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Abstract—In wide-area settings, unpredictable events, such
as flash crowds caused by nearly instantaneous popularity of
services, can cause servers that are expected to respond quickly
to instead suddenly respond slowly. This presents a problem
for achieving consistently good performance in quorum-based
distributed systems, in which clients must choose which quo-
rums (sets of servers) to access. Typically, clients are motivated
to choose quorums containing the servers that respond fastest.
Often, these may be the closest servers, but when the closest
servers are particularly slow to respond, e.g., because of
a changed workload, servers that are farther may actually
respond faster. In this paper, we show how clients can locally
change their quorum selections efficiently such that the overall
system performance rapidly converges to that of the best global
strategy for the current conditions. Moreover, we discuss how
to benefit even when changes in quorums must be accompanied
by expensive state-transfer operations.

Keywords-Quorum system; wide-area network; access strat-
egy; dynamic workload

I. INTRODUCTION

A quorum system is a collection of sets (quorums) of
servers, such that any two quorums have non-empty inter-
section. Quorum systems are a standard tool for improving
the efficiency and fault tolerance of a distributed system.
In a typical quorum-based application, a read or update
operation is performed by contacting all of the servers
of some quorum (possibly in more than one round of
interaction). The intersection property enables a read or
update operation to observe the effects of prior update
operations. Moreover, the fact that not all servers need to be
contacted for each operation can increase efficiency if the
processing load is dispersed across servers through the use
of different quorums. These properties of quorum systems
make them the tool of choice for a number of practical
protocol implementations (e.g., [1], [2], [3]).

In many respects, quorum systems are well-suited to wide-
area networks in which network delays to reach servers can
be varied and significant. In contrast to replication schemes
that require every server to be contacted, quorum systems
can work without the participation of the most distant
servers. However, achieving good performance on a wide-
area network requires consideration of the workload imposed
on the servers. As a result, as illustrated qualitatively by
Figure 1, static quorum selection solutions are not well-
suited to changing workloads. Intuitively, a client should
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Figure 1. Dynamic quorum selection compared with static selection.

use a closest strategy, i.e., select a nearby quorum for its
operation, if those servers are lightly loaded (so as to mini-
mize network delays), as has been previously validated [4].
However, if nearby quorums are too busy, which can happen,
for example, as a result of changes in the distribution of
traffic, clients may be better served by using a balanced
strategy making use of less loaded quorums that are farther
away [4].

Wide-area networks are often subject to unpredictable
or changing workloads due, e.g., to flash-crowd events or
diurnal patterns of activity [5], [6], [7]. Yet, to our knowl-
edge, the problem of designing load-dispersing algorithms
for quorum systems that can react to these changes has not
been considered before (see Section II for a discussion of
related work). To address this, we propose two algorithms
in Section IV by which clients can locally change their
quorum selections efficiently such that the overall system
performance rapidly converges to that of the best global
strategy for the current conditions. Each client uses only
information it gleans from previous operation invocations
to the service without communicating with other clients.
Moreover, these algorithms impose negligible overhead on
servers.

Our algorithms in Section IV are general in the sense that
they make no assumptions about the specifics of the quorum
system protocol being employed. However, a particularly
important use of quorums is in the maintenance of replicated
state (e.g., [8], [9], [1], [2], [10]). In such systems, a switch
to a new quorum may result in the need to transfer state
to the new quorum from the old. This can be an expensive
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operation on a wide area network. Thus, in Section V, we
propose and evaluate an alternative way to balance the load
across the servers when state transfer is a concern.

II. RELATED WORK

In the past, researchers have made considerable efforts
to improve the performance of quorum-based protocols in
wide-area networks (WANs), both via foundational studies
(e.g., [11], [12], [13], [14], [15], [16]) and with practical
protocols (e.g., [17], [18], [4]). Yet, to our knowledge, only
our own prior work [4] considers the problem of optimizing
the performance of quorum systems on WANs through the
choice of quorums. In [4], our approaches minimize average
response times under fixed workloads (i.e., assuming no
flash crowds or diurnal effects). The approaches are based
on linear programs that make use of statistics from the entire
network that are assumed not to change. Thus, the algorithms
in [4] can neither react to changing workloads nor be run
by a client in isolation with a limited view of the system.
In contrast, in the current paper, we present low-overhead
algorithms that are suitable for allowing clients to change
their quorum selections efficiently based on limited knowl-
edge. These algorithms can react to changing workloads
while producing solutions that lead to very good system
performance. Moreover, unlike [4], this paper considers the
costs of state transfer.

Although dynamic quorum selection on WANs has not
been studied before, choosing a single server to optimize
client response time on WANs is a well-studied problem.
The solutions proposed range from selecting servers based
only on distance from clients [19], [20], [21] or only on
load at servers [22], to using both network delay and load
at servers when choosing the best server [23]. From this
perspective, our work is more closely related to the latter
since both network delay and server load contribute to the
response time estimates that we use in deciding how to
access quorums.

Balancing load for quorum systems in general (i.e., with-
out accounting for network delays) is also a fairly well-
studied problem. Naor and Wool [24] define a formal notion
of load and developed load-optimal quorum constructions
and access strategies (probability distributions on quorums
from which clients sample quorums to perform accesses; see
Section III) to achieve optimal load for these constructions.
Malkhi et al. [25], [26] extend this treatment to quorum
systems with stronger intersection requirements that enable
quorums to be used in systems that may suffer Byzantine
server failures; the Q/U access protocol [1], which we use
in Section V, is designed for this fault model. Holzman et
al. [27] examine quorum systems from the perspective of
the load balancing ratio: the ratio between the most and
the least loaded server of a quorum system. They describe
methods for determining the access strategies for which a
quorum system achieves optimal balancing.

Some prior work [13], [12], [18], [28] studies other
ways to optimize performance of quorum-based systems
on WANs. Gao et al. [17] combine volume leases and
quorum systems into a protocol for replicated edge-services
that performs well for workloads exhibiting certain locality
properties. Amir et al. [18] construct an efficient Byzantine-
fault-tolerant replicated service for WANs using the state-
machine-replication protocol Paxos [29]. Mao et al. [30]
derive a new version of Paxos that partitions sequence num-
bers amongst multiple leaders to achieve higher throughput
under load and lower latencies for clients. However, none
of these shows when and how to choose quorums to adapt
to dynamic workloads on WANs.

III. PRELIMINARIES

A quorum system Q = {Q1, . . . , Qm} over a universe U
of servers is a collection of subsets of U such that any two
have non-empty intersection. In applications that use quorum
systems, a client needs to contact a quorum of servers for
each request. To choose the quorum to access, the client c
samples a quorum according to a distribution pc on quorums,
i.e.,

∑
Qi∈Q pc(Qi) = 1 for each client c. pc is also known

as the access strategy for client c.
Our algorithms are designed for applications that employ

quorum systems over a wide-area network. In this envi-
ronment, communication between different nodes incurs an
inherent cost—the network latency between the nodes. The
algorithms we propose rely on each client estimating the
network latency to reach each server at coarse time intervals.
This can be easily achieved by means of round-trip-time
measurements or using other existing mechanisms [31], [32].
We denote the network delay from a client c to a server
s by d(c, s), and we denote by d(c, Q) = maxs∈Q d(c, s)
the delay for c to access quorum Q ∈ Q. Note that since
d(c, Q) = maxs∈Q d(c, s), we presume that c accesses the
servers in Q concurrently, not sequentially.

Two access strategies are known to perform well for
certain workloads on wide area networks [4]. One, denoted
ClosestDly, is to access the closest quorum in terms of
static network latency. In other words, for each client c,
ClosestDlyc assigns equal probability to each quorum that
is closest to c, and ClosestDlyc(Q) = 0 for all other
quorums Q. ClosestDly works well when the workload
is sufficiently light that the processing load imposed on
servers contributes a negligible amount to the response times
observed by clients. The second strategy, denoted Balanced,
causes each client to access quorums uniformly at random,
thereby balancing load on servers, assuming that each server
is in the same number of quorums (which holds for all
quorum systems considered here). That is, for each client
c, Balancedc assigns the same probability to each Q ∈ Q.
This access strategy makes sense when the workload is
sufficiently heavy that response times are overwhelmingly
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dominated by processing delays, which are best spread
uniformly across servers. (For an exception, see Section V.)

To our algorithms, a failed server is one that exhibits very
high response time; whether this is due to failure or simply
very high load is irrelevant to our algorithms. As such, we
do not treat failures separately in our evaluations.

IV. DYNAMIC QUORUM SELECTION ALGORITHMS

A dynamic quorum selection algorithm updates quorum
selections based on changes in response times. We allow that
clients may have limited views of these changes and will
not always have the most up-to-date information about all
servers. Therefore, our algorithms require clients to maintain
estimates of response times based on their recent history
of requests. We begin our discussion with the presentation
of a naive algorithm, ClosestRT, for dynamically updating
the strategy for quorum selection. Then, in the following
subsections, we present more sophisticated algorithms—
ShiftWt (and its variants) and DelayBins—that perform
better than ClosestRT. However, since our evaluation is
largely empirical, we first present its setup.

A. Evaluation setup

Throughout this section, we evaluate our algorithms using
two generic quorum-based operation-invocation protocols:
one that uses a k × k Grid quorum system [33], [34], and
one that uses a (4b + 1, 5b + 1) Majority [35], [36] quorum
system. In a k × k Grid, the system contains k2 servers,
which are logically organized into a grid with k rows and k
columns. A quorum is comprised of the servers in the union
of any row and any column, and so the number of quorums is
also m = k2. The (4b+1, 5b+1) Majority consists of all the
subsets of size 4b+1 of a set of 5b+1 of servers. This type of
quorum system has been in used in practical Byzantine-fault-
tolerant state-machine-replication protocols such as Q/U [1].
The b parameter represents the number of Byzantine server
failures tolerated. While the Grid quorum system highlights
the differences between the strategies because of its small
quorum sizes relative to the total number of servers, we
also include results for the Majority quorum system where
instructive. Additional similar results can be found in [37],
but are omitted here for brevity.

We evaluate our algorithms with respect to several mea-
sures. Convergence time measures how fast our algorithms
converge to the optimal access strategy for a certain work-
load after a change in the workload. To measure convergence
time, we initialize clients with access strategies of Balanced
in a regime of low load and measure the time it takes for
clients to transform their access strategies into ClosestDly.
We say that the algorithm has converged to ClosestDly when
the L2 distance between avg{ClosestDlyc}c and the average
avg{pc}c of the per-client access strategies determined by
the algorithm is less than 0.01. We perform the converse
experiment as well: we initialize our algorithm to ClosestDly

in a regime of high load and measure the time it takes
for clients to change their access strategies to Balanced.
Response time is computed by averaging the response times
observed by all clients, where the response time of a single
client is the average of all requests made in a run. Through-
put is obtained by summing the request throughput of all
clients. Finally, we also measure the overhead associated
with each algorithm, where overhead is the average time
per request spent in the quorum selection function.

Our evaluation in this section employs a generic wide-area
topology that is derived from PlanetLab [38] measurements
and emulated using Modelnet [39]. We deploy Modelnet on
a rack of 76 Intel Pentium 4 2.80 GHz computers, each
with 1 GB of memory and an Intel PRO/1000 NIC. We use
one machine as the WAN emulator and the remaining 75
as normal hosts (servers or clients). The topology consists
of 50 nodes and the latencies between them as measured
between distinct sites on PlanetLab (see http://ping.ececs.
uc.edu/ping/). This matches our focus on WANs since 93%
of all pairs of nodes in the dataset have a latency of at least
20 milliseconds (ms) between them. The average round-
trip time between pairs of nodes is about 107 ms with a
standard deviation of 73 ms, while the maximum distance
between any two nodes is 386 ms. Other than latency, we
set no constraints on the links of our emulated topology (no
bandwidth constraints, for instance). Repeated experiments
on a different topology of 50 other PlanetLab sites provide
qualitatively similar results [37], and so we omit them here
for brevity.

In any given experiment, we place servers onto nodes
of this topology in a one-to-one fashion (i.e., any node
hosts at most one server) using algorithms presented by
Gupta et al. [13]. These placement algorithms minimize the
average, over all nodes, of each node c’s expected network
delay when accessing quorums using Balancedc. To generate
load we choose 10 nodes uniformly at random, and start
clientsPerNode clients on each node, with clientsPerNode
ranging from 1 to a maximum number sufficient to saturate
the system (i.e., to achieve maximum throughput). Each
client issues requests sequentially, i.e., issuing a new request
immediately when its previous request completes. All re-
quests complete in a single round trip. We set the application
processing time per request to 1 ms.

B. ClosestRT: A naive algorithm

Given response time estimates for all servers, the most
naive algorithm for selecting a quorum for a request is to
choose the quorum with the lowest observed response time.
We call this algorithm ClosestRT. In our implementation,
each client keeps the response times it has observed for
each server s in the last history duration seconds, along
with timestamps indicating when these observations were
made. Assuming these (response time, timestamp) pairs are
(rtc

i (s), ts
c
i (s)), for i = 1 . . . t, the client computes the
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current estimate rtc(s) at the current time ts, as rtc(s) =∑t
i=1 w(tsc

i (s), ts)rt
c
i (s), i.e., as a non-uniform average

of the response times seen in the past from this server.
The values w(tsc

i (s), ts) are non-negative reals and satisfy∑t
i=1 w(tsc

i (s), ts) = 1. They are chosen such that response
times of more recent requests have more influence on rtc(s)
(i.e., we favor more recent requests when computing the es-
timate). If c has not accessed s in the last history duration
seconds, it sets rtc(s) equal to its static round-trip network
latency to s, which is an (optimistic) estimate of its response
time.

The accuracy of this estimation method depends on the
history duration parameter. For example, setting it too
close to 0 shrinks the number of servers for which client c
has some indication of load to only the quorum used in the
last access. To avoid this problem, we use a sufficiently large
value for history duration (history duration = 1 second
performs well in our experiments).

We evaluate ClosestRT against ClosestDly and Balanced
on a 5×5 Grid quorum system ranging the number of clients
on each host from 1 to 15. Figure 3(a) shows that ClosestRT
performs only 10 ms to 15 ms worse than ClosestDly in
case of low load, but up to 40 ms worse than Balanced in
case of high load. The most likely cause for this decay in
performance as load increases is the so-called “herd effect”:
clients with similar response-time estimates synchronize and
switch to the same quorum, i.e., the quorum having the
smallest response time. In doing so they lose the load
balancing benefits of Balanced. One can fix the herd effect
problem by shifting only a fraction of the load (say, half) to
a different quorum when changing a client’s access strategy.
We discuss this option next.

C. ShiftWt: A weight shifting algorithm

Our next algorithm, ShiftWt, uses the following simple
strategy for updating a client’s access strategy: each client
c starts with an arbitrary access strategy pc and periodically
shifts half of the weight from the quorum Qj with the
highest response time (i.e., half of pc(Qj)) to the quorum
with the lowest response time. Note that a client c cannot
shift any weight from a quorum Qj with pc(Qj) = 0.
Also note that there can be more than one quorum with the
highest response time; in fact, all quorums containing the
server or servers with the highest response time also have
the highest response time. To balance load faster, we select
the quorum from which we shift weight as follows: sort
the servers in decreasing order by response time to obtain
rtc(U) = 〈rtc(s)〉s∈U and let rtc(Q) be the projection of
rtc(U) onto Q (see Figure 2 for exact definition). Sort all
nonzero weight quorums in decreasing lexicographical order
by rtc(Q) and pick the first as the quorum from which to
shift weight.

Figure 2 presents a pseudocode description of ShiftWt.
In it, we set the initial access strategy to Balanced in the

initialization phase, since Balanced is optimal for high load.
One can start from other access strategies and obtain good
performance, but as we will see, the convergence time to
an optimal access strategy for a certain load depends on the
access strategy used initially.

INITIALIZATION:
for i = 1 to m

pc(Qi) = 1/m;
BEFORE EACH REQUEST:

for each s ∈ U , estimate rtc(s);
sort servers in decreasing order by response time

into rtc(U) = 〈rtc(s)〉s∈U

for each quorum Q define rtc(Q) as:
rtc(Q)[s] = rtc(U)[s] for s ∈ Q
rtc(Q)[s] = 0 for s ∈ U \ Q

sort quorums lexicographically by rtc(Q) in decreasing order and
let Qj be the highest non-zero weight quorum
let Qi be the lowest weight quorum

update the client’s access strategy as follows:
pc

new(Qj) = pc(Qj)/2;
pc

new(Qi) = pc(Qi) + pc(Qj)/2;
pc

new(Qk) = pc(Qk), for k �= i, j;
pc = pc

new;

Figure 2. ShiftWt algorithm at client c

In Figure 3, we compare ShiftWt to ClosestDly,
ClosestRT and Balanced for the Grid quorum system.
ShiftWt always performs better than ClosestRT, and as well
as ClosestDly and Balanced in load regimes when these are
best (low-load and high-load respectively). In fact, when
ClosestDly and Balanced perform comparably well (between
60 and 90 clients in total) ShiftWt is better than both.
This holds true for both response time and throughput. Note
though that throughput here is limited by the 1 ms processing
time per request at each server.
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Figure 3. Comparison between strategies

Unfortunately, the convergence time of ShiftWt is less
attractive in our experiments. ShiftWt takes 48 seconds
to converge to ClosestDly in a setting with 10 clients
(clientsPerNode = 1), and in a setting with 150 clients
(clientsPerNode = 15) it never converges to Balanced, but
rather converges (in 5 seconds) to an access strategy at
distance 0.15 from Balanced. While this second convergence
time is much better, the first convergence time is clearly too
high, motivating us to seek ways to improve it.

A way to make ShiftWt converge faster is to shift more
load every time the access strategy for a client is changed.
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Instead of shifting more weight from a single quorum, we
choose to shift load from more quorums at once. Clearly
the quorums with negative impact on performance are the
quorums with the highest response time. Thus we choose to
shift load from all the quorums Qi with positive weight (i.e.,
pc(Qi) > 0) containing the server with the highest response
time. If no such quorums exist, we look at the quorums
containing the server with the second-highest response time.

The question is where to place the load collected from
the quorums with high response time. Putting it on a single
quorum might unbalance the system and lead again to
suboptimal performance. Ideally, we would add weight to
the quorums with the smallest response times so that after
absorbing this extra load, their response times would be
roughly the same. To achieve this, we use the following
simple algorithm. Let Q1, . . . , Qm denote the quorums in
increasing order of their response times (i.e., in increas-
ing order of maxs∈Qi{rtc(s)}), and suppose we have to
place total weight w on the l lowest-response-time quo-
rums (i.e., on Q1, . . . , Ql). We split the weight w into l
weights wi, for i = 1, . . . , l, where wi is proportional to
maxs∈Ql+1{rtc(s)}−maxs∈Qi{rtc(s)}. Obviously this ap-
proach puts more weight on quorums with smaller response
times, which is what we wanted. We choose l, the number
of quorums to which we shift weight, equal to the number
of quorums from which we took weight in the first place.
We call the resulting algorithm ShiftWtOpt.

We compare the convergence time of ShiftWtOpt to that
of ShiftWt. Figure 4(a) shows convergence to ClosestDly in
a low-load regime while Figure 4(b) shows convergence to
Balanced in a high-load regime. (Access strategies are fixed
in the initial 10 seconds of each run, allowing for all clients
to join the experiment.) Results show a convergence time to
ClosestDly of about 8 seconds for ShiftWtOpt, a six-fold
improvement compared to ShiftWt, and a convergence time
to Balanced of about 2 seconds for ShiftWtOpt, a two-fold
improvement compared to ShiftWt. Also, ShiftWtOpt gets
closer to Balanced than does ShiftWt.
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The improvements of ShiftWtOpt over ShiftWt come at
the cost of increased client overhead, however. Table I shows
the client-side overhead in microseconds (μs) of ShiftWtOpt
for different universe sizes. As Table I shows, the overhead

increases with the number of quorums. While this value is
perhaps inflated due to the fact that our implementation is
not optimized, we unfortunately expect that no implementa-
tion of ShiftWtOpt can eliminate this increasing overhead
as the system scales, since it has to at least examine all of
the quorums containing the server with the highest response
time.

k k × k Grid
ShiftWtOpt DelayBins

2 8.31 μs 1.64 μs
3 14.52 μs 1.69 μs
4 23.92 μs 1.82 μs
5 38.03 μs 1.92 μs

Table I
CLIENT OVERHEAD PER REQUEST

The results in Table I suggest that, for quorum systems
with a small number of quorums, the client overhead is very
good, especially considering the fact that any request that
travels over the WAN takes at least several milliseconds,
i.e., orders of magnitude longer than the overhead. However,
in experiments with Majority quorum systems we have
found dramatically larger overheads [37]. Further, we have
experimented with several variations of ShiftWtOpt [37],
but none perform much better than the one described here.
In general ShiftWt variants face the following trade-off:
better efficiency through simplicity (e.g., shifting weight
between only two quorums), but increased convergence time;
versus better convergence time through more aggressive
quorum analysis (either when choosing the quorums or when
choosing the number of pairs of quorums between which
load is shifted), but additional overhead. These results pro-
vide sufficient motivation to seek a better quorum-selection
algorithm as described next.

D. DelayBins: Faster convergence.

In our final algorithm in this section, DelayBins, each
client c partitions the quorums into groups based on the net-
work delay to reach them. Denote the groups by Gc

1, . . . , G
c
t

and by dc
1 ≤ . . . ≤ dc

t the corresponding delays. Thus,
Gc

j = {Qi | d(c, Qi) = dc
j}. Let Hc

j = {Qi | d(c, Qi) ≤ dc
j}

be the collection of quorums at distance at most dc
j from

the client. Obviously, Hc
j = Gc

1 ∪ . . . ∪ Gc
j . At any point in

time the client chooses a quorum by sampling uniformly
at random from some group Hc

curr quorum group where
1 ≤ curr quorum group ≤ t.

The client keeps an average avg rt of the response times
for its last history count requests. To choose the quorum
group used for sampling, the client compares avg rt with
the maximum response time it would expect to see from
any quorum in Hc

curr quorum group if load were low. For
instance, if a client currently uses group Hc

j , the response
time it sees in case of low load should never be higher than
dc

j + server compute time (here server compute time
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denotes the application processing cost per request). When
this happens, it indicates an increase in load at servers. The
client however will not switch to the next higher group
(Hc

j+1) unless avg rt ≥ dc
j+1 + server compute time.

Setting the size of the history count parameter to different
values allows one to trade-off accuracy of the average with
how quickly the algorithm adapts to load changes. Since
the algorithm partitions quorums into groups based on the
distance to the client, we call it DelayBins. The pseudocode
for DelayBins is presented in Figure 5.

INITIALIZATION:
curr quorum group = 1; last req = 0;
create quorum groups Hc

1 , . . . , Hc
k , k ≥ 1;

corresponding delays are dc
1, . . . , dc

k;
dc
0 = 0; dc

k+1 = ∞;
BEFORE EACH REQUEST:

find j such that avg rt ∈ [dc
j , dc

j+1) + server compute time;
if j > curr quorum group;

curr quorum group + +;
if j < curr quorum group

curr quorum group = j;
for each Q ∈ Hc

curr quorum group :
pc(Q) = 1/|Hc

curr quorum group |;
for each Q ∈ Q \ Hc

curr quorum group :
pc(Q) = 0;

WHEN RECEIVING REPLY FOR REQUEST r:
history [last req] = response time(r);
last req = (last req + 1) mod history count ;
avg rt = (

∑history count
i=0 history [i])/history count ;

Figure 5. DelayBins algorithm at client c
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We compare the performance of DelayBins to that of
ClosestDly and Balanced for different client demands. Fig-
ures 6 and 7 show the response time and throughput of

DelayBins on the 5 × 5 Grid, and the (4b + 1, 5b + 1)
Majority with b = 2, respectively. In both low-load and high-
load cases, DelayBins yields access strategies that achieve
performance similar to the best access strategies for that
load.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60

Time (seconds)

ShiftWt
ShiftWtOpt
DelayBins

(a) To ClosestDly

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70

Time (seconds)

ShiftWt
ShiftWtOpt
DelayBins

(b) To Balanced

Figure 8. Convergence (L2 Norm) on Grid

To compare the convergence time of DelayBins to that of
ShiftWt and ShiftWtOpt, we repeat the following experi-
ments: we start clients with ClosestDly as the initial access
strategy (by setting curr quorum group = 1, i.e., clients
use the closest quorums) in a regime of high load (150
clients, or clientsPerNode = 15) and measure the time it
takes them to change the average of their access strategies
to Balanced. We also perform the converse experiment: we
start clients from Balanced (i.e., by making clients use the
highest group number) and measure how fast their average
access strategy converges to ClosestDly with only 10 clients
(clientsPerNode = 1). We use a value of history count = 3
for our experiments in order to reconcile the contradic-
tory goals of having a quickly adapting algorithm and
one that does not react to sporadic spikes in load [37].
Figure 8(a) shows that DelayBins converges much faster than
ShiftWtOpt to ClosestDly (in about 1–2 seconds). At the
same time, the convergence time to Balanced is about the
same as that of ShiftWtOpt.

k Conv. to ClosestDly Conv. to Balanced
ShiftWtOpt DelayBins ShiftWtOpt DelayBins

2 5 s 1 s 3 s 2 s
3 6 s 1 s 1 s 1 s
4 7 s 2 s 2 s 3 s
5 8 s 2 s 2 s 2 s

Table II
CONVERGENCE TIMES ON k × k GRID

To perform a more exhaustive comparison, we evaluate
the convergence time of DelayBins for various universe
sizes. In all cases, DelayBins converges roughly as fast or
faster than ShiftWtOpt, as can be seen in Table II. The
best explanation for this difference is that ShiftWtOpt bases
its decisions on more fine-grained (i.e., per server), but
consequently more stale, response-time information.

The last measure with respect to which we evaluate
DelayBins is client overhead. Table I lists results for both
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DelayBins and ShiftWtOpt. In all cases the overhead of
DelayBins is smaller than that of ShiftWtOpt and also
similar to that of ClosestDly and Balanced, both of which
have an overhead between 1 and 2 μs in our evaluations.

The primary reason for the superior client-side overhead
of DelayBins is given by the following observation. Even
though the pseudocode of Figure 5 updates the access
strategy pc per quorum each time it is updated (a compu-
tational cost proportional to m), it is possible to dramat-
ically optimize this implementation. Specifically, it is not
necessary to maintain pc explicitly; rather, a quorum from
Hc

curr quorum group can be chosen uniformly at random
to perform a request, after curr quorum group has been
updated. The execution time of DelayBins depends primarily
on the number of groups Gc

i into which we partition the
quorums, which by construction is never greater than the
number of servers. Furthermore, these groups do not change
often—in practice they need only change when network
delays to servers change significantly—and thus can be
precomputed. This makes the performance of DelayBins
typically depend only on the number of servers.

This is a significant difference from ShiftWtOpt, for
which the client overhead grows quickly as the number of
quorums grows. In some cases, ShiftWtOpt must go through
exponentially many (in the number of servers) quorums to
update the access strategy according to which it samples
quorums. Even if this is decoupled from the actual process
of choosing a quorum, the overhead associated with updating
the access strategy can delay the sampling task given large
quorum system sizes.

V. STATE TRANSFER

Our dynamic quorum selection algorithms as presented in
Section IV assume that response time is the only factor that
needs to be considered when choosing quorums. However,
in many protocols, to switch quorums results in additional
cost arising from the need to transfer state from servers in
the old quorum to servers only in the new quorum. This is of
particular concern on a wide area network where bandwidth
is limited and delays are relatively large. Here, we discuss
the following questions in the context of our algorithms from
Section IV: (i) if state transfer is required, does Balanced
still perform better than ClosestDly when there is high load;
and (ii) if not, what can we do about it?

To make our discussion more concrete, we focus on state-
machine-replication protocols [8], which are an important
class of protocol that require state transfer. In these pro-
tocols, the state of the service is replicated to different
machines. The Q/U protocol [1] introduced the concept of a
purely quorum-based state-machine-replication protocol, but
protocols such as BFT [9], HQ [2], and Zyzzyva [10] also
use quorum system properties to maintain state. Because
updates to the state are generally incremental and based on
the previous state, a replica typically needs a copy of the

current state in order to perform such an operation. As this
state can be modified at a quorum of servers, some servers
may not always have the current state. Transferring the state
to them is where the costs of state transfer can become an
issue.

Q/U uses a type of majority quorum system called
opaque [25] in which most servers are in every quorum and
therefore have the current state as described in Section IV-A.
Even so, the Q/U authors have found the cost of state transfer
to be relatively large even on a switched local area network
where a peak throughput reduction of roughly 40% was
observed [1] (see below). To avoid this cost, the authors
introduce the notion of a preferred quorum [1]. In Q/U,
the state is divided into objects. Each object is accessed at
its preferred quorum by default. Since Q/U was originally
evaluated on local area networks with homogeneous, low
latencies, the preferred quorums are spread uniformly across
the quorum system so as to balance load. The reduction
in throughput mentioned above occurs when objects are
accessed at quorums chosen uniformly at random—thereby
requiring state-transfer—instead of at their preferred quo-
rums.

Using the notion of preferred quorums, we propose the
following algorithm called Sticky. Whereas Balanced and
ClosestDly are per-client access strategies, Sticky is, in a
sense, a per-object access strategy. In Sticky, each object is
accessed at its preferred quorum by default, and preferred
quorums are placed so as to balance the load on each server
given the anticipated workload. More specifically, Sticky is
defined by a mapping pref() where pref(o) is the preferred
quorum for object o. A workload induces a distribution π on
objects (i.e.,

∑
o π(o) = 1), in the sense that o is accessed

in π(o) fraction of the accesses. Therefore, the load on a
server s, given a mapping pref() and workload π is,

load(s) =
∑

o:s∈pref(o)

π(o).

For any such anticipated distribution π on object accesses,
Sticky is defined by a mapping pref() that minimizes the
imbalance between the most loaded and least loaded servers,
i.e.,

arg min
pref()

max
s,s′ |load(s) − load(s′)|.

To evaluate this, we run a version of Q/U that we have
updated to facilitate wide-area experiments (available as Q/U
v1.3 [40]). This version of Q/U allows us to create a much
larger number of clients using a small number of client
machines. Since Q/U is currently of practical interest for
small numbers of servers, we emulate a hypothetical six-
server topology based on round-trip times in the USA. We
configure a new Modelnet topology with data from Table III,
which is based closely on network delay measurements
derived from AT&T (http://ipnetwork.bgtmo.ip.att.net). We
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deploy this topology on the rack of machines described in
Section IV-A.

As seen in Table III, our topology consists of six network
sites (San Francisco, Denver, Chicago, Cleveland, New York
City, and Cambridge) located across the USA with round-
trip latencies between sites as given in the table. Each site
hosts one server. All clients are connected to Cambridge with
zero latency and no specified bandwidth restrictions. There is
one server per site, and each server is connected to its site
by two unidirectional links each with 15Mbps bandwidth
and zero latency. This bandwidth restriction decreases the
maximum throughput of Q/U from approximately 25,000
req/s on our hardware to about 5000 req/s, as seen below,
bringing the amount of data sent per second into a range that
Modelnet (which must forward all of the network traffic for
both clients and servers) can support on our hardware. Given
that this bandwidth allocation is for a single service (i.e., not
for the entire site), we feel it is reasonable. Furthermore,
based on experimentation with other bandwidth levels, we
expect that our results generalize. Because each client is
situated in Cambridge, the closest quorum is the one that
omits the server in San Francisco. This quorum requires
at least 46 milliseconds round-trip latency to access. Any
quorum that contains the server in San Francisco requires at
least 76 milliseconds latency.

den chi cle nyc cam
sfo 30 50 56 70 76

den 20 26 40 46
chi 6 20 26

cle 14 20
nyc 6

cam

Table III
ROUND TRIP NETWORK LATENCY DATA (MS)

In our experiments, each client is a thread with exclusive
access to its own object maintained by the service. Each
client submits a request (of trivial size) to modify the
object and waits for a response. Upon receiving a response
that the object has been updated, the client immediately
issues another modify request. As such, the workload is
uniform. (Later, we address issues that may arise from other
workloads.) Because clients wait to issue requests, requests
are issued at the rate at which responses are received [41]. It
takes at least the network round-trip latency for each client
to receive a response, and so, when the network latency is
longer, more clients are required to drive the service to its
peak capacity. For the purposes of our evaluation, low load
can be thought of as any number of clients insufficient to
drive the service to its peak capacity, while high load as any
number of clients achieving peak capacity. If the client has
selected a different quorum for the next request, the state
of the object must be transferred to the server that is only
in the new quorum before that server can update the object.

Note that, although nonzero, the processing cost per request
at each server is much less than the 1 ms cost induced in
Section IV. This explains the higher throughput observed in
this set of experiments compared to those in Section IV.
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Figure 9. Q/U with state transfer

Because of state transfer, as Figure 9 shows, ClosestDly
indeed outperforms Balanced given this network configu-
ration. However, in the presence of state transfer, Sticky
behaves much as Balanced does with no state transfer. In
particular, Sticky outperforms ClosestDly in periods of high
load, while ClosestDly performs better than Sticky when
there is low load.

To understand the impact of network latency, we repeat
the above analysis, but with zero latency between sites
(instead of the values from Table III). The results are given
in Figure 10. As expected, because all quorums are equally
close, Sticky and ClosestDly perform equally well here
when there is low load. However, Sticky again outperforms
ClosestDly when there is high load. In all cases, as before,
Balanced performs worse than either Sticky or ClosestDly
because of its need for state transfer.
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Figure 10. Q/U with state transfer, no delay

The use of Sticky as a substitute for Balanced in the
algorithms of Section IV requires a way to move preferred
quorums. A sketch of a conceptually simple modification
to Q/U in order to do so is as follows. First, note that we
can use Q/U itself to maintain the location of the preferred
quorum for each object. Therefore, to update the preferred
quorum, a client performs an update operation specifying
the new preferred quorum. This operation for updating an
object’s preferred quorum is performed like any other (lin-
earizable) operation for the service, so that it is unambiguous
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as to what the preferred quorum is at any logical point
in time. When the object is updated, the operation can
be specified as contingent on the selected quorum being
the preferred quorum (to maintain efficiency by avoiding
state transfer), or as without contingencies (which might
cause state transfer). In the former case, servers reject the
operation if the selected quorum is not the preferred quorum
for the accessed object. They do this on the basis of state
information, included with the operation, that is relayed by
clients from servers to servers (called object history sets [1]
in Q/U terminology) for the preferred quorum. In such a
case, the client must resubmit the operation.

To learn the preferred quorum, a client uses a query
operation specifying the object. Although the client can
use a query to lookup the preferred quorum for an object,
optimizations such as the following minimize such lookups
(so as to minimize the number of rounds of interaction on the
critical path of an operation). A client caches the preferred
quorum following each lookup, and performs its subsequent
operations using contingent requests. Upon servers rejecting
this operation due to the preferred quorum changing, the
client can be informed in the rejection of the new preferred
quorum, or it can lookup the preferred quorum again.
The client issues requests without contingencies when the
preferred quorum is unresponsive.

Sticky maximizes throughput and minimizes average re-
sponse time when there is high load (as does Balanced when
there is no state transfer). Despite this, if multiple clients
access the same object, the placement of a given preferred
quorum can be better in terms of individual response times
for certain clients than for others (e.g., when some clients
are close to the preferred quorum while others are far from
it). This may give incentive to clients to move preferred
quorums close to themselves. However, the benefits of
Sticky compared with Balanced can be negated without
well-defined policies for updating preferred quorums. For
example, a client that changes the preferred quorum to be
closer to itself may cause state transfer, both now and again
later if another client moves the preferred quorum back. It
remains an open question to develop policies for changing
preferred quorums for any particular workload.

The take-away message from the analysis in this section
is that state transfer can have an impact on the performance
of any algorithm that switches quorums. In such situations,
algorithms such as Sticky that balance load but avoid state
transfer should be considered as a substitute for Balanced
in the algorithms of Section IV. However, for systems that
do not require state transfer, the algorithms of Section IV
can be employed directly.

VI. CONCLUSION

In many wide-area settings, a constant, unchanging work-
load is not a certainty. Unpredictable events, such as flash

crowds caused by nearly instantaneous popularity of ser-
vices, can cause servers that are expected to respond quickly
to instead suddenly respond slowly. In this paper, we have
shown how clients can change their quorum selections
efficiently and in isolation in order to react to such changes.
This allows them to achieve good performance, not only
for themselves, but in a way that causes the overall system
performance to converge rapidly to that of the best global
strategy for the new workload. Our low-overhead algorithms
presented in Section IV are suitable for allowing clients to
change their quorum selections based on limited knowledge.
These algorithms can react to changing workloads while pro-
ducing solutions that lead to very good system performance.

One important use of quorum systems is in the mainte-
nance of state. In such systems, a switch to a new quorum
may result in the need to transfer the state from the old
quorum to the new quorum. On a wide area network, this
can be an expensive operation. As such, in Section V, we
have proposed and evaluated an alternative way to balance
the load across the servers when state transfer is a concern.
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