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In biology, a vaccine is a weakened strain of a virus or bacterium that is intentionally injected
into the body for the purpose of stimulating antibody production. Inspired by this idea, we pro-
pose a packet vaccine mechanism that randomizes address-like strings in packet payloads to carry
out fast exploit detection and signature generation. An exploit with a randomized jump address
behaves like a vaccine: it will likely cause an exception in a vulnerable program’s process when at-
tempting to hijack the control flow, and thereby expose itself. Taking that exploit as a template, our
signature generator creates a set of new vaccines to probe the program in an attempt to uncover
the necessary conditions for the exploit to happen. A signature is built upon these conditions
to shield the underlying vulnerability from further attacks. In this way, packet vaccine detects
exploits and generates signatures in a black-box fashion, that is, not relying on the knowledge of
a vulnerable program’s source and binary code. Therefore, it even works on the commodity soft-
ware obfuscated for the purpose of copyright protection. In addition, since our approach avoids the
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expense of tracking the program’s execution flow, it performs almost as fast as a normal run of the
program and is capable of generating a signature of high quality within seconds or even subsec-
onds. We present the design of the packet vaccine mechanism and an example of its application.
We also describe our proof-of-concept implementation and the evaluation of our technique using
real exploits.
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1. INTRODUCTION

In biology, a vaccine is a living, weakened strain of a virus or bacterium that is
intentionally injected into the body for the purpose of stimulating antibody
production. That strain is weakened to prevent it from causing infection.
Similarly, a “weakened” exploit packet with important elements of its payload
scrambled would quickly expose itself through the exception it causes in a vul-
nerable program. Forensic analysis of the exception could uncover the related
program vulnerability and enable the generation of an “immunity,” a signature
for capturing future exploits on the same vulnerability.

The above intuition can be applied to exploit detection, vulnerability diag-
nosis and automatic signature generation. Design of such mechanisms has
been impeded by the constraints of commodity software, for which access
to source or binary recompilation is often prohibited. Existing approaches
[Newsome and Song 2005; Crandall et al. 2005; Costa et al. 2005] have sug-
gested tracking the input data as the program executes until the point at which
control-flow hijacking happens. We call these approaches gray-box analysis, as
they do not need source code (as a white-box approach would) but do have to
monitor a program’s execution flow closely (a black-box approach would not).
Gray-box analysis is accurate and applicable to commodity software; however
it incurs significant runtime overheads, often slowing the system by an order of
magnitude.

Inspired by the principle of vaccination, we develop a much faster black-box
approach. Rather than using expensive dataflow tracking, it detects and an-
alyzes an exploit using the outputs of a vulnerable program. Specifically, we
first identify anomalous tokens in packet payloads, for example, byte strings
resembling injected jump addresses in a control-flow hijacking attack, and ran-
domize the contents of these tokens to generate a vaccine. If the packets car-
rying these tokens indeed contain an exploit, the vaccine will likely cause an
exception in the vulnerable software. When this happens, our approach will
automatically generate a signature to protect the software using the forensic
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data gleaned from the exception and fault injection techniques [Musa et al.
1996]. We call this approach packet vaccine.

1.1 Contributions

Compared with other techniques, packet vaccine offers some important
benefits:

1.1.1 Fast, black-box exploit detection. Packet vaccine detects an exploit
attempt by directly injecting vaccine packets into a program. Therefore, it
performs as fast as a normal run of that program, and up to an order of mag-
nitude faster than gray-box approaches. In addition, packet vaccine does not
use source code or recompiled binaries and thereby works well with commodity
software.

1.1.2 Effective signature generation. Packet vaccine generates signatures
using host information, so it is immune to interference from Internet noise
[Richardson et al. 2005] and poisoning [Perdisci et al. 2006], which can
mislead network-based signature generators (e.g., Early Bird [Singh et al.
2004], Polygraph [Newsome et al. 2005], Nemean [Yegneswaran et al. 2005])
into generating false signatures. Moreover, the resulting signature tends to
capture some key properties of a vulnerability such as the size of a vulnerable
buffer, which can be used to detect a range of exploit mutations employed by
polymorphic worms.

Using a confirmed exploit as a template, packet vaccine can generate a
number of vaccines, that is, variations of that exploit, to gain a better char-
acterization of a software application’s vulnerability. For instance, one type of
our signatures uses a packet’s field length as an attribute to identify a buffer-
overflow attack; injection of vaccines with different field lengths allows us to
accurately estimate the size of the underlying vulnerable buffer and thereby
generate a more accurate signature (Section 2.3). Moreover, our technique
can generate a signature without any information about an application or its
protocol.

Some gray-box approaches perform static analysis [Brumley et al. 2006;
Newsome et al. 2005] over a vulnerable program’s binary code and could gen-
erate signatures more accurate than our signatures. However, our black-box
approach tends to be faster than those approaches and even works with ob-
fuscated code [van Oorschot 2003; Naumovich and Memon 2003]. For many
exploits, our black-box technique can produce signatures close to their signa-
tures in quality, as we report in our experimental study. We argue that a
rapidly-generated and reasonably accurate signature could be more useful in
practice because such a signature is supposed to serve as a temporary defense
pending the release of a patch, rather than a permanent fix [News 2006].

1.1.3 Low overhead and easy deployment. Packet vaccine is more light-
weight and easier to deploy than many existing techniques. Exploit detection
using our approach does not require installing anything on the host running
vulnerable programs. Vulnerability diagnosis needs only a lightweight collec-
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Fig. 1. The design of packet vaccine.

tor to gather forensic data from an exception, and even this requirement can be
waived for operating systems which already offer error logging and debugging
services. For example, Windows XP’s event logs contain everything we need,
such as corrupted pointer contents.

1.2 Application Domains

The current design of packet vaccine can detect only exploits carrying jump
addresses for hijacking a vulnerable program’s control flow. This limitation,
however, does not apply to our signature generation techniques: once an ex-
ploit has been captured (possibly by other approaches such as Vigilante [Costa
et al. 2005]), our techniques could be used to generate a signature for the un-
derlying software vulnerability even if the exploit does not carry any jump
addresses. As an example, ShieldGen [Cui et al. 2007], a recent proposal fol-
lowing the same idea as our application-based vaccine injection (Section 2.3),
was shown to work successfully on the WMF vulnerability [US-CERT] which
is exploited without injecting jump addresses.

So far, we have used packet vaccine to protect only stateless services such
as static Web servers, as described in Section 4. It remains to see how our
techniques can be adapted to protect stateful services such as FTP.

1.3 Roadmap

We present the design of the packet vaccine mechanism (Section 2) and the im-
plementation of this technique in the article. We evaluate it using real exploits
and signatures generated by a gray-box approach (Section 3). Our study shows
that packet vaccine can effectively detect exploits, and efficiently generate sig-
natures of high quality. To apply this technique to protect an online service,
we present an architecture which employs test servers to carry out exploit
detection, and empirically evaluate its performance with a proof-of-concept
implementation (Section 4). We also discuss other potential applications and
the limitations of our approach (Section 5), review related work (Section 6),
and outline future research (Section 7).

2. DESIGN

In this section, we present the design of the packet vaccine mechanism.
Figure 1 illustrates the major steps of our approach: vaccine generation,
exploit detection, vulnerability diagnosis, and signature generation.

Vaccine generation is based upon detection of anomalous packet payloads,
for example, a byte sequence resembling a jump address, and randomiza-
tion of its contents. A vaccine generated in this way serves to detect an
exploit attempt which, if present, could trigger an exception from a vulnerable
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program. Vulnerability diagnosis correlates the exception with the vaccine to
acquire some key information regarding the exploit, in particular the corrupted
pointer content and its location in the exploit packet. Using this information,
the signature generation engine creates variations of the original exploit to
probe the vulnerable program, which could identify necessary exploit condi-
tions for generation of a signature.

2.1 Vaccine Generation

To generate a vaccine, we need to preserve the exploit semantics while weak-
ening it enough to prevent a control-flow hijacking from taking place. Here, we
describe a simple way to do that.

A key step in most exploits is to inject a jump address to redirect the con-
trol flow of a vulnerable program. Such an address points to somewhere in
the stack or heap in a code-injection attack, or to a global library entry in an
existing-code attack. Our approach is to check every 4-byte sequence (32-bit
system) or 8-byte sequence (64-bit system) in a packet’s application payload,
and then randomize those which fall in the address range of the potential jump
targets in a protected program. The vaccine generated in this way should cause
an exception, segmentation fault (SIGSEGV), or illegal instruction fault (SIGILL)
to a vulnerable program’s process if an exploit is indeed present in the original
packet. A question here is how to determine the address range.

2.1.1 Address Range. A process’s virtual memory layout is usually easy
to obtain. On Linux and UNIX, the proc virtual filesystem maintains a file
called maps under the directory /proc/pid/ which offers the runtime memory
layout for the process pid. From that file, we can obtain the base addresses for
the stack (usually from 0xc00000000 downwards) and the entry for function
libraries (in segment 0x40000000). The base address for heap is the end of BSS
which can be determined by analyzing the binary executable using tools such
as objdump or readelf. To find out the address range, we also need to know an
application’s stack and heap sizes. These can be estimated by monitoring stack
and heap usage recorded in the “status” file of the application’s process for a
period of time. Another source for gauging heap’s usage is the packet size of a
request to the application. Using these data, we determine the address ranges
as follow. Let b s and us be the stack’s base address and usage respectively.
Stack addresses are estimated to range from b s − αus to b s, where α ≥ 1 is a
ratio for keeping a safe margin. Similarly, heap range is approximated as bh to
bh + αuh, where bh and uh are the heap’s base and usage respectively.1 Address
ranges can also be customized by the user. For example, one could restrict
monitoring to the heap on an operating system with a nonexecutable stack.

We can pinpoint the address range of the global libraries intensively used
by exploits, for example, msvcrt.dll or libc.so, and even the entry addresses
of some “dangerous” functions such as system() and execve(). These ad-

1A process may have multiple heap regions, which can be observed from its memory maps. In this
case, we can use the base addresses of these regions plus αuh to estimate multiple heap address
ranges.
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dresses can be easily acquired on Linux or UNIX using the maps file and the
command nm. A Windows application’s memory information can be collected
using memory monitoring tools like Memview [MemView 2006] or debugging
tools such as CDB or NTSD [Microsoft 2007]. The address range could also cover
the global offset table (GOT), though this might not be necessary: an exploit
usually changes a function pointer in the GOT to an address in the stack or
heap, where the attack code lies. Again, it is at the user’s discretion to decide
the coverage of the address range. The larger the range becomes, the more
packets must be checked and randomized.

Address ranges can also be approximated through an empirical study of
known exploits, which could reveal the “hotspots” to which most exploits
jump. In our research, we collected around 1,000 jump addresses from known
exploits and discovered that on Linux, most code-injection attacks use the
jump addresses either in the range 0xbfff0000 to 0xbfffffff for the stack or
0x08040000 to 0x08ffffff for the heap. This treatment also works for existing-
code attacks, as most of these exploits use a small set of libc (Linux or UNIX)
or dll (Windows) functions as stepping stones. We present the distribution of
exploit addresses in Appendix A.

2.1.2 Vaccine Generation Algorithm. Now we are ready to present the vac-
cine generation algorithm, which is formally described as follows.

—Gather data from the application being protected and build a target address

set T = [b s − αus, b s] ∪ [bh, bh + αuh] ∪ S, where S is a set containing the
address ranges of objects other than the stack and heap, such as the entries
for global library functions.

—Aggregate the application payloads of the packets in one session into a
dataflow, carry out a proper decoding (e.g., Unicode decoding, URL decoding,
etc.) if necessary and scan that dataflow to find all byte sequences τ ∈ T.

—For every τ , replace its most significant byte with a byte randomly drawn
from a scrambler set R to output a new dataflow.

—Construct vaccine packets using the new dataflow as application payloads.

In the above algorithm, the scrambler set R could be set to avoid introducing
some undesired symbols (such as syntax tokens) which could interrupt a pro-
tocol, and ensure a randomized byte sequence falls outside a process’s memory
map. An example of R is {A to Z, a to z, 0 to 9, “+” and “-”}.

For example, the payload of Code Red II worm is presented in Figure 2.
Our vaccine generator identifies multiple occurrences of the byte sequence
“0x7801cbd3” from the payload after Unicode decoding. This sequence falls
in the address range of msvcrt.dll, which is being monitored. Therefore, a
vaccine is generated as illustrated in Figure 2, in which the most significant
bytes of the sequence have been scrambled.

2.1.3 Discussion. A central question here is whether the vaccine generated
above is effective in detecting an exploit if it is indeed present. Exploits tend
to be fragile, in the sense that a random perturbation could cause them to
vanish. For example, randomization of protocol syntax tokens, such as the
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Fig. 2. A vaccine generated from Code Red II worm.

keyword “GET” in the above example, renders the vaccine impossible to parse;
modification of exploit semantics, like “.ida” and “%u” in the example, makes
the exploit disappear. We address these concerns as follows.

Our approach is very unlikely to modify a protocol’s syntax tokens, which
usually look quite different from a suspicious jump address. We checked the
most frequently used syntax tokens in HTTP, FTP and SMTP, and found none of
them coincide with a typical Linux stack segment (0xbfff) and heap segment
(0x08).

Our approach can also preserve an exploit’s semantic tokens in most cases.
By an exploit’s semantic tokens, we refer to the input parameters to a vulner-
able program that are necessary for an exploit to happen. Those tokens drive
the program’s state to a “breakpoint” where exploit payloads can be injected
[Brumley et al. 2006; Crandall et al. 2005]. For example, “.ida” is such a token
for Code Red II worm. Theoretically, it is possible to have semantic tokens co-
incide with some exploitable addresses in a vulnerable program’s virtual mem-
ory. However, this seems to be rare in practice, especially for programs using
the protocols with an uneven distribution of byte sequences (e.g., text-based
protocols such as HTTP). The appearance of an address-like string is uncommon
for these protocols, as discovered in previous research [Pasupulati et al. 2004;
Wang and Stolfo 2004], and one’s presence in a token necessary for an exploit
is even more so.

Furthermore, although binary protocols such as DNS could have an even
distribution of byte sequences, the target address set T is usually small, occu-
pying less than 0.1% of the virtual memory address space (see Appendix C),
and an exploit’s semantic tokens are usually short, less than a couple of tens
of bytes as we observed in our experiments. Therefore, the chance that a se-
mantic token (other than an injected address itself) matches an address in T

should be small. Formally, let ρ be ratio of the target address space (the size
of T) versus the virtual memory address space, and s be the total length of
semantic tokens in bytes. Given an even distribution of byte sequences, the
probability in a 32-bit system that semantic tokens include an address in T is
at most 1−(1−ρ)s−3. For example, if the semantic tokens occupy 12 bytes, then
the probability that they contain an address-like substring given ρ = 0.001 is
below 0.009. In our research, we carefully studied 26 typical exploits, including
attacks through binary protocols, and found none of their semantic tokens were
tampered with by our approach. In addition, those tokens are mostly depen-
dent on the underlying vulnerability, which could leave an attacker little room
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to manipulate. However, our approach is subject to evasion if an application
indeed has a vulnerability which allows for an exploit with an address-like
semantic token.

Our randomization strategy also helps preserve exploit semantic tokens: in-
stead of scrambling the whole byte sequence, we only modify one byte, namely
the most significant. We could extend this idea, for example, by generating
three vaccines, each of which scrambles one of the three most significant bytes
on the sequence. These vaccines can be used to probe an application in par-
allel. As a result, even if an exploit does have an address-like two-byte string
(such as 0xbfff) on which it depends, we can still detect it. Another approach
involves a simple network anomaly detector (NAD) which narrows down the
search for address-like substrings to only part of an anomaly packet’s payload.
For example, a NAD monitoring the length of packets’ application fields may
identify an overlong CGI parameter in a Code Red II packet; this allows a
vaccine generator to only scan that field, avoiding randomizing the semantic
token “.ida?” even if it does look like an address (which it does not in reality).

2.2 Exploit Detection and Vulnerability Diagnosis

Exploit attempts from vaccine packets are detected from the exceptions they
cause in a vulnerable program, such as SIGSEGV and SIGILL. Such exceptions
happen with an overwhelming probability if exploits’ jump addresses have
been scrambled.

The objective of vulnerability diagnosis is to reliably correlate an exception
with one of the byte sequences being randomized, which identifies the location
of the jump address on an exploit packet. This correlation is established by
matching these byte sequences to the forensic data gathered from an exception,
in which the corrupted pointer is of particular importance. On x86 systems, the
corrupted pointer which causes a SIGSEGV exception can be found in register
CR2. It may also appear in register EIP. Our approach logs the contents of
these registers once an exception happens.

Formally, vulnerability diagnosis works as follows. Let τ1, τ2, . . . , τn be a set
of n byte sequences (tokens) on a vaccine packet which have been scrambled by
the vaccine generator. Let p be the forensic string, i.e., the corrupted pointer
collected from registers. If p = τi for 1 ≤ i ≤ n, we correlate τi with the excep-
tion. This correlation can be validated using the following test: we randomize
all bytes on τi to produce a new token τ and use it to generate a new vaccine;
sending this vaccine to the vulnerable program, we check whether the excep-
tion happens again and the corrupted pointer also changes to τ . The validation
test can be repeated to increase the confidence in the correlation.

Liang et al. propose COVERS [Liang and Sekar 2005b] which detects an
exploit attempt using address space randomization (ASR) and identifies the
exploit packet by correlating its content with the memory range around a cor-
rupted pointer. By comparison, the correlation offered by our approach is more
reliable. COVERS could be subject to a miscorrelation attack in which an intel-
ligent attacker duplicates memory data collected from an unrelated exception
into a packet which carries no exploit payload. As a result, a false signature
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could be generated to filter out legitimate packets. Such an attack does not
work on packet vaccine, as we identify an exploit packet using the byte se-
quence scrambled by the vaccine generator. In order to establish a strong cor-
relation, COVERS needs to find the content of the entire input buffer. Given
the diversity of exploits, this may have to be done on a case-by-case basis. By
comparison, packet vaccine performs validation tests and can therefore simply
trust registers’ contents, which are easier to collect. Finally, ASR could cause
an exploit to execute some legitimate instructions before it triggers an excep-
tion. When this happens, a correlation cannot be established. Our approach
could avoid this problem: we can randomize an address-like byte sequence to
an invalid address, outside a process’s memory map.

2.2.1 Resilience to Metamorphism and Polymorphism. A significant chal-
lenge to exploit detection is polymorphism and metamorphism, which trans-
form the instructions in exploit instances to evade detection based on the
prevalence of these instructions. These attacks, however, can be defeated by
packet vaccine in some cases, as we explain as follows.

An exploit packet usually consists of a segment of jump addresses, a seg-
ment of instructions and a segment of nop-like padding. Metamorphism and
polymorphism can only be applied to the instructions and the padding, as the
jump addresses serve as a critical entry point to hijacking the control flow
of a running program and are therefore indispensable to a successful exploit.
Previous research shows that different exploit instances vary in only the least
significant byte of their jump addresses [Newsome et al. 2005; Pasupulati et al.
2004; Newsome et al. 2005]. This does not prevent packet vaccine from detect-
ing them because they must be all inside the address ranges of potential jump
targets.

2.3 Signature Generation Using Vaccines

After vulnerability diagnosis, we have identified the jump address and its lo-
cation in an exploit packet. The address alone, however, could be too general to
be a signature, especially for binary protocols such as DNS. More information
is required to form a high-quality signature. Here, we describe a signature

generation engine which uses a known exploit as a template to generate faults
(vaccines) and injects them into a vulnerable program to acquire key attributes
of the underlying vulnerability. We call this technique vaccine-injection (VI).
Our approach can generate signatures with or without the application-level
information, as we elaborate below.

2.3.1 Application-Independent Signature Generation. We can generate a
signature without any knowledge about an application’s protocol. Such a sig-
nature is in the form of a token sequence, which consists of an ordered sequence
of byte strings (tokens) [Newsome et al. 2005]. These tokens’ locations on the
exploit packet’s payload could also be included as a part of the signature for
a binary application protocol such as DNS. Our idea is to determine the roles
played by individual bytes in an exploit by scrambling them to create vaccines
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and testing them in the vulnerable application, in an effort to identify the in-
puts necessary for the exploit to occur.

Let L be the byte length of an exploit dataflow, and B[i] be the ith byte
on that dataflow, where 1 ≤ i ≤ L. Suppose the scrambled jump ad-
dress τ with a byte length l starts from the rth byte. The signature genera-
tion engine generates L − l vaccines, {v1, v2, . . . , vr−1, vr+l, . . . , vL}, such that vi

(i ∈ [1, r − 1] ∪ [r + l, L]) randomizes the ith byte on the exploit payload and
also keeps the token τ . Then, it injects all these vaccines into the vulnerable
program. If vi does not cause any exception, we record B[i] (and also i for a bi-
nary protocol) as a token byte. All the contiguous token bytes are recorded as a
token. A signature is formed using these tokens and the target address set T.
A dataflow is deemed to match such a signature if it contains all these tokens
and at least one byte sequence in T. We refer to this approach as byte-based

vaccine injection (BVI).

Performance. Some servers process requests using multiple processes.
Crashing one of their processes does not affect any of the others. This property
allows us to test many vaccines in parallel. In addition, many exploits have a
short exploit payload, usually below 1kB. In such cases, BVI offers good per-
formance. We also adopted a block-searching technique to reduce the number
of vaccines for generating a signature. We first test a vaccine which random-
izes a block of contiguous bytes on an exploit packet. If the vaccine still causes
the exception, we move on to randomize another byte block; otherwise, we test
every byte inside that block to identify signature tokens.

Disjunctive Tokens. An attacker might duplicate a semantic token to several
places. For example, the Code-Red II worm (Figure 2) has multiple “%u” tokens,
but only one is necessary for the exploit to succeed. This prevents BVI from
detecting that token, as randomization of one of its replicas does not make
the exception disappear. We can mitigate this problem through the following
improvement of the BVI algorithm, called BVI-1, which captures the last of
the repeated tokens. A vaccine v′

i scrambles the first i bytes on the exploit
dataflow except all the signature tokens having been identified so far. If the
vaccine does not cause any exception to the vulnerable program, the signature
engine records the ith byte as a new signature token. Otherwise, our approach
scrambles that byte before generating the next vaccine v′

i+1. A performance
problem of BVI-1 is that it cannot be parallelized.

Both BVI and BVI-1 cannot identify all the tokens of disjunction relations,
for example, such that any of these tokens suffices for the exploit to occur. To
solve this problem, we developed another algorithm, called BVI-2, which is
presented below. Here, we use disjunctive set to describe a set of tokens with
a disjunctive relation. The set is active if some of its members are yet to be
identified. In addition, the jump addresses always remain scrambled in all
steps of the algorithm.

(1) Run the BVI algorithm to identify all the tokens except those with disjunc-
tive relations.

(2) Detect the existence of disjunctive tokens as follows:
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Fig. 3. An example for identifying conjunctive and disjunctive tokens.

(a) Generate an evaluation vaccine which keeps all the identified tokens
intact, and scrambles all other bytes including the jump addresses on
the application payload of an exploit packet. Inject that vaccine into
the vulnerable program.

(b) If the vaccine causes an exception, declare there is no disjunctive tokens
unidentified and goto Step 5.

(3) Create a new, empty disjunctive set, set it as active and run the following
algorithm to find the members of that set. Here λ is the total number of
scrambled bytes on the evaluation vaccine.
For i = 1 to λ do
(a) Generate a test vaccine which restores the first i scrambled bytes on

the evaluation vaccine but scrambles the tokens already in the active
disjunctive set, and inject it into the vulnerable program.

(b) If there is an exception, we know the ith byte is the last byte of a token,
and proceed as follows to find other bytes of that token and save it:

i Let m be the number of restored bytes on the test vaccine. m < i

if the first i bytes include tokens inside the active disjunctive set.
Generate m vaccines, each of which scrambles exactly one of the
restored bytes on the test vaccine, and inject them into the program.

ii If a vaccine does not cause an exception, save the scrambled byte on
it as a token byte. All the token bytes form a token.

iii Save the token into the active disjunctive set.
Set the active disjunctive set as inactive.

(4) Go to Step 2.

(5) Output a regular-expression signature composed of a conjunction of all the
tokens outside disjunctive sets, and disjunctions of the tokens within the
same disjunctive sets.

Figure 3 offers an illustration of this algorithm. Suppose an exploit packet
contains five tokens: η1 to η5, among which (η2, η3) and (η4, η5) are of disjunc-
tive relations respectively, as described in the figure. η4 and η5 both have two
bytes. Other tokens have only one byte each. Step 1 of the algorithm only
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identifies η1, because scrambling one byte on any other tokens does not make
the exception disappear. In Step 2, the evaluation vaccine does not cause an
exception, which suggests the existence of disjunctive tokens. The “for” loop
in Step 3 produces the first test vaccine which causes an exception when all
the bytes of η4 and other bytes prior to it are restored. Then, Step 3(b) detects
the first byte of that token, creates a new active disjunctive set and save the
token to that set. To proceed that loop, the identified token η4 must always be
scrambled, which enables the discovery of η5. After detecting both tokens, we
run Step 2 again, which suggests the existence of other disjunctive sets. We
repeat Step 3 to find another disjunctive pair (η2, η3) and go back to Step 2.
This time, no disjunctive tokens are found. Therefore, the algorithm gets to
Step 5 to output the signature η1 ∧ (η2 ∨ η3) ∧ (η4 ∨ η5).

Step 3(b) may generate a noncontiguous token, which can also be viewed as
a conjunction of multiple contiguous tokens. The BVI-2 algorithm was evalu-
ated in our experiment (Section 3) over the rpc.statd exploit which contains a
disjunctive token “%n”. The weakness of the approach, however, is performance,
which suffers from the extra rounds of tests. Fortunately, such a disjunction
trick cannot be played on most tokens (e.g., “.ida” and “GET”) and thus the
original BVI algorithm works in many cases.

Exploit-Specific Tokens. Our approach might generate a signature contain-
ing some tokens specific to an exploit. Taking Code Red II as an example,
the signature engine will extract “.ida?” which is exploit-specific, as another
exploit containing the token “.idq?” can attack the same vulnerability. This
problem seems inevitable when generating signatures in the absence of ap-
plication information. However, we argue that our approach is more efficient
and accurate than other application-independent techniques such as network-
based signature generation, as our signature is generated from a single ex-
ploit instance, has a negligible probability of false positives and removes all
wildcard strings the attacker can use for a “red herring” attack [Newsome
et al. 2005]. In addition, our technique runs faster and generates a better
signature using multiple exploit instances (see Section 3.3), and can also be
used to refine a signature generated by a network-based signature generator
(Section 3.3).

2.3.2 Using Protocol Information. If an application’s protocol specifica-
tions are available, we can generate a very accurate signature, close to a
vulnerability-based signature. Such a signature makes use of the characteris-
tics of buffer-overflow exploits and format-string exploits to describe a vulner-
ability. These exploits constitute most known control-flow hijacking attacks.
The algorithm for generating these signatures is also built upon the VI tech-
nique, and therefore we call the approach application-based vaccine injection

(AVI).
Buffer-overflow exploits are usually characterized by anomalously long

fields [Liang and Sekar 2005b]. Thus, a signature with the form (application,

command, f ield.name, max. f ield.size) offers a good description of the vulner-
ability being exploited. Our signature generation engine first identifies the
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application field which includes the jump address, and then makes a quick es-
timate of that field’s length using the number of the bytes prior to the address
within that field. This gives a coarse signature. To refine that signature, our
approach iteratively alters the field size to generate new vaccines, and injects
them into the vulnerable program. If a vaccine makes the exception disappear,
we know the field is too short and then increase it. Otherwise, we shrink that
field. Using a binary searching algorithm, we can quickly determine the min-
imal length for the exploit to happen. The signature generated in this way
can be pretty close to the size of a vulnerable buffer: for example, our experi-
ment over ATP httpd [SecurityFocus 2006] produced a signature only 23 bytes2

longer than the real size of the program’s vulnerable buffer.
Format-string exploits usually contain the special symbol “%n”. In addi-

tion, the address token usually appears prior to this symbol. Therefore,
a simple representation of the signature could be as follows: (application,

command, f ield.name, %n). The accuracy of this signature can be verified by
removing these symbols from a vaccine to test the vulnerable program. If the
exception disappears with the occurrences of the symbol, we are assured that
the signature carries no false positives.

Signatures using protocol information such as field length were first pro-
posed by Liang et al. [Liang and Sekar 2005b]. However, their approach does
not offer a means to estimate the size of a vulnerable buffer which is important
for generating an accurate signature. A weakness of such signatures is that
they may not work well on binary protocols with fixed field lengths. In this
case, our BVI approach can still generate a token-sequence signature.

Packet vaccine is also able to test borderline values using protocol infor-
mation. For example, a borderline value of the field “total questions” in a
DNS packet is zero [Mockapetris 1987]. A vaccine can be generated by setting
the field to zero. After injecting the vaccine into a vulnerable “named” server,
nonexception indicates that the field value should be larger than zero.

3. EVALUATION

We evaluated packet vaccine using a proof-of-concept implementation. In this
section, we first describe this implementation and then present our experi-
mental results and analysis, which include vaccine effectiveness and signature
quality.

Our experiments were carried out on two Linux workstations: one with Red-
hat 7.3 operating system, Intel Pentium 4 1.5GHz CPU and 256MB memory,
and the other with Redhat 6.2, Pentium 3 1GHz CPU and 256MB memory. We
used the Redhat 7.3 system for all experiments except those involving the Bind
TSIG exploit, which requires Redhat 6.2.

We also used several network traces to evaluate the qualities of the signa-
tures generated by our approach. Our dataset includes a trace of one million
HTTP headers and one million DNS flows in and out of Indiana University.

2These bytes turned out to be the local variables lying between the function return address and
the vulnerable buffer.
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3.1 Implementation

We implemented packet vaccine on Linux. The target address set T is ex-
tracted from an application’s process proc files, including maps and status,
and sent to a vaccine generation module. This module scans the dataflow of a
recorded session for the byte sequences inside T, scrambles their most signif-
icant bytes, creates a socket to convert the new dataflow into vaccine packets
and transports them to the application. On the systems running the applica-
tion, we installed a process monitor developed using ptrace, which serves as
a collector to gather the contents of important registers should an exception
happen to the process being monitored. Registers important to vulnerability
diagnosis are CR2 and EIP. However, CR2 can only be accessed in the kernel
mode. In our research, we developed a kernel patch for Linux 2.4.18 to read its
content.

The signature generation engine has two components, a prober and a
verifier. The prober tests an application using vaccines to identify signature
tokens. It can work remotely. The verifier monitors processes for exception
signals, and restarts the application if it is single-processed. In our implemen-
tation, the verifier was embedded in the ptrace-based monitor. On starting
signature generation, the prober first makes a persistent connection with the
verifier, and then sends a vaccine packet to the application. If the application’s
process crashes, the verifier intercepts the exception signal and notifies the
prober through the connection. Otherwise, the verifier waits for a period of
time (longer than the maximum crash time) before signaling that no exception
has occurred. Our implementation supports both the BVI and AVI algorithms
and can generate token-sequence and application-level signatures. A user can
set either signature generation model by modifying a configuration file. For
simplicity, we only implemented the sequential vaccine injection in our proto-
type system, which unfortunately introduced some performance penalties. In
our experiments, we found that some applications could take tens of millisec-
onds to crash (Table I). The gross delay caused by crashes of multiple processes
could be greatly reduced by a parallel approach.

3.2 Vaccine Effectiveness

A paramount question for packet vaccine is a vaccine’s ability to detect an ex-
ploit. We address this question through an empirical evaluation reported in
this section. We carried out experiments on real exploits of seven vulnera-
ble applications obtained from SecurityFocus [SecurityFocus 2006]. They have
been widely used for evaluating other techniques. In our research, we made
sure that all these exploits were successful in the vulnerable applications by
spawning a remote shell before testing them with our technique.

Packet vaccine successfully detected these exploits, and additionally diag-
nosed the related vulnerabilities to generate precise signatures. The details
of exploits and detection results are listed in Table I. Note that due to time
and resource constraints, we only implemented our prototype on Linux. For
this reason, our experiments did not include exploits of Windows applica-
tions. However, we analyzed another 19 exploits which include Windows-based
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Table I. Exploit Detection

Exploit Number of Max.
Packet Address- delay for

Exploits BID Vulnerability Type Len Detected like Tokens a crash

BIND tsig 2302 stack-based buffer 510 Yes 3 0.0242s
overflow

Light httpd 6162 stack -based buffer 231 Yes 13 0.0660s
overflow

ATP httpd 8709 stack-based buffer 820 Yes 90 0.0265s
overflow

Samba 7294 stack-based buffer 3097 Yes 26 0.0231s
overflow

OpenSSL v2 5363 heap-based buffer 474 Yes 4 0.0768s
overflow

wu-ftpd 1387 format string attack 435 Yes 1 0.0732s

rpc.statd 1480 format string attack 1076 Yes 8 0.0043s

exploits such as Code Red II. We found none of their syntax and semantics
would be damaged by our approach. This implies that packet vaccine can also
detect them. Our analysis is presented in Appendix B.

We installed all vulnerable applications, except Bind, on the host running
Redhat 7.3. Our implementation automatically extracted these applications’
stack and heap information and estimated their address ranges using α = 2.
We present the details in Appendix C. ASCII-dominant protocols, such as
HTTP and FTP, do not have suspicious jump addresses in their syntax strings
and valid parameters, though these tokens may appear on packet payloads of
these protocols (e.g., a binary file downloaded from a Web site). Therefore, vac-
cines seem very effective for detecting exploits using these protocols. In our ex-
periments on light httpd, ATP httpd and wu-ftpd, our implementation blindly
randomized all 4-byte sequences on exploit packets falling in these applica-
tions’ target address sets, and caused SIGSEGV exceptions to their processes.
We spotted randomized tokens in register CR2, which allowed us to correlate
the exceptions to their causal packets.

Binary protocols could have a close-to-even distribution of byte sequences,
rendering address-like sequences more likely to appear. However, those se-
quences may not coincide with the tokens necessary for an exploit, which usu-
ally constitute a small set (see the signatures in Table II). In our research,
we put our approach to the test against exploits of four applications using bi-
nary protocols, including Bind-TSIG, samba, rpc-statd and openssl. Vaccines
generated from these exploits all caused SIGSEGV. Again, the contents of CR2
confirmed correlations. For the stack-based buffer overflow (samba) and the
format-string exploit (rpc-statd), the randomized tokens were found in CR2. An
exception is Bind-TSIG, we found the token in EIP, as our kernel patch did not
work for Redhat 6.2 and therefore we could not access CR2 under that Linux
version.

Detecting a heap-based overflow turned out to be a little trickier. In the
experiment on openssl, the value of the byte sequence we got from CR2 was
larger than that of the randomized token by 12. We explain this as follows. The
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Table II. Signatures and Their Generation Time. A Token in a Byte Sequence Signature is
Represented as i − j(Bi, . . . , B j) (i ≤ j), where i and j are the Positions of the Individual Bytes
on the Token and Bi is a Byte’s Hexadecimal Value. For Example, 229-230(0a,0a) Indicates that
the Token 0x0a0x0a Lies Between the 229th and the 230th Bytes in the Payload. The Position

Information is optional and not Useful for Text-Based Protocols Such as HTTP

Gen. Gen.
Exploits App. Signature Time Byte Sequence Signature (Hex) Time

BIND — — 4-12(00,01,00,00,00,00,00,01,3c), 4.881s
tsig 73(3c),134(0c),147(31),197(0c),210(3e),

273(3e), 336(1e),367(10),384(3e),
447(34),500(00),505-507(00,00,fa)

Light (.,‘GET’,filename,178) 0.345s 0-3(47,45,54,20), 229-230(0a,0a) 1.360s
httpd

ATP (.,‘GET’,filename,703) 0.274s 0-4(47,45,54,20,2f), 818(0a) 2.708s
httpd

Samba (.,‘TRANS2 OPEN2’, 0.622s 0-2(00,04,08),4-8(ff,53,4d,42,32), 7.636s
filename, 2000) 28-29(01, 00),32-33(64,00),37-40

(d0,07,0c,00),55-56(d0,07),58-60
(00,0c,00),63-66(01,00,00,00)

OpenSSL (.,‘Master Key’, 0.358s 0-11(81,d8,02,01,00,80,00,00,00, 5.012s

v2 arguments, 298) 80,01,4e)

wu-ftpd (.,‘SITE’, ‘EXEC’, %n) 0.130s 0-9(53,49,54,45,20,45,58,45,43,20), 4.228s
431-432(25,6e)

rpc.statd (., ‘STAT’, name, %n) 0.116s 4-31(00,00,00,00,00,00,00,02,00,01,86, BVI-1:
b8,00, 00,00,01,00,00,00,01,00,00,00, 5.780s
01,00,00,00,20), 36-39(00,00,00,00,09),
60-63(00,00,00,00),68-74(00,00,00,00,
00,00,03),164-165(25,6e)

4-31(00,00,00,00,00,00,00,02,00,01,86, BVI-2:
b8,00, 00,00,01,00,00,00,01,00,00,00, 19.717s
01,00,00,00,20), 36-39(00,00,00,00,09),
60-63(00,00,00,00), 68-74(00,00,00,00,
00,00,03),144-145(25,6e), 146-147(25,
6e),153-154(25,6e),160-161(25,6e),
162-163(25,6e),164-165(25,6e)

exploit took advantage of the “free()” function to overwrite a function’s return
address. The location of that address was faked as the content of a linking
pointer in a bogus idle memory segment’s heap management data structure.
On the exploit’s payload, the address of that segment’s header was provided.
That address was supposed to be lower than the linking pointer’s address by
12. The exception happened when the heap management system attempted to
access that linking pointer using the header’s address which was randomized
by our approach.

In addition, there are disjunctive tokens “%n” in the exploit packet of
rpc-statd. BVI-1 captured the last one, and BVI-2 identified all of them, which
are presented in Table II: 144-145 (25,6e), 146-147 (25,6e), 153-154

(25,6e), 160-161 (25,6e), 162-163 (25,6e), 164-165 (25,6e).
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Fig. 4. Signatures for bind TSIG.

3.3 Signature Quality and Performance

A summary of results of our experiments on signature generation can be found
in Table II. To evaluate the quality of our signatures, we compared them with
signatures reported in recent literature [Brumley et al. 2006]. We report other
results of our experiments on signature generation in Table II. A vulnerability-
based signature can prevent all possible exploits on a vulnerability [Crandall
et al. 2005]. Recently, Brumley et al. have proposed a gray-box approach
to generate such a signature on the basis of static analysis of a vulnerable
program’s binary code [Brumley et al. 2006]. Their technique intensively uti-
lizes application information and theoretically promises to produce a perfect
signature.

Brumley et al. described in their paper two monomorphic-execution-path

(MEP) signatures, one for Bind TSIG and the other for ATP httpd. MEP signa-
tures computed from a single exploit path are usually exploit-specific. Never-
theless, with the information extracted from the vulnerable application, they
are still very accurate. Here, we analyze our signatures using these signatures.

3.3.1 Quality of the Token-Sequence Signature: Bind-TSIG. Bind is a very
popular DNS server. It supports a secret-key transaction authentication in
which messages bear transaction signatures (TSIG). There is a buffer-overflow
vulnerability in Bind 8.2.x which allows an attacker to gain control of a system
running Bind. This vulnerability can be exploited through both UDP and TCP
queries. Our experiments were on UDP-based exploits and Bind 8.2.2.

We ran the BVI algorithm against two exploits of the Bind-TSIG vulnera-
bility and generated signatures for them. The packets of these exploits share
19 bytes at the same locations on their application payloads. Based on these
bytes, the BVI algorithm generated another signature with 10 bytes. These
signatures3 are presented in Figure 4, along with the MEP signature.

All signatures include bytes 6 to 10 which are zero and bytes 505 to 507
which are 0x0000fa (a zero-length Qname followed by the field type TSIG). These
bytes are indispensable to a successful exploit, as we discovered from Bind’s

3Our signature may also include the target address set, which we believe does not make the sig-
nature too specific for a control-flow hijacking attack. This is because that set includes all possible
jump targets, not a specific address.
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source code. Besides them, our signatures also contain some other tokens
which are described below.

Bytes 4 to 5 are the number of queries inside the packet. Byte 4 must be
zero for the UDP-base exploit due to the size limit of a UDP-based packet.
However, byte 5’s content is overly specific in our first two signatures because
the number of queries is seven in the first exploit and one in the second one.
On the other hand, that byte must be nonzero, which has not been captured
by the MEP signature. Similarly, byte 11, along with byte 10, is the “ARcount”
field which indicates the number of resource records in the additional records
part. It must be nonzero to accommodate the TSIG field, but our signatures
are overly specific in determining its value. Byte 12 appears on both our first
two signatures and the MEP signature, but ours specify its content. Bytes
between 73 and 500 on our first two signatures are also specific. These bytes
serve as the length octets in the “Qname” field of a query, which are important
for the successful parsing of a DNS query. However, an attacker may change
the structure of the exploit packet to avoid these bytes. This problem is hard to
avoid with only a single instance of the exploit and no application information
at all. It can be mitigated if the signature is constructed from more than one
exploit instance, as the third signature in the figure.

The MEP signature also has some problems. It misses bytes 4, 5, and 11,
and also contains overly specific tokens, such as bytes 268 and 500. Byte 500
is also present in our signature from the second exploit while not in the first
exploit. Both bytes (i.e., 268 and 500) signal the end of a query in a particular
exploit. However, the attacker can avoid them by changing an exploit packet’s
structure, such as the number of questions and their sizes. For example, byte
268 has a nonzero value in two exploits used in our research.

Using the block-searching technique, a sequential BVI algorithm took 5.732
and 4.881 seconds to generate the first two signatures. We believe an opti-
mized implementation and introduction of parallelization could improve that
performance. The third signature was generated within 0.2 seconds. The gen-
eration time for the MEP signature has not been given by the authors of that
technique [Brumley et al. 2006].

3.3.2 Quality of the Application-Level Signature: ATP-httpd. We also com-
pared our application-level signature for ATP-httpd with the MEP signature
in [Brumley et al. 2006]. ATP-httpd contains a vulnerable buffer which will
be overrun by a requested filename longer than 680 bytes. Built upon the
analysis of the program’s binary code, the MEP signature contains richer in-
formation than ours. It points out the HTTP command which leads to the vul-
nerability could be either “GET” or “HEAD”, while our signature only identifies
“GET” from a single exploit instance. However, the MEP signature contains two
overly specific tokens – “//” and “/,” which actually are parts of the shell code
(Figure 5). We scrambled both tokens in the exploit payload to generate a vac-
cine, which did not prevent the vaccine from triggering a SIGSEGV exception.
In addition, the field length identified by their signature is 812 bytes, which
is not necessary for an exploit. Our signature offers a better estimate of the
vulnerable buffer size. The AVI algorithm determined the maximal length of
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Fig. 5. The payload of the ATP exploit.

Table III. False Positives. T Refers to the Target Address Set of the Vulnerable Application

False Positive Rate
Exploits (Application Signature) False Positive Rate (Byte-Sequence Signature)

BIND tsig — w/ T, 0%, w/o T, 0%

Light httpd 0.602% w/ T, 0%, w/o T, 0.0006%

ATP httpd 0.0077% w/ T, 0%, w/o T, 0.142%

the field “filename” as 703, 23 bytes longer than the vulnerable buffer. These
23 bytes turned out to be the local variables between the buffer and the pointer
overwritten by the exploit.

To generate an application-level signature, we implemented a simple parser
to parse the exploit packet. Our approach took 0.274 seconds to generate the
signature. By comparison, the algorithm in [Brumley et al. 2006] spent more
than a second to complete a single step of signature generation. Therefore, it
seems our approach is much faster.

In summary, it comes with little surprise that the MEP signatures are more
accurate than our signatures in general. However, their quality advantages
seem to diminish with the availability of multiple exploit instances and ap-
plication information. Furthermore, our black-box approach performs signif-
icantly faster than the technique for generating these signatures, and even
works with DRM-protected code which static analysis might not manage well.

3.3.3 False Positives. We tested our signatures for Bind-TSIG, ATP-httpd
and light-httpd using the aforementioned DNS and HTTP traces4 (Table III).
Surprisingly, most false positives come from application-level signatures which
are supposed to be very accurate! Further analysis offers the explanation:
these signatures are implementation-dependent, only working for specific
HTTP servers, and supposed to be installed on the firewalls connected to these

4We did not evaluate the false positives of other signatures in Table II because of the difficulty in
obtaining the real-life data for their related protocols. Some of them (such as Samba and RPC) are
not commonly used, and the real-life traffic of others (such as FTP and SSL) cannot be acquired
due to the restrictions of the university’s privacy policies.
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Fig. 6. An architecture to protect Internet servers using packet vaccine. Label ‘T’ indicates test

servers.

servers, while the HTTP traces were collected from edge routers, containing
the traffic for other HTTP servers such as Apache or IIS which accommodate
a longer filename field than ATP-httpd and light-httpd could. For example,
Apache uses a dynamically allocated buffer to host HTTP requests and there-
fore can handle a request with the filename field longer than 178 bytes; how-
ever, the same request will cause a buffer-overflow in light-httpd.

4. EXAMPLE APPLICATION: PROTECTING INTERNET SERVERS

In the section, we present an architecture which applies packet vaccine to pro-
tect Internet servers from remote control-flow hijacking attacks. This archi-
tecture serves as an example to demonstrate the potential application of our
technique. Other applications are discussed in Section 5.

We prototyped the architecture under Linux to protect Apache HTTP
servers. In this section, we also include a performance study of this proof-
of-concept system.

4.1 Architecture

Figure 6 illustrates the architecture we propose. A service request is first in-
tercepted and cached by a service proxy and parsed by a parser. The parser is
optional here and only useful when we use application-level signatures. Then,
the request is screened by a filter which identifies and drops known exploits
using exploit signatures. Behind the filter, a detector examines the request and
labels it as either normal or suspicious. The detector could simply be part of
our packet vaccine mechanism, which classifies packets with regards to the ap-
pearance of address-like tokens on their payloads. Alternatively, we could take
other simple detection techniques, such as the one which identifies the pack-
ets with overlong fields. After classification, a normal request is forwarded to
a server farm directly, while a suspicious request triggers the packet vaccine
mechanism which acts as discussed in Section 2. If that request does contain
an exploit, packet vaccine generates a new signature and adds it to the filter.
Otherwise, the proxy forwards the original request to the server farm.

The architecture makes use of a small set of test servers5 in the server farm
to test vaccine packets. A test server has a collector on it, which serves to

5Separate test servers are not indispensable in our architecture. A server providing live services
can also be used to test vaccines (e.g., through forking a test process). Similar techniques are
adopted in Shadow Honeypot [Anagnostakis et al. 2005], Sweeper [Tucek et al. 2007], and FLIPS
[Locasto et al. 2005].
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glean registers’ contents should an exception happen. Signature generation
can also happen on such a server. Our current implementation of the architec-
ture only works for stateless services such as HTTP. To accommodate stateful
services such as FTP, the test server also needs a checkpoint/rollback (CR)
mechanism to recover the state before each test, which unfortunately incurs
overhead. Advances in CR techniques offer the opportunity to greatly reduce
such overhead: for example, FlashBack [Srinivasan et al. 2004; Tucek et al.
2007] makes a checkpoint for a process by simply forking a backup process,
which enables a very efficient recovery once the original process is crashed
by an exception. Application of such techniques to our architecture is left as
future research.

A threat to this architecture is denial-of-service (DoS) attacks: an attacker
can generate a large number of packets containing address-like tokens, in
hopes of exhausting the capacity of the test servers. However, this will not
affect legitimate client requests if their packets do not carry such tokens, as
these packets will not go through the test servers. The attacker could also in-
tentionally crash a vulnerable program by exploiting its vulnerability by using
jump addresses outside the program’s address space. Such an attack cannot
be detected by the current design of packet vaccine, as the exploit packet may
not include any address-like tokens. Defenses against this threat would pre-
sumably need to generate a signature from features of packets other than the
presence of address-like tokens, such as an overly long application field. Such
approaches are left for future study.

4.2 Performance Study

To implement a prototype system for HTTP service, we developed a service
proxy and a filter (including an HTTP parser), and combined them with our
implementation of packet vaccine (Section 3.1) which contains a detector. A
suspicious client request is checked by the exploit detection module before be-
ing forwarded to real servers, whereas the reply of that request is directly sent
back to the client. The proxy caches a request first and then handles it accord-
ing to the detection result, either dropping it as a convicted exploit attempt
or forwarding it to an HTTP server as an innocent request. Our filter simply
examines packet fields output from the parser and drops the request whose
characteristics match to a known exploit signature. Since HTTP is a stateless
service, we did not implement the process-level CR in this prototype. However,
an extension of our implementation can easily accommodate a stateful service,
as CR mechanisms [Dunlap et al. 2002; Srinivasan et al. 2004] can be directly
integrated to our system.

Over the prototype system, we carried out a performance test. Two hosts
were used in our experiment, one for both the proxy and the test server
and the other for the web server. Both were equipped with 2.53GHz Intel
Pentium 4 Processor and 1 GB RAM, and running Redhat Enterprise 2.6.9-
22.0.1.EL. They were interconnected through a 100MB switch. We utilized an
Apache 2.0.55 to provide web service. In our experiment, we evaluated the
performance of our implementation from the following perspectives: (1) Server
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Fig. 7. The workload capacities in five different server settings.

overheads, where we compared the workload capacity of our implementation
with that of an unprotected Apache server; (2) Client-side delay, where we
studied the average delay a client experiences under different test rates.

4.2.1 Server Overheads. We tested the workload capacity using
ApacheBench (ab) 2.0.41-dev which comes bundled with the Apache source
distribution. ApacheBench is a tool for benchmarking the Apache Web server.
In our experiment, we measured the workload capability in terms of re-
quests processed per second (requests/second) under the following five server
configurations: (0) “Apache only” (Apache), (D0) “Apache and the proxy on
different hosts” (Proxy-diff-Apache), (S0) “Apache and the proxy on the same
host” (Proxy-same-Apache), (D1) “Apache and the packet-vaccine proxy (with
the parser and the detector) on different hosts” (Proxy+vaccine-diff-Apache),
(S1) “Apache and the packet-vaccine proxy on the same host” (Proxy+vaccine-

same-Apache). During the experiments, we invoked ApacheBench for each
server configuration as follows: “[root@localhost ∼]# ab -n 100000 -c 100

http://192.168.1.13/test.html”. In response to this command, ab generated
100000 requests in total to the Web server with the IP address 192.168.1.13 for
downloading the Web page test.html, maintaining 100 requests outstanding
concurrently. The size of the Web page is 7.5KB. After all these requests were
served, ab output the average number of requests processed by the server in a
second.

Figure 7 illustrates the experiment results. At a first glance, it seems
that our implementation brought down the Apache’s performance by about
44% in the setting Proxy+vaccine-diff-Apache and about 29% in the setting
Proxy+vaccine-same-Apache, which is quite unpleasant. A close look at the
results, however, reveals that the major performance penalty came from the
proxy. The homegrown proxy used in our proof-of-concept implementation
could not catch up with the high-performance Apache and therefore dragged
down the performance of the whole system. Simply adding the proxy into the
system introduced about 43% performance penalty in Proxy-diff-Apache and
27% in Proxy-same-Apache. On the other hand, the packet vaccine compo-
nents worked pretty fast. They affected the performance only by one to two
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Fig. 8. The average delay experienced by a local or remote client.

percent. Therefore, we tend to believe that a high-performance HTTP proxy
could greatly improve the workload capability.

Actually, an application-level proxy is not required for the architecture. An
alternative could be a firewall or a load balancer built upon IXP network
processor, as used in [Anagnostakis et al. 2005]. This could remove the role
the proxy played as a performance bottleneck. Another observation in our ex-
periment is moving the proxy to the host running Apache improves the work-
load capability by at least 10%. Therefore, it seems that making the proxy an
Apache module might greatly reduce the server overhead.

4.2.2 Client-side delay. Once the detector identifies a suspicious request,
a round of exploit detection will be triggered to test that request. This intro-
duces delay to a legitimate client if the request turns out to be innocent. Here,
we call the ratio of the service requests being tested the test rate. If the test
rate increases, the average delay experienced by a legitimate client will also
increase. In our experiment, we studied the change of the client-side delay
against different test rates. We carried out both a local experiment within In-
diana University’s campus network and a cross-campus experiment between
Indiana University and North Carolina State University. The experimental
results are presented in Figure 8.

As we expected, the average delay for a local client increased almost lin-
early with the test rate. However, this result could be misleading, as the
local client experienced much smaller round trip delay (RTD) than an aver-
age Internet user: the RTD in a campus we measured is around 300µs, while
the average RTD on the Internet is around 100ms. Therefore, an Internet
client’s perception of the presence of packet vaccine could be completely over-
shadowed by the RTD. This was confirmed in the cross-campus experiment: as
presented in Figure 8, the 75ms RTD between the two campuses dominated
the client-side delay, making the 1ms overhead of our protection mechanism
negligible.

In summary, packet vaccine does introduce performance penalty to the
server but such penalty is acceptable if weighed against the security enhance-
ment it offers. On the other hand, the client-side overhead is almost negligible,
completely dwarfed by the RTD an average Internet client experiences.
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5. DISCUSSION

5.1 Other Applications

Network-based honeypots and signature generators [Kreibich and Crowcroft
2004; Yegneswaran et al. 2005; Singh et al. 2004] usually detect new exploits
and generate their signatures earlier than a host-based system. However,
these techniques can suffer from a high false positive rate due to the inter-
ference of Internet noise or even poisoning attacks [Richardson et al. 2005;
Perdisci et al. 2006]. Therefore, it is important to use the vulnerable program
to validate the exploit detected by these approaches. This is a daunting task
because there could be hundreds of different implementations of the protocol,
plus various versions and patching levels for individual implementations.

Our packet vaccine mechanism offers a simple solution to this problem. A
network-based detector can forward the dataflow recorded from a suspicious
communication session to the administrator of a local-area network. Using
our technique, the administrator can generate vaccines from such dataflow
to scan the systems inside his administration domain. If any system reports
an exception, not only do we confirm the existence of the exploit but we can
generate an accurate signature. Otherwise, the administrator can conclude
that either the dataflow does not reflect any real exploit, or no program in his
administrative domain contains the related vulnerability. Similarly, packet
vaccine can be used as a “vulnerability assessment tool.” We can probe servers,
switches, routers, and workstations for conditions that, if left untreated, can
result in penetrations.

5.2 Limitations

Packet vaccine may have false negatives in exploit detection, since there is
a possibility that our approach modifies an exploit’s semantic tokens. This is
more likely to happen for the applications using binary protocols, though so far
we have not found an example “in the wild.” Several ways of mitigating this
problem have been discussed in Section 3.2. A simple yet effective solution
is generating multiple vaccines, each randomizing one byte on an address-
like token. In this way, if the exploit’s semantic tokens survive any of these
randomization, our approach will detect the exploit.

Our approach requires decoding a packet before generating a vaccine. It is
nontrivial to support a variety of encoding schemes while maintaining system
performance. This problem could limit the potential for using our technique at
the edge of a network to protect a wide range of Internet services and applica-
tions. We plan to seek a good solution to the problem in the future research.
Our current design, however, is just meant to protect a specific application,
and therefore can focus on the encoding schemes used in that application. For
example, a vaccine mechanism for protecting an Apache server only needs to
know how to decode the encoding schemes that Apache supports.

Our approach will not work directly on packets with encrypted payload or
checksums. In this case, we need an application-level proxy to decode these
packets and construct new packets for vaccine generation [Wang et al. 2006;

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 11, Pub. date: December 2008.



Fast and Black-box Exploit Detection and Signature Generation · 11: 25

Locasto et al. 2005]. Another approach is to interpose on the API calls to the
functions for decryption so as to extract and examine the plaintext before it
being processed by an application. This can be achieved using API interception
tools such as Detours.6

Both types of signatures we used in our research are limited in their ca-
pabilities to represent necessary exploit conditions. For example, null-httpd
contains a vulnerability which allows one to specify a smaller buffer while
supplying a longer payload. An ideal signature is to check whether the real
payload size matches the specified size. However, none of our signatures can
describe this condition. We leave it to future work to examine how to use our
black-box techniques to acquire information for more expressive signatures
[Wang et al. 2004; Brumley et al. 2006].

6. RELATED WORK

In this section, we survey the previous work related to packet vaccine.
Research on exploit detection and automatic signature generation is most
relevant to our technique. Existing approaches in this area can be loosely
classified into three categories, that is, network-based approaches, host-based
approaches and hybrid approaches. Another related area is software robust-
ness testing. Below we compare the work in these areas with our approach.

6.1 Network-Based Approaches

Network anomaly detection has been widely used to detect exploit attempts
from network traffic. Scan detection [Telescope 2006; HoneyNet 2006; Spitzner
2003] captures anomalous scanning activities which usually herald massive
spreads of Internet worms. More active honeypots such as HoneyNets can
cheat attackers into revealing the packets carrying exploit payloads [Cran-
dall et al. 2005; Spitzner 2003; HoneyNet 2006]. Recently, research on hitlist
worms has also received much attention [Shannon and Moore 2004; Zou et al.
2005; Whyte et al. 2005].

Many NADs look for anomalous patterns in packets to discover attack
dataflow [Yegneswaran et al. 2005; Wang and Stolfo 2004; Toth and Krügel
2002; Kruegel et al. 2005]. Examples include Nemean [Yegneswaran et al.
2005] which builds vulnerability-specific signatures for unknown exploits us-
ing protocol specifications, PayL [Wang and Stolfo 2004] which senses the large
deviation in the byte frequency distribution on anomalous packets, Toth and
Kruegel’s scheme [Toth and Krügel 2002] which builds upon abstract execution
of attack payloads. Structural information of executables within an exploit is
also proposed to serve as a fingerprint for possible exploits, though detection
of such information is very computation-intensive [Kruegel et al. 2005], and
is prone to false positives (FPs), as legitimate packets might also contain exe-
cutables, such as OS updates and patches.

Using the attack dataflow detected, network signature generators automat-
ically create attack signatures. Earlybird [Singh et al. 2004], Honeycomb

6http://research.microsoft.com/sn/detours/
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[Kreibich and Crowcroft 2004], Autograph [Kim and Karp 2004] and SweetBait
[Portokalidis and Bos 2005] use a prevalent substring across worm-related
packets as a signature. This treatment could be defeated by polymorphic
worms capable of altering their forms in every new infection. Polygraph [New-
some et al. 2005] proposes to detect polymorphic worms using multiple short
invariants which are hard to evade even for polymorphic worms. PADS [Tang
and Chen 2005] identifies anomalous packets using a position-aware distribu-
tion of bytes.

Anomaly detection solely relying on network information is usually less ac-
curate than host-based approaches, tending to produce FPs. On the other
hand, these approaches are usually more efficient: some of them can even
work at the link speed. Our approach can also serve to improve the accuracy of
the signatures generated by these approaches. A vaccine can be made through
randomizing the address-like tokens on the content of such a signature, which
is usually composed of some prevalent substrings in anomalous dataflow. If
the original signature indeed relates to an exploit, this vaccine could cause an
exception to a vulnerable program.

6.2 Host-based Approaches

Host-based approaches make use of host information to detect anomalies and
generate signatures. As exploits actually happen on a host, these approaches
are usually more accurate than network-based approaches, incurring fewer
FPs. However, they tend to be much slower. TaintCheck [Newsome and Song
2005], VSEF [Newsome et al. 2005], Sweeper [Tucek et al. 2007], Minos [Cran-
dall and Chong 2004], and Vigilante [Costa et al. 2005] track the dataflow
from the network to the point where an anomaly happens, for example, jump-
ing to an address offered by the input data. DACODA [Crandall et al. 2005]
can monitor the execution flow of the whole system, including the anomaly
happening across multiple processes. A major problem for these approaches
is performance which typically drops by at least one order of magnitude. Suh
et al. [2004] proposes an approach similar to the NX technique [Wasson 2004]
to improve the performance of dynamic information tracking, which however
needs a hardware support. In contrast, our vaccine mechanism tracks suspi-
cious dataflow in a black-box fashion, which is significantly faster than these
gray-box approaches and still preserves most of their accuracy and usability.

Recently, Liang et al. and Xu et al., independently propose two approaches
[Xu et al. 2005; Liang and Sekar 2005b] which use memory address-space
randomization (ASR) to foil exploit attempts, and then automatically gener-
ate signatures through forensic analysis of the related exceptions. These ap-
proaches attempt to fix the de-randomization weakness of ASR discovered by
Shacham et al. [2004]. In particular, COVERS [Liang and Sekar 2005b], pro-
posed by Liang et al., first proposes a novel construction of application-level
signature which uses field length to characterize a buffer overflow vulnerabil-
ity. Although we also use this signature, our AVI technique augments their ap-
proach by making an accurate estimate of the field length. This could prevent
a derandomization attacker from repeatedly probing a vulnerable program by
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shrinking the field length of the attack packet byte by byte. In addition, our
technique also offers a more reliable way to correlate exceptions with the ex-
ploit packets, on which we elaborate in Section 2.2.

6.3 Hybrid Approaches

Hybrid approaches combine network-based and host-based approaches to-
gether to seek a trade-off between performance and accuracy. Bro +Apache
[Dreger et al. 2005] and ARBOR [Liang et al. 2005; Liang and Sekar
2005a] utilize host-based and network-based context information in parallel to
improve detection accuracy. Shadow Honeypot [Anagnostakis et al. 2005]
employs these two techniques in a sequential way, using an NAD to de-
tect anomalous packets and a honeypot to analyze them. FLIPS [Locasto
et al. 2005] and the software self-healing approach proposed in Locasto et al.
[2006] use a similar architecture to protect Internet services, relying on STEM
[Sidiroglou et al. 2005] to detect exploit attempts.

Shadow Honeypot, FLIPS and the approach in [Locasto et al. 2006] all rely
on code instrumentation of a service program to detect exploit attempts, and
therefore require the knowledge of source code or recompiled binaries. This
makes these approaches hard to apply to protect commodity software. By com-
parison, packet vaccine works well over commodity software.

HACQIT [Reynolds et al. 2003] invokes a test process after an exploit
crashes a protected program, and replays suspicious packets to a sandbox run-
ning the same program to monitor whether the same exception happens again.
However, this approach only works for denial-of-service attacks and does not
offer a reliable means to establish a correlation between the exception and the
exploit inputs.

6.4 Software Robustness Testing

The vaccine-injection technique can trace its root to software robustness test-
ing, especially software-implemented fault injection (SWIFI) [Musa et al.
1996]. Software testing is a process to evaluate the quality of developed soft-
ware, which includes its correctness and security property. Fault injection is
a software testing and evaluation method which involves inserting faults into
a system to determine its response to these faults. Some early methods to
automatically test operating systems for robustness include the Crashme pro-
gram [Carrette 2006], the Fuzz project [Carrette 2006], the FIAT system [Bar-
ton et al. 1990], the FERRARI system [Kanawati et al. 1995] and the FTAPE
system [Tsai and Iyer 1995]. A recent work in this area is CMU’s Ballista
[Ballista 2006], which automatically probes an operating system’s APIs with a
large number of valid and invalid inputs to evaluate their robustness.

Similar testing techniques can also be applied to assess the effectiveness of
a security mechanism. Vigna et al. present a testing tool which automatically
generates variations of a known exploit to evaluate an intrusion detector’s ac-
curacy [Vigna et al. 2004]. A similar approach is the Thor tool [Marty 2002],
which tests intrusion detection systems using variations of known attacks.
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Fig. 9. Distribution of jump addresses (counting duplicated addresses).

Software robustness testing techniques have paved the road to building
vaccine-based defense. However, our approach differs fundamentally from
these approaches in its ability to quickly generate protective signatures to
“heal” the vulnerabilities being discovered. Another important difference is
that our approach does randomly generate faults as many fault-injection tools
do. Instead, packet vaccine takes advantage of anomalous packets or confirmed
exploits to direct vaccine generation, which significantly increases the chance
to identify an unknown vulnerability.

7. CONCLUSIONS AND FUTURE WORK

In this article, we presented packet vaccine, a fast and black-box technique
for exploit detection, vulnerability diagnosis and signature generation. We
described its design and provide examples for its application. We also im-
plemented a proof-of-concept prototype, and evaluated our technique using
it. Our experimental results demonstrate the effectiveness of our technique,
which successfully captures real exploits and generates accurate signatures,
and its efficiency, which greatly improves over the gray-box approaches and
works well in protecting online services.

APPENDIXES

A. Distribution of Exploitable Jump Addresses

We inspected the jump addresses of all exploits recorded in MilkW0rm7, which
includes numerous attacks on Windows, Linux, Solaris, and BSD operating
systems. Figures 9 and 10 illustrate the distribution of these addresses. (Note
that the figure on the right offers a closer look at the figure on the left; see the
difference on their Y-axes.) The distribution illustrated in Figure 9 counts in
duplicated addresses, while the distribution in Figure 10 does not. In other
words, if an address appears twice in our dataset, we counted it twice in Fig-
ure 9 and once in Figure 10. From these figures we observed a remarkable

7http://www.milkw0rm.com
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Fig. 10. Distribution of jump addresses (not counting duplicated addresses).

concentration of jump addresses. The spike around 0x08040000 includes the
memory addresses used by the heap, GOT and BSS-based overflow exploits.
Around 0xbffff000 are the addresses in stack-based overflow exploits. Attacks
on Windows applications intensively use the addresses around 0x77e00000, as
illustrated in the figures.

It is quite clear that most of these addresses concentrate on very narrow
ranges. For example, the top three spikes cover 72% of exploits. This sug-
gests that we could detect most attacks by monitoring a small memory address
range. This does not mean that packet vaccine cannot protect the memory
ranges around other smaller spikes. It is simply less efficient to do so, as it
will result in more vaccines being generated and tested relative to the number
of exploits that might be detected.

B. Exploit Analysis

In addition to the exploits reported in Section 3.2, we also analyzed the code
of nineteen other exploits to evaluate the effectiveness of the vaccine. To limit
the bias, we inspected all remotely-exploitable vulnerabilities on the first 16
pages of the securityfocus records [Vulnerabilities 2006] between 5/4/2006 and
4/17/2006, and all remotely-exploitable vulnerabilities with BugTrap IDs be-
tween 5000 and 5200. The results are listed in Table IV, in which “[]” stands
for a blankspace, “[x]” for a variable-length string, “x..x” for a constant-length
string and “JAJA” for a jump address.

Comparing the above syntax and semantic tokens with the distributions
illustrated in Figure 9, we found that except the jump addresses, none of them
fall into the address ranges intensively used by exploits. This suggests that
scrambling address-like byte sequences on these exploits’ payload will not tem-
per with any of these tokens. Therefore, we believe that packet vaccine can
detect all these exploits.

C. Memory Ranges Used in our Experiments

We list the memory ranges utilized in our experiments on vaccine effectiveness.
All together, the heap and stack occupied less than 0.1% of the whole process
virtual memory (i.e., 4MB/4GB) as we observed in the experiments. Though
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Table IV. Exploit Packet Information. 1Code Red II does not appear in Securityfocus, but we also
analyzed it for illustration purposes

Exploit
Semantic

App Name BID Exploit Packet Format Protocol Syntax Tokens

Code Red II1 — GET[]/[x].ida?[x]%uJA GET, [], HTTP/1.1, .ida?,=,%u,
%uJA[x]=[x][]HTTP/1.1] \r\n JAJA
\r\n\r\n

Null HTTPD 6255 POST[]/[]HTTP/1.0\r POST, [], HTTP/ -800, JAJA
\nContent-Length:-800\r\n 1.0,\r\n,
\r\n[x]JAJAxxxx\r\n Content-Length,:,

Sami FTP Server 16370 USER[][x]JAJA[]\r\n USER,[],\r\n JAJA

Sendmail 17192 Subject:[][x]JAJA[]\r\n Subject, :,[],\r\n JAJA

ArGoSoft 12755 DELE[][x]JAJA[]\n DELE, [], \n JAJA
Server FTP

MySQL 17780 \x6f\x01\x00\x00 \x6f\x01\x00\x00 JAJA
\x03SELECT[][x]JAJA[x] \x03, [], SELECT

Xine 17769 xine[]JAJA[x]%n[x].mp3 xine,[] %n,JAJA

BL4 SMTP 17714 MAIL[]FROM:[x] MAIL FROM, :, JAJA
Server JAJA[x]\r\n [], \r\n

Solaris x86 2319 NLPS:002:002:JAJA[x] NLPS, :,\n 002,yahoo...,
nlps server yahoo...\n JAJA

Qualcomm 948 LIST[]1[][x]JAJA[x]\n LIST, [],\n 1, JAJA
qpopper

Novell 17503 GET[]/[]HTTP/1.1\r GET,[],HTTP/ /, JAJA
GroupWise \nAccept-Language: 1.1,\r\n,Accept-
Messenger [x]JAJA[x]\r\n\r\n Language,:

Sybase 14287 GET[][x]login.jsp?[x] GET,[],?,HTTP/ login.jsp,
EAServer JAJA[x][]HTTP/1.1\r 1.1,Accept,User- JAJA

\nAccept:[x]\r\nUser- Agent,Host,
Agent:[x] \r\nHost:[x]:[x]\r Connection,
\nConnection:Close\r\n\r\n” close,:,\r\n

Microsoft 5004 GET[]/Nwind/Template/ GET,[],=,?, /Nwind/
Template/

SQL Server catalog.xml?contenttype= HTTP/1.1, \r\n catalog.xml,
text/[x] JAJA[x][]HTTP/ contenttype,
1.1\r\n\r\n text, /, JAJA

AnalogX 5006 [x]JAJA[x]\r\n\r\n — \r\n\r\n,
SimpleServer: JAJA
WWW

Netscape 5010 <html><body> <,</,>,html, JAJA
Composer <font[]face=“[x]JAJA[x]”>[x] body,font,face,=

</font></body> </html>

Apache 5033 GET[]/[]HTTP/1.1\r GET,[],/,HTTP/ X-, chunked,
\nHost:[x]\r\nX-xxxxxxx:[x] 1.1,\r\n,Host,:, 5,-146,JAJA
\r\nX-xxxx:[x]JAJA[x]\r \r\n, Transfer-
\nTransfer-Encoding: Encoding,
chunked \r\n\r\n5\r\nxxxxx
\r\n-146\r\n

AnalogX 5138 \x04\x01\x00\x19\x00 \x04\x01\x00 \xEB\x22,
Proxy \x00\x00\x01[x]\x00[x]JAJA \x19\x00\x00 JAJA

\xEB\x22\x00 \x00\x01,\x00

Nullsoft 5170 OK\r\n\r\n9.99\r OK,\rn 9.99,JAJA
Winamp \n\r\n[x]JAJA[x]\r\n

MyWebSer- ver 5184 GET[][x]JAJA[x] GET,[] JAJA
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Table V. Memory Usages

Exploits heap(kb) stack(kb) vmData(kb) vmStk(kb) vmLib(kb)

BIND tsig 840 36 756 36 1456

Light httpd 28 8 32 8 1364

ATP httpd 516 8 528 8 1488

Samba 1652 16 584 16 2980

OpenSSL v2 616 28 584 28 5264

wu-ftpd 252 20 300 20 1652

rpc.statd 44 12 40 12 1360

Fig. 11. Memory ranges (T) used in our experiments.

public libraries take a larger memory space, we do not need to monitor all their
memory ranges because there are only a few function entries that attackers
can use for launching return-to-libc attacks. Only these pointers need to be
covered by the target address set.

In Table V, we present the estimates of stack and heap usages in our experi-
ments. The first two columns of the table were obtained from /proc/pid#/maps,
in which the heap size refers to the size of the memory between 0x08048000 and
0x40000000, and the stack size is the size of the memory between 0xc0000000

and the start of function libraries on a process’s memory map. vmData, vm-

Stk and vmLib are from /proc/pid#/status which record a process’s current
usages of the heap, stack and libraries. From the table, we can see vmStk is
also the stack usage displayed in the memory map. Although there is some
discrepancy between the heap usage and vmStk, they are pretty close.

Using these memory usages, we estimated the address ranges for the vul-
nerable applications in our experiments, which are listed in Figure 11. For sim-
plicity, we let the range cover all public libraries though this is unnecessary, as
we explained before. We set α = 2 to keep a safe margin for the estimates of the
stack and heap ranges, using the stack and heap sizes recorded in vmStk and
vmData. For example, we estimated the heap size of ATP httpd by doubling the
value recorded in its vmData (528kb), which was achieved through adding a set
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of addresses from 080c9000 to 0814d000; similarly, we also included bfffc000-
bfffe000 to its stack.
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