
Browser Fingerprinting from Coarse Traffic

Summaries: Techniques and Implications

Ting-Fang Yen1, Xin Huang2, Fabian Monrose2, and Michael K. Reiter2

1 Carnegie Mellon University, Pittsburgh, PA
2 University of North Carolina, Chapel Hill, NC

Abstract. We demonstrate that the browser implementation used at
a host can be passively identified with significant precision and recall,
using only coarse summaries of web traffic to and from that host. Our
techniques utilize connection records containing only the source and des-
tination addresses and ports, packet and byte counts, and the start and
end times of each connection. We additionally provide two applications
of browser identification. First, we show how to extend a network in-
trusion detection system to detect a broader range of malware. Second,
we demonstrate the consequences of web browser identification to the
deanonymization of web sites in flow records that have been anonymized.

Keywords: Application fingerprinting, traffic deanonymization, mal-
ware detection, machine learning.

1 Introduction

On many large networks, the most fine-grained representation of network traffic
that is feasible to collect is a coarse summary of each network flow or connection,
e.g., flow formats as produced by CISCO NetFlow. Such formats typically in-
clude only source and destination addresses and ports, flow start and end times,
and packet and byte counts. Limiting the data collected to this information can
dramatically reduce the reporting bandwidth and storage requirements by or-
ders of magnitude in comparison to full packet capture, and is widely supported
today in commodity routers. Additionally, due to privacy concerns, network ad-
ministrators are generally reluctant to share packet traces containing payload
information, and so flow data presents a good compromise between privacy and
utility. For these reasons, flow logging for traffic volume estimation is now com-
mon practice, and applications of flow logs for network intrusion detection are
increasingly being studied1.

In this paper we examine a novel use of flow logs, namely to infer the appli-
cation software running on hosts whose traffic is represented in a flow log. We
demonstrate this by focusing on a particular software application, namely web
browsers, and show that the browser implementation on a host (e.g., Internet

1 For example, the annual FloCon workshop is devoted to this topic (http://www.
cert.org/flocon/).

U. Flegel and D. Bruschi (Eds.): DIMVA 2009, LNCS 5587, pp. 157–175, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cert.org/flocon/
http://www.cert.org/flocon/

158 T.-F. Yen et al.

Explorer (IE), Firefox, Opera, or Safari) can be determined given its web traffic
in flow records, without access to payload information. More importantly, our
techniques do not rely upon observing web retrievals that are unique to a single
browser platform, e.g., Firefox checking for updates at the Firefox update server.
We eschew such telltale events both because they tend to be relatively rare (e.g.,
Opera checks for updates only once per week) and so might not be represented
in a flow log under consideration, but also because in the case of anonymized
network data, such events may not be evident.

Rather, our techniques infer the browser implementation by applying machine-
learning techniques to the behavioral features of the traffic in which it is involved
when interacting with regular sites, as observed even in coarse flow records. It is
arguably surprising that browser implementations could be discerned in this way,
since a browser’s network behavior is primarily determined by the content and
structure of the pages it accesses. Moreover, classification could be complicated
by various factors that are inherent in traffic, including variations in the users’
browsing behavior or browser configuration, differences in the web page content
being retrieved (both across different websites and in the same website over
time), the client hardware configuration, and the different geographic locations
from which the content is retrieved.

One of the contributions of this work is to evaluate the impact of the above
factors on the classification accuracy of the browser type. We do so on the
basis of web traffic induced by the four most popular browsers, as measured in
retrievals of the main pages of the top 150 websites on the Internet2 over the
course of two months, and on the basis of web retrievals recorded at the border
of the Carnegie Mellon University network. Our results show that even when the
training and testing datasets are from different time frames, to different websites,
and collected at different geographic locations, we were still able to achieve 75%
classification precision and 60% recall (see Section 4).

Our focus of web browsers for this study is partly due to their relative im-
portance among applications today, but is also due to the implications of their
identification. A second contribution of our work is the demonstration of these
implications, in two contexts. First, because of their widespread use, attacks that
exploit vulnerabilities in specific browser implementations have also emerged. In
this context, inferring the type of browser from traffic traces is beneficial for
network intrusion detection systems that identify hosts infected by platform-
dependent malware by observing suspicious traffic from hosts with similar soft-
ware configurations. We describe an application of this in the Tāmd system [1],
which previously classified hosts as similar on the basis of only their operating
systems. Our techniques enable Tāmd to incorporate browser similarity into this
evaluation.

Second, we demonstrate the consequences of web browser identification to the
deanonymization of web sites in flow records that have been anonymized. We
show that the identification of the web browser in flow records enables the appli-
cation of per-browser website classifiers to yield a more precise deanonymization

2 According to Alexa, http://www.alexa.com/

http://www.alexa.com/

Browser Fingerprinting from Coarse Traffic Summaries 159

of the websites represented in the traffic than has previously been achievable
from flow records. Specifically, we show that we can deanonymize websites vis-
ited by a host using a per-browser classifier with up to a 17% improvement in
precision over the case in which we use a similarly trained generic classifier.

To summarize, our contributions include (i) techniques to identify the web
browser represented in flow records of web page accesses; (ii) quantification of
the impact of various factors on browser classification accuracy; (iii) the applica-
tion of this technique to improve network intrusion detection systems; and (iv)
the application of this technique to more accurately deanonymize the websites
represented in anonymized network traffic.

2 Related Work

Many fingerprinting tools are active in nature, probing services with carefully
crafted queries (e.g., those produced by Nmap and Nessus) to detect
implementation-specific characteristics [2,3]. More relevant to our work are pas-
sive fingerprinting techniques that infer the implementations of network appli-
cations or operating systems based solely on observing the traffic they send.
Passive fingerprinting tools and techniques are numerous, though most focus
on identifying TCP/IP implementations and utilize specific information [4,5,6]
that is unavailable in coarse flow records. While passive techniques have more
recently been proposed to identify the application (e.g., peer-to-peer file trans-
fers versus web retrievals) or the class of application (e.g., interactive sessions
versus bulk-data transfers) reflected in packet traces [7,8,9,10,11], few propos-
als (e.g., [12,13,14,15]) have done so from coarse flow records. Moreover, to the
best of our knowledge, none of these proposed techniques attempt to identify
particular implementations of an application (e.g., the browser) from passive
observations of flow records alone.

We explore in this paper the implications of browser identification for the
problem of deanonymizing web sites in anonymized flow records. Several works
have examined the susceptibility of anonymized traffic traces to deanonymiza-
tion, e.g., [16,17,18]. Similar to our work, these approaches re-identify hosts or
websites on the basis of their behaviors as exhibited in the anonymized traffic
traces. However, none of these earlier works have taken into consideration the
fact that on-the-wire behaviors are influenced by the particular implementation
of their protocol peers. As we show later, first classifying the browser involved
in a web retrieval can improve the fidelity with which one can deanonymize
websites present in anonymized network flows.

We also demonstrate how reliable identification of the browser can be used
to detect platform-dependent malware by identifying suspicious traffic coming
from hosts with similar software configurations [1]. Like Tāmd, other network
intrusion-detection systems employ fingerprints of host software platforms when
detecting intrusions, though most generate these fingerprints actively (e.g., [19]).
As far as we are aware, none do so passively on the basis of coarse flow in-
formation, however, and so our techniques might enhance a range of network
intrusion-detection systems when flow information is all that is available.

160 T.-F. Yen et al.

3 Data Sets

The empirical analysis in this paper takes advantage of several sources of data
recorded in the Argus (Audit Record Generation and Utilization System [20])
flow format. Argus is a real time flow monitor based on the RTFM flow model
[21,22]. Argus inspects each packet and groups together those with the same at-
tribute values into one bi-directional record. In particular, TCP flows are iden-
tified by the 5-tuple (source IP address, destination IP address, source port,
destination port, protocol)3, and packets in both directions are summarized into
a single Argus flow record. The browser fingerprinting techniques we propose in
this paper require only that each flow record include the source and destination
IP addresses and ports, the protocol, and the total bytes and packets sent in
each direction. In our data collection, however, we extend this basic flow record
format with additional information — notably, the first 64 bytes of payload on
the connection, and time-to-live (TTL) values in IP packet headers — for the
sole purpose of determining ground truth of certain attributes to use in our eval-
uation. To be clear, this additional information is not used by our classifiers, and
is only taken into consideration when determining the accuracy of our techniques
and for extracting testing instances from live network data.

We use the following data sources in our evaluations:

The CMU dataset. This dataset consists of anonymized traffic from the edge
routers of the wired CMU campus network, which includes one /16 subnet.
We do not consider hosts (that is, IP addresses) from the wireless network,
since those hosts typically have short-lived DHCP-assigned IP addresses, such
that hosts using different browsers may be associated with the same address,
leading to inconsistencies in the data. The rate of the traffic in the CMU dataset
is about 5000 flow records per second, and was collected over six weeks from
October to December 2007. We are interested in reducing this dataset only
to web retrievals for the purposes of this paper, but one of the challenges in
processing live network data is in accurately identifying the boundaries that
separate website retrievals (c.f., [18,23]). In this work, we leverage the first 64
bytes of each flow to identify the start boundary of a website retrieval from a
host internal to the CMU network. More specifically, we define a web retrieval
to begin with a port-80 connection comprised of an HTTP request of the form
“GET / ”, as such a connection would be highly unlikely to be part of another
retrieval. The web retrieval is then comprised of this flow and all subsequent
flows originating from the same host in the next 10 seconds. Our choice of 10
seconds is based on empirical evaluations. The use of the flow payload for parsing
web retrievals can be replaced, for example, by checking for a certain amount
of idle time before a burst of web traffic [16], though we do not explore this
alternative here. Incomplete retrievals, or those with less than three flows, do
not carry enough information about the browser implementation in order for the
3 Since Argus records are bi-directional, the source and destination IP addresses are

swappable in the logic that matches packets to flows. However, the source IP address
in the record is set to the IP address of the host that initiated the connection.

Browser Fingerprinting from Coarse Traffic Summaries 161

classifier to make a well-grounded decision, and so we only consider retrievals
with more than three flows in our analysis.

As mentioned earlier, we examine the 64 bytes of available payload in each
flow to infer the browser involved in the retrieval. Specifically, for the purposes
of ground-truth, a host is identified to be using the Opera browser if the user-
agent string in its HTTP request starts with the string “Opera”. Firefox hosts
are identified by the special “safe-browsing” requests issued by the browser to
check the validity of the website being contacted (https://wiki.mozilla.org/
Phishing_Protection). Due to the 64-byte restriction in the available payload
length, we were not able to reliably identify hosts using IE and Safari in the
CMU data set.

The PlanetLab-Native dataset. In order to perform our evaluations in which
the CMU dataset serves as the testing data, we would like a training dataset
from hosts that are diverse in terms of geography and hardware platform. Planet-
Lab [24] offers a platform that is generally available and that enables the retrieval
of web pages from a wide range of hosts with different hardware configurations
and geographic locations. To collect this dataset, we deployed a program to four-
teen hosts across five PlanetLab networks; this program sequentially retrieved
the front page (i.e., generating “GET / ” HTTP requests) of the top 150 most
popular websites in the U.S. (according to Alexa) repeatedly over the course of
one month. Each web retrieval was comprised of the flows observed in the thirty
seconds since the start of the retrieval. Machines on PlanetLab are required to
run a Linux operating system, so we performed retrievals from Linux-compatible
browsers, namely Firefox and Opera4. Recall that these two browsers are also the
only ones reliably identifiable in the CMU dataset, and so the PlanetLab-Native
dataset can serve well as training data for testing with the CMU dataset.

The PlanetLab-QEMU dataset. In an effort to develop a dataset that in-
cludes traffic for all of the major browsers (IE, Firefox, Opera and Safari), we
utilized a processor emulator, QEMU [25], to run an emulated Windows operat-
ing system on PlanetLab hosts. As in the PlanetLab-Native dataset, we ran an
automated program to sequentially retrieve the front page of the top 150 most
popular websites repeatedly over the course of one month. Each web retrieval
was comprised of the flows observed in the thirty seconds since the start of the
retrieval. We deployed this emulated version of Windows on seven hosts across
three PlanetLab networks5.

Arguably, the PlanetLab datasets may not accurately represent website re-
trievals generated by actual user activities, where frequent visits to a particular
website may result in much of the content being cached. To compensate for this
effect, we set the browser cache sizes to be sufficiently large (400MB) so that
objects would not be evicted from cache.

4 To generate our PlanetLab-Native dataset, we used Firefox 2.0.0.16 and Opera 9.51.
5 To generate our PlanetLab-QEMU dataset, we used IE 7.0, Firefox 2.0.0.13, Opera

9.51 and Safari 3.1.

https://wiki.mozilla.org/Phishing_Protection
https://wiki.mozilla.org/Phishing_Protection

162 T.-F. Yen et al.

Feature Selection

To capture browser-specific characteristics in network traffic, we extracted nine
main features from each website retrieval, listed in Table 1. The mean, standard
deviation, maximum, minimum, median, first and third quartile, inter-quartile
range, and the cumulative sum, are also calculated for each flow statistic. Our
feature selection strategy is based on examining the information gain associated
with each of the statistics for the aforementioned nine main features. More specif-
ically, using the PlanetLab-Native dataset, we select the top statistics whose
cumulative information gain accounts for at least 90% of the overall information
gain. These selected statistics are combined into a feature vector Fr for website
retrieval r. Among the most important features are those associated with the
byte and packet counts in each direction, the cumulative flow duration, and the
retrieval duration. While we have not fully explored the root cause for all of
these differences, they are related to the different orders in which the browsers
retrieve objects on a given page, different numbers of objects retrieved in one
connection, and the numbers of connections that can be active simultaneously.
Of course, while these features play an important role in distinguishing different
browser implementations in our tests, we acknowledge that they may not be
optimal for distinguishing browsers not included in the training data, or future
browser versions that behave fundamentally differently from the ones covered
in this study. That said, the methodology outlined in this paper can be easily
applied to incorporate new browser types into the classifier.

Table 1. Main features extracted for each retrieval

Flow Byte count (in each direction)
Statistics Packet count (in each direction)

Flow duration
Number of flows active simultaneously to this one
Start time minus most closely preceding flow start time

Retrieval Total number of flows
Statistics Cumulative byte count from destination

Cumulative flow duration
Retrieval duration

4 Browser Identification from Flow Records

As discussed in Section 1, our first goal is to develop techniques for inferring the
browser implementation that is participating in recorded flows that represent
web retrievals from that browser. At first, it might seem that distinguishing the
browser should be difficult, since a browser primarily serves to interpret and
render the HTML and other types of content it receives. As such, its behavior
should be primarily dictated by the content it is accessing.

Browser Fingerprinting from Coarse Traffic Summaries 163

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

Flow index

C
um

ul
at

iv
e

nu
m

be
r

of
 p

ac
ke

ts
 s

en
t

IE
Firefox
Opera
Safari

Fig. 1. Number of packets sent from the
browser, accumulated over all flows that
comprise the retrieval. Each retrieval is to
http://www.cnn.com/.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Flow indexC
um

ul
at

iv
e

tim
e

be
tw

ee
n

co
ns

ec
ut

iv
e

flo
w

s
(s

)

IE
Firefox
Opera
Safari

Fig. 2. Cumulative time between
consecutive flows that comprise
the retrieval. Each retrieval is to
http://www.cnn.com/.

An example of why this intuition might not be true is shown in Figure 1,
which shows just one feature (see Table 1) for the four most popular browsers
(IE, Firefox, Opera, and Safari) when each retrieved http://www.cnn.com/ at
nearly the same time and from a host in the University of North Carolina campus
network. The feature pictured is the number of packets sent from the browser,
accumulated over all flows that comprise the retrieval. It is evident that in these
retrievals, Firefox initiates more flows than the other browsers, Opera sends
more packets in earlier flows, and Safari sends fewer packets overall. Figure 2
shows the start time of each flow minus the most closely preceding flow start
time, accumulated over all flows in the retrieval. This feature clearly shows that
certain browsers (e.g., Firefox) try to improve response time by multiplexing the
retrieval of content across substantially more flows than other browsers.

However, using these differences to reliably determine the browser from flow
records is not as straightforward as it may seem, and in particular is not as easy
to automate as Figures 1–2 might suggest. Aside from the content and structure
of the websites, users’ browsing behavior, browser configuration, geographic lo-
cation, and the client hardware configuration can also affect browser network
behavior. As such, in the remainder of this section we test with what precision
and recall an automatic classifier can distinguish among browsers in different
scenarios.

More specifically, the classifier type that we utilize is Support Vector Ma-
chines (SVM)6, which have been widely applied to many supervised learning
problems [27,28]. Given two sets of labeled data, the SVM finds a hyperplane
that separates the data and maximizes the distance to each data set. When
multiple classes are involved, the SVM generates a group of pair-wise binary

6 We utilize the SVM implementation included in the Weka machine learning pack-
age [26].

http://www.cnn.com/

164 T.-F. Yen et al.

classifiers. Each binary classifier gives a vote to a class, and the final classifi-
cation is the class with the highest vote. Loosely speaking, since an instance is
classified depending on which side of the separating hyperplane it lies on, and
not necessarily on how far from the hyperplane it is, there can be cases where
an instance is misclassified if it is located “close” to the separating hyperplane.

To aid in our classification, we modify the aforementioned application of SVMs
to incorporate a notion of “confidence”. The confidence threshold is the minimum
distance of the hyperplane from the testing instance, where only instances with
distance to the hyperplane greater than the confidence threshold are classified.
This allows the classifier to avoid making decisions in ambiguous situations that
would likely result in incorrect classifications.

The general structure of each test described below is that we first train a
browser classifier on one dataset and then classify each retrieval in another
dataset to obtain a guess of the browser used in that retrieval. Each website
retrieval is classified only if its distance to the separating hyperplanes is greater
than the confidence threshold. The classifier then determines the type of browser
used by host h to be the browser classified most often in h’s retrievals. To avoid
errors due to a host having a small number of retrievals, we only consider hosts
with more than thirty classified retrievals in our analysis. Our choice of thirty
retrievals was determined empirically, and provides a good balance between pre-
cision and the number of hosts classified from the dataset.

We denote the classification for host h to be browserguess(h), and the actual
browser used by host h to be browser(h). Note that browser(h) = ⊥ if the ac-
tual browser for h could not be determined, which occurred in the CMU dataset
in some cases; see Section 3. Also, browserguess(h) = ⊥ can result if the clas-
sifier makes no classification for h, since no overwhelming choice arises for h’s
retrievals. The precision and recall across all hosts in the test dataset is defined
as follows:

Precision = Pr[browser(h) = b | browserguess(h) = b �= ⊥]

=
|{h : browserguess(h) = browser(h)}|

|{h : browserguess(h) �= ⊥}|
Recall = Pr[browserguess(h) = b | browser(h) = b �= ⊥]

=
|{h : browserguess(h) = browser(h)}|

|{h : browser(h) �= ⊥}|
Keep in mind that a classifier that makes random guesses, i.e., classifying each
host as a particular browser with 1

n probability, where n is the number of
browsers, and a network where the browsers are distributed evenly among the
hosts, the precision can only be expected to be 1

n2 .

4.1 Tests on PlanetLab-QEMU Dataset

In an ideal web browsing scenario, only one website retrieval is taking place at
any time, such that boundaries between consecutive retrievals are clearly delin-
eated, and each webpage is allowed to fully download before the next one. While

Browser Fingerprinting from Coarse Traffic Summaries 165

this idealistic scenario will be compounded by many other issues in practice, we
argue that tests in a controlled environment are valuable in that they enable us
to better understand what factors influence classification the most.

We evaluate the results of browser identification under this setting using the
PlanetLab-QEMU dataset. To simulate multiple hosts, each running a specific
browser implementation, data from each host is separated by the browser that
generated the traffic. This traffic pertaining to a specific browser from one host
serves as testing data, while the classifier is trained on traffic from all other
hosts, for each experiment. Since in some applications it will not be possible to
obtain retrievals from every website that may be present in the testing data, we
set the training data to be traffic from the top 100 websites, and use traffic from
the remaining 50 websites (from top 100 to 150) for testing.

The precision and recall are shown in Figure 3, for confidence thresholds set
to one of {0.35, 0.65, 0.95, 1.15, 1.30, 1.50}. The rise in precision is likely due to
incorrect classifications being filtered out as a result of the increase in confidence
threshold, to the point that most of a host’s classified retrievals are then correct.
On the other hand, recall decreases with the confidence since more hosts are
unclassified (i.e., {h : browserguess(h) = ⊥}). In all cases the correct browser
can be identified with at least 71% precision and recall, and the precision grows
to 100% with recall at 43% as the confidence threshold is increased. These results
show that browser implementations exhibit different traffic behaviors that can
be accurately identified even in coarse flow records.

0.5 1 1.5
40

50

60

70

80

90

100

Confidence Threshold

P
er

ce
nt

ag
e

(%
)

Precision
Recall

Fig. 3. Precision and recall for browser
classification on the PlanetLab-QEMU
dataset

0.5 1 1.5
45

50

55

60

65

70

75

Confidence Threshold

P
er

ce
nt

ag
e

(%
)

Precision
Recall

Fig. 4. Precision and recall for browser
classification on the CMU dataset
(Train: PlanetLab-Native, Test: CMU)

4.2 Tests on CMU Dataset

Unlike the controlled setting of the PlanetLab experiments, the CMU dataset
provides a setting for evaluating our techniques on traffic recorded in the real
world. That said, we remind the reader that for purposes of ground truth, we

166 T.-F. Yen et al.

could only reliably identify hosts using Firefox and Opera in the CMU dataset,
and consequently, our analysis here is restricted to these cases. Out of those
hosts, the vast majority of them used Firefox, and to not bias our results to that
of a single-browser evaluation, we randomly select Firefox hosts in the CMU
dataset but ensure that we have an equal number of Firefox and Opera hosts.
The PlanetLab-Native dataset is used in this case for training a browser classifier.

Figure 4 shows the precision and recall for the CMU dataset, for confidence
thresholds set to one of {0.35, 0.65, 0.95, 1.15, 1.30, 1.50}. The precision gen-
erally increases slightly with the confidence threshold, as instances that were
incorrectly classified are now filtered out (because they were too close to the
separating hyperplane), while recall decreases as a higher threshold leads to
more unclassified instances (i.e., {h : browserguess(h) = ⊥}). As the confidence
threshold increases, some hosts whose majority of retrievals were correctly clas-
sified now have those correct classifications filtered out, so that these hosts are
left with more misclassified retrievals that cause the browser to be identified
incorrectly; this results in a decrease in precision at the end of the curve. The
peak in precision is 74.56%, when the confidence threshold is 1.30. We note that
in this test (where the number of Firefox and Opera hosts are balanced) our
precision is substantially greater than that of random guessing (i.e., 25%).

5 Applications to Network Intrusion Detection

Tāmd (Traffic Aggregation for Malware Detection) [1] is an intrusion detection
system that passively observes traffic passing through an enterprise network
border to identify internal hosts infected by stealthy malware, such as botnets
and spyware. Tāmd exploits the observation that, however subtle, stealthy mal-
ware still needs to communicate to exfiltrate data to the attacker, to receive
commands, or to carry out the commands. Moreover, since malware rarely in-
filtrates only a single host in a large enterprise, these communications should
emerge from multiple hosts within coarse temporal proximity to one another
(e.g., within an hour of one another). Based on these observations, Tāmd func-
tions by finding new communication “aggregates” involving multiple internal
hosts, i.e., communication flows that share common characteristics.

One of the characteristics on which Tāmd aggregates traffic is the platform
of the internal hosts involved in sending or receiving that traffic, which is useful
for identifying platform-dependent malware infections. That is, suspicious traf-
fic common to a collection of hosts becomes even more suspicious if the hosts
share a common software platform. Previously, forming platform aggregates in
Tāmd was based solely on the hosts’ operating systems. As such, malware that is
application-dependent, such as malware that exploits Firefox only7, might span
multiple aggregates formed by O/S fingerprinting alone (if the exploit works on

7 Examples of such application-dependent malware are the Infostealer.Snifula tro-
jan that exploits Mozilla Firefox, the MSIL.Yakizake worm that exploits Mozilla
Thunderbird, the Imspam trojan that sends spam through MSN or AOL Messenger,
among others.

Browser Fingerprinting from Coarse Traffic Summaries 167

Malware Homogeneity threshold
traces [1] 70% 80% 90%

Bagle 0.25 (±4.95) 0.09 (±3.05) 0.09 (±3.05)
IRCbot 0.05 (±2.18) 0.01 (±0.99) 0.01 (±0.99)
Mybot 0.03 (±1.39) 0.00 (±0.00) 0.00 (±0.00)
SDbot 0.06 (±1.94) 0.00 (±0.00) 0.00 (±0.00)
Spybot 0.02 (±1.40) 0.00 (±0.00) 0.00 (±0.00)

HTTP bot 0.03 (±1.39) 0.00 (±0.00) 0.00 (±0.00)
Large

IRC bot 0.19 (±3.05) 0.06 (±2.19) 0.06 (±2.19)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Homogeneity Threshold (%)

N
um

be
r

of
 a

gg
re

ga
te

s

Bagle
IRCBot
MyBot
SDBot
SpyBot
HTTP Bot
Large IRC Bot

Fig. 5. Average number of aggregates per hour (± standard deviation) due to browser
similarity, in addition to the identified malware cluster and to O/S aggregates. For
descriptions of the malware, please refer to [1].

multiple operating systems) or might represent a small subset of an O/S ag-
gregate (e.g., all Windows machines). In either case, the mismatch between the
software fingerprinted (the O/S) and the software exploited (the browser) can
cause platform aggregation to fail to detect an exploit.

Here we consider the impact of reliable browser fingerprinting on Tāmd.
Specifically, we modified its platform aggregation function so that a platform
aggregate is identified when the largest fraction of hosts sharing the same O/S
or the same web browser is above a given threshold. In doing so, we are able to
detect both platform-dependent and browser-dependent malware, while incur-
ring only slight overhead.

To quantify this overhead, we followed the same experiments that were per-
formed in that earlier work [1], which involved seven types of O/S-specific (but not
browser-specific) malware. Briefly, the experiment consisted of overlaying record-
ings of malware traffic onto the CMU dataset, which was done by assigning mal-
ware traffic to originate from randomly selected internal hosts. More specifically,
we assigned malware traffic to random internal hosts running the O/S that the
malware exploits, as determined by the time-to-live (TTL) field in packets.

This combined data, consisting of the CMU dataset overlaid with malware
traffic, is then given to Tāmd — configured to identify common host platforms
based on their O/S or browsers, but otherwise configured identically as in [1] —
in hourly batches, where the goal is to identify the single aggregate consisting of
the malware traffic. The same experiment is repeated for each hour over three
weeks in November and December 2007, for each of the seven different malware.

Figure 5 shows the number of browser aggregates, in addition to the mal-
ware aggregate and other O/S aggregates, that is identified by this new version
of Tāmd that incorporates our browser classifier from Section 4, for different
thresholds on the homogeneity of the platform aggregate, for each malware ex-
periment. When the threshold is set to 90% (as it was for the original O/S-based
platform aggregation in [1]), meaning that at least 90% of the hosts in the aggre-
gate are required to share a common browser (which cannot be ⊥), the number

168 T.-F. Yen et al.

of additional aggregates reported due to browser similarity on average per hour is
0.0229. This shows that incorporating browser fingerprinting into Tāmd induces
a limited amount of additional cost, while giving Tāmd the ability to detect a
wider range of malware, i.e., browser-dependent malware.

Other intrusion detection systems that operate on flow records (e.g.,
[29,30,31,32]) and approaches for profiling network traffic (e.g., [7,33,34]), can
also potentially benefit from passive application fingerprinting. We plan to in-
vestigate this in future research.

6 Applications to Traffic Deanonymization

Website deanonymization techniques attempt to infer the actual web sites
contacted in anonymized traffic traces, without examining the contents of the
communication. In order to retain the utility of these datasets for networking re-
search, IP addresses are typically anonymized in a consistent fashion, i.e., so that
the same real IP address is mapped consistently to the same pseudonym in the
anonymized dataset. This enables the behaviors of the anonymous web servers to
be examined, however, which can sometimes lead to their deanonymization. As a
trivial example, the larger number of bytes typically transmitted from the main
page of cnn.com would enable it to be differentiated from google.com. Moreover,
since a page retrieval can involve connections to multiple physical servers (e.g.,
image servers or content distribution networks), Coull et al. [18] also found that
the sequential order of the servers contacted to retrieve objects on a webpage
can enable websites to be differentiated. While previous works placed emphasis
on observing traffic behaviors of the websites, to our knowledge, no study has
accounted for this behavior as influenced by the particular implementation of
their protocol peers, i.e., the browser. In what follows, we show that classifying
the browser first can yield a more precise deanonymization of websites.

6.1 Feature Selection

As described in Section 3, we extract nine main flow features from each web
page retrieval. While previously these features were calculated over all flows in a
retrieval, in the case of website classification, we calculate these features for all
flows per physical server, for each of the first five servers contacted. The features
are then arranged according to the order that the server was contacted, i.e., for
retrieval r, the feature vector is {Fr1, ..., Fr5}, where Frj refers to the features
derived from the flows to physical server j, for website retrieval r. Breaking down
the retrieval features by physical server provides a finer-grained representation
of the retrieval and an order to the physical servers, both of which have been
utilized in previous website deanonymization efforts (e.g., [18]). Furthermore, to
eliminate redundancies and reduce dimensionality, we selected a subset of those
features that are most consistent across datasets, specifically by computing the
correlation of each feature from one day of retrievals to http://www.cnn.com/ in
the PlanetLab-Native dataset to one day of such retrievals in the CMU dataset.

cnn.com
google.com
http://www.cnn.com/

Browser Fingerprinting from Coarse Traffic Summaries 169

This yielded nine features: the byte and packet counts to/from the first server
contacted, and the number of flows to each of the first five servers contacted.

We focus on deanonymizing those websites that are “stable”, as judged by
their standard deviation for the total number of flows, bytes, and packets, and
also those websites that are complex enough, as judged by the total number of
flows. It has been previously established [18] that websites with a high variability
in their contents (e.g., espn.com) or those that are too simple (e.g., google.com,
orkut.com) will typically not be identified accurately. Specifically, we determine
a website as “stable” if the average number of flows from the first five servers
contacted is greater than one, and the byte and packet counts to/from the first
server has a small standard deviation, i.e., within twice the average value. In this
way, we narrow down the list of websites that we will attempt to deanonymize
in traffic traces to the front pages of 52 of the top 100 websites according to
alexa.com.

6.2 Website Classifier

We build our website classifiers using Bayesian belief networks, which have been
shown to yield good results [18]. Given a test instance, the classifier outputs a
probability for each class, which is the likelihood of the instance belonging to
that class, according to the model built from training data. The class with the
highest probability is taken as the classification of the test instance. This may not
always yield optimal classification, for example, in cases where the probabilities
for several classes are close to each other, or when all of the probabilities are
small.

To establish some notion of “confidence” on the classification, one way is to let
the classifier make a decision only from classes with probabilities greater than a
cutoff value, and only when there exist probabilities above the cutoff. Although
this has limited impact when multiple classes have similar probabilities, it allows
the classifier to provide answers based on more confident results, avoiding cases
where uncertainty (small probabilities) are likely to cause incorrect classifica-
tions. The higher the cutoff parameter, the higher the probability of the test
instance belonging to its class must be.

For the PlanetLab-QEMU dataset, we group the data by the browser that
generated the traffic, as well as a combined group with traffic from all four
browsers. This allows us to build four per-browser website classifiers (IE, Firefox,
Opera, Safari), and one generic website classifier. The former are trained on
traffic from a single browser type, while the latter is trained on combined browser
traffic. In the following, we quantify the benefits of first classifying the browser
in website deanonymization by applying these two types of classifier models
separately and comparing their results. When testing with the CMU dataset,
the browser type for each host is determined by our browser classifier developed
in Section 4, using a confidence threshold set at 1.30. The per-browser website
classifier is then applied to a website retrieval based on the browser determined
for the host that performed the retrieval.

espn.com
google.com
orkut.com
alexa.com

170 T.-F. Yen et al.

For each testing instance, i.e., each website retrieval, the classifier returns the
class with the highest probability above the cutoff. If no probability larger than
the cutoff exists, the instance is unclassified. Let the classification for retrieval
r be websiteguess(r), and its actual website be website(r), where website(r) = ⊥
if the ground-truth website for retrieval r cannot be determined in the dataset
(which only happens in the case of the CMU dataset). Then, the precision and
recall are

Precision = Pr[website(r) = s | websiteguess(r) = s �= ⊥]

=
|{r : websiteguess(r) = website(r)}|

|{r : websiteguess(r) �= ⊥}|
Recall = Pr[websiteguess(r) = s | website(r) = s �= ⊥]

=
|{r : websiteguess(r) = website(r)}|

|{r : website(r) �= ⊥}|
In the following tests, we only report results for cutoff values where the classifier
is able to make at least thirty classifications. This is to avoid cases where not
enough classifications can be made for the results to be representative.

6.3 Tests on PlanetLab-QEMU Dataset

Similar to the experiments described in Section 4.1, we first evaluate the results
of website deanonymization under an ideal setting using the PlanetLab-QEMU
dataset. In each experiment, the testing data consists of retrievals from one
host, while the training data is from all other hosts. We apply each per-browser
website classifier to retrievals determined to have been performed with that
browser by our classifier in Section 4, to generate the per-browser results. We
generate results for the generic website classifier by applying that classifier to all
retrievals. Our tests are “closed-world”, in the sense that only retrievals of the
52 selected websites (see Section 6.1) are tested.

Figure 6 and 7 show the precision and recall from the per-browser and generic
website classifiers. Cutoff values range from 0.01 to 0.99, in steps of 0.01. The
precision increases with the cutoff, but the recall decreases since some instances
are not classified at higher cutoff values. The drops in precision are due to cases
where correct classifications that do not have a high probability are filtered out
by the cutoff value. The generic classifier was not able to classify more than
thirty retrievals after the cutoff reaches 0.78, so we do not plot its results for
cutoff values greater than 0.78. To present an alternate view depicting our overall
accuracy, let Precision(c) and Recall(c) be the precision and recall, respectively,
when the cutoff is set to be c. We then define the precision “integral”, over the
range [cmin, cmax], to be

cmax∑

c=cmin

Precision(c)

and we define the recall “integral” similarly. cmin and cmax are defined as the
endpoints of the range where both the per-browser and generic classifiers were

Browser Fingerprinting from Coarse Traffic Summaries 171

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

Cutoff

P
re

ci
si

on
 (

%
)

Per−browser
Generic

Fig. 6. Website classification precision on
the PlanetLab-QEMU dataset

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Cutoff

R
ec

al
l (

%
)

Per−browser
Generic

Fig. 7. Website classification recall on
the PlanetLab-QEMU dataset

able to make enough classifications. The integral is a measure of how the classi-
fier performs across different cutoff values, in that larger integrals show higher
precision (or recall) overall. The integral of precision and recall over [0.01, 0.78],
in steps of 0.01, are shown in Table 2, with the generic case serving as baseline.
The maximum difference in precision for per-browser and generic classifiers is
15.61%. While website deanonymization remains a challenging problem in prac-
tice, we note that the improvement in recall between per-browser and generic
classifiers remains significant, across all cutoff values, where the average differ-
ence is 14.01% and the maximum difference is 16.11%.

Table 2. Comparing the precision and recall integrals on website classification on the
PlanetLab-QEMU dataset

Classifier Precision Recall

Generic 26.16 5.34
Per-browser +6.01 +10.93

6.4 Tests on CMU Dataset

To evaluate the impact of first classifying the browser on website deanonymiza-
tion in a more realistic setting, we turn to the CMU dataset, with the PlanetLab-
Native dataset serving as training data. Since the IP addresses are anonymized
in the CMU data, we have no direct knowledge of the websites contacted. So,
to build ground truth for the classification, we examined information available
in the first 64 bytes of each flow payload. Specifically, the “Host” field in HTTP
requests are extracted to identify the domain name of the websites. Of the 52
websites targeted for identification, we found only 23 in the CMU dataset in this
way, and so used only these retrievals for testing (while the training data still

172 T.-F. Yen et al.

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

45

50

55

Cutoff

P
re

ci
si

on
 (

%
)

Per−browser
Per−browser (perfect)
Generic

Fig. 8. Website classification precision on
the CMU dataset (Train: PlanetLab-Native,
Test: CMU)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Cutoff

R
ec

al
l (

%
)

Per−browser
Per−browser (perfect)
Generic

Fig. 9. Website classification recall on
the CMU dataset (Train: PlanetLab-
Native, Test: CMU)

Table 3. The integral of precision and recall on website classification in the CMU
dataset (Train: PlanetLab-Native, Test: CMU)

Classifier Precision Recall

Generic 20.53 11.30
Per-browser +2.73 +1.07
Per-browser +7.93 +4.38

(perfect)

consists of traffic to the 52 websites). Only retrievals from hosts whose ground-
truth browser type could be determined were used (see Section 4).

For each retrieval to one of the chosen 52 websites (see Section 6.1) in the
CMU dataset from a Firefox or Opera browser, we classify it using both the ap-
propriate per-browser classifier (i.e., for the browser identified using the classifier
of Section 4) and the generic website classifier, built using the PlanetLab-Native
dataset. The results are shown in Figures 8 and 9, for the two cases when (i)
our browser classifier from Section 4 is applied first, and (ii) when we assume
perfect browser classification, i.e., the per-browser website classifier applied to a
website retrieval is based on the actual browser that performed that retrieval, as
opposed to the browser determined by our classifier. When our browser classifier
is applied, the difference in precision between the per-browser and generic clas-
sifiers can reach close to 17% at high cutoff values. Table 3 shows the integral
of precision and recall over cutoff values from 0.01 to 0.99, in steps of 0.01. The
results in Figures 8 and 9 are calculated across all 52 websites.

However, for an attacker who is only interested in deanonymizing certain web-
sites, such as those listed in Table 4, a classifier that is able to classify those web-
sites well would be more useful than a general website classifier. For example, the
per-browser classifier has a 84.62% precision for dailymotion.com, a 27.57% im-
provement to the generic classifier. These results point out that in live network

dailymotion.com

Browser Fingerprinting from Coarse Traffic Summaries 173

Table 4. The precision and recall for the per-browser classifier on some of the websites
in the CMU dataset, when our browser classifier from Section 4 is applied first (Train:
PlanetLab-Native, Test: CMU)

Website Precision (%) Recall (%)
Per-browser Generic Per-browser Generic

adobe.com 17.59 0.00 9.55 0.00
aol.com 9.15 8.03 5.67 4.73

dailymotion.com 84.62 57.05 50.00 44.95
myspace.com 19.32 18.57 12.40 11.65
nytimes.com 21.15 16.26 12.26 9.13

wordpress.com 13.98 0.00 7.15 0.00
yahoo.com 45.52 29.60 29.81 19.78

traffic, classifying the browser first can bring a non-trivial advantage to website
deanonymization.

7 Conclusion

In this paper we have explored the passive identification of browser implemen-
tations from coarse flow records. We have shown that browser implementations
can be identified with substantial precision and recall, even using flow records
from real traffic recorded at a different time and on a different network from the
traffic used to train the classifier.

We have also demonstrated two applications of browser fingerprinting. In the
first, we demonstrated how browser identification can be used to improve a
network intrusion-detection system called Tāmd, by permitting the intrusion-
detection system to identify aggregates of hosts on the network that share the
same browser. Suspicious traffic is even more suspect when coming from such an
aggregate, since this may indicate that these hosts have succumbed to a browser-
specific exploit. Our browser fingerprinting techniques would enable Tāmd to
detect more types of malware, i.e., those that are browser-dependent, while in-
curring slight overhead.

The second application of browser fingerprinting that we explored is deanon-
ymization of network traffic. Our techniques assume that the traffic is anonymized
using consistent pseudonyms, which is a common practice today; this enables traf-
fic trace deanonymization by examining the trace for the retrieval characteristics
of websites of interest. We demonstrated that improvements in deanonymizing re-
trieved websites can be achieved by first classifying the browser in use.

References

1. Yen, T.-F., Reiter, M.K.: Traffic aggregation for malware detection. In: Zamboni,
D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 207–227. Springer, Heidelberg (2008)

2. Comer, D.E., Lin, J.C.: Probing TCP implementations. In: Proceedings of the
USENIX Summer 1994 Technical Conference (June 1994)

adobe.com
aol.com
dailymotion.com
myspace.com
nytimes.com
wordpress.com
yahoo.com

174 T.-F. Yen et al.

3. Padhye, J., Floyd, S.: On inferring TCP behavior. In: Proceedings of ACM SIG-
COMM, August 2001, pp. 287–298 (2001)

4. Paxson, V.: Automated packet trace analysis of TCP implementations. In: Pro-
ceedings of ACM SIGCOMM, pp. 167–179 (1997)

5. Lippmann, R., Fried, D., Piwowarski, K., Streilein, W.: Passive operating system
identification from TCP/IP packet headers. In: Proceedings of the ICDM Workshop
on Data Mining for Computer Security (2003)

6. Beverly, R.: A robust classifier for passive TCP/IP fingerprinting. In: Barakat, C.,
Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 158–167. Springer, Heidelberg
(2004)

7. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classifi-
cation in the dark. In: Proceedings of ACM SIGCOMM, August 2005, pp. 229–240
(2005)

8. Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic clas-
sification on the fly. ACM SIGCOMM Computer Communication Review 36(2),
23–26 (2006)

9. Hernandez-Campos, F., Nobel, A.B., Smith, F.D., Jeffay, K.: Understanding pat-
terns of TCP connection usage with statistical clustering. In: Proceedings of 13th
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, September 2005, pp. 35–44 (2005)

10. Roughan, M., Sen, S., Spatscheck, O., Duffield, N.: Class-of-service mapping for
QoS: A statistical signature-based approach to IP traffic classification. In: Proceed-
ings of the 4th ACM SIGCOMM conference on Internet measurement, October
2004, pp. 135–148 (2004)

11. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through
simple statistical fingerprinting. ACM SIGCOMM Computer Communication Re-
view 37(1) (2007)

12. Collins, M.P., Reiter, M.K.: Finding peer-to-peer file-sharing using coarse network
behaviors. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 1–17. Springer, Heidelberg (2006)

13. Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification and appli-
cation identification using machine learning. In: Proceedings of the 2005 IEEE
Conference on Local Computer Networks (2005)

14. Moore, A.W., Papagiannaki, K.: Toward the accurate identification of network
applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54. Springer,
Heidelberg (2005)

15. Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and discriminating
between web and peer-to-peer traffic in the network core. In: Proceedings of the
16th International World Wide Web Conference (May 2007)

16. Koukis, D., Antonatos, S., Anagnostakis, K.: On the privacy risks of publishing
anonymized IP network traces. In: Proceedings of Communications and Multimedia
Security, October 2006, pp. 22–32 (2006)

17. Coull, S.E., Wright, C.V., Monrose, F., Collins, M.P., Reiter, M.K.: Playing devil’s
advocate: Inferring sensitive information from anonymized network traces. In: Pro-
ceedings of the 2007 ISOC Network and Distributed System Security Symposium
(February 2007)

18. Coull, S.E., Collins, M.P., Wright, C.V., Monrose, F., Reiter, M.K.: On web brows-
ing privacy in anonymized NetFlows. In: Proceedings of the 16th USENIX Security
Symposium, August 2007, pp. 339–352 (2007)

Browser Fingerprinting from Coarse Traffic Summaries 175

19. Shankar, U., Paxson, V.: Active mapping: Resisting NIDS evasion without altering
traffic. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy (May
2003)

20. QoSient LLC: Argus - auditing network activity, http://qosient.com/argus/
21. Brownlee, N., Mills, C., Ruth, G.: Traffic flow measurement: Architecture. RFC

2722 (1999)
22. Handelman, S., Stibler, S., Brownlee, N., Ruth, G.: New attributes for traffic flow

measurement. RFC 2724 (1999)
23. Spiliopoulou, M., Mobasher, B., Berendt, B.: A framework for the evaluation of

session reconstruction heuristics in web-usage analysis. INFORMS Journal on Com-
puting 15(2) (2003)

24. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: PlanetLab: an overlay testbed for broad-coverage services. ACM SIG-
COMM Computer Communication Review 33(3), 3–12 (2003)

25. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track (2005)

26. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco (2005)

27. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398. Springer, Heidelberg (1998)

28. Osuna, E., Freund, R., Girosit, F.: Training support vector machines: an applica-
tion to face detection. In: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (June 1997)

29. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale botnet detection and charac-
terization. In: Proceedings of the 1st Workshop on Hot Topics in Understanding
Botnets (April 2007)

30. Gates, C., Becknel, B.: Host anomalies from network data. In: Proceedings of the
6th IEEE Systems, Man and Cybernetics Information Assurance Workshop (June
2005)

31. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Proceedings
of the USENIX Security Symposium (August 2008)

32. Collins, M.P., Reiter, M.K.: Hit-list worm detection and bot identification in large
networks using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.)
RAID 2007. LNCS, vol. 4637, pp. 276–295. Springer, Heidelberg (2007)

33. Xu, K., Zhang, Z., Bhattacharyya, S.: Profiling internet backbone traffic: Behavior
models and applications. In: Proceedings of ACM SIGCOMM (August 2005)

34. Aiello, W., Kalmanek, C., McDaniel, P., Sen, S., Spatscheck, O., Van der Merwe,
J.E.: Analysis of communities of interest in data networks. In: Dovrolis, C. (ed.)
PAM 2005. LNCS, vol. 3431, pp. 83–96. Springer, Heidelberg (2005)

http://qosient.com/argus/

	Browser Fingerprinting from Coarse Traffic Summaries: Techniques and Implications
	Introduction
	Related Work
	Data Sets
	Browser Identification from Flow Records
	Tests on PlanetLab-QEMU Dataset
	Tests on CMU Dataset

	Applications to Network Intrusion Detection
	Applications to Traffic Deanonymization
	Feature Selection
	Website Classifier
	Tests on PlanetLab-QEMU Dataset
	Tests on CMU Dataset

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

