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Abstract—We present Quiver, a system that coordinates service proxies placed at the “edge” of the Internet to serve distributed clients

accessing a service involving mutable objects. Quiver enables these proxies to perform consistent accesses to shared objects by

migrating the objects to proxies performing operations on those objects. These migrations dramatically improve performance when

operations involving an object exhibit geographic locality, since migrating this object into the vicinity of proxies hosting these operations

will benefit all such operations. Other workloads benefit from Quiver, dispersing the computation load across the proxies and saving the

costs of sending operation parameters over the wide area when these are large. Quiver also supports optimizations for single-object

reads that do not involve migrating the object. We detail the protocols for implementing object operations and for accommodating the

addition, involuntary disconnection, and voluntary departure of proxies. We also evaluate Quiver through experiments on PlanetLab.

Finally, we discuss the use of Quiver to build an e-commerce application and a distributed network traffic modeling service.

Index Terms—Edge services, migration, serializability.

Ç

1 INTRODUCTION

DYNAMIC Web services are examples of Internet-scale
applications that utilize mutable objects. Following the

success of content distribution networks (CDNs) for static
content (see [1] for a survey), numerous recent proposals
have attempted to scale dynamic Web services by employ-
ing service proxies at the “edge” of the Internet (for
example, see [2], [3], and the references therein). This
approach has the potential of both distributing the opera-
tion processing load among the proxies and enabling clients
to access the service by communicating with nearby proxies
rather than a potentially distant centralized server.

A major challenge in this architecture, however, is to
enable the (globally distributed) service proxies to efficiently
access the mutable service objects for servicing client
operations while ensuring strong consistency semantics for
these object accesses. Consistent object sharing among the
proxies enables them to export the same consistent view of the
service to the clients in turn. However, achieving even just
serializability [4], [5] for operations executed at these proxies
using standard replication approaches (see Section 2)
requires that a proxy involve either a centralized server or
other (possibly distant) proxies on the critical path of each
update operation. Strict serializability [4] via such techniques
requires wide-area interactions for reads as well.

Here, we describe a system called Quiver that demon-
strates an alternative approach to achieving consistent access
to objects by edge proxies while retaining the proxies’ load-
dispersing and latency-reducing effects. Quiver organizes the

proxies in a tree rooted at the server. The tree is structured so
that geographically close proxies reside close to one another
in the tree. To perform certain types of operations, a proxy
uses the tree to migrate each involved object to itself and then
performs the operation locally. Although this incurs the
expense of object migration for some operations and is thus
reasonable only if objects are not too large and operations
involve only a few, it also promises performance benefits for
two types of applications.

The first type is applications in which operations exhibit
geographic locality: once an object has been migrated to a
proxy, other operations (including updates) at that proxy
involving this object can be performed locally in contrast to
standard replication techniques. Even operations at nearby
proxies benefit, since the object is already close and need
not be migrated far. Our use of a tree, through which
migrations occur, is the key to realizing this benefit. Given
the diurnal pattern of application activity that is synchro-
nized with the business day and the fact that the business
day occupies different absolute times around the world, we
believe that exploiting workload locality through migration
can play an important role in optimizing global applica-
tions. The second type of applications that can benefit from
Quiver are those for which migrating service objects to
proxies and performing operations there is more efficient
than performing all operations at a centralized server. One
example is an application that involves large amounts of
data that would be expensive to send to the server but for
which objects remain small and, thus, can be migrated.
Another is one for which processing load would overload a
server, but because the operations involve diverse objects
and are performed at different proxies, the load is naturally
dispersed across proxies. We confirm the benefits for such
applications via tests on PlanetLab.

Perhaps, the most obvious drawback of object migration
is increased sensitivity to proxy disconnections: if a proxy
disconnects while holding an object because the proxy fails,

878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008

. M.K. Reiter is with the Department of Computer Science, University of
North Carolina at Chapel Hill, Campus Box 3175, Sitterson Hall, Chapel
Hill, NC 27599-3175. E-mail: reiter@cs.unc.edu.

. A. Samar is with Goldman Sachs International, 120 Fleet Street, London
E14 3TU. E-mail: asad.samar@gs.com.

Manuscript received 14 Nov. 2006; revised 21 July 2007; accepted 18 Sept.
2007; published online 12 Oct. 2007.
Recommended for acceptance by G. Agrawal.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0362-1106.
Digital Object Identifier no. 10.1109/TPDS.2007.70790.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



it can no longer communicate with its parent, or its parent
disconnects, then operations that it recently applied to the
object may be lost. In Quiver, however, the connected
component of the tree containing the server1 can efficiently
regenerate the last version of the object seen in that
component when such a disconnection is detected. Thus,
the server never loses control of the service objects, and
once an object reaches a portion of the tree that stays
connected (except for voluntary departures), all operations
that it reflects become durable. Alternatively, an operation
can be forced to be durable when performed but at
additional cost.

For these durable operations, Quiver can implement
either serializability [4], [5] or strict serializability [4]. The
only difference in the two modes is in how single-object
reads are handled. In either case, single-object reads do not
require object migration, and if merely serializability
suffices, then a proxy can perform a single-object read
locally. Moreover, recall that strict serializability implies
linearizability [7] for applications that employ only single-
object operations. This case characterizes the main applica-
tions in which we are interested, and so, we will focus on
this case in our empirical evaluations.

This paper proceeds as follows: We discuss related work
in Section 2 and our goals in Section 3. We present our basic
object management protocol in Section 4, how we use it to
implement operations in Section 5, and how we manage the
tree of proxies in Section 6. We evaluate the performance of
Quiver in Section 7 and discuss the applications that we
have built using Quiver in Section 8.

2 RELATED WORK

Providing consistent and scalable access to shared objects is
a topic with a rich research history. Approaches (of which
we are aware) that do not use migration can be placed on a
spectrum. On one end, all updates to an object are
performed at one “primary” location. Updates or cache
invalidations are then pushed out to (read-only) cached
copies (for example, [8], [9], [10], [11], [12], [13], [14],
and [15]). On the other end, objects are replicated across a
set of proxies. Typically, any proxy can service updates or
reads, and proxies are synchronized by propagating
updates to all proxies via, for example, group multicast
(for example, [16]) or epidemic (for example, [17]) algo-
rithms. This approach is often referred to as the “update-
anywhere” approach. Between these extremes lie other
solutions. For example, in the update-anywhere scenario,
synchronizing updates with only a quorum of proxies (for
example, [18] employs quorums in the context of edge
services) reduces the communication overhead. In the
primary-site approach, using the primary only to order
operations while processing the operations on other proxies
reduces load on the primary [19], [20].

Our approach departs from these paradigms by migrat-
ing objects to proxies for use in updates. As discussed in
Section 1, this enables processing load to be better dispersed
across proxies in comparison to most primary-site-based

approaches. It also provides communication savings in
comparison to all the approaches above in cases where
updates exhibit geographic locality. This is particularly true
if strict serializability is required, since to implement this
property with the above approaches, wide-area crossings
occur on the critical path of all operations.

Migration is a staple of distributed computing. Work in
this area is too voluminous to cover thoroughly here,
though [21] and [22], for example, offer useful surveys.
Many previous studies in object migration have drawn
from motivation similar to ours, namely, colocating proces-
sing and data resources. However, to our knowledge, the
approaches in Quiver for managing migration and object
reads, as well as for recovering from disconnections, are
novel. The only work (of which we are aware) that applies
object migration to dynamic Web services [23] does not
handle failure of proxies, supports only single-object
operations, and provides weak consistency semantics.
Quiver improves on all of these aspects.

Our approach to migration was most directly influenced
by distributed mutual exclusion protocols, notably [24],
[25], and [26]. These protocols allow nodes arranged in a
tree to retrieve shared objects and perform operations
atomically. Although these approaches achieve scalability
and consistency, they do not address failures. Quiver also
enables consistent multiobject operations and optimizations
for single-object reads that are not possible in these prior
algorithms.

3 TERMINOLOGY AND GOALS

Our system implements a service with a designated server
and an unbounded number of proxies. We generically refer
to the server and the proxies as processes. To support the
service, a proxy joins the service. In doing so, it is positioned
within a tree rooted at the server. A proxy can also
voluntarily leave the service.

If a process loses contact with one of its children, for
example, due to the failure of the child or of the
communication link to the child, then the child and all
other proxies in the subtree rooted at the child are said
to disconnect. To simplify the discussion, we treat the
disconnection of a proxy as permanent, or more specifically,
a disconnected proxy may rejoin the service but with a
reinitialized state. A proxy that joins but does not
disconnect (although it might leave voluntarily) is called
connected.

The service enables proxies (on behalf of clients) to
invoke operations on objects. These operations may be reads
or updates. Updates compute object instances from other
object instances. An object instance o is an immutable
structure including an identifier field o:id and a version field
o:version. We refer to object instances with the same
identifier as versions of the same object. Any operation
that produces an object instance o as output takes as
input the previous version, that is, an instance o0 such that
o0:id ¼ o:id and o0:versionþ 1 ¼ o:version.

Our system applies operations consistently: for any
system execution, there is a set of operations Durable that
includes all operations performed by connected processes
(and possibly some by proxies that disconnect) such that the
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connected processes perceive the operations in Durable (and

no other) to be executed sequentially. More precisely, we

present two variations of our algorithm. One enforces

serializability [4], [5]: all connected processes perceive the

operations in Durable to be executed in the same sequential

order. The other enforces an even stronger property, that is,

strict serializability [4]: the same sequential order perceived by

processes preserves the real-time order between operations.

4 OBJECT MANAGEMENT

We begin by describing a high-level abstraction in

Section 4.1, which enables our solution, and then discuss

the implementation of that abstraction in Section 4.2.

Section 5 describes how Quiver proxies use this implemen-

tation to perform operations.

4.1 distQ Abstraction

For each object, processes that wish to perform operations

on that object arrange themselves in a logical distributed

FIFO queue denoted distQ and take turns according to their

positions in distQ to perform those operations. The process

at the front of distQ is denoted as the head, and the one at the

end of distQ is denoted as the tail. Initially, distQ consists of

only one process: the server. When an operation is invoked

at a process p, p sends a retrieve request to the current tail of

distQ. This request results in adding p to the end of distQ,

making it the new tail (see Fig. 1b). When the head of distQ

completes its operation, it drops off the queue and migrates

the object to the next process in distQ, which becomes the

new head (see Fig. 1c). This distributed queue ensures that

the object is accessed sequentially.

A process performs an operation involving multiple
objects by retrieving each involved object via its distQ. Once
the process holds these objects, it performs its operation and
then releases each such object to be migrated to the process
next in that object’s distQ.

4.2 distQ Implementation

distQ for the object with identifier id (distQ½id�) is
implemented using a local FIFO queue p:localQ½id� at every
process p. Elements of p:localQ½id� are neighbors of p.
Intuitively, p:localQ½id� is maintained so that the head and
tail of p:localQ½id� point to p’s neighbors that are in the
direction of the head and tail of distQ½id�, respectively.
Initially, the server has the object, and it is the only element
in distQ½id�. Thus, p:localQ½id� at each proxy p is initialized
with a single entry, p’s parent, the parent being in the
direction of the server (see Fig. 2a). (Further details involved
with object creation are discussed in Section 5.3.)

When a process p receives a retrieve request for the object
with identifier id from its neighbor q, it forwards the request
to the tail of p:localQ½id� and adds q to the end of p:localQ½id�
as the new tail. Thus, the tail of p:localQ½id� now points to
the direction of the new tail of distQ½id�, which must be in
the direction of q, since the latest retrieve request came
from q (see Figs. 2b and 2c). When a process p receives a
migrate message containing the object, it removes the
current head of p:localQ½id� and forwards the object to
the new head of p:localQ½id�. This ensures that the head of
p:localQ½id� points to the direction of the new head of
distQ½id� (see Fig. 2d).

The pseudocode for this algorithm is shown in Fig. 3. We
use the following notation throughout for accessing
localQ : localQ:head and localQ:tail are the head and the
tail. localQ:elmt½i� is the ith element ðlocalQ:elmt½1� ¼
localQ:headÞ. localQ:size is the current number of elements.
localQ:removeFromHeadðÞ removes the current head.
localQ:addToTailðeÞ adds the element e to the tail.
localQ:hasElementsðÞ returns true if localQ is not empty.
The initialization of a process upon joining the tree is not
shown in the pseudocode in Fig. 3; we describe the
initialization here. When a process p joins the tree, it is
initialized with a parent p:parent (? if p is the server). Each
process also maintains a set p:children that is initially empty
but that grows as the tree is formed; see Section 4.1. When p
first receives an operation invocation or message pertaining
to object identifier id, p allocates and initializes a local
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Fig. 1. (a) distQ with processes a, b, c, and d. (b) e appends itself to distQ

by sending a retrieve request to d. (c) When a completes its operation, it

migrates the object to b and drops off distQ.

Fig. 2. Squares at a process represent its localQ. The leftmost square is the head. Initially, a has the object. e requests from a, f requests from e, and

a migrates the object to e.



queue p:localQ½id� by enqueuing p if p is the server and
p:parent otherwise. In addition, if p is the server, it
initializes its copy of the object, p:objs½id�, to a default
initial state.

Each process consists of several threads running con-
currently. The global state at a process p that is visible to all
threads is denoted using the “p:” prefix, for example,
p:parent. Variable names without the “p:” prefix represent
the state local to its thread. In order to synchronize these
threads, the pseudocode of process p employs a semaphore
p:sem½id� per object identifier id, which is used to prevent
the migration of object p:objs½id� to another process before p
is done using it. p:sem½id� is initialized to one at the server
and zero elsewhere. Our pseudocode assumes that any
thread executes in isolation until it completes or blocks on
a semaphore.

4.3 Retrieving One Object

The routing of retrieve requests for objects is handled by the
doRetrieveRequest function shown in Fig. 3. When p
e x e c u t e s doRetrieveRequestðfrom; id; progÞ, i t a d d s
hfrom; progi to the tail of p:localQ½id� (line 2), since from
denotes the process from which p received the request
for id. (prog has been elided from the discussion of localQ so
far. It will be discussed in Section 5.) p then checks if the
previous tail (lines 1, 3) was itself. If so, it awaits the
completion of its previous operation (line 4) before it
migrates the object to from by invoking doMigrateðidÞ
(line 5, discussed in the following). If the previous tail
was another process q, then p sends ðretrieveRequest : p; idÞ
to q (line 7). When received at q, q will perform
doRetrieveRequestðp; id;?Þ similarly (line 20). This way, a

retrieve request is routed to the tail of distQ½id�, where it is
blocked until the object migration begins. Note that p
invokes doRetrieveRequest not only when it receives a
retrieve request from another process (line 20) but also to
retrieve the object for itself.

Migrating an object with identifier id is handled by the
doMigrate function. Since the head of p:localQ½id� should
point toward the current location of the object, p must
remove its now-stale head (line 8) and identify the new
head q to which it should migrate the object to reach its
future destination (line 9). If that future destination is p
itself, then p runs the program prog (line 11) that was
stored when p requested the object by invoking
doRetrieveRequestðp; id; progÞ. Again, we defer the discus-
sion of prog to Section 5. Otherwise, p migrates the object
toward that destination (line 16 or line 19). If p is migrating
the object to a child (line 19), then it need not send any
further information. If p is migrating the object to its
parent, however, then it must send additional information
(lines 13-16), as detailed in Section 4.4.

4.4 Object Dependencies

There is a natural “depends-on” relation) between object

instances. First, define o)
op
o0 if in an operation op, either

op produced o and took o0 as input or o and o0 were both

produced by op. Then, let ) ¼def S
op )

op
, that is, o) o0, if

and only if there is some op such that o)
op
o0. Intuitively, a

process p should pass an object instance o to p:parent only if
all object instances on which o depends are already
recorded at p:parent. Otherwise, p:parent might receive
only o before p disconnects, in which case the atomicity of
the operation that produced o cannot be guaranteed. Thus,
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to pass o to p:parent, p must copy along all object instances
on which o depends. Note that copying is different from
migrating, in particular copying does not transfer the
“ownership” of the object.

Because each process holds only the latest version that it
has received for each object identifier, however, it may
not be possible for p to copy an object instance o0 upward
when migrating o, even if o) o0, as o0 may have been
“overwritten” at p, that is, p:objs½o0:id�:version > o0:version.
In this case, it would suffice to copy p:objs½o0:id� in lieu of o0

if each o00 such that p:objs½o0:id� ) o00 was also copied, but of
course, o00 might have been “overwritten” at p as well. As
such, in a refinement of the initial algorithm above, when p

migrates o to its parent, it computes an identifier set IDs
recursively by the following rules until no more indices can
be added to IDs: 1) initialize IDs to fo:idg and 2) if id 2 IDs
and p:objs½id� ) o0, then add o0:id to IDs. p then copies
fp:objs½id�gid2IDs to its parent.

It is not necessary for each process p to track) between
all object instances in order to compute the appropriate
identifier set IDs. Rather, each process maintains a
binary relation p:Deps between object identifiers, initialized
to ;. If p performs an update operation op such that

an output p:objs½id� )
op
p:objs½id0�, then p adds ðid; id0Þ

to p:Deps. In order to perform doMigrateðidÞ to p:parent,

p determines the identifier set IDs as those indices

reachable from id by following edges (relations) in p:Deps

(reachability is denoted ¼)
p:Deps

in line 13 in Fig. 3) and copies

both Objs ¼ fp:objs½id0�gid02IDs (line 14) and DepSet ¼
p:Deps \ ðIDs� IDsÞ (line 15), along with the migrating

object (line 16). Finally, p updates p:Deps p:Deps nDepSet
(line 17), that is, to remove these dependencies for future

migrations upward.
Upon receiving a migration with copied objects Objs

and dependencies DepSet, p saves each o 2 Objs with a
higher version than p:objs½o:id� (lines 22 and 23) and adds
DepSet to p:Deps (line 24).

5 OPERATION IMPLEMENTATION

To achieve our desired consistency semantics, for each
object, we enforce a sequential execution of all update and
multiobject operations (Section 5.1) that involve that object.
Fortunately, for many realistic workloads, these types of
operations are also the least frequent, and so, the cost of
executing them sequentially need not be prohibitive. In
addition, this sequential execution of update and multi-
object operations enables significant optimizations for
single-object reads (Section 5.2) that dominate many work-
loads. Object creation (Section 5.3) is performed as a
special case of an update operation.

5.1 Update and Multiobject Operations

Invoking operations. Let id1; . . . ; idk denote distinct identi-
fiers of the objects involved (read or updated) in an update
or multiobject operation op. To perform op, process p

recursively constructs but does not yet execute a sequence
prog0; prog1; . . . ; progk of programs as follows, where “k”
delimits a program:

prog0  
�� op;

NewDeps 
�
ðid; id0Þ :

p:objs½id� )
op
p:objs½id0�

�
;

p:Deps p:Deps [NewDeps;
V p:sem½id1�ð Þ; . . . ;V p:sem½idk�ð Þ

��

progi  
�� doRetrieveRequestðp; idi; progi�1Þ

��:

Process p then executes progk, which requests idk, and once
that is retrieved, it executes progk�1 (line 11 in Fig. 3). This, in
turn, requests idk�1, and so forth. Once id1 has been retrieved,
prog0 is executed. This performs op and then updates the
dependency relation p:Deps (see Section 4.4) with the new
dependencies introduced by op. Finally, prog0 executes a
V operation on the semaphore for each object, permitting it to
migrate. Viewing the semaphores p:sem½id1�; . . . ; p:sem½idk�
as locks, progk can be viewed as implementing strict
two-phase locking [5]. Thus, to prevent deadlocks,
id1; . . . ; idk must be arranged in a canonical order.

Update durability. A process that performs an update
operation can force the operation to be durable by copying
each resulting object instance o (and those on which it
depends; see Section 4.4) to the server, allowing each process
p on the path to save o if p:objs½o:id�:version < o:version. That
said, doing so per update would impose a significant load on
the system, and so, our goals (Section 3) do not require this.
Rather, our goals require only that a process force its updates
to be durable when it leaves the tree (Section 6.3) so that
operations by a process that remains connected until it leaves
are durable.

5.2 Single-Object Read Operations

We present two protocols implementing a single-object read.
Depending on which of these two protocols is employed,
our system guarantees either serializability or strict serial-
izability when combined with the implementation of update
and multiobject operations from Section 5.1. (We provide
correctness proofs in a companion document [27].)

Serializability. Due to the serial execution of update and
multiobject operations (Section 5.1), single-object reads so as
to achieve serializability [5] can be implemented with local
reads; that is, a process p performs a read involving a
single object with identifier id by simply returning
p:objs½id�.

Strict serializability. Recall that all update and multi-
object read operations involving the same object are
performed serially (Section 5.1). Therefore, in order to
guarantee strict serializability, it suffices that a single-object
read operation op on an object with identifier id invoked by
a process p reads the latest version of this object produced
before op is invoked. This could be achieved by serializing
op with the update and multiobject operations in distQ½id�.
However, this would require op to wait for the completion
of the concurrent update and multiobject operations (those
performed by processes preceding p in distQ½id�).

A more efficient solution is to request the latest version
from the process at the head of distQ½id�, the process that is
the current “owner” of the object with identifier id. Our
algorithms already provide a way of routing to the head of
distQ½id� by using localQ½id�:head at each process. Thus, a
read request for id follows p:localQ½id�:head at each
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process p until it reaches a process p0 such that either
p0:localQ½id�:head ¼ p0 (that is, p0 holds the latest object
version) or p0:localQ½id�:head ¼ p00 is the process that
forwarded this read request to p0. In the latter case,
p0 forwarded p0:objs½id� to p00 in a migration concurrently
with p00 forwarding this read request to p0 (since
p00:localQ½id�:head ¼ p0 when p00 did so), and so, it is safe
for p0 to serve the read request with p0:objs½id�.

The initiator p of the read request could encode its identity
within the request, allowing the responder p0 to directly send
a copy of the object to p outside the tree. However, to
facilitate reconstituting the object in case it is lost due to a
disconnection (a mechanism discussed in Section 6.2), we
require that the object be passed through the tree to the
highest process in the path from p0 to p, that is, the lowest
common ancestor p00 of the initiator and responder of the
read request. After receiving the object in response to the
read request, p00 directly sends the object to p (the initiator)
outside the tree. Note that since the requested object is
copied upward in the tree from p0 to p00 (unless p0 ¼ p00), any
objects that the requested object depends upon must also be
copied along by using the techniques described in Section 4.4.

5.3 Object Creation

As discussed in Section 4.2, when a proxy p first receives an
operation invocation locally or a message (from another
proxy) pertaining to the object identifier id, p allocates and
initializes a local queue p:localQ½id� by enqueuing p if p is
the server and p:parent otherwise. In addition, if p is the
server, it initializes its copy of the object p:objs½id� to a
default initial state.

These initialization steps support object creation as a
natural consequence, with no additional mechanism. That
is, to create an object with identifier id, a proxy only needs
to perform an update operation on id. This update
operation will allocate these local structures and then
attempt to retrieve this object, as described in Section 5.1.
Upon receiving the retrieveRequest message for id, a proxy
will allocate its local structures for id and proceed with the
protocol. When the request reaches the server, the server
does similarly and initiates the migration of the newly
created object to p. By virtue of reaching the server, object
creation is a durable operation (see Section 5.1).

6 TREE MANAGEMENT

Here, we detail how we construct and maintain the tree
(Section 6.1) and how we adapt our algorithm to address
disconnections (Section 6.2) and proxies leaving voluntarily
(Section 6.3).

6.1 Construction

Because communication occurs between neighboring pro-
cesses in the tree, Quiver performs best if the proxies are
arranged in an approximately minimum spanning tree
rooted at the server. Many distributed algorithms exist by
which nodes can generate a minimum-weight (or approxi-
mately minimum-weight) tree spanning them. For example,
see [28], [29], and [30].

For simplicity, however, we utilize a more centralized
approach in Quiver to construct a spanning tree among the
proxies. This is done by first measuring the round-trip
delay between each pair of processes. We denote the

round-trip delay between processes p and p0 as dðp; p0Þ.
These delays are sent to the server, which computes the
minimum spanning tree by using Kruskal’s algorithm [31],
with the following exceptions. First, the server is chosen as
the root of the tree. Second, before adding a proxy p as a
child of a proxy p0 (according to Kruskal’s algorithm), we
first check if dðp; p00Þ � dðp; p0Þ < �, where p00 is the parent
of p0, and � is a predefined threshold. If the difference is
within this threshold, then p is inserted as a child of p00

instead. This is done to avoid increasing the depth of the
tree unnecessarily while still approximating the minimum
spanning tree. Finally, we restrict the number of children
for each node in the tree to a predefined constant �. In
particular, if a node already has � children, then we remove
any other edges to this node from the set of edges that have
not been inserted in the tree yet.

Strict maintenance of the spanning tree in the event of
proxies joining and leaving would require recomputing and
reconstructing the tree (although not necessarily from
scratch). In case of joins, we avoid this cost by making
the joining proxy a child of the closest (in terms of
the round-trip delay) existing process that has less than
� children. This could result in a tree that is far from the
theoretical optimal, but nevertheless, this is one that
preserves enough network proximity to allow our algo-
rithms to exploit it. The mechanisms that deal with proxy
disconnections (Section 6.2) and voluntary departures
(Section 6.3) result in similarly pragmatic solutions.

6.2 Disconnections

Recall that when a process loses contact with a child, all
proxies in the subtree rooted at that child are said to
disconnect. The child (or, if the child failed, each uppermost
surviving proxy in the subtree) can inform its subtree of the
disconnection. The subtree can stay put until the disconnec-
tion heals, or they might reconnect via the server. Either
way, some of these disconnected proxies may have earlier
issued retrieve requests for objects, and for each such object
with identifier id, the disconnected proxy may appear in
distQ½id�. In this case, it must be ensured that the connected
processes preceded by a disconnected process in distQ½id�
continue making progress. To this end, all occurrences of
the disconnected proxies in distQ½id� are replaced with the
parent p of the uppermost disconnected proxy q (see Fig. 4).

Choosing p to replace the disconnected proxies is
motivated by several factors: First, p is in the best position
to detect the disconnection of the subtree rooted at its
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Fig. 4. q loses contact with parent p, and its subtree disconnects.

p replaces disconnected proxies in distQ and reconstitutes the object, so

b and d can make progress.



child q. Second, as we will see in the following, in our
algorithm, p only needs to take local actions to replace the
disconnected proxies. As such, this is a very efficient
solution. Third, in case the head of distQ½id� is one of the
disconnected proxies, the object with identifier id must be in
the disconnected component. This object needs to be
reconstituted using the local copy at one of the processes
still connected while minimizing the number of updates by
the now-disconnected proxies that are lost. p is the best
candidate among the still-connected processes: p is the last
to have saved the object, as it was either migrated toward q
(migrations are performed through the tree) or copied
upward from q in response to a strictly serializable
single-object read request (the response travels upward
along the tree; see Section 5.2). Even with multiple
simultaneous disconnections, only one connected process,
that which has the object in its disconnected child’s subtree,
will reconstitute the object from its local copy, becoming the
new head of distQ½id�.

The pseudocode that p executes when its child q
disconnects is the childDisconnectedðqÞ routine in Fig. 5.
Specifically, p replaces all instances of q in p:localQ½id� with
itself and a “no-op” operation to execute once p obtains the
object (lines 8 and 9, and 12 and 13). As such, any retrieve
request that was initiated at a connected process and
blocked at a disconnected proxy is now blocked at p
(see Fig. 4b). For each of these requests that are now blocked
at p, p creates and run-enables a new thread (lines 10 and 11
in Fig. 5) to initiate the migration of p:objs½id� to the neighbor
following (this instance of) p in p:localQ½id� once p has the
object. If the disconnected child was at the head of
p:localQ½id�, then p reconstitutes the object simply by
making its local copy (which is the latest at any connected
process) available (lines 5 and 6). p also responds to any
strictly serializable single-object read requests initiated by a
still-connected process and forwarded by p to q and for
which p has not observed a response (not shown in Fig. 5).

6.3 Leaves

To voluntarily leave the tree, a proxy p must ensure that any
objects in the subtree rooted at p are still accessible to
connected nodes once p leaves. In addition, outstanding
retrieve requests forwarded through p must not block due
to p leaving.

If p is a leaf node, it serves any retrieve requests blocked
on it, migrates any objects held at p to its parent (Section 4.2),

forces its updates to be durable (Section 5.1), and departs. If

p is an internal node, then it forces its updates to be durable
and chooses one of its children q to promote. The promotion

updates q’s state according to the state at p and notifies

neighbors of p about q’s promotion.
Before promoting q, p notifies its neighbors (including q)

to temporarily hold future messages destined for p until

they are notified by q that q’s promotion is complete (at

which point they can forward those messages to q and
replace all instances of p in their data structures with q).

p then sends to q a promote message containing p:parent,

p:children, p:localQ½ �, p:objs½ � (or, rather, only those object
versions that q does not yet have), and p:Deps. When q

receives these, it updates its parent, children, objects, and
object dependencies according to p’s state.

The interesting part of q’s promotion is how it
merges q:localQ½id� with p:localQ½id� for each id, so that any

outstanding retrieve requests for id that were blocked at
p or q, or simply forwarded to other processes by p or q or

both, will make progress as usual when q’s promotion is

complete, see Fig. 6. Fig. 7 presents the pseudocode used by
a promoted child q to merge q:localQ½id� with its parent p’s

p:localQ½id� for each identifier id as the parent voluntarily

leaves the service. In order to merge p:localQ½id� and
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Fig. 5. Disconnection handling at p.

Fig. 6. Queue merge. Shaded and unshaded elements are in parent’s

and child’s localQ, respectively. Dashed arrows are from a skipped

element to the element added next.

Fig. 7. Pseudocode at q for its promotion.



q:localQ½id�, q begins with q:localQ½id� if its head points to p;
otherwise, it begins with p:localQ½id�. q adds elements from
the chosen queue, say, p:localQ½id�, to a newly created
mergedQ until an instance of q is reached (line 19 in Fig. 7),
say, at the ith index, that is, p:localQ½id�:elmt½i� ¼ q. The
merge algorithm then skips this ith element and begins
adding elements from q:localQ½id� until an instance of p is
found. This element is skipped and the algorithm
switches back to p:localQ½id� adding elements starting
from the ðiþ 1Þst index. This algorithm continues until
both queues have been completely (except for the
skipped elements) added to mergedQ. After merging the
two queues, q replaces all occurrences of p in mergedQ by
itself, using Qreplaceðid; pÞ defined in Fig. 5.

At this point, any outstanding retrieve requests that were
initiated by p (represented by instances of p in p:localQ½id�)
now appear as initiated by q, since all instances of p
from p:localQ½id� are copied to mergedQ and are then
replaced by q. Retrieve requests forwarded through p but
not q now appear as forwarded through q, as all elements in
p:localQ½id� are added to mergedQ, except for instances of q.
Retrieve requests forwarded through q and not p appear as
before, since q:localQ½id� elements are all added to mergedQ,
except for instances of p. Finally, requests forwarded
through both p and q now appear as forwarded through
only q due to skipping elements in p:localQ½id� that point
to q, and vice versa.

7 EVALUATION

We evaluated the performance of Quiver through experi-
ments performed on PlanetLab. Our system is implemented
in Java 2 (Standard Edition 5.0). As discussed in Section 1,
the main uses that we are pursuing for Quiver involve
single-object updates and reads only, in which case strict
serializability equates to linearizability [7]. Due to space
limitations, here, we primarily focus our evaluation to
this configuration of our system, that is, linearizable single-
object operations in a static tree of proxies. The cost of
multiobject operations and the impact of leaves and
disconnections on performance are evaluated in a compa-
nion document [27].

When testing Quiver, the server and proxies were
organized in an approximate minimum spanning tree (see
Section 6.1). The node with the minimum median latency to
all other nodes was selected as the root (server), and each
node had a maximum of � ¼ 4 children. The parameter �
from Section 6.1 (the threshold that decides whether the
depth of the tree should be increased when a new node
joins) was chosen as 2 percent of the smallest distance
(latency) between nodes in the experiment. In addition to
these nodes, we used a monitor to control the experiments
and measure performance. The monitor ran on a dedicated
machine and communicated with all nodes (the server and
proxies) in an experiment. In each experiment, each proxy
notified the monitor upon joining the tree and then awaited
a command from the monitor to begin reads and updates.
Upon receiving this command, the proxy performed
operations sequentially for 100 seconds, that is, beginning
the next operation after the previous completed. Each
operation was chosen to be a read with a probability

specified by the monitor; otherwise, this was an update.
This way, the monitor dictated the percentage of reads in
the workload. Unless stated otherwise, each operation was
a read with probability 0.8 and involved a single object
chosen uniformly at random from all objects in the
experiment. In addition, unless stated otherwise, there were
50 objects in an experiment, and to isolate the costs
attributable to Quiver, these objects were simple integer
counters that support increment (update) and read opera-
tions. After 100 seconds, each proxy reported its average
read and update latencies, as well as the number of
operations that it completed, to the monitor. Each experi-
ment was repeated five times.

We provide results for three types of tests. The first was
baseline tests of the performance of Quiver in a wide-area
network. The second and third types of tests highlighted
workloads for which Quiver is suited, namely, those in
which operations for each object exhibit geographic locality
or in which updates are computationally intensive. For the
latter two workloads, we also compared Quiver to an
implementation using a centralized server, which was
chosen to be the same node as the server (root of the tree)
in the corresponding Quiver tests. In the centralized tests,
each proxy sent its operations to the centralized server to be
performed, awaiting the server’s response to each before
sending the next. We note that involving the centralized
server in reads (versus reading from a local copy) is
necessary to achieve linearizability and, more generally,
strict serializability.

Although we compare Quiver only to a centralized
implementation, we believe that some trends that this
comparison reveals should hold in comparison to quorum-
based solutions as well. In particular, like a centralized
solution, quorum-based solutions cannot significantly im-
prove network delays for clients to access the necessary
replicas: Lin [32, Theorem 3] proves that a centralized
approach optimizes the average network delays observed
by clients to within a factor of two of any quorum-based
implementation. Moreover, an empirical analysis of quorum
placement algorithms on wide-area topologies [33] con-
firmed that centralized solutions yield better network access
delays than quorum implementations do. While quorum-
based solutions can disperse processing load across replicas,
this goal is at odds with minimizing network delays:
dispersing processing load may require an operation to
bypass a nearby but heavily loaded quorum, instead landing
at a more distant quorum and thus incurring more network
delays. For this reason, exploiting this load-dispersing
property of quorums to lower client response times is hard
both in theory [34] and in practice [33].

Baseline tests. The baseline experiments employed
70 nodes (one server and 69 proxies) spread across
North America. We conducted three types of tests to
evaluate Quiver’s baseline performance. The first test varied
the fraction of reads in the workload from 0 (only updates)
to 1 (read-only workload). The update latency, read latency,
and overall throughput, that is, the number of operations
(updates or reads) per second, are reported in Fig. 8. The
case without reads can be viewed as indicative of the
performance of updates in a configuration offering serial-
izability only, that is, where reads are performed locally by
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proxies and, hence, with negligible costs. Note that in a

read-only workload, the objects are not migrated and

remain at the root. The read requests are therefore served

by the root, which sends the object outside the tree directly

to the requester (see Section 5.2). With an introduction of

updates in the workload, however, the objects are migrated

to proxies, and the response to a read request may go

through the tree, at least partly, resulting in a sudden

increase in read latency.
The second test was performed by varying the number of

objects. A small number of objects resulted in higher

contention and therefore increased the update latency

(updates are serialized per object).
The final baseline test varied the number of objects

involved per operation. All operations in this experiment

were updates, since multiobject reads and updates are

handled using the same algorithm. For each update, the

proxy selected one, two, or three objects (depending on the

experiment), out of the 50 total objects, uniformly at

random, migrated these objects to itself (one by one, as

described in Section 5.1), and then performed its operation.

The latency of multiobject operations increased substan-

tially with an increase in the number of objects involved in

each operation, mainly due to the use of the two-phase

locking approach in our algorithms, and shows that

Quiver’s performance is best suited to workloads that are

dominated by single-object operations. Due to space

limitations, we omit baseline results involving nontrivial

objects and varying numbers of proxies. We refer the reader

to our companion document [27] for these.
Workloads with operation locality. We performed

two types of tests to validate our hypothesis that workloads

in which operations per object exhibit geographic locality

will benefit from Quiver. The first test captured scenarios in

which different objects are more popular in different

regions, whereas the second test captured scenarios in

which different regions are active in different time intervals.
For the first test, we divided the 70 North American

PlanetLab nodes into three groups of roughly equal size,

consisting of East Coast nodes, West Coast nodes, and

others (“central” nodes). Each group selected objects in

operations according to a different distribution so that

different groups “focus on” different objects. Specifically,

the set of 50 objects were partitioned into n ¼ 5 disjoint

sets Objs0; . . . ; Objsn�1, each of size 10 objects. We defined

permutations on f0; . . . ; n� 1g by

�eastðiÞ ¼ i

�westðiÞ ¼ n� 1� i
�centðiÞ ¼ bn=2c þ di=2e � ð�1Þi mod 2

and distributions Deast, Dwest, and Dcent, satisfying
Deastð�eastðiÞÞ ¼ Dwestð�westðiÞÞ ¼ Dcentð�centðiÞÞ ¼ ZðiÞ. Here,
Z : f0; . . . ; n� 1g ! ½0; 1� was a Zipf distribution such
that ZðiÞ / 1=ðiþ 1Þ� and

Pn�1
i¼0 ZðiÞ ¼ 1. � is called the

popularity bias. When an East Coast node initiated an
operation, it selected the object on which to do so by
first selecting an object set index i according to the
distribution Deast and then selecting from Objsi uniformly
at random. West Coast and central nodes did similarly,
using their respective distributions Dwest and Dcent.

The second test used 50 PlanetLab nodes divided into four
groups of roughly equal size located in China, Europe, and
North American East and West Coasts. Each group chose
objects uniformly at random from the set of all objects but
was “awake” during different time intervals. Specifically,
the monitor instructed the Chinese, European, East Coast
and West Coast nodes to initiate their 100-seconds
intervals of activity at times T , T þ�, T þ 2�, and
T þ 3�, respectively, where � 2 ½0 seconds; 100 seconds�.
Thus, when � ¼ 0 seconds, the intervals completely over-
lapped, but when � ¼ 100 seconds, the intervals were
disjoint. In these tests, unlike the others that we have
reported, the overall load on the system fluctuated
during the test as node groups “woke” and “slept.” As
such, the throughput that we report is the average of the
throughputs observed by the four regions during their
“awake” intervals.

The results demonstrate that as the popularity bias
grows in the first test (Fig. 9) and as the offset � grows in
the second test (Fig. 10), in each case increasing the
geographic locality of requests per object, Quiver surpasses
a centralized implementation in both latency and through-
put. The second test further reveals a practical optimization
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Fig. 8. Baseline tests: latency and throughput with varying fractions of reads in the workload and numbers of shared objects and objects per

operation.

Fig. 9. Object popularity bias workload.



enabled by Quiver’s design: since each proxy typically
communicates with only a small number of neighbor
proxies in the tree, a proxy can afford to maintain long-
lived TCP connections to its neighbor proxies, avoiding the
cost of a TCP handshake for messaging between neighbors.
A centralized server, however, cannot keep long-lived
connections to an unbounded number of proxies and,
therefore, incurs this cost for each request that it serves.
This cost is negligible for links with smaller round-trip
times. For example, the maximum round-trip time among
the North American nodes was 59 ms. However, this cost
was more profound on long-haul links: the maximum
round-trip time in this experiment was 289 ms between
nodes in China and the North American East Coast. This
explains Quiver’s better performance over the centralized
server in the second test, even when all nodes were
“awake” at the same time ð� ¼ 0Þ.

Computationally intensive workloads. Our final
tests involved a computationally intensive workload on
the 70 North American nodes. As discussed in Section 1,
Quiver should offer better performance than a centralized
server in this case due to better dispersing the computation
load across proxies. To test this, we artificially induced
computation per update that, on a 1.4-GHz Pentium IV,
took 22 ms on the average.2

Fig. 11 compares the centralized and Quiver implemen-
tations in this case as the fraction of reads in the workload is
varied. Fig. 11 suggests that Quiver outperforms the
centralized implementation for virtually all fractions of
reads. The latencies and throughputs of the two implemen-
tations converge only once that there are no updates in the
system (that is, the read fraction is 1), in which case,
obviously, the computational cost of updates is of no
consequence.

8 APPLICATIONS

Here, we summarize the use of Quiver in two example
applications. We refer the reader to our companion report
[27] for further details on the use of Quiver in these
applications.

8.1 e-Commerce with Edge Proxies

The first application is an online bookstore that maintains
state about books, customers, orders, etc., and allows client
interactions to read and update parts of the state. We model
our online bookstore application according to the TPC-W
benchmark [35], an industry standard benchmark repre-

senting an e-commerce workload, specifically on an online
bookstore. TPC-W specifies the bookstore state as relational
tables and related data structures and defines the semantics
of the bookstore interactions that read or update this state.

In order to map this to the Quiver setting, we first divide
this state into objects such that objects are small in size and
each interaction involves few objects, typically one.
Furthermore, the objects are defined so that interactions
involving these objects exhibit locality. For example, some
of the most frequently accessed objects encapsulate the state
that relates to a single client such as the objects related to
that client’s registration, shopping cart, and orders. These
objects will typically be involved in operations at the proxy
closest to the client, and therefore, the client-perceived
latency will decrease as Quiver migrates these objects to the
corresponding proxy.

In addition to improving the performance through
migration, Quiver provides facilities to support other
features needed for such an e-commerce site. For example,
order placement is an operation that should be durable.
Quiver supports this as described in Section 5.1. In addition,
although certain bookstore objects can be more efficiently
managed without migration, namely, objects that are
updated at the server and only read by the proxies such
as the objects encapsulating a book’s description and price,
the server can nevertheless perform operations involving
such objects and others using Quiver’s multiobject opera-
tion support.

8.2 Distributed Network Traffic Modeling

We have also used Quiver in an application that constructs
network traffic classifiers from traffic logs collected at
geographically distributed networks (see [36], [37], and [38]
for recent research in this area). These classifiers are then
employed to characterize future traffic as belonging to a
certain application, say, to identify prohibited traffic on
nonstandard ports. In the Quiver setting, each contributing
network includes a proxy. A coordination site acts as the
server (root of the tree), and the traffic classifiers being
constructed are the objects. The proxies perform update and
read operations on the traffic classifiers. To update a
particular classifier using new records, the contributing
network’s proxy migrates the classifier to itself and updates
the classifier using its data. The algorithms for incremen-
tally updating the classifier require the updates to be
serialized, an important property achieved through Quiver.
Furthermore, this strategy distributes the computational
load of updating the classifiers to all the networks and does
not require any network to reveal its raw data to any other
entity (except to the extent that this data is revealed by the
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2. This computation was the Sieve of Eratosthenes benchmark, repeated
40 times, each time finding all primes between 2 and 16,384.

Fig. 10. Regional activity workload. Fig. 11. Computationally intensive workload.



classifier, which is typically much less than the traffic log

itself). Experimental results [27] show that Quiver outper-

forms a centralized implementation of this application by

orders of magnitude.

9 CONCLUSION

We presented a system called Quiver for implementing
highly scalable object sharing with strong consistency
semantics (serializability or strict serializability). Quiver is
well suited to workloads where operations typically access
few objects and where operations involving each object
exhibit geographic locality or are computationally intensive.
Quiver migrates objects to proxies in order to perform update
or multiobject operations while supporting more efficient
single-object reads. Proxies may join, leave, or disconnect
from the service. In case of disconnects, the service recovers
objects whose latest versions are left unreachable. We
evaluated Quiver over PlanetLab to confirm the performance
improvements that it offers for various workloads.
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