ
2 �; . . . ; ½SðMÞ1 ; S

ðMÞ
2 �Þ, we can calculate the

relevant parameters for each pair of sequences (i.e.,

IEðXðkÞi Þ, IEðXðkÞi;j Þ) and then update the ai parameters of � as

ai;j
XM
k¼1

wkIE X
ðkÞ
i;j

� � !, XM
k¼1

wkIE X
ðkÞ
i

� � !
;

where wk is the weight for each pair of sequences ½SðkÞ1 ; S
ðkÞ
2 �

in the training set for the current instance of �. There are
many ways of setting wk [47]. In our experience, different
settings affect the speed of convergence, but the final result
of the HMM is almost the same. In our experiments, we
choose

wk ¼ Pr� S
ðkÞ
1 ; S

ðkÞ
2

h i� �� �� 1

l
ðkÞ
1
þlðkÞ

2 ;

where l
ðkÞ
1 and l

ðkÞ
2 are the lengths of S

ðkÞ
1 andS

ðkÞ
2 , respectively.

The equations above show how the ai parameters of an
HMM can be adjusted in one refinement. We need many
such refinements in order to find a good HMM that
generates the training examples with high probabilities.

GAO ET AL.: BEYOND OUTPUT VOTING: DETECTING COMPROMISED REPLICAS USING HMM-BASED BEHAVIORAL DISTANCE 101

Although more refinements can improve the probabilities,
they may also result in overfitting. To detect when to stop
the refinement process so as not to overfit the training
samples, we use a separate validation set, which also
contains pairs of system-call sequences recorded from the
two processes when processing the same inputs. Briefly, we
detect overfitting when the refinement process either
decreases Pr�ð½S1; S2�Þ for pairs ½S1; S2� in the validation
set or increases the false-alarm rate on the validation set
using the alarm threshold needed to detect mimicry attacks
(explained in Section 4.1).

3.3 Implementation Issues

There are several implementation issues that deserve
comment. First, in all discussions so far, we have used
system calls as the basic units to explain the elements of the
HMM and our algorithms; i.e., an observable symbol of the
HMM is a pair of system calls, one from each process.
However, it is advantageous to use system-call phrases
(short sequences of system calls) as the basic unit [2], [7],
[25]. In our experiments, we use the same phrase-extraction
algorithm as in the ED project [25]. After the system-call
phrases are identified, an observable symbol of the HMM
becomes a pair of system-call phrases, one from each
process. Other than this, all algorithms presented in this
paper remain the same.

Second, the number N of states in the HMM must be set
before training starts. (N does not change once it is set.) A
small N will make the HMM not as powerful as required to
model the behavior of the processes, which will, in turn,
make mimicry attacks relatively easy. However, a large N
not only degrades the performance of the system but may
also result in overfitting the training data. We have found
success in setting N slightly larger than the length of the
longest training sequence so that some dummy symbols �
can be inserted into the sequences, and to use the validation
set to detect overfitting. So far we have found that setting N
to be 1.0 to 1.2 times the length of the longest training
sequence (in phrases) is a reasonable guideline. In our
experiments described in Section 4 using three different
web servers on two different operating systems, this
guideline yielded values of N between 10 and 33.

Third, the training of the HMM is a complicated process,
which may take a long time. In our experiments, the training
for a typical web server application may take more than an
hour on a desktop computer with a Pentium IV 3.0-GHz CPU.
However, training can be performed offline, and the online
monitoring is fast, as in many other applications of HMMs.

A fourth issue concerns the use of a finite set of training
samples for estimating the HMM parameters. If we look at
the formulas for building the HMM in Section 3.2.3, we see
that certain parameters will be set to 0 if there are no or few
occurrences of a symbol in the training set. For example, if
an observable symbol does not occur often enough, then
the probability of that symbol being emitted will be 0 in
some states. This should be avoided because no occur-
rences in the training data might be the result only of a low,
but still nonzero, probability of that event. Therefore, in our
implementation we ensure a (nonzero) minimum value to
the ai and bi parameters by adding a normalization step at
the end of each refinement process.

4 DETECTION CAPABILITY OF THE HMM-BASED

BEHAVIORAL DISTANCE MEASUREMENT

As discussed in Section 3, we hypothesized that because the
HMM-based approach we advocate here better accounts for
the order of system calls, it should better defend against
mimicry attacks than the prior ED-based approach [25]. In
this section, we evaluate an implementation of our anomaly
detector using HMM-based behavioral distance to deter-
mine whether this is, in fact, true. In order to make a fair
comparison between this evaluation and previously re-
ported results for the ED-based approach [25], we first use
synthetic workloads generated by a benchmarking tool (the
same workload used in previous work). After that, we
perform another set of evaluations using real workload to
see how practical our system is in protecting real web and
game servers.

Our evaluation system includes two computers running
web or game servers to process client requests. One of these
computers, denoted L, runs Linux and the other, denoted
W, runs Windows. Each of L and W was given the same
sequence of requests and each recorded the system-call
sequence, denoted by SL and SW,6 respectively, of (the
thread in) the server process that handled the request. The
behavioral distance is calculated as Pr�ð½SL; SW�Þ, where �
was trained as described in Section 3.2.3.

4.1 Resilience against Mimicry Attacks

Our chosen measure of the system’s resilience to mimicry
attacks is the false-alarm rate of the system when it is
configured to detect the “best” mimicry attack. Intuitively, a
system that offers a low false-alarm rate while detecting the
best mimicry attack is doing a good job of discriminating
“normal” behavior from even the “best-disguised” abnor-
mal behavior. To compare our results to the ED-based
behavioral distance project [25], we presume the same
system-call sequence that the attacker is trying to execute as
in the ED project, which is simply an open() followed by a
write() system call. Note that we have considered only
this attack sequence in this evaluation in order to compare
our results to the ED-based project, and leave the evaluation
of other attack sequences in future work.

To measure the false-alarm rate when detecting the best
mimicry attack, we need to first define what we take as the
“best” mimicry attack. Specifically, if we presume that the
attacker finds a vulnerability in, say, L, then it must craft an
attack request that will produce a “normal” behavioral
distance between the attack activity on L induced by its
request ðSLÞ and the normal activity on W induced by the
same request ðSWÞ. Moreover, the attack activity on L must
include an open() followed by a write() (i.e., the
attacker’s system calls). As such, it would be natural to
define the “best” mimicry attack to be the one that yields the
largest normal behavioral distance, i.e., that maximizes
Pr�ð½SL; SW�Þ. Because we permit the attacker to have
complete knowledge of our HMM �, nothing is hidden from
the attacker to prevent his use of this “best” mimicry attack.

102 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

6. System calls on Windows are also called native API calls or kernel
calls. Section 5.1.1 explains how the Windows system-call information is
obtained.

Unfortunately, we know of no efficient algorithm for
finding this best mimicry attack (an obstacle an attacker
would also face), and so we have to instead evaluate our
system using an “estimated-best” mimicry attack that we can
find efficiently. Rather than maximizing Pr�ð½SL; SW�Þ, this
estimated-best mimicry attack is the one produced by the
most probable execution of the HMM � that includes the
attacker’s system calls on the platform we presume he can
compromise. (The most probable execution does not neces-
sarily yield the mimicry attack that maximizes Pr�ð½SL; SW�Þ,
since many low-probability executions can yield a different
½S0L; S0W� that has a larger Pr�ð½S0L; S0W�Þ.) An algorithm for
computing this estimated-best mimicry attack can be found
in Supplemental Appendix B, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu-
tersociety.org/10.1109/TDSC.2008.39. Another way in
which our attack is “estimated-best” is that it assumes the
attacker executes its attack within the servers’ processing of a
single request (an assumption made in the ED project [25] as
well). An attack for which the attack activity spans multiple
requests or multiple server processes/threads is an area of
ongoing work.

Once this estimated-best mimicry attack is found, we set
the behavioral distance alarm threshold to be the behavioral
distance resulting from this estimated-best mimicry, and
measure the false-alarm rate of the system that results. Since
the system detects the “best” mimicry, it experiences a zero
false-negative rate. A false alarm corresponds to a legit-
imate request that induces a pair of system-call sequences
with a probability of emission from � at most the threshold.
The false-alarm rate is then calculated as the number of
false alarms divided by the total number of requests.

4.2 Evaluation Using Synthetic Workloads

Our first evaluation uses synthetic workloads generated
from the static test suite of WebBench 5.0,7 which is exactly
the same workloads used by the evaluation of the ED
approach [25]. We perform our experiments in nine
different settings, defined by the web servers that L and
W are running. (The web servers are Apache 2.0.54, Abyss
X1 2.0.6, and MyServer 0.8.) Behavioral distance is
measured on the system-call sequences resulted from the
processing of HTTP requests. Table 1 presents the results
using a testing mechanism in which the training (to train

the model), validation (to detect overfitting), and evaluation
(to evaluate) sets are distinct. They show that the HMM-
based behavioral distance has a small (and in many cases,
greatly superior to ED) false-alarm rate when detecting the
estimated-best mimicry attacks.

4.3 Evaluation Using Recorded Traces of
Production Web and Game Servers

Although the evaluation using synthetic workloads pre-
sented in the previous section gives a good idea about
intrusion detection capability of our approach, it remains to
evaluate the system using real traces. In this part of the
evaluation, we use recorded traces of production web
and game servers to evaluate the detection capability of
the HMM-based approach of measuring behavioral dis-
tance, and show that the HMM approach results in very low
false-alarm rate when used on production web and game
servers.

4.3.1 Web Server

The recorded trace we use consists of a five-month-long log
of client requests for static pages on www.cylab.cmu.edu.
This data consists of more than two million requests on
about 2,700 distinct URLs, including html pages, images,
videos, etc. In this test, we use a training set to build the
HMM, a validation set to detect overfitting the training data,
and a testing set to evaluate the accuracy of the model. The
training set contains a subset (of a size that varies per
experiment; see next paragraph) of the 2,700 distinct URLs.
We request each URL in this subset once, and use the
system-call sequences induced to train the HMM. The
validation set consists of all URLs on a typical weekday,
which has about 12,000 requests. After the model is built
using the training set and the validation set, it is evaluated
on the testing set which is simply the entire trace data set
excluding the validation set. Similar to the evaluation using
synthetic workloads, behavioral distance is measured on the
system-call sequences resulted from the processing of HTTP
requests. Both replicas run Apache httpd 2.2.2.8

We perform the test using varying percentages of the
possible distinct requests as training data, to simulate the
scenario in which new contents are added to a web server
but the behavioral distance model is not retrained (and so
the training set does not contain all the distinct requests).
Fig. 1 shows the number of false alarms when the training
set consists of 40 percent to 100 percent of the distinct

GAO ET AL.: BEYOND OUTPUT VOTING: DETECTING COMPROMISED REPLICAS USING HMM-BASED BEHAVIORAL DISTANCE 103

7. VeriTest, http://www.veritest.com/benchmarks/webbench/default.
asp. 8. Apache on Linux and Apache on Windows are different code bases.

TABLE 1
False-Alarm Rate when Detecting the Estimated-Best Mimicry

Fig. 1. Number of false alarms when detecting the “best” mimicry attack.

requests, when the system is tested on about two million
requests recorded in 150 days.

These results suggest that our system detects software
intrusions with high accuracy. Our system generates only
three false alarms in more than two million requests, when
the training set consists of all distinct requests. When
20 percent of the requests are not included in the training
set, the number of false alarms increase to about 60, which
is still very good. These results are also about an order of
magnitude better than those previously reported [25]. They
suggest that the model be retrained when the training set
consists of less than 90 percent of the distinct requests, if
very low false-alarm rates are required.

4.3.2 Game Server

A web server is one of the most common services provided
over the Internet, and therefore is a typical example in which
behavioral distance is useful for defending against software
intrusions. However, it is also relatively simple in that each
transaction consists of a single request and a response. In
this part of the evaluation, we show another application in
which behavioral distance is used to protect an online
multiplayer game server. This is more complicated because
a message from a player may result in zero or multiple
responses to the sender as well as other players. Dynamic
generation of server responses also makes it more complex.

The online game server we choose to work with is
the Peekaboom game server (www.peekaboom.org). Peeka-
boom [48] is an online game for two players (single-player
games are also possible; please see www.peekaboom.org for
details), in which one of the players (Boom) continuously
reveals parts of an image, and the other player (Peek) tries to
guess the word that is associated with the image. The
Peekaboom server is implemented in Java, and so is
theoretically immune to the code injection attacks that are a
primary motivation for our work. However, Peekaboom is
the only server available to us that is both representative of
more complex, dynamic services and accessible for recording
traces. We believe that both the adaptation of our architecture
to this application and its evaluation (Section 6.2) provide a
realistic view of the suitability of our approach to similar
services written in C/C++, for example.

The recorded games describe the actions players per-
formed in a game. We developed an automatic player
program to replay these recorded games to generate
requests to the system. For each new game, the game server
chooses an image and a label for the chosen image. Our
automatic player program then searches the recorded games
to locate those for the given image and label, and then
chooses one of the games and replays the client requests.
Due to the complexity of the game server, behavioral
distance is measured on the system calls resulted from the
processing of game events instead of the processing of client
requests. Please see Section 5.2.1 for more discussion.

Our detection accuracy tests for the Peekaboom server
are similar to those for Apache. We obtain the original
source code of Peekaboom to implement two replicas
running the Windows and Linux operating systems,
respectively. We (randomly select and) replay the recorded
games and collect system-call information when the
replicated servers process each game event. We collected

system-call sequences for over 60,000 game events on each
replica, out of which about 10,000 were used for training,
about 11,000 were used for validating, and the remaining
39,000 were used for testing. That is, an HMM is built using
the training and validation sets; the threshold of the system
is set to detect the “best” mimicry attack; and the model is
then evaluated on the testing set. During testing, we
recorded 14 false alarms; the same number of false alarms
is recorded for mimicry attacks on Linux and Windows.

These results were obtained when we use a single HMM
to model the server behaviors in all game events. Our
examination of the system, however, revealed a potentially
more effective approach for the game server, namely one
using a distinct model per game event type. There are
19 different types of game events. One such event type is a
request parsing event that is invoked when the game server
receives a client request. During this event, the game server
preprocesses the request to create a game event object that
describes the request, and then passes it to the correspond-
ing event handler. We expect this request parsing event to
be the only event that occurs on the uncompromised replica
when an attack message is received, since for the types of
attacks we anticipate, the attack invocation should be
treated as malformed by the uncompromised replica. In
this case, the attack system calls must be made during the
processing of the request parsing event on the uncompro-
mised replica; otherwise, behavioral distance will detect an
anomaly since only the request parsing event is observed
on the uncompromised replica. Moreover, neither replica
makes a write() system call during the request parsing
event. As such, the attack we consider (in which the
attacker attempts an open() followed by a write())
would always be detected if performed during the attack
invocation, if the proxy checks that the two replicas
perform the same types of game events and maintains the
set of system calls that are allowed during processing each
event type on each replica. Moreover, if this set for each
event type is complete, this model should yield no false
alarms.

This alternative behavioral distance calculation is
possible because we are able to obtain fine-grained event
type information from the Peekaboom game server on
both replicas. This would be nontrivial if the replicas
were running different code bases. Another limitation of
our analysis is that we have considered only one type of
mimicry attack, albeit one (open(), write()) that is
seemingly the least an attacker must do to modify or
create data on the system being protected.

5 SYSTEM ARCHITECTURE FOR BEHAVIORAL

DISTANCE

In Sections 3 and 4, we present the HMM approach and an
evaluation of the approach on its detection capability and
performance overhead. In this section, we focus on the
systems issues and introduce a novel architecture for
behavioral distance. A system utilizing behavioral distance
consists of at least two replicas and a proxy. The replicas
run servers either on different operating systems or with

104 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

different programs. The proxy is a gateway between the
replicas and clients.

Our architecture hosts the replicas and the proxy on a
single physical machine, using virtualization. Doing so can
minimize the network delays between the replicas and the
proxy, because these delays are limited only by the speed
of memory copies with virtualization. Since there are many
messages exchanged between each replica and the proxy,
the savings can be significant. Other benefits include better
resource management among the proxy and the replicas
(this resource sharing is handled by the scheduler on
the host operating system automatically) and reduction of
hardware and maintenance costs. Although using virtua-
lization could potentially open up another type of attacks,
e.g., attacks against the virtualization platform, here we
only focus on protecting the application servers running on
the virtual machines (e.g., web servers and game servers).

We configure two virtual machines, one for each replica,
and run the proxy directly on the host (running Linux).
Fig. 2 shows the system architecture and the messages
involved in a client request/response. Upon receiving a
request (Msg 1), the proxy forwards it (Msg 2) to both
replicas. A replicated server processes the request and sends
a response (Msg 3’) to the proxy. At the same time, the
server sends a log (Msg 3) containing information about the
request to the logger, which forwards it (Msg 4) to the
controller. The controller processes the log, requests (Msg 5)
and receives (Msg 6) system-call information for the
corresponding request, and forwards the system-call in-
formation (Msg 7) to the proxy. The proxy does output
voting on the server responses and behavioral distance
measurement on the system-call sequences. If either fails,
i.e., if either the responses are different or the behavioral
distance is greater than a predefined threshold, the response
will be blocked and an alarm will be set off; otherwise, the
response (Msg 8) will be sent to the client. The proxy also

maintains a cache that remembers the behavioral distance
calculation results.

5.1 Web Server Implementation

In this section, we detail how we have applied this
architecture to protect Apache web servers. The two
replicas in this system run Apache httpd on Linux
(multiprocess) and Windows (multithreaded), respectively.
A process/thread is assigned to handle each request. Our
system measures the behavioral distance between the
system calls of the process and thread that serve the same
request.

5.1.1 System-Call Hook

To capture system calls on Linux, we modify the kernel
source to record system calls made by a program and save
the system-call numbers in the kernel space. A new system
call9 is used for a user program running as root (the
controller, see Section 5.1.3) to send commands to the kernel
to start/stop system-call interception and to request system-
call information recorded for a process ID. Upon receiving a
request, the kernel sends all system-call numbers recorded
for the process ID to the user program via a UNIX pipe.

On Windows, system call10 hooking is implemented as a
kernel driver, which overwrites the KiSystemService table.
The KiSystemService table contains the addresses of all
system-call-handling functions. System-call information is
extracted by overwriting them with the addresses of new
system-call-handling functions, which simply save the
system-call numbers in the kernel and then invoke the
original handling functions. Unlike Linux, Windows pro-
vides an interface for a user program to send requests to
and receive responses from a kernel driver. Thus, we do not
have to implement a new system call to do this.

5.1.2 Logger

One of the most difficult tasks in implementing such a
system for real-time behavioral distance measurement is to
match a system-call sequence with its corresponding http

request. This is nontrivial because there could be many
requests being processed simultaneously by different
processes (or threads); therefore, simply using the timing
information would not reliably match the system-call
sequences with their corresponding requests. Instead, we
insert a tag into each request when it first enters the system
and trace the tag to match system-call sequences with their
corresponding requests.

The tag, which is just a unique index number, is
inserted into the http header by the proxy. Since a proxy
has to insert its proxy information anyway according to
the http RFC, this does not add much overhead. After
inserting the tag, we let Apache log the value of the tag
and the process ID of the process (or the thread ID of the
thread) that served the request and send this information
to the logger.11 Upon receiving the tag and the process/

GAO ET AL.: BEYOND OUTPUT VOTING: DETECTING COMPROMISED REPLICAS USING HMM-BASED BEHAVIORAL DISTANCE 105

Fig. 2. Architecture of the system.

9. We utilize a system-call number that is reserved and not implemented
yet on the 2.6.15 Linux kernel.

10. System calls on Windows are also called native API calls or system
services.

11. Apache has a built-in feature to do this logging.

thread ID, the logger forwards them to the controller
(explained in Section 5.1.3).

Note that this tag and the ID cannot be trusted, in that a
compromised Apache process could send a forged tag or
ID to the logger. Clearly, sending a tag that the proxy
never inserted or the ID of a non-Apache process/thread
can be detected readily. Similarly, changing the tag or
process/thread ID to that of another existing request will
result in a detection by associating multiple tags or IDs
with one request (and none with another request). So, the
best an attacker can do is to swap the tags or the IDs of two
requests. However, this does not give an attacker any
advantage in maintaining a large behavioral distance to the
system-call sequences emitted by the other replica, since
the attacker can issue any system calls from a compro-
mised replica in the attacks we consider here.

5.1.3 Controller

For each http request, the controller first receives a log
from the logger containing a tag and a process/thread ID,
and then sends a request to the system-call hook to ask for
system-call information for that ID. Upon receiving the
system-call information, it locates the system-call subse-
quence that corresponds to the processing of the request
(explained in the next paragraph) and sends it to the proxy
along with the tag. Fig. 3 shows the content of each message
exchanged among various components for a client request
reqi. Communications among the logger, the controller, and
the proxy are via UNIX pipes or sockets.

Locating the system-call subsequence for each request is
not easy because each process/thread processes one request
after another, and system-call information from the kernel
may cover multiple requests. One way is to use temporal
information, e.g., instructing Apache and the kernel to log
the time when a request is received and the time when each
system call is made. However, Apache logs time at too
coarse a granularity to enable us to accurately match system
calls with requests, and this problem remained even after
we modified the Apache source to log the most precise
timing information supported by the operating system.

So, we take a different approach. We analyze the Apache
source code to identify the last instruction in processing a
request. We then insert a short piece of assembly code (one
line), which does nothing but makes a special system call.12

This special system call tells the controller when the
processing of a request finishes, and helps the controller
break a long system-call sequence into subsequences
precisely at the end of the processing of each http request.

5.1.4 Implementation Issues

Thread ID on Windows. Instead of logging the thread ID,
Apache on Windows logs the integer value of the thread
handle. Although both the thread ID and the thread handle
have a one-to-one correspondence with a thread on Win-
dows, thread handles are only useful within the execution
context of the program, and cannot be used to identify the
thread from outside of the program. So, we modify the
Apache source to log the thread ID instead, which requires
only one line of code changed. We believe that this is, in fact, a
bug in the Apache source. A bug report has been filed and
Apache developers agreed that this is a bug.

Piped log. Apache provides a piped log to transfer the
logs to another program (the logger in our system) instead
of a plaintext log file. This works well on Linux using a
UNIX pipe. However, there are problems on Windows, as
more than one instance of the logger is invoked by Apache.
Although the logger still works as expected, we believe
there is a small performance penalty due to this problem on
the Windows replica.

5.2 Game Server Implementation

The game server we use for our evaluation is the
Peekaboom game server (see Section 4.3.2). Usually there
are more than 1,000 player logins to the Peekaboom game
server per day; on busy days, there could be as many as
20,000 logins. Each player spends roughly 25 minutes per
login on average.

5.2.1 Game Events

The Peekaboom server utilizes a request handling model
different from that of the Apache web server. Instead of
assigning an isolated process or thread to process each
request as in the Apache web server, it uses a single thread to
process nearly all game events for different players. A game
event is an object representing an action from a player (e.g.,
mouse clicking to reveal parts of an image or typing a guess)
or the consequence of such an action (e.g., typing the correct
guess results in a game event that ends the current game).

A player request may generate multiple responses. For
example, a guess from Peek generates three events: a guess
event to be processed by the game server to see if the guess
is correct, two new game events to both players if the guess
is correct, or two guess resolve events to the players if the
guess is incorrect. Some game events are not triggered by
any messages from the players, e.g., a timeout event is
generated by the timer on the game server. Due to these
complexities, the request-response transaction model used
in the Apache system does not work well here. Instead, we
measure behavioral distance between the system-call
sequences for processing game events.

This difference between the definitions of system-call
sequences for which behavioral distance is calculated in the
web server and game server case studies highlights a
potential challenge in applying our technique to other
services. Specifically, in our experience, defining these

106 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 3. Content of each internal message when processing a client

request reqi.

12. On Linux, we use the same system-call number that was used for
sending commands from the controller to the system-call hook (see
Section 5.1.1), with a different parameter. On Windows, we use a new
system call that has not been implemented.

system-call sequences requires some understanding of the
semantics of the service and the protocols used.

5.2.2 Logger and Controller

Since the Peekaboom server itself does not provide the
necessary logging feature as in the Apache web server, we
implement it as a shared library loaded by the game server
using Java Native Interface (JNI). As in the Apache system,
we need to attach a tag to every game event, so that the
proxy is able to find system-call sequences for the same
game event on different replicas. This turns out to be
different from the case of Apache because the Peekaboom
game server uses a single thread to process game events for
all players. Therefore, process/thread IDs cannot help to
differentiate system calls for processing different game
events. However, we can use the player ID in conjunction
with the game event type, which are available in the
original Peekaboom server source code. Therefore, the
proxy does not have to insert additional information to
the messages to and from the players.

The logger also makes a special system call before and
after the processing of every game event to indicate the start
and end of the processing. This is the primary reason why
the logger uses JNI: making system calls is platform
dependent, and is best implemented in languages like C
or C++ instead of Java.

The controller in the Peekaboom system is similar to that
for Apache.

5.2.3 Critical Path of Server Responses

Our implementation for Peekaboom does not place
behavioral distance measurement on the critical path of
server responses. This is because of the complexity of the
game server. In order to have behavioral distance
measurement on the critical path, we need to precisely
define the server responses’ dependencies on game events.
However, in the case of the Peekaboom game server, a
response may be the result of zero or multiple messages
from the players and many game events. It is too complex
to define such dependencies precisely. Therefore, we
choose not to associate the result of individual behavioral
distance measurement with any particular server response,
and to simply set off an alarm and tear down the game
connections when any results of the behavioral distance
measurements exceed the predefined threshold.

5.2.4 Implementation Issues

As required in most replicated systems, we take a number
of steps to eliminate nondeterminism in the server replicas.
Although determinism is a requirement for many replicated
systems (c.f., [49]) and this difficulty is not unique in our
architecture, it is a challenge that needs to be considered in
any application of our architecture.

First, there are random number generators, e.g., to
randomly select an image for the game. In order to make
both replicas generate the same “random” numbers, we
change the source of the game server to use the same
fixed seed.

Second, when both players in a game are sending
messages to the server, the server behavior may depend
on the sequence in which the two messages are received.

This turns out to be a problem because even if the proxy
forwards the message from one player to both replicas first
and then forwards the message from the other player, the
two replicas may still receive the two messages in different
orders (e.g., because the different network delays on the
socket connections13). We found that this problem occurs in
at least two scenarios: one is when the two players request
to start a game at about the same time, and the other is
when the two players are in a bonus game (to see what a
bonus game is, please refer to www.peekaboom.org for
details). To solve this problem, we associate a server
acknowledgment with every message from a player. (Most
of the player messages are already associated with server
acknowledgments in the original program. We just need to
add acknowledgments for messages sent in the above
scenarios.) With the acknowledgments, the proxy ensures
that a message from a player is forwarded to the replicas
only after all acknowledgments for previous messages from
the player’s partner have been received. This results in
some additional delay in server responses.

Third, the behavior of certain Java classes is not
deterministic. For example, the sequence in which objects
are returned by thegetNext()method is not defined for the
Iterator of a HashSet object. The Peekaboom game
server uses a HashSet object for matching players in a game.
It first puts all new players in a pool, which is a HashSet

object, and then matches players in the pool by calling the
getNext() method of the Iterator object of the pool.
Since objects may be returned in different orders, players
could be matched differently on the replicas. We solve
this problem by replacing the HashSet object with a
LinkedHashSet object, which returns objects in the
sequence in which they were added. (Note that the sequence
in which players are added to the pool is deterministic once
the change explained in the previous paragraph is applied.)

Fourth, the game server updates the amount of idle
time a player should wait before giving up. Such update
messages are sent before and after a game starts, and the
amount of idle time depends on the local clock of the
game server, which is not the same for different replicas.
There are a few ways to fix this, including synchronizing
the clocks on replicas. We choose to apply a simple fix,
instead, to remove the update message and let the client
use its default setting (8 seconds) for the timeout. This
simple fix turns out to work well without sacrificing any
important features of the game server.

The above four issues require modifying or adding
13 lines of code in the original Peekaboom server source.
Including the changes we made to attach a tag to every
game event as explained in Section 5.2.2 (32 lines), we have
modified less than 1 percent of the Peekaboom source.

6 PERFORMANCE OVERHEAD OF OUR NEW

ARCHITECTURE

In this section, we evaluate the performance overhead of the
replicated web server and the replicated online game server
we have implemented using recorded traces.

GAO ET AL.: BEYOND OUTPUT VOTING: DETECTING COMPROMISED REPLICAS USING HMM-BASED BEHAVIORAL DISTANCE 107

13. For each active player, there is one socket connection between the
player and the proxy, and one socket connection between the proxy and
each replica.

Since we use virtual machines, only one computer is
required. We use a Dell PowerEdge 2800 with two 3.2-GHz
Intel Xeon CPUs with Hyper-Threading enabled. It has
8 Gbytes of memory and two SCSI hard drives in a RAID
1 configuration. The host computer is running Linux with a
2.6.15 Symmetric Multiprocessing (SMP) kernel. The host is
connected to clients via an isolated LAN. VMware Work-
station 5.5.2 is used to run two virtual machines as the
replicas.

Both VMs are configured with two virtual CPUs, 2 Gbytes
of virtual memory and a 15-Gbyte virtual SCSI hard drive.
One runs Linux with a 2.6.15 SMP kernel, and the other runs
Windows Server 2003 Enterprise Edition with Service Pack 1.
A virtual gigabit switch connects the two virtual machines
and the host.

6.1 Web Server

A typical way of evaluating the performance of a web
server is to measure the throughput when the server is
fully loaded. The recorded traces we use for this evalua-
tion is the same as used in Section 4.3.1, i.e., the traces
consist of more than two million requests for static pages
on www.cylab.cmu.edu.

We first perform a number of tests with varying
numbers of concurrent clients, to measure the throughput
of the Apache web server in the nonreplicated setting.
Results show that once the number of concurrent clients
exceeds 10, further increasing this number will not improve
the overall throughput. When there are virtual machines
running, less than 10 concurrent clients are sufficient to
fully load the system, but we choose to simulate 10 of them
for all other tests.

Next, we perform four tests to evaluate our system in
different configurations. In the first test (T1), the system
measures both output voting and behavioral distance on the
critical path of server responses. This is the configuration
with the best security property, and at the same time gives
the largest overhead on both throughput and latency because
responses are forwarded to the clients after output voting
and behavioral distance measurement finish. In the second
test (T2), we do not perform behavioral distance measure-
ment on the critical path. This should result in slightly better
throughput and latency because responses are forwarded to
the clients right after output voting is performed. Behavioral
distance is not measured in the third test (T3). In the third
test, we have a simple replicated system in which output
voting is performed before responses are sent to the clients.
The last test (T4) we do is to run the Apache web server

directly on the host operating system without any replicated
services.

Fig. 4 shows system throughput (requests/second) in
the four tests. They show roughly a factor-of-2 cost in
throughput (and latency, which is inversely proportional to
the throughput) when providing the best security (T1),
when compared with the results in a nonreplicated system
(T4). Slightly better results are obtained when behavioral
distance is not on the critical path of server responses (T2),
or when the system utilizes output voting only (T3).

To better understand these results, we instrument the
proxy to find what the system does during the lifetime of a
request. The average results are shown in Fig. 5, where L
and W denote the Linux and Windows replicas, respec-
tively. We first compare the results of T1 and T2. Although
in T2 responses are sent to the client earlier, messages from
the replicas (including the http responses and the system-
call information) have a longer delay in T2 than in T1.
Ironically, this is because behavioral distance measurement
is not on the critical path of server responses in T2, and the
system continues to process new requests while measuring
behavioral distances for previous requests. Given the same
number of concurrent clients, at any time the servers in T2
will have less computation power allocated for each
request. So, messages from the replicas appear to have
longer delays.

Another interesting finding is that the replica running
Linux spends longer time sending a response than the
replica running Windows. Upon further investigation, it
appears that the Linux web server tends to use smaller
packet size and have more context switches among processes
that are competing for the system resources. On Windows,
server threads tend to finish sending all of their packets
before giving up the system resources to other threads. Fig. 5
also confirms an earlier prediction (see Section 4) that
caching behavioral distance results on the proxy is very
effective, as we can see that behavioral distance calculation
takes very little time on average in both T1 and T2.

6.2 Game Server

We perform a trace-driven evaluation, which we achieved
by playing real recorded games on the Peekaboom server
(see Section 4.3.2). In evaluating the performance overhead
of the Peekaboom game server, we focus on the latency that
players experience, as measured by the automatic player

108 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 4. Throughput of the web server.

Fig. 5. Average latency measured by proxy.

program. Similar to what we did for Apache, we perform
evaluations in three different system configurations. In the
first configuration (E1), both behavioral distance measure-
ment and output voting are performed to protect the online
game servers. Note, however, that behavioral distance
measurement is not on the critical path of server responses
(see Section 5.2.3). In E2, only output voting is used. In E3,
we only run the original Peekaboom game server on the
host operating system without any virtual machines.

The latency measured by the automatic player program
is the difference between when a message is sent and its
acknowledgment is received. Each test includes at least
10 games, each of length 210 seconds, and uses a different
number of players. The latency averages and standard
deviations are shown in Fig. 6.

Results show that our system adds 3.5 to 8 ms to the
latency when there are at most 128 concurrent players, which
is hardly noticeable by humans. (The actual Peekaboom
server usually has less than 80 concurrent players.) When the
server is very busy, e.g., when there are 1,024 concurrent
players, the players experience an extra 86-ms latency, which
is still hardly noticeable. Also note that the results presented
in Fig. 6 are latencies measured by a player program running
on the same local area network of the server. A player over the
Internet would also experience the round trip time to the
server; if this is 100 ms or more, the extra latency our system
adds to the user experience is about 8 percent when there are
128 users playing at the same time.

Fig. 7 shows the CPU load of the replicas and the proxy
for the three tests, as reported by top on the host operating
system. The CPU is not fully loaded in E1 and E2 until there
are roughly 1,000 concurrent players, a number far larger
than is typical for Peekaboom. Nevertheless, increased
latencies in E1 and E2 result from the longer paths that
requests travel in our replicated system.

7 CONCLUSION AND LIMITATIONS

In this paper, we have introduced a novel approach for
measuring behavioral distance using a new type of HMM.
We show that this new approach based on HMM detects
intrusions with substantially greater accuracy than previous
approaches. We also demonstrate the design and imple-
mentation of a novel architecture employing behavioral
distance using a web server and a game server. With the first
trace-driven evaluation of behavioral distance, we show that
the proposed architecture using behavioral distance is
practical for real servers and able to detect compromised
servers with high accuracy and moderate overhead.

REFERENCES

[1] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A
Sense of Self for Unix Processes,” Proc. IEEE Symp. Security and
Privacy (S&P), 1996.

[2] A. Wespi, M. Dacier, and H. Debar, “Intrusion Detection Using
Variable-Length Audit Trail Patterns,” Proc. Third Int’l Symp.
Recent Advances in Intrusion Detection (RAID), 2000.

[3] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,”
Proc. IEEE Symp. Security and Privacy (S&P), 2001.

[4] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast
Automaton-Based Method for Detecting Anomalous Program
Behaviors,” Proc. IEEE Symp. Security and Privacy (S&P), 2001.

[5] J. Giffin, S. Jha, and B. Miller, “Detecting Manipulated Remote
Call Streams,” Proc. 11th USENIX Security Symp., 2002.

[6] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly
Detection Using Call Stack Information,” Proc. IEEE Symp. Security
and Privacy (S&P), 2003.

[7] D. Gao, M.K. Reiter, and D. Song, “On Gray-Box Program
Tracking for Anomaly Detection,” Proc. 13th USENIX Security
Symp., 2004.

[8] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B.P. Miller,
“Formalizing Sensitivity in Static Analysis for Intrusion Detec-
tion,” Proc. IEEE Symp. Security and Privacy (S&P), 2004.

[9] J. Giffin, S. Jha, and B. Miller, “Efficient Context-Sensitive
Intrusion Detection,” Proc. Symp. Network and Distributed System
Security (NDSS), 2004.

[10] D. Gao, M.K. Reiter, and D. Song, “Gray-Box Extraction of
Execution Graph for Anomaly Detection,” Proc. 11th ACM Conf.
Computer and Comm. Security (CCS), 2004.

[11] K. Tan, J. McHugh, and K. Killourhy, “Hiding Intrusions: From
the Abnormal to the Normal and Beyond,” Proc. Fifth Int’l
Workshop Information Hiding, Oct. 2002.

[12] D. Wagner and P. Soto, “Mimicry Attacks on Host-Based
Intrusion Detection Systems,” Proc. Ninth ACM Conf. Computer
and Comm. Security (CCS), 2002.

[13] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,
“Automating Mimicry Attacks Using Static Binary Analysis,”
Proc. 14th USENIX Security Symp., Aug. 2005.

[14] J. Giffin, S. Jha, and B. Miller, “Automated Discovery of Mimicry
Attacks,” Proc. Ninth Int’l Symp. Recent Advances in Intrusion
Detection (RAID), 2006.

[15] K. Shin and P. Ramanathan, “Diagnosis of Processors with
Byzantine Faults in a Distributed Computing System,” Proc. 17th
Int’l Symp. Fault-Tolerant Computing (FTC), 1987.

[16] R.W. Buskens and R.P. Bianchini Jr., “Distributed On-Line
Diagnosis in the Presence of Arbitrary Faults,” Proc. 23rd Int’l
Symp. Fault-Tolerant Computing (FTC ’93), June 1993.

[17] L. Alvisi, D. Malkhi, E. Pierce, and M.K. Reiter, “Fault Detection
for Byzantine Quorum Systems,” IEEE Trans. Parallel Distributed
Systems, vol. 12, no. 9, Sept. 2001.

[18] L. Lamport, “The Implementation of Reliable Distributed Multi-
process Systems,” Computer Networks, vol. 2, 1978.

[19] F.B. Schneider, “Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial,” ACM Computing Surveys,
vol. 22, no. 4, Dec. 1990.

[20] M.K. Reiter, “Secure Agreement Protocols: Reliable and Atomic
Group Multicast in Rampart,” Proc. Second ACM Conf. Computer
and Comm. Security (CCS ’94), Nov. 1994.

GAO ET AL.: BEYOND OUTPUT VOTING: DETECTING COMPROMISED REPLICAS USING HMM-BASED BEHAVIORAL DISTANCE 109

Fig. 6. Average latency measured by clients on the same LAN.
Fig. 7. Average CPU load of the replicas and the proxy. (a) E1.
(b) E2. (c) E3.

[21] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and
Proactive Recovery,” ACM Trans. Computer Systems, vol. 20, no. 4,
Nov. 2002.

[22] C. Cachin and J.A. Poritz, “Secure Intrusion-Tolerant Replication
on the Internet,” Proc. Int’l Conf. Dependable Systems and Networks
(DSN), 2002.

[23] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating Agreement from Execution for Byzantine Fault
Tolerant Services,” Proc. 19th ACM Symp. Operating System
Principles (SOSP ’03), Oct. 2003.

[24] M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reiter,
and J.J. Wylie, “Fault-Scalable Byzantine Fault-Tolerant Ser-
vices,” Proc. 20th ACM Symp. Operating System Principles
(SOSP ’05), Oct. 2005.

[25] D. Gao, M.K. Reiter, and D. Song, “Behavioral Distance for
Intrusion Detection,” Proc. Eighth Int’l Symp. Recent Advances in
Intrusion Detection (RAID), 2005.

[26] D. Gao, M.K. Reiter, and D. Song, “Behavioral Distance Measure-
ment Using Hidden Markov Models,” Proc. Ninth Int’l Symp.
Recent Advances in Intrusion Detection (RAID), 2006.

[27] P.H. Sellers, “On the Theory and Computation of Evolutionary
Distances,” SIAM J. Applied Math., vol. 26, 1974.

[28] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intru-
sions Using System Calls: Alternative Data Models,” Proc. IEEE
Symp. Security and Privacy (S&P), 1999.

[29] S. Cho and S. Han, “Two Sophisticated Techniques to Improve
HMM-Based Intrusion Detection Systems,” Proc. Sixth Int’l Symp.
Recent Advances in Intrusion Detection (RAID), 2003.

[30] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-Variant Systems—A
Secretless Framework for Security through Diversity,” Proc. 15th
USENIX Security Symp., Aug. 2006.

[31] L. Cavallaro, “Comprehensive Memory Error Protection via
Diversity and Taint-Tracking,” PhD dissertation, Universita’ Degli
Studi Di Milano, 2007.

[32] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, Feb. 1989.

[33] X.D. Hoang, J. Hu, and P. Bertok, “A Multi-Layer Model for
Anomaly Intrusion Detection Using Program Sequences of System
Calls,” Proc. 11th IEEE Int’l Conf. Networks (ICON), 2003.

[34] I.M. Meyer and R. Durbin, Comparative ab initio Prediction of Gene
Structures Using Pair HMMs. Oxford Univ. Press, 2002.

[35] L. Pachter, M. Alexandersson, and S. Cawley, “Applications of
Generalized Pair Hidden Markov Models to Alignment and Gene
Finding Problems,” Computational Biology, vol. 9, no. 2, 2002.

[36] J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt, R. Maglich,
and J. Rowe, “Learning Unknown Attacks—A Start,” Proc. Fifth
Int’l Symp. Recent Advances in Intrusion Detection (RAID), 2002.

[37] J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich, “The
Design and Implementation of an Intrusion Tolerant System,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN), 2002.

[38] E. Totel, F. Majorczyk, and L. Me, “COTS Diversity Based
Intrusion Detection and Application to Web Servers,” Proc. Eighth
Int’l Symp. Recent Advances in Intrusion Detection (RAID), 2005.

[39] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of
Anomalous System Call Arguments,” Proc. Eighth European Symp.
Research in Computer Security (ESORICS), 2003.

[40] Sufatrio and R.H.C. Yap, “Improving Host-Based IDS with
Argument Abstraction to Prevent Mimicry Attacks,” Proc. Eighth
Int’l Symp. Recent Advances in Intrusion Detection (RAID), 2005.

[41] G. Tandon and P. Chan, “Learning Rules from System Calls
Arguments and Sequences for Anomaly Detection,” Proc. ICDM
Workshop Data Mining for Computer Security (DMSEC), 2003.

[42] G. Tandon and P. Chan, “Learning Useful System Call Attributes
for Anomaly Detection,” Proc. 18th Int’l Florida Artificial Intelligence
Research Symp. (FLAIRS), 2005.

[43] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow Anomaly
Detection,” Proc. IEEE Symp. Security and Privacy (S&P), 2006.

[44] C. Parampalli, R. Sekar, and R. Johnson, “A Practical Mimicry
Attack against Powerful System-Call Monitors,” Proc. ACM Symp.
Information, Computer and Comm. Security (ASIACCS ’08), Mar. 2008.

[45] S. Chen, J. Xu, E.C. Sezer, P. Gauriar, and R.K. Iyer, “Non-Control-
Data Attacks are Realistic Threats,” Proc. 14th USENIX Security
Symp., Aug. 2005.

[46] L.E. Baum and T. Petrie, “Statistical Inference for Probabilistic
Functions of Finite State Markov Chains,” Ann. Math. Statistics,
vol. 37, 1966.

[47] R.I.A. Davis, B.C. Lovell, and T. Caelli, “Improved Estimation of
Hidden Markov Model Parameters from Multiple Observation
Sequences,” Proc. 16th Int’l Conf. Pattern Recognition (ICPR), 2002.

[48] L. von Ahn, R. Liu, and M. Blum, “Peekaboom: A Game for
Locating Objects in Images,” Proc. Conf. Human Factors in
Computing Systems (CHI), 2006.

[49] P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith, “Enforcing
Determinism for the Consistent Replication of Multithreaded
CORBA Applications,” Proc. 18th IEEE Symp. Reliable Distributed
Systems (SRDS ’99), pp. 263-273, Oct. 1999.

Debin Gao received the MS and PhD degrees in
computer engineering from Carnegie Mellon
University in 2004 and 2006, respectively. He is
currently an assistant professor in the School of
Information Systems, Singapore Management
University. He was previously a systems soft-
ware engineer in CyLab, Carnegie Mellon Uni-
versity. His research interests include computer
and network security. He received the Ann and
Martin McGuinn Graduate Fellowship for the year

2005, and the Frank J. Marshall Graduate Fellowship for the year 2004.

Michael K. Reiter received the BS degree in
mathematical sciences from the University
of North Carolina, Chapel Hill (UNC-CH), in
1989 and the MS and PhD degrees in computer
science from Cornell University in 1991 and
1993, respectively. He is currently the Lawrence
M. Slifkin distinguished professor in the Depart-
ment of Computer Science, UNC-CH. He has
held technical leadership positions in both the
industry and academe. From 1998 to 2001, he

was the director of Secure Systems Research, Bell Laboratories. From
2001 to 2007, he was a professor and the technical director of CyLab,
Carnegie Mellon University. His research interests include computer and
communications security and distributed computing. He is a senior
member of the IEEE Computer Society.

Dawn Song received the PhD degree in com-
puter science from the University of California,
Berkeley (UC Berkeley) in 2002. She is an
assistant professor in the Computer Science
Division, UC Berkeley. Her research interests
include security and privacy issues in computer
systems and networks. She is the author of more
than 60 research papers in areas ranging from
software security, networking security, database
security, distributed systems security, to applied

cryptography. She is the recipient of various awards and grants including
the US NSF CAREER Award, the IBM Faculty Award, the George
Tallman Ladd Research Award, the Sloan Award, and the Best Paper
Award in USENIX Security Symposium.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

110 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2009

