
Automatically Adapting a Trained
Anomaly Detector to Software Patches

Peng Li1, Debin Gao2, and Michael K. Reiter1

1 Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
2 School of Information Systems, Singapore Management University, Singapore

Abstract. In order to detect a compromise of a running process based on it devi-
ating from its program’s normal system-call behavior, an anomaly detector must
first be trained with traces of system calls made by the program when provided
clean inputs. When a patch for the monitored program is released, however, the
system call behavior of the new version might differ from that of the version it
replaces, rendering the anomaly detector too inaccurate for monitoring the new
version. In this paper we explore an alternative to collecting traces of the new pro-
gram version in a clean environment (which may take effort to set up), namely
adapting the anomaly detector to accommodate the differences between the old
and new program versions. We demonstrate that this adaptation is feasible for
such an anomaly detector, given the output of a state-of-the-art binary difference
analyzer. Our analysis includes both proofs of properties of the adapted detector,
and empirical evaluation of adapted detectors based on four software case studies.

Keywords: Anomaly detection, software patches, system-call monitoring, binary
difference analysis.

1 Introduction

One widely studied avenue for detecting the compromise of a process (e.g., by a buffer
overflow exploit) is by monitoring its system-call behavior. So-called “white-box” de-
tectors build a model of system-call behavior for the program via static analysis of the
source code or binary (e.g., [18,5,11,12,2,13]). “Black-box” (or “gray-box”) detectors
are trained with system-call traces of the program when processing intended inputs
(e.g., [7,6,15,16,9,8]). In either case, deviation of system-call behavior from the model
results in an alarm being raised, as this might indicate that the code executing in the
process has changed. Both white-box and black/gray-box approaches offer advantages.
The hallmark of white-box approaches is the potential for a near-zero or zero false
alarm rate [18], if static analysis uncovers every possible system call sequence that the
program could possibly emit. Since they are trained on “normal” system-call behavior,
black/gray-box approaches can be more sensitive, in that they can reflect nuances of the
local environments and usage of the monitored programs [14] and can detect behavioral
anomalies that are nevertheless consistent with the control-flow graph of the program.
Such anomalies can indicate a compromise (e.g., [3]) and, if ignored, allow more room
for mimicry attacks to succeed [19,17].

When a monitored program is patched, an anomaly detector trained on system-call
traces may no longer be sufficiently accurate to monitor the updated program. One way

E. Kirda, S. Jha, and D. Balzarotti (Eds.): RAID 2009, LNCS 5758, pp. 142–160, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatically Adapting a Trained Anomaly Detector to Software Patches 143

to address this is to rebuild the model by collecting traces of the updated program.
However, these traces must be gathered in a sanitized environment free of attacks that
is otherwise as similar as possible — e.g., in terms of the operating system and relevant
device configurations and contents, as well as the program usage — to the environment
in which the updated program will be run. This problem is compounded if there are
multiple such environments.

To avoid the effort of setting up a sanitized environment for collecting system-call
traces every time a patch is issued, in this paper we consider an alternative approach to
building a model of normal system-call behavior for an updated program. Our approach
consists of detecting the differences between the updated program and the previous ver-
sion, and then directly updating the system-call behavior model to reflect these changes.
There are several complexities that arise in doing this, however. First, program patches
are often released as wholly new program versions, not isolated patches. Second, in
either case, program updates are typically released only in binary format. Both of these
make it difficult to detect where the changes occur between versions. Third, while state-
of-the-art binary difference analyzers (e.g., [10]) can detect where changes occur, how
to modify the system-call model to reflect those changes can require significant further
analysis. We emphasize, in particular, that we would like to adapt the model to ac-
commodate these changes while decaying the model’s sensitivity to abnormal behavior
as little as possible. So, adaptations that increase the model’s size (and hence allowed
behaviors) more than the changes would warrant should be avoided.

In this paper we provide an algorithm for converting the execution-graph anomaly
detector [8] on the basis of the output of the BinHunt binary difference analysis tool [10]
when applied to a program and its updated version. We show that our algorithm is
sound, in the sense that the resulting execution-graph anomaly detector accepts only
system-call sequences that are consistent with the control-flow graph of the program.
Such soundness was also a requirement of the original execution-graph model [8], and
so our algorithm preserves this property of the converted execution graph. In addition,
we show through experiments with several patched binaries that our converted execu-
tion graphs can be of comparable size to ones generated by training on system-call
sequences collected from the updated program, and moreover that the converted execu-
tion graphs accept (i.e., do not raise alarms on) those sequences. As such, the converted
execution graphs from our algorithms are, based on our experiments, good approxi-
mations of the execution graphs that would have been achieved by training. To our
knowledge, ours is the first work to automatically update a system-call-based anomaly
detection model in response to program patches.

2 Related Work

Systems that employ binary matching techniques to reuse stale “profiles” are most re-
lated to our work. Profiles of a program are representatives of how a program is used
on a specific machine by a specific user. They usually include program counter in-
formation, memory usage, system clock information, etc., and are typically obtained
by executing an instrumented version of the program that generates profile informa-
tion as a side-effect of the program execution. Spike [4] is an optimization system that

144 P. Li, D. Gao, and M.K. Reiter

collects, manages, and applies profile information to optimize the execution of DEC
Alpha executables. When old profiles are used to optimize a new build of a program,
Spike simply discards profiles for procedures that have changed, where changes in pro-
cedures between two builds of a program are detected by calculating the edit distance
between signatures of the corresponding procedures. Spike is not able to re-use profiles
of modified procedures.

Wang et al. proposed a binary matching tool, namely BMAT, to propagate profile
information from an older, extensively profiled build to a newer build [20]. An opti-
mized version of the newer build is then obtained by applying optimization techniques
on the newer build and the propagated profile. The main difference between BMAT and
our proposed technique is that we skip the process of propagating the profiles (which
roughly correspond to the system-call traces in anomaly detection) and directly prop-
agate the anomaly detection model of the older build to that of the newer build. Our
approach is better suited to anomaly detectors that use an automaton-like model be-
cause these models are closely related to the control flow of the program (e.g., [8]), and
therefore our approach avoids potential inaccuracies introduced in an indirect approach
in which system-call traces are derived first.

3 Background and Terminology

To better explain our algorithm for converting the execution-graph anomaly detection
model [8], here we provide some background and terminology. We first give our defi-
nitions of basic blocks and control flow graphs, which are slightly different from those
typical in the literature (c.f., [1]). Next, we outline important concepts in binary differ-
ence analysis including common induced subgraphs and relations between two matched
basic blocks and two matched functions. We also define important elements in control
flow graphs, e.g., call cycles and paths, and finally briefly define an execution graph.
The conversion algorithms and their properties presented in Section 4 rely heavily on
the definitions and lemmas outlined in this section.

Our definitions below assume that each function is entered only by calling it; jumping
into the middle of a function (e.g., using a goto) is presumed not to occur. We consider
two system calls the same if and only if they invoke the same system-call interface (with
potentially different arguments).

Definition 1 [basic block, control-flow subgraph/graph]. A basic block is a consecu-
tive sequence of instructions with one entry point. The last instruction in the basic block
is the first instruction encountered that is a jump, function call, or function return, or
that immediately precedes a jump target.

The control-flow subgraph of a function f is a directed graph cfsgf = 〈cfsgVf ,
cfsgEf 〉. cfsgVf contains

– a designated f .enter node and a designated f .exit node; and
– a node per basic block in f . If a basic block ends in a system call or function call,

then its node is a system call node or function call node, respectively. Both types of

Automatically Adapting a Trained Anomaly Detector to Software Patches 145

nodes are generically referred to as simply call nodes. Each node is named by the
address immediately following the basic block.1

cfsgEf contains (v, v′) if

– v = f.enter and v′ denotes the first basic block executed in the function; or
– v′ = f.exit and v ends with a return instruction; or
– v ends in a jump for which the first instruction of v′ is the jump target; or
– the address of the first instruction of v′ is the address immediately following (i.e., is

the name of) v.

The control-flow graph of a program P is a directed graph cfgP = 〈cfgVP , cfgEP 〉
where cfgVP =

⋃
f∈P cfsgVf and (v, v′) ∈ cfgEP iff

– (v, v′) ∈ cfsgEf for some f ∈ P ; or
– v′ = f.enter for some f ∈ P and v denotes a basic block ending in a call to f ; or
– v = f.exit for some f ∈ P and v′ denotes a basic block ending in a call to f . �

We next define common induced subgraphs, which are used in binary difference analy-
sis of two programs [10].

Definition 2 [common induced subgraph, ∼, ≈]. Given cfsgf = 〈cfsgVf , cfsgEf 〉,
an induced subgraph of cfsgf is a graph isgf = 〈isgVf , isgEf 〉 where isgVf ⊆ cfsgVf

and isgEf = cfsgEf ∩(isgVf × isgVf). Given two functions f and g, a common induced
subgraph is a pair 〈isgf , isgg〉 of induced subgraphs of cfsgf and cfsgg, respectively,
that are isomorphic. We use ∼ to denote the node isomorphism; i.e., if v ∈ isgVf maps
to w ∈ isgVg in the isomorphism, then we write v ∼ w and say that v “matches” w.
Similarly, if v ∼ w, v′ ∼ w′, and (v, v′) ∈ isgEf (and so (w, w′) ∈ isgEg), then we
write (v, v′) ∼ (w, w′) and say that edge (v, v′) “matches” (w, w′).

The algorithm presented in this paper takes as input an injective partial function
π : {f : f ∈ P} → {g : g ∈ Q} for two programs P and Q, and induced subgraphs
{〈isgf , isgπ(f)〉 : π(f)
= ⊥}. We naturally extend the “matching” relation to functions
by writing f ∼ π(f) if π(f)
= ⊥, and say that f “matches” π(f). Two matched
functions f and g are similar, denoted f ≈ g, iff isgf = cfsgf and isgg = cfsgg. �

Control-flow subgraphs and graphs, and common induced subgraphs for two programs,
can be extracted using static analysis of binaries [10]. When necessary, we will appeal
to static analysis in the present work, assuming that static analysis is able to disassemble
the binary successfully to locate the instructions in each function, and to build cfsgf for
all functions f and cfgP for the program P .

A tool that provides the common induced subgraphs required by our algorithm is
BinHunt [10]. When two nodes are found to match each other by BinHunt, they are
functionally similar. For example, if v ∈ isgVf , w ∈ isgVπ(f), and v ∼ w, then either
both v and w are call nodes, or neither is; we utilize this property in our algorithm.
However, BinHunt compares two nodes by analyzing the instructions within each node
only, and so the meaning of match does not extend to functions called by the nodes.
For example, two nodes, each of which contains a single call instruction, may match

1 For a function call node, this name is the return address for the call it makes.

146 P. Li, D. Gao, and M.K. Reiter

to each other even if they call very different functions. In order to extend the meaning
of match to functions called by the nodes, we introduce a new relation between two
functions (and subsequently two nodes), called extended similarity.

Definition 3 [
ext≈]. Two matched functions f and g are extended-dissimilar, denoted

f
ext≈ g, iff

– (Base cases)

• f
≈ g; or
• for two system call nodes v ∈ cfsgf and w ∈ cfsgg such that v ∼ w, v and w call

different system calls; or
• for two function call nodes v ∈ cfsgf and w ∈ cfsgg such that v ∼ w, if v calls

f ′ and w calls g′, then f ′
≈ g′.
– (Induction) For two function call nodes v ∈ cfsgf and w ∈ cfsgg such that v ∼ w,

if v calls f ′ and w calls g′, then f ′
ext≈ g′.
If two matched functions f and g are not extended-dissimilar, then they are extended-

similar, denoted f
ext≈ g. Two matched nodes v and w are extended-similar, denoted

v
ext≈ w, if (i) neither v nor w is a call node; or (ii) v and w make the same system call;

or (iii) v and w call f and g, respectively, and f
ext≈ g. �

Two extended-similar nodes exhibit a useful property that will be stated in Lemma 1.
To state this property, we first define call cycles.

Definition 4 [Call cycle]. A sequence of nodes 〈v1, . . . , vl〉 in cfgP is a call cycle
from v iff for some function f ∈ P , v = v1 = vl is a function call node calling to f ,
v2 = f.enter, vl−1 = f.exit, and

– (Base case) For each i ∈ (1, l − 1), vi ∈ cfsgVf and (vi, vi+1) ∈ cfsgEf .
– (Induction) For some k, k′ ∈ (1, l − 1), k < k′,

• for each i ∈ (1, k] ∪ [k′, l), vi ∈ cfsgVf ; and
• for each i ∈ (1, k) ∪ [k′, l − 1), (vi, vi+1) ∈ cfsgEf ; and
• 〈vk, . . . , vk′ 〉 is a call cycle from vk = vk′ . �

Lemma 1. If v and w are call nodes in P and Q, respectively, and v
ext≈ w, then for

every call cycle from v that results in a (possibly empty) sequence of system calls, there
is a call cycle from w that results in the same sequence of system calls.

Lemma 1, which is proved in Appendix B, shows a useful property about extended-
similar nodes, and is used in our proofs of properties of the converted execution graph.
As we will see, some edges can be copied from the execution graph of the old binary P
to the execution graph of the new binary Q on the basis of nodes in cfgP being extended-
similar to nodes in cfgQ, since those nodes exhibit similar system-call behavior. Next,
we define paths to help refer to sequences of nodes in a control flow graph.

Definition 5 [Path, full, pruned, silent, audible]. A path p = 〈v1, . . . , vn〉 is a
sequence of nodes where

Automatically Adapting a Trained Anomaly Detector to Software Patches 147

– for all i ∈ [1, n], vi ∈ cfgVP ; and
– for all i ∈ [1, n), (vi, vi+1) ∈ cfgEP .

We use |p| to denote the length of p which is n.
p is pruned if no v ∈ {v2, . . . , vn} is a function enter node, and if no v ∈ {v1, . . . ,

vn−1} is a function exit node. p is full if for every function call node v
∈ {v1, vn} on
p, v is either followed by a function enter node or preceded by a function exit node
(but not both).

p is called silent if for all i ∈ (1, n), vi is not a system call node. Otherwise, it is
called audible. �

Next, we define an execution graph [8], which is a model for system-call-based anomaly
detection. We begin with two technical definitions, however, that simplify the descrip-
tion of an execution graph.

Definition 6 [Entry call node, exit call node]. A node v ∈ cfsgf is an entry call node
of f if v is a call node and there exists a full silent path p = 〈f.enter, . . . , v〉. A node
v ∈ cfsgf is an exit call node of f if v is a call node and there exists a full silent path
p = 〈v, . . . , f.exit〉. �

Definition 7 [support (�), strong support (s
�)]. A (full or pruned) path p =

〈v, . . . , v′〉 supports an edge (v, v′), denoted p � (v, v′), if p is silent. p strongly sup-
ports (v, v′), denoted p

s
� (v, v′), if p � (v, v′) and if each of v and v′ is a system call

node or a function call node from which there is at least one audible call cycle. �

Definition 8 [Execution subgraph/graph]. An execution subgraph of a function f is
a directed graph esgf = 〈esgVf , esgEf 〉 where esgVf ⊆ cfsgVf consists only of call

nodes. If (v, v′) ∈ esgEf then there is a full path p = 〈v, . . . , v′〉 such that p
s

� (v, v′).
An execution graph of a program P is a directed graph egP = 〈egVP , egEclP ,

egEcrP , egErtP 〉 where egEclP , egEcrP , and egErtP are sets of call edges, cross edges
and return edges, respectively. egVP =

⋃
f∈P esgVf and egEcrP =

⋃
f∈P esgEf .

If (v, v′) ∈ egEclP , then v is a function call node ending in a call to the function f
containing v′, and v′ is a entry call node. If (v′, v) ∈ egErtP , then v is a function call
node ending in a call to the function f containing v′, and v′ is an exit call node. �

An execution graph egP is built by subjecting P to a set of legitimate inputs in a pro-
tected environment, and recording the system calls that are emitted and the return ad-
dresses on the function call stack when each system call is made. This data enables the
construction of an execution graph. Then, to monitor a process ostensibly running P
in the wild, the return addresses on the stack are extracted from the process when each
system call is made. The monitor determines whether the sequence of system call (and
the return addresses when those calls are made) are consistent with traversal of a path in
egP . Any such sequence is said to be in the language accepted by the execution graph.
Analogous monitoring could be performed using cfgP , instead, and so we can similarly
define a language accepted by the control flow graph. An execution graph egP is built
so that any sequence in its language is also in the language accepted by cfgP [8].

148 P. Li, D. Gao, and M.K. Reiter

4 The Conversion Algorithm

Suppose that we have an execution graph egP for a program P , and that a patch to P is
released, yielding a new program Q. In this section, we show our conversion algorithm
to obtain egQ. In addition to utilizing egP , our algorithm utilizes the output of a binary
difference analysis tool (e.g., [10]), specifically a partial injective function π and pairs
〈isgf , isgπ(f)〉 of isomorphic induced subgraphs. Our algorithm also selectively uses
static analysis on Q. Unless stated otherwise, below we use f , v and p to denote a
function, node and path, respectively, in cfgP , and we use g, w, and q to denote a
function, node and path, respectively, in cfgQ. In addition, we abuse notation in using
“∈” to denote a path being in a graph (e.g., “p ∈ cfgP ”), in addition to its normal use
for set membership.

Recall that we have two important requirements in designing the conversion algo-
rithm. A first is that egQ preserves the soundness property of the original execution-
graph model, namely that it accepts only system-call sequences that are consistent with
cfgQ. A second requirement is that it decays the model’s sensitivity to abnormal behav-
ior as little as possible, and therefore preserves the advantage of black-box and gray-box
models in that egQ should not accept system-call behavior that would not have been ob-
served were it built by training, even though this behavior may be accepted by cfgQ.

We satisfy the above two requirements by

– creating counterparts of as many nodes and edges in egP as possible in egQ;
– adding new nodes and edges to egQ to accommodate changes between P and Q; and
– performing the above two tasks in such a way that a minimal set of system-call

behaviors is accepted by egQ.

More specifically, we first copy matched nodes and edges in esgf to esgg to the extent
possible for all matched function pairs f ∼ g (Section 4.1). Next, we handle nodes in
cfsgg that are not matched and create corresponding cross edges (Section 4.2). In the
last two steps, we further process the function call nodes to account for the functions
they call (Section 4.3) and connect execution subgraphs together to obtain the execution
graph egQ (Section 4.4).

4.1 Copying Nodes and Edges When f ∼ g

The first step, called copy(), in our conversion algorithm is to copy matched portions in
esgf to esgg, if f ∼ g. This is an important step as it is able to obtain a large portion
of egQ, assuming that there is little difference between P and Q, and that the binary
difference analysis that precedes our conversion produces common induced subgraphs
〈isgf , isgπ(f)〉 that are fairly complete for most f ∈ P . Intuitively, for two matched
functions f and g, we simply need to copy all nodes and edges in esgf that are matched
and update the names of the nodes (which denote return addresses). However, when a
cross edge is copied to esgg , we need to make sure that there is a full path in cfgQ that
can result in the newly added cross edge (i.e., to make sure that it is supported by a full
path).

There are two caveats to which we need to pay attention. The first is that a cross edge
in esgf supported by a pruned path containing edges in cfsgEf \ isgEf should not be

Automatically Adapting a Trained Anomaly Detector to Software Patches 149

copied to esgg, because something has changed on this pruned path and may render the
cross edge not supported in cfgQ. To improve efficiency, here we restrict our analysis
within f and g only and require that all pruned paths (instead of full paths) supporting
the cross edge to be copied be included in isgf and isgg.

edges in cfsg

a cross edge that would not be added by copy()

common induced subgraphs

noncall

call f’()

jz

syscall3

call f’’()

syscall4

call g’()

jz

syscall3

call g’’()

f() g() w

'w

2w

3w 4w

v

'v

2v

3v 4v

a cross edge under analysis in copy()

Fig. 1. Cross edge that is not copied

For the example in Figure 1, a cross
edge (v, v′) is supported by the pruned
path 〈v, v2, v3, v

′〉 in cfsgf (which is also
a full path). However, there is no pruned
path in isgg that supports the correspond-
ing cross edge in esgg (so no full path
in cfgQ will support it). The only pruned
path 〈w, w2, w4, w

′〉 in isgg does not sup-
port this cross edge since this pruned path
would unavoidably induce a system call.
Thus, the cross edge (v, v′) cannot be
copied to esgg.

A second caveat is related to the no-
tion of extended similarity that we in-
troduced in Section 3. Assume v ∼ w,
v′ ∼ w′, and v′′ ∼ w′′ (see Figure 2);
also assume that 〈v, v′′, v′〉 � (v, v′). To

copy (v, v′) to esgg , we need 〈w, w′′, w′〉 � (w, w′) and therefore v′′
ext≈ w′′ so that

any call cycle from v′′ can be “replicated” by a call cycle from w′′, yielding the same
system-call behavior (c.f., Lemma 1).

edges in cfg
cross edge in eg

f’’()

call f()

call f’’()

call f’()

f’’.enter

call g()

call g’’()

call g’()

f’’.exit

call f’’’()

g’’.enter

g’’.exit

call g’’’()

g’’()

w

'w

''w

v

'v

''v

'''v '''w

Fig. 2. Extended similarity in copy()

In summary, when a cross edge
(w, w′) is created in esgg in this step,
all the nodes on the pruned paths sup-
porting this edge are matched, and the
nodes along each pruned path not only
match but are extended-similar if they
are call nodes. We are very strict when
copying a cross edge because we do not
know which one of the many supporting
pruned paths was taken during training of
egP . In order to avoid possible mistakes
in copying a cross edge to esgg that 1) is
not supported by a full path in cfgQ; or 2)
would not have been created had training
been done on Q, we have to require that
all nodes on all supporting pruned paths
be matched and extended-similar. In Figure 3, three cross edges are copied since all the
pruned paths that support them are in the common induced subgraph and call nodes are
extended-similar.

Algorithm 1 copy(), in Appendix A, performs the operations in this step to copy
nodes and cross edges. The following holds for the cross edges it copies to esgcp

g .

150 P. Li, D. Gao, and M.K. Reiter

Lemma 2. Every cross edge added by copy() is strongly supported by a full path in
cfgQ.

call nodes
cross edges

Added in line 104
in Algorithm 1 copy()

Added in line 206
in Algorithm 2 diff()

fesg

func�on boundary
common induced subgraph

diff
gesg

w

'w

2w

3w

4w

5w

v

'v

2v

3v
4v

Fig. 3. Converting an execution subgraph

Please refer to Appendix B for an outline
of the proof.

copy() creates nodes and cross edges
by copying them from esgf . The next
step (Section 4.2) shows how we create
more nodes and edges for esgg by stat-
ically analyzing the unmatched portion
of g.

4.2 The Unmatched Portion of g

Assuming that f and g = π(f) differ by
only a small portion, copy() would have
created most of the nodes and cross edges
for esgg . In this step, we analyze the un-
matched portion of g to make esgg more complete. This step is necessary because esgf

does not contain information about the difference between f and g. Intuitively, esgf and
〈isgf , isgg〉 do not provide enough information for dealing with the unmatched portion
of g, and we need to get help from static analysis.

We identify each pruned path in cfsgg that passes through the unmatched portion of
g and then build cross edges between consecutive call nodes on this pruned path until
this path is connected to the nodes we created in Algorithm 1 copy(). Three cross edges
in Figure 3 are created in this way due to the unmatched nodes w4 and w5.

This algorithm, diff(), is detailed in Appendix A. diff() results in the following prop-
erty for the cross edges it adds to esgdiff

g ; Appendix B gives an outline of the proof.

Lemma 3. Every cross edge added by diff() is supported by a full path in cfgQ.

If there is a cross edge in esgf that was not copied by copy() to esgg , this occurred be-
cause a supporting pruned path for this edge was changed (containing unmatched nodes
or nodes that are matched but not extended-similar) in g. Whether this pruned path was
traversed when P emitted the system-call sequences on which egP was trained is, how-
ever, unknown. One approach to decide whether to copy the cross edge to esgg is to
exhaustively search (e.g., in diff()) for a full path in cfgQ that supports it. That is, any
such path is taken as justification for the cross edge; this approach, therefore, potentially
decreases the sensitivity of the model (and also, potentially, false alarms). Another pos-
sibility, which reflects the version of the algorithm in Appendix A, is to copy the cross
edge only if there is a full supporting path that involves the changed (unmatched) part
of g. (This process is encompassed by refine() in Appendix A, described below in Sec-
tion 4.3.) In addition to this approach sufficing in our evaluation in Section 5, it better
preserves the sensitivity of the model.

4.3 Refining esgg Based on Called Functions

Many function call nodes have been created in esgg by copy() and diff(). Except those
extended-similar to their counterparts in cfsgVf , many of these nodes are created

Automatically Adapting a Trained Anomaly Detector to Software Patches 151

without considering the system-call behavior of the called functions. This is the reason
why Lemma 3 claims only that the cross edges created are supported but not strongly
supported. In this step, called refine(), we analyze the system-call behavior of the cor-
responding called functions and extend the notion of support to strong support for cross
edges created so far in copy() and diff().

call nodes
cross edges
func�on boundary
common induced subgraph

node is removed since
all call cycles from it are silent

diff
gesg rfn

gesg
ww

'w 'w

2w 2w

3w 3w

4w

4w

5w5w

Fig. 4. Function call node removed and cross
edges modified

An obvious case in which function
call nodes need more processing is when
the execution subgraph of the called
function has not been created. This
happens when the called function g′

does not have a match with any func-
tion in P . In this case, esgg′ can be
obtained by statically analyzing the func-
tion itself. For simplicity in this pre-
sentation, we reuse diff() to denote this
process in Appendix A, with empty
sets for the first three arguments, i.e.,
diff(∅, 〈∅, ∅〉, cfsgg′).

Another scenario in which the func-
tion call nodes need more processing is
when the called function does not make a system call. Recall that a call node w is cre-
ated in copy() and diff() but we might not have analyzed the called function g′ at that
time and simply assumed that system calls are made in g′ (and therefore these cross
edges are supported instead of being strongly supported). If g′ may not make a system
call, then we need to either delete w (in the case where g′ never makes a system call,
shown in Figure 4 where all call cycles from w4 are silent) or add cross edges from
predecessor call nodes of w to successor call nodes of w (in the case where g′ may or
may not make a system call).

Lemma 4. After refine(), every cross edge in esgg is strongly supported by a full path
in cfgQ.

Please refer to Appendix B for the proof of Lemma 4.

4.4 Connecting Execution Subgraphs

At this stage, we create call and return edges to connect all esgg to form egQ. Some
of these call edges are created by “copying” the edges from the egP , e.g., when the
corresponding call node is created in copy() and is extended-similar to its counterpart

in egP (case 1 in Figure 5, where f ′ ext≈ g′). If a call node w has a match v but is not
extended-similar to it, we create an edge (w, w′) only for each entry call node w′ in
the function called by w that matches an entry call node v′ for which (v, v′) ∈ egEclP

(case 2 in Figure 5, where f ′′
ext≈ g′′), or to all entry call nodes in the called function if
there is no such v′. For other call nodes, the call and return edges cannot be created via
copying, and we add call edges between this call node and all the entry call nodes of
the called function (case 3 in Figure 5). We create return edges in a similar way.

152 P. Li, D. Gao, and M.K. Reiter

Added in line 405
in Algorithm 4 connect().
Added in line 411
in Algorithm 4 connect().
Added in line 420
in Algorithm 4 connect().

call nodes

func�on boundary
common induced subgraph

call edge

f() g()f’() g’()

f’’() g’’()
g’’’()

Fig. 5. Using call and return edges to connect ex-
ecution subgraphs

Appendix A briefly gives an imple-
mentation of connect(), and please refer
to Appendix B for an outline of the proof
of Lemma 5.

Lemma 5. Every call or return edge
added by connect() is strongly supported
by a full path in cfgQ.

Therefore, after running our conversion
algorithm, we have a converted execu-
tion graph of the new program egQ with
all the nodes being system call nodes or
function call nodes with at least one au-
dible call cycle from each, and all the
edges being strongly supported by cfgQ.
Finally, we can state the soundness of our
conversion algorithm:

Lemma 6. The language accepted by egQ is a subset of the language accepted by cfgQ.

This result is trivial given Lemmas 2–5, and consists primarily in arguing that any path
q traversed in egQ can be “mimicked” by traversing a full path in cfgQ that travels from
each node of q to the next, say from w to w′, by following the full path in cfgQ that
strongly supports (w, w′).

5 Evaluation

In this section, we evaluate the performance of our conversion procedure. Our con-
version program takes in the execution graph of the old binary egP , the control flow
graph for both binaries cfgP and cfgQ, and the output of the binary difference ana-
lyzer BinHunt, and outputs the converted execution graph egQ of the new binary. We
implemented Algorithms 1-4 with approximately 3000 lines of Ocaml code.

We evaluated execution graphs obtained by our conversion algorithm by comparing
them to alternatives. Specifically, for each case study, we compared the converted exe-
cution graph for the patched program Q with (i) an execution graph for Q obtained by
training and (ii) the control flow graph of Q. We performed four case studies.

tar. Version 1.14 of tar (P) has an input validation error. Version 1.14-2.3 (Q) differs
from P by changing a do {} while() loop into a while() do {} loop (see
http://www.securityfocus.com/bid/25417/info). This change is iden-
tified by BinHunt, but it involves only a function call that does not make any system
calls. As such, the system-call behavior of the two programs remains unchanged, and
so does the execution graph obtained by our conversion algorithm. (diff() adds a new
node and the corresponding cross edges for the function call involved in the change,
which are subsequently deleted in refine() because all call cycles from it are silent.)

ncompress. In version 4.2.4 of ncompress (P), a missing boundary check allows a
specially crafted data stream to underflow a buffer with attacker’s data. A check was

http://www.securityfocus.com/bid/25417/info

Automatically Adapting a Trained Anomaly Detector to Software Patches 153

added in version 4.2.4-15 (Q) to fix this problem (see http://www.debian.org/
security/2006/dsa-1149). The check introduces a new branch in the program
in which an error message is printed when the check fails, causing a new system call
to be invoked. With the same benign inputs for training, the execution graphs for both
programs are the same. Our conversion algorithm, however, tries to include this new
branch by performing limited static analysis, and consequently expands the execution
graph by 3 nodes and 23 edges.

ProFTPD. ProFTPD version 1.3.0 (P) interprets long commands from an FTP client as
multiple commands, which allows remote attackers to conduct cross-site request forgery
(CSRF) attacks and execute arbitrary FTP commands via a long ftp:// URI that
leverages an existing session from the FTP client implementation in a web browser. For
the stable distribution (etch) this problem has been fixed in version 1.3.0-19etch2 (Q)
by adding input validation checks (see http://www.debian.org/security/
2008/dsa-1689). Eight additional function calls are introduced in the patched part,
most to a logging function for which the execution subgraph can be copied from the
old model. The converted execution graph for the patched version thus only slightly
increases the execution graph size.

unzip. When processing specially crafted ZIP archives, unzip version 5.52 (P) may
pass invalid pointers to a C library’s free() routine, potentially leading to arbi-
trary code execution (CVE-2008-0888). A patch (version 5.52-1 (Q)) was issued with
changes in four functions (see http://www.debian.org/security/2008/
dsa-1522). Some of the changes involve calling to a new function for which there is
no corresponding execution subgraph for the old version. All four changes resulted in
static analysis in our conversion algorithm, leading to execution subgraphs constructed
mostly or entirely by static analysis. This increased the number of nodes and edges in
the resulting execution graph egQ more significantly compared to the first three cases.

Table 1. Evaluation: nodes and edges in egQ

borrowed from egP not borrowed from egP

of nodes # of edges # of nodes # of edges
tar 478 1430 0 0

ncompress 151 489 3 23

ProFTPD 775 1850 6 28

unzip 374 1004 50 195

Experimental results are shown
in Table 1 and Table 2. In Ta-
ble 1, we show the number of
nodes and edges in egQ that
have their counterparts in egP

and those that do not. More pre-
cisely, if w ∈ egVQ and there
is some v ∈ egVP such that
v ∼ w, then w is accounted for
in the “borrowed” column in Ta-
ble 1. Similarly, if (w, w′) ∈ egEclQ ∪ egErtQ ∪ egEcrQ and there is some (v, v′) ∈
egEclP ∪ egErtP ∪ egEcrP such that (v, v′) ∼ (w, w′), then (w, w′) is accounted for in
the “borrowed” column. Nodes and edges in egQ not meeting these conditions are ac-
counted for in the “not borrowed” columns. As this table shows, increased use of static
analysis (e.g., in the case of unzip) tends to inflate the execution graph.

Table 2 compares egQ obtained by conversion with one obtained by training. As
we can see, egQ obtained by training is only marginally smaller than the one obtained
by conversion for the first three cases. They differ slightly more in size in the unzip

http://www.debian.org/security/2006/dsa-1149
http://www.debian.org/security/2006/dsa-1149
ftp://
http://www.debian.org/security/2008/dsa-1689
http://www.debian.org/security/2008/dsa-1689
http://www.debian.org/security/2008/dsa-1522
http://www.debian.org/security/2008/dsa-1522

154 P. Li, D. Gao, and M.K. Reiter

Table 2. Statistics for four case studies. Numbers of nodes for egP and egQ are highlighted as
representatives for size comparison.

Old binary P New binary Q

model egP (trained) cfgP egQ (converted) egQ (trained) cfgQ

nodes edges nodes edges nodes edges time (s) nodes edges nodes edges

tar 478 1430 2633 7607 478 1430 14.5 478 1430 2633 7607

ncompress 151 489 577 1318 154 512 13.1 151 489 578 1322

ProFTPD 775 1850 3343 9160 781 1878 17.4 776 1853 3351 9193

unzip 374 1004 491 1464 424 1199 41.6 377 1017 495 1490

case, due to the more extensive use of static analysis. When the egQ as obtained by
conversion is substantially larger than egP , as in the unzip case, this is an indication
that rebuilding egQ by training might be prudent.

Both converted egQ and trained egQ are smaller than cfgQ, which, in our experi-
ments, includes cfsgg for each g reachable from the first function executed in the binary,
including library functions. The numbers presented for cfgQ do not include non-call
nodes, function call nodes that do not give rise to audible call cycles, enter nodes, or
exit nodes, to enable a fair comparison with egQ (since egQ does not contain these
nodes). Since egQ, when trained, is a function of the training inputs, the gap between
the sizes of cfgQ and egQ would presumably narrow somewhat by training on a wider
variety of inputs (though we did endeavor to train thoroughly, see Appendix C). Abso-
lute sizes aside, however, Table 2 suggests that our conversion algorithm often retains
the precision offered by the execution graph from which it builds, no matter how well
(or poorly) trained.

An important observation about our converted execution graphs in these case studies
is that the language each accepts includes all system-call sequences output by Q when
provided the training inputs. We cannot prove that this will always hold with our con-
version algorithm, due to limitations on the accuracy of the binary difference analysis
tool from which we build [10]. Nevertheless, this empirically provides evidence that
this property should often hold in practice.

The conversion time shown in Table 2 for each egQ (converted) is in seconds on a 2.8
GHz CPU platform with 1GB memory, and includes only our algorithm time, excluding
binary difference analysis and the construction of cfgQ. (Binary difference analysis with
BinHunt overwhelmingly dominated the total conversion time.) As shown in Table 2,
as the changes between P and Q increase in size, more time is spent on analyzing cfgQ

and building egQ statically. In the cases of ncompress and unzip, the static analysis
needs to be applied to the libraries as well.

6 Conclusion

We have presented an algorithm by which an execution graph, which is a gray-box
system-call-based anomaly detector that uses a model trained from observed system-
call behaviors, can be converted from the program for which it was originally trained
to a patched version of that program. By using this algorithm, administrators can be

Automatically Adapting a Trained Anomaly Detector to Software Patches 155

spared from setting up a protected and identically configured environment for collecting
traces from the patched program. Our algorithm retains desirable properties of execu-
tion graphs, including that the system-call sequences accepted by the execution graph
are also consistent with the control-flow graph of the program, and that the sequences
accepted tend to capture “normal” behavior as defined by the training sequences. We
have demonstrated the effectiveness of our algorithm with four case studies.

As our paper is the first to study adapting anomaly detectors to patches, we believe
it introduces an important direction of new research. There are numerous system-call-
based anomaly detectors in the literature. Our initial studies suggest that many other
such detectors pose challenges to conversion beyond those we have addressed here.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading (1986)

2. Basu, S., Uppuluri, P.: Proxi-annotated control flow graphs: Deterministic context-sensitive
monitoring for intrusion detection, pp. 353–362. Springer, Heidelberg (2004)

3. Buchanan, E., Roemer, R., Schacham, H., Savage, S.: When good instructions go bad: Gener-
alizing return-oriented programming to RISC. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security (October 2008)

4. Cohn, R.S., Goodwin, D.W., Lowney, P.G.: Optimizing Alpha executables on Windows NT
with Spike. Digital Tech. J. 9, 3–20 (1998)

5. Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., Miller, B.: Formalizing sensitivity in static
analysis for intrusion detection. In: Proceedings of the 2004 IEEE Symposium on Security
and Privacy (May 2004)

6. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call stack
information. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy, May
2003, pp. 62–75 (2003)

7. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for Unix processes. In:
Proceedings of the 1996 IEEE Symposium on Security and Privacy, May 1996, pp. 120–128
(1996)

8. Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graph for anomaly detec-
tion. In: Proceedings of the 11th ACM Conference on Computer & Communication Security
(CCS 2004) (2004)

9. Gao, D., Reiter, M.K., Song, D.: On gray-box program tracking for anomaly detection. In:
Proceedings of the 13th USENIX Security Symposium (2004)

10. Gao, D., Reiter, M.K., Song, D.: BinHunt: Automatically finding semantic differences in
binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308,
pp. 238–255. Springer, Heidelberg (2008)

11. Giffin, J., Jha, S., Miller, B.: Detecting manipulated remote call streams. In: Proceedings of
the 11th USENIX Security Symposium (August 2002)

12. Giffin, J., Jha, S., Miller, B.: Efficient context-sensitive intrusion detection. In: Proceedings
of the ISOC Symposium on Network and Distributed System Security (February 2004)

13. Gopalakkrishna, R., Spafford, E.H., Vitek, J.: Efficient intrusion detection using automaton
inlining. In: Proceedings of the 2005 Symposium on Security and Privacy, pp. 18–31 (2005)

14. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
Journal of Computer Security, 151–180 (1998)

156 P. Li, D. Gao, and M.K. Reiter

15. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for detect-
ing anomalous program behaviors. In: Proceedings of the 2001 IEEE Symposium on Security
and Privacy, May 2001, pp. 144–155 (2001)

16. Tan, K., Maxion, R.: “Why 6?”– Defining the operational limits of stide, an anomaly-based
intrusion detector. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy,
May 2002, pp. 188–201 (2002)

17. Tan, K., McHugh, J., Killourhy, K.: Hiding intrusions: From the abnormal to the normal and
beyond. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 1–17. Springer, Heidelberg
(2003)

18. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of the 2001
IEEE Symposium on Security and Privacy (May 2001)

19. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security (2002)

20. Wang, Z., Piece, K., Mcfarling, S.: BMAT – a binary matching tool for stale profile propaga-
tion. The Journal of Instruction-Level Parallelism 2(2000) (2000)

A Algorithms

The notation used in the following algorithms follow the convention we stated at the
beginning of Section 4: we use f , v and p to denote a function, node and path, respec-
tively, in cfgP , and we use g, w, and q to denote a function, node and path, respectively,
in cfgQ. We also continue to use ∈ to denote not only set membership, but a path being
in a graph, as well.

Algorithm 1 copy() picks cross edges from the old function execution subgraph,
when we have matches for the two ends of a cross edge and when there is no change that
would potentially affect this edge. We copy the edge into the new function execution
subgraph (line 104).

Algorithm 1. copy()
Input: esgf , 〈isgf , isgg〉, cfsgf , cfsgg

100: for all (v, v′) ∈ esgEf do
101: if ∃w, w′ : v ∼ w and v′ ∼ w′ then
102: esgVcp

g ← esgVcp
g ∪ {w, w′}

103: if ∀p ∈ cfsgf , p
s

� (v, v′) ∃q ∈ isgg : ∀v′′ ∈ p ∃w′′ ∈ q : v′′ ext≈ w′′ then
104: esgEcp

g ← esgEcp
g ∪ {(w, w′)}

Output: esgcp
g

In this implementation of Algorithm 1, we examine all pruned paths that strongly
support the cross edge to be copied to esgg (line 103). When the two functions f and g
are similar, it is more efficient to examine the differences between f and g to discover
the cross edges that should not be copied. When the differences between f and g are
small, this equivalent algorithm is more efficient, in our experience.

Algorithm 2 diff() modifies esgcp
g created in copy(). It analyzes each pruned path

that passes through the unmatched portion of g, and tries to create a part of execution
graph along each such pruned path and connect it to the rest of the execution subgraph.

Automatically Adapting a Trained Anomaly Detector to Software Patches 157

Algorithm 2. diff()
Input: esgcp

g , 〈isgf , isgg〉, cfsgg

200: esgdiff
g ← esgcp

g

201: U ← {w | w ∈ cfsgVg ∧ (w /∈ isgVg ∨ (∃v : v ∼ w ∧ v
ext≈ w))}
202: U ′ ← {w | w ∈ esgVcp

g ∨ (w ∈ U ∧ w is a call node)}
203: for all w ∈ U do
204: for all q = 〈w1, . . . , w|q|〉 ∈ cfsgg : w ∈ q ∧

(∀i ∈ (1, |q|) : wi
= w⇒ wi
∈ U ′) ∧ {w1, w|q|} ⊆ U ′ do
205: esgVdiff

g ← esgVdiff
g ∪ {wi | i ∈ [1, |q|] ∧ wi is a call node}

206: esgEdiff
g ← esgEdiff

g ∪ {(wi, wj) | i, j ∈ [1, |q|] ∧ wi, wj are call nodes ∧ i < j ∧
∀k ∈ (i, j) : wk is not a call node}

Output: esgdiff
g

Algorithm 3. refine()
Input: {esgcp

g }g , H = {esgdiff
g }g , cfgQ

300: while H
= ∅ do
301: pick one esgdiff

g in H

302: esgrfn
g ← esgdiff

g

303: for all w ∈ esgVrfn
g : w is a function call node ∧

w /∈
{

w′ | w′ ∈ esgVcp
g ∧ ∃v′ : v′ ext≈ w′

}
do

304: let g′ be the function called by w
305: if no call cycle from w is audible then
306: esgVrfn

g ← esgVrfn
g \ {w}

307: for all w′, w′′ : (w′, w) ∈ esgErfn
g ∧ (w, w′′) ∈ esgErfn

g do
308: esgErfn

g ← esgErfn
g ∪ {(w′, w′′)}

309: for all w′ : (w, w′) ∈ esgErfn
g do

310: esgErfn
g ← esgErfn

g \ {(w, w′)}
311: for all w′ : (w′, w) ∈ esgErfn

g do
312: esgErfn

g ← esgErfn
g \ {(w′, w)}

313: else if all call cycles from w are audible then
314: if esgdiff

g′ /∈ H then
315: H ← H ∪ {diff(∅, 〈∅, ∅〉, cfsgg′)}
316: else
317: for all w′, w′′ : (w′, w) ∈ esgErfn

g ∧ (w, w′′) ∈ esgErfn
g do

318: esgErfn
g ← esgErfn

g ∪ {(w′, w′′)}
319: if esgdiff

g′ /∈ H then
320: H ← H ∪ {diff(∅, 〈∅, ∅〉, cfsgg′)}
321: H ← H \ {

esgdiff
g

}

Output: {esgrfn
g }g

158 P. Li, D. Gao, and M.K. Reiter

Algorithm 4. connect()
Input: R = {esgrfn

g }g , egEclP , egErtP

400: for all esgrfn
g ∈ R do

401: for all w ∈ esgVrfn
g do

402: let g′ be the function to which w calls

403: if ∃v : v
ext≈ w then

404: for all v′ : (v, v′) ∈ egEclP do

405: egEclQ ← egEclQ ∪ {(w, w′)} where v′ ext≈ w′

406: for all v′′ : (v′′, v) ∈ egErtP do

407: egErtQ ← egErtQ ∪ {(w′′, w)} where v′′ ext≈ w′′

408: else if ∃v : v ∼ w ∧ v
ext≈ w then
409: for all v′ : (v, v′) ∈ egEclP do
410: if ∃w′ ∈ esgVrfn

g′ : v′ ∼ w′ ∧ w′ is an entry call node then
411: egEclQ ← egEclQ ∪ {(w, w′)}
412: else
413: egEclQ ← egEclQ ∪ {(w, w′) | w′ ∈ esgVrfn

g′ is an entry call node}
414: for all v′′ : (v′′, v) ∈ egErtP do
415: if ∃w′′ ∈ esgVrfn

g′ : v′′ ∼ w′′ ∧ w′′ is an exit call node then
416: egErtQ ← egErtQ ∪ {(w′′, w)}
417: else
418: egErtQ ← egErtQ ∪ {(w′′, w) | w′′ ∈ esgVrfn

g′ is an exit call node}
419: else
420: egEclQ ← egEclQ ∪ {(w, w′) | w′ ∈ esgVrfn

g′ is an entry call node}
421: egErtQ ← egErtQ ∪ {(w′′, w) | w′′ ∈ esgVrfn

g′ is an exit call node}
Output: egQ

Algorithm 3 refine() uses the system call behavior of each called function to deter-
mine if any cross edges should be removed and others used in their places. (Analysis in
Algorithm 2 does not account for the behavior of called functions when adding edges.)

Finally, Algorithm 4 connect() tries to copy call edges and return edges from the
execution graph of the old program when we have sufficient matching support (line 405
and 407). Otherwise, we build call and return edges based on static analysis (lines 411,
413, 416, 418, 420, and 421).

B Proofs

Proof of Lemma 1. Since v
ext≈ w, by Definition 1, 2, 3, for a call cycle 〈v, v2, . . ., vn, v〉

in cfgP , there will be a call cycle 〈w, w2, . . . , wn, w〉 in cfgQ such that vi ∼ wi : i ∈
[2, n], and if vi and wi are system call nodes, they must make the same system call, so
these two call cycles result in the same (possibly empty) sequence of system calls. �

Proof of Lemma 2. If (w, w′) is added to esgEcp
g in line 104, then consider the cross

edge (v, v′) ∈ esgEg chosen in line 100. Since (v, v′) ∈ esgEg , there is a full, silent
path p′ = 〈v, . . . , v′〉 in P that was exercised in training. Consider the pruned path p
from v to v′ obtained by collapsing each call cycle in p′ to its function call node. By

Automatically Adapting a Trained Anomaly Detector to Software Patches 159

line 103, there is a corresponding q ∈ isgg on which every node is extended-similar to
its corresponding one in p (and hence p ∈ isgf , as well). Then, by Lemma 1 there is a
full path q′ that strongly supports (w, w′). �

Proof of Lemma 3. If an edge (wi, wj) is added to esgEdiff
g at line 206, then wi and wj

are call nodes with no call node in between them on q. As such, 〈wi, . . . , wj〉 is a full,
silent path that supports (wi, wj). �

Proof of Lemma 4. We first argue that any (w′, w′′) ∈ esgErfn
g at the completion of

refine() is supported by a full path. First, if (w′, w′′) was added to esgEcp
g in line 104

and then copied forward (lines 200, 302), or if (w′, w′′) was added to esgEdiff
g in line 206

and then copied forward (line 302), then (w′, w′′) is supported by a full path per Lem-
mas 2 and 3. Now, suppose that (w′, w′′) was added in line 308 or 318. Then line 305
(respectively, 316) says that some call cycle from w is silent. So, if the cross edges
(w′, w), (w, w′′) were supported by full paths, then the new cross edge (w′, w′′) is also
supported by a full path. It follows by induction, with Lemmas 2–3 providing the base
cases, that any cross edges added in lines 308 and 318 are supported by a full path.

We now show that any such edge is strongly supported. Consider any function call
node w ∈ esgVrfn

g at the completion of refine. If w ∈ esgVcp
g , then it was added in

line 102 because it matched some v (line 101) from which an audible call cycle was

traversed during training of egP . If v
ext≈ w, then by Lemma 1, there is an audible call

cycle from w, as well. If v
ext≈ w or w
∈ esgVcp
g , then w satisfied the condition in

line 303 and, if there is no audible call cycle from w, was removed in lines 306–312. �

Proof of Lemma 5. Consider an edge added in line 405. Since both v and v′ were wit-
nessed during training egP , each is a system call node or has some audible call cycle.

Because v
ext≈ w and v′

ext≈ w′, Lemma 1 implies that each of w and w′ is a system
call node or has some audible call cycle. Moreover, Lemma 1 guarantees that w′ is an
entry call node since v′ is, and so the call edge (w, w′) created at line 405 is strongly
supported by a full path. By similar reasoning, each return edge added at line 407 is
strongly supported by a full path.

In all other cases in which an edge (w, w′) is added to egEclQ (in line 411, 413, or
420), connect() explicitly checks whether w′ is an entry call node for the function g′

called by w (line 402), and so there is a full path supporting (w, w′). Similarly, for each
edge (w′′, w) added to egErtQ, there is a full path supporting this edge. Since all nodes

in each esgVrfn
g are either system call nodes or function call nodes from which there is

an audible call cycle, these edges are strongly supported. �

C Training

In this appendix we briefly explain how we collected the traces for the four case studies,
since training plays an important role in building the execution graphs. For ncompress
and unzip, we tried all operation types and options listed in the online manuals. However,
for tar and ProFTPD, we did not train as exhaustively as we did for the previous two cases
due to the complexity of tar operations and ProFTPD configurations. Nevertheless, for

160 P. Li, D. Gao, and M.K. Reiter

tar and ProFTPD, we did follow guidelines to enhance the repeatability of the training
procedure, as described below.

tar. Following the manual (see http://www.gnu.org/software/tar/
manual/tar.pdf), we trained tar for its three most frequently used operations
(create, list and extract) that are introduced in Chapter 2 and with all options described
in Chapter 3. The directory and files we adopted for applying those operations were the
downloaded source of tar-1.14.

ncompress. We trained ncompress on its own source directory for version 4.2.4, us-
ing all operations and options described in its online manual (see http://linux.
about.com/od/commands/a/blcmdl1_compres.htm),

ProFTPD. We trained ProFTPD configured using the sample configuration file
shipped with the source, and with all commands described in the online
manual (see http://linux.about.com/od/commands/l/blcmdl1_ftp.
htm). We chose to transfer files within the ProFTPD-1.3.0 source directory.

unzip. Similar to the training on ncompress, we followed the unzip online manual
(see http://linux.about.com/od/commands/l/blcmdl1_unzip.htm)
and trained the program on the .zip package of version 5.52.

http://www.gnu.org/software/tar/manual/tar.pdf
http://www.gnu.org/software/tar/manual/tar.pdf
http://linux.about.com/od/commands/a/blcmdl1_compres.htm
http://linux.about.com/od/commands/a/blcmdl1_compres.htm
http://linux.about.com/od/commands/l/blcmdl1_ftp.htm
http://linux.about.com/od/commands/l/blcmdl1_ftp.htm
http://linux.about.com/od/commands/l/blcmdl1_unzip.htm

	Automatically Adapting a Trained Anomaly Detector to Software Patches
	Introduction
	Related Work
	Background and Terminology
	The Conversion Algorithm
	Copying Nodes and Edges When f ~ g
	The Unmatched Portion of g
	Refining esg_g Based on Called Functions
	Connecting Execution Subgraphs

	Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

