Write Markers for
Probabilistic Quorum Systems

Michael G. Merideth! and Michael K. Reiter?

! Carnegie Mellon University, Pittsburgh, PA, USA
2 University of North Carolina, Chapel Hill, NC, USA

Abstract. Probabilistic quorum systems can tolerate a larger fraction
of faults than can traditional (strict) quorum systems, while guaranteeing
consistency with an arbitrarily high probability for a system with enough
replicas. However, the masking and opaque types of probabilistic quorum
systems are hampered in that their optimal load—a best-case measure of
the work done by the busiest replica, and an indicator of scalability—is
little better than that of strict quorum systems. In this paper we present a
variant of probabilistic quorum systems that uses write markers in order
to limit the extent to which Byzantine-faulty servers act together. Our
masking and opaque probabilistic quorum systems have asymptotically
better load than the bounds proven for previous masking and opaque
quorum systems. Moreover, the new masking and opaque probabilistic
quorum systems can tolerate an additional 24% and 17% of faulty repli-
cas, respectively, compared with probabilistic quorum systems without
write markers.

1 Introduction

Given a universe U of servers, a quorum system over U is a collection Q =
{Q1,...,Qm} such that each Q; C U and

RNQ'T>0 (1)

for all Q,Q" € Q. Each Q; is called a quorum. The intersection property (1)
makes quorums a useful primitive for coordinating actions in a distributed sys-
tem. For example, if clients perform writes at a quorum of servers, then a client
who reads from a quorum will observe the last written value. Because of their
utility in such applications, quorums have a long history in distributed comput-
ing.

In systems that may suffer Byzantine faults [1], the intersection property
(1) is typically not adequate as a mechanism to enable consistent data access.
Because (1) requires only that the intersection of quorums be non-empty, it could
be that two quorums intersect only in a single server, for example. In a system
in which up to b > 0 servers might suffer Byzantine faults, this single server
might be faulty and consequently, could fail to convey the last written value to
a reader, for example.

For this reason, Malkhi and Reiter [2] proposed various ways of strengthening
the intersection property (1) so as to enable quorums to be used in Byzantine
environments. For example, an alternative to (1) is

RNQ"\ B[> |Q" N B (2)

for all Q,Q" € Q, where B is the (unknown) set of all (up to b) servers that are
faulty. In other words, the intersection of any two quorums contains more non-
faulty servers than the faulty ones in either quorum. As such, the responses from
these non-faulty servers will outnumber those from faulty ones. These quorum
systems are called masking systems.

Opaque quorum systems, have an even more stringent requirement as an
alternative to (1):

RNQ\B|>[(QNB)U(Q\Q) (3)

for all @, Q' € Q. In other words, the number of correct servers in the intersection
of @ and Q' (i.e., |Q N Q" \ B|) exceeds the number of faulty servers in Q' (i.e.,
|Q" N B|) together with the number of servers in @’ but not Q. The rationale
for this property can be seen by considering the servers in @’ but not Q as
“outdated”, in the sense that if Q was used to perform an update to the system,
then those servers in Q' \ @ are unaware of the update. As such, if the faulty
servers in @’ behave as the outdated ones do, their behavior (i.e., their responses)
will dominate that from the correct servers in the intersection (QNQ’\ B) unless
(3) holds.

The increasingly stringent properties of Byzantine quorum systems come
with costs in terms of the smallest system sizes that can be supported while
tolerating a number b of faults [2]. This implies that a system with a fixed
number of servers can tolerate fewer faults when the property is more stringent
as seen in Table 1, which refers to the quorums just discussed as strict. Table 1
also shows the negative impact on the ability of the system to disperse load
amongst the replicas, as discussed next.

Naor and Wool [3] introduced the notion of an access strategy by which
clients select quorums to access. An access strategy p : @ — [0,1] is simply a
probability distribution on quorums, i.e., ZQegp(Q) = 1. Intuitively, when a
client accesses the system, it does so at a quorum selected randomly according
to the distribution p.

The formalization of an access strategy is useful as a tool for discussing the
load dispersing properties of quorums. The load [3] of a quorum system, £(Q), is
the probability with which the busiest server is accessed in a client access, under
the best possible access strategy p. As listed in Table 1, tight lower bounds
have been proven for the load of each type of strict Byzantine quorum system.
The load for opaque quorum systems is particularly unfortunate—systems that
utilize opaque quorum systems cannot effectively disperse processing load across
more servers (i.e., by increasing n) because the load is at least a constant. Such
Byzantine quorum systems are used by many modern Byzantine-fault-tolerant

protocols, e.g., [4-9] in order to tolerate the arbitrary failure of a subset of their
replicas. As such, circumventing the bounds is an important topic.

One way to circumvent these bounds is with probabilistic quorum systems.
Probabilistic quorum systems relax the quorum intersection properties, asking
them to hold only with high probability. More specifically, they relax (2) or (3),
for example, to hold only with probability 1 — € (for €, a small constant), where
probabilities are taken with respect to the selection of quorums according to an
access strategy p [10,11]. This technique yields masking quorum constructions
tolerating b < n/2.62 and opaque quorum constructions tolerating b < n/3.15
as seen in Table 1. These bounds hold in the sense that for any e > 0 there is
an ng such that for all n > ng, the required intersection property ((2) or (3)
for masking and opaque quorum systems, respectively) holds with probability at
least 1 — e. Unfortunately, probabilistic quorum systems alone do not materially
improve the load of Byzantine quorum systems.

In this paper, we present an additional modification, write markers, that
improves on the bounds further. Intuitively, in each update access to a quorum
of servers, a write marker is placed at the accessed servers in order to evidence
the quorum used in that access. This write marker identifies the quorum used;
as such, faulty servers not in this quorum cannot respond to subsequent quorum
accesses as though they were.

As seen in Table 1, by using this method to constrain how faulty servers can
collaborate, we show that probabilistic masking quorum systems with
load O(1/4/n) can be achieved,
allowing the systems to dis-
perse load independently of Table 1. Improvements due to write markers.
the value of b. Further, (Bold entries are properties of particular con-
probabilistic opaque quorum structions; others are lower bounds.)

systems with load O(b/n) Non-Byzantine: load faults

can be achieved, breaking strict Q(1//n) [3] <n

the constant lower bound

on load for opaque systems. Masking: load faults
Moreover, the resilience of strict 2(/b/n) 2] < n/a.00 [12]
probabilistic masking quo- |probabilistic ~ £2(b/n) [10] < n/2.62 [11]
rums can be improved an ad- write markers O(1/y/m) [here] < n/2.00 [here]
ditional 24% to b < n/2,

and the resilience of proba- Opagque: load faults

bilistic opaque quorum sys- strict >1/2 2] <n/5.00 [2]
tems can be improved an ad- probabilistic unproven <n/3.15 [11]
ditional 17% to b < n/2.62. write markers O(b/n) [here] < n/2.62 [here]

The probability of error
in probabilistic quorums re-
quires mechanisms to ensure that accesses are performed according to the re-
quired access strategy p if the clients cannot be trusted to do so. Therefore,
we adapt one such mechanism, the access-restriction protocol of probabilistic
opaque quorum systems [11], to accomodate write markers. Thus, as a side ben-

efit, our implementation forces faulty clients to follow the access strategy. With
this, we provide a protocol to implement write markers that tolerates Byzantine
clients.

Our primary contributions are (i) the identification and analysis of the ben-
efits of write markers; and (ii) a proposed implementation of write markers that
handles the complexities of tolerating Byzantine clients. Our analysis yields the
following results:

Masking Quorums: We show that the use of write markers allows prob-
abilistic masking quorum systems to tolerate up to b < n/2 faults when quo-
rums are of size £2(y/n). Setting all quorums to size py/n for some constant p,
we achieve a load that is asymptotically optimal for any quorum system, i.e.,
pvi/n = O(1/ym) [3].

This represents an improvement in load and the number of faults that can
be tolerated. Probabilistic masking quorums without write markers can tolerate
up to b < n/2.62 faults [11] and achieve load no better than 2(b/n) [10]. In
addition, the maximum number of faults that can be tolerated is tied to the size
of quorums [10]. Thus, without write markers, achieving optimal load requires
tolerating fewer faults. Strict masking quorum systems can tolerate (only) up to
b < n/4 faults [2] and can achieve load 2(1/b/n) [12].

Opaque Quorums: We show that the use of write markers allows proba-
bilistic opaque quorum systems to tolerate up to b < n/2.62 faults. We present a
construction with load O(b/n) when b = 2(y/n), thereby breaking the constant
lower bound of 1/2 on the load of strict opaque quorum systems [2]. Moreover,
if b = O(y/n), we can set all quorums to size py/n for some constant p, in order
to achieve a load that is asymptotically optimal for any quorum system, i.e.,
pvifn = O(1/ym) [3].

This represents an improvement in load and the number of faults that can
be tolerated. Probabilistic opaque quorum systems without write markers can
tolerate (only) up to b < n/3.15 faults [11]. Strict opaque quorum systems can
tolerate (only) up to b < n/5 faults [2]; these quorum systems can do no better
than constant load even if b= 0 [2].

2 Definitions and System Model

We assume a system with a set U of servers, |[U| = n, and an arbitrary but
bounded number of clients. Clients and servers can fail arbitrarily (i.e., Byzan-
tine faults [1]). We assume that up to b servers can fail, and denote the set
of faulty servers by B, where B C U. Any number of clients can fail. Failures
are permanent. Clients and servers that do not fail are said to be non-faulty.
We allow that faulty clients and servers may collude, and so we assume that
faulty clients and servers all know the membership of B (although non-faulty
clients and servers do not). However, for our implementation of write markers, as
is typical for many Byzantine-fault-tolerant protocols (c.f., [4-6,9]), we assume
that faulty clients and servers are computationally bound such that they cannot
subvert standard cryptographic primitives such as digital signatures.

Communication. Write markers require no communication assumptions
beyond those of the probabilistic quorums for which they are used. For com-
pleteness, we summarize the model of [11], which is common to prior works in
probabilistic [10] and signed [13] quorum systems: we assume that each non-
faulty client can successfully communicate with each non-faulty server with high
probability, and hence with all non-faulty servers with roughly equal probability.
This assumption is in place to ensure that the network does not significantly bias
a non-faulty client’s interactions with servers either toward faulty servers or to-
ward different non-faulty servers than those with which another non-faulty client
can interact. Put another way, we treat a server that can be reliably reached by
none or only some non-faulty clients as a member of B.

Access set; access strategy; operation. We abstractly describe client
operations as either writes that alter the state of the service or reads that do not.
Informally, a non-faulty client performs a write to update the state of the service
such that its value (or a later one) will be observed with high probability by any
subsequent operation; a write thus successfully performed is called “established”
(we define established more precisely below). A non-faulty client performs a read
to obtain the value of the latest established write, where “latest” refers to the
value of the most recent write preceding this read in a linearization [14] of the
execution.

In the introduction, we discussed access strategies as probability distributions
on quorums used for operations. For the remainder of the paper, we follow [11]
in strictly generalizing the notion of access strategy to apply instead to access
sets from which quorums are chosen. An access set is a set of servers from
which the client selects a quorum. If the client is non-faulty, we assume that this
selection is done uniformly at random. We adopt the access strategy that all
access sets are chosen uniformly at random (even by faulty clients). In Section 4,
we adapt a protocol to support write markers from one in [11] that approximately
ensures this access strategy. Our analysis allows that access sets may be larger
than quorums, though if access sets and quorums are of the same size, then
our protocol effectively forces even faulty clients to select quorums uniformly at
random as discussed in the introduction. In our analysis, all access sets used for
reads and writes are of constant size a,q4 and a,; respectively. All quorums used
for reads and writes are of constant size g.q and g, respectively.

Candidate; conflicting; error probability; established; participant;
qualified; vote. Each write yields a corresponding candidate at some number
of servers. A candidate is an abstraction used in part to ensure that two distinct
write operations are distinguishable from each other, even if the corresponding
data values are the same. A candidate is established once it is accepted by all
of the non-faulty servers in some write quorum of size g,: within the write
access set of size a,¢. In opaque quorum systems, property (3) anticipates that
different non-faulty servers each may hold a different candidate due to concurrent
writes. A candidate that is characterized by the property that a non-faulty server
would accept either it or a given established candidate, but not both, is called a
conflicting candidate. Two candidates may conflict because, e.g., they both bear

the same timestamp. In either masking or opaque quorum systems, a faulty
server may try to forge a conflicting candidate. No non-faulty server accepts two
candidates that conflict with each other.

A server can try to wvote for some candidate (e.g., by responding to a read
operation) if the server is a participant in voting (i.e., if the server is a member
of the client’s read access set). However, a server becomes qualified to vote for
a particular candidate only if the server is a member of the client’s write access
set selected for the write operation for which it votes. Non-faulty clients wait for
responses from a read quorum of size ¢4 contained in the read access set of size
arq- An error is said to occur in a read operation when a non-faulty client fails
to observe the latest value or a faulty client obtains sufficiently many votes for
a conflicting value.®> The error probability is the probability of this occurring.

Behavior of faulty clients. We assume that faulty clients seek to maximize
the error probability by following specific strategies [11]. This is a conservative
assumption; a client cannot increase—but may decrease—the probability of error
by failing to follow these strategies. At a high level, the strategies are as follows:
a faulty client, which may be completely restricted in its choices: (i) when estab-
lishing a candidate, writes the candidate to as few non-faulty servers as possible
to minimize the probability that it is observed by a non-faulty client; and (ii)
writes a conflicting candidate to as many servers as will accept it (i.e., faulty
servers plus, in the case of an opaque quorum system, any non-faulty server that
has not accepted the established candidate) in order to maximize the probability
that it is observed.

3 Analysis of Write Markers

Intuitively, when a client submits a write, the candidate is associated with a
write marker. We require that the following three properties are guaranteed by
an implementation of write markers:

W1. Every candidate has a write marker that identifies the access set chosen for
the write;

W2. A verifiable write marker implies that the access set was selected uniformly
at random (i.e., according to the access strategy);

W3. Every non-faulty client can verify a write marker.

When considering a candidate, non-faulty clients and servers verify the can-
didate’s write marker. Because of this verification, no non-faulty node will accept
a vote for a candidate unless the issuing server is qualified to vote for the can-
didate. Since each write access set is chosen uniformly at random (W2), the
faulty servers that can vote for a candidate, i.e., the faulty qualified servers, are
therefore a random subset of the faulty servers.

Thus, write markers remove the advantage enjoyed by faulty servers in strict
and traditional-probabilistic masking and opaque quorum systems, where any

3 Faulty clients may be able to affect the system with such votes in some protocols [11].

faulty participant can vote for any candidate—and therefore can collude to have
a conflicting, potentially fabricated candidate chosen instead of an established
candidate. This aspect of write markers is summarized in Table 2, which shows
the impact of write markers in terms of the abilities of faulty and non-faulty
servers to vote for a given candidate.

3.1 Consistency Constraints

Probabilistic quorum systems must satisfy constraints similar to those of strict

quorum systems (e.g., (2), (3)), but only with probability 1 — e. As with strict

quorum systems, the purpose of these constraints is to guarantee that operations

can be observed consistently in subsequent operations by receiving enough votes.
First, the constraints must ensure

in expectation that a non-faulty client

can observe the latest established can- Table 2. Ability of a server to vote for

didate if such a candidate exists. Let a given candidate: e (traditional quo-

Qrq represent a read quorum chosen rums); x (write markers).

uniformly at random, i.e., a random

variable, from a read access set itself |Type of server Vote
chosen uniformly at random. (Think [Non-faulty qualified participant ® x
of this quorum as one used by a non- |Faulty qualified participant ® x
faulty client.) Let Q¢ represent a Non-faulty non-qualified participant
write quorum chosen by a potentially Faulty non-qualified participant hd

faulty client; Qwt must be chosen from

Aywt, an access set chosen uniformly at

random. (Think of Q¢ as a quorum used for an established candidate.) Then
the threshold » number of votes necessary to observe a value must be less than
the expected number of non-faulty qualified participants, which is

E[[(Qea N Qwi) \ BI]- (4)

The use of write markers has no impact here on (4) because (Q;q N Qwt) \ B
contains no faulty servers. However, write markers do enable us to set r smaller,
as the following shows.

Second, the constraints must ensure that a conflicting candidate (which is in
conflict with an established candidate as described in Section 2) is, in expecta-
tion, not observed by any client (non-faulty or faulty). In general, it is important
for all clients to observe only established candidates so as to enable higher-level
protocols (e.g., [4]) that employ repair phases that may affect the state of the
system within a read [11]. Let Al and A/, represent read and write access sets,
respectively, chosen uniformly at random. (Think of A/, as the access set used by
a faulty client for a conflicting candidate, and of A’ as the access set used by a
faulty client for a read operation. How faulty clients can be forced to choose uni-
formly at random is described in Section 4.) We consider the cases for masking
and opaque quorums separately:

Probabilistic Masking Quorums. In a masking quorum system, (2) dictates that
only faulty servers may vote for a conflicting candidate. Using write markers, we
require that the faulty qualified participants alone cannot produce sufficient votes
for a candidate to be observed in expectation. Taking (4) into consideration, we
require:

E[[(Qra N Quwt) \ Bl > E[[(Alq N Ay) N B (5)

Contrast this with (2) and with the consistency requirement for traditional prob-
abilistic masking quorum systems [10] (adapted to consider access sets), which
requires that the faulty participants (qualified or not) cannot produce sufficient
votes for a candidate to be observed in expectation:

E{|(Qua N Quwe) \ Bl > E[|A4 N BJ]. (6)

Intuitively, the intersection between access sets can be smaller with write markers
because the right-hand side of (5) is less than the right-hand side of (6) if
At < M.

Probabilistic Opaque Quorums. With write markers, we have the benefit, de-
scribed above for probabilistic masking quorums, in terms of the number of
faulty participants that can vote for a candidate in expectation. However, as
shown in (3), opaque quorum systems must additionally consider the maximum
number of non-faulty qualified participants that vote for the same conflicting
candidate in expectation. As such, instead of (5), we have:

E[[(Qra N Qut) \ Bl > E[[(Alq N AL) N BI+E [(Ara N AG) \ B) \ Quil] .

Contrast this with the consistency requirement for traditional probabilistic opaque
quorums [11]:

E[|(Qua N Qi) \ Bl > E[|Ala N Bl + E[| (Alg NAG) \ B)\ Quel]. (8)

Again, intuitively, the intersection between access sets can be smaller with write
markers because the right-hand side of (7) is less than the right-hand side of (8)
if awe < n.

3.2 Implied Bounds

In this subsection, we are concerned with quorum systems for which we can
achieve error probability (as defined in Section 2) no greater than a given e for
any n sufficiently large. For such quorum systems, there is an upper bound on b
in terms of n, akin to the bound for strict quorum systems.

Intuitively, the maximum value of b is limited by the relevant constraint (i.e.,
either (5) or (7)). Of primary interest are Theorem 1 and its corollaries, which
demonstrate the benefits of write markers for probabilistic masking quorum sys-
tems, and Theorem 2 and its corollaries, which demonstrate the benefits of write

markers for probabilistic opaque quorum systems. They utilize Lemmas 1 and 2,
which together present basic requirements for the types of quorum systems with
which we are concerned. Due to space constraints, proofs of the lemmas and
theorems appear only in a companion technical report [15].

Define MinCorrect to be a random variable for the number of non-faulty
servers with the established candidate, i.e., MinCorrect = [(Qra N Qwt) \ B| as
indicated in (4).

Lemma 1. Let n — b= 2(n). For all ¢ > 0 there is a constant d > 1 such that
for all Gra, qut where qraquwt > dn and graquw: — n = 2(1), it is the case that
E [MinCorrect] > ¢ for all n sufficiently large.

Let r be the threshold, discussed in Section 3.1, for the number of votes nec-
essary to observe a candidate. Define MaxConflicting to be a random variable for
the maximum number of servers that vote for a conflicting candidate. For ex-
ample: due to (5), in masking quorums with write markers, MaxConflicting =
[(Al; N AL) N B|; and due to (7), in opaque quorums with write markers,
MaxConflicting = |(ALy NAL,) N Bl + | (Alg NAL) \ B) \ Qutl-

Lemma 2. Let the following hold,*
E [MinCorrect] — E [MaxConflicting] > 0,

E [MinCorrect] — E [MaxConflicting] = w(+/E [MinCorrect]).

Then it is possible to set r such that,
error probability — 0 as E [MinCorrect] — oo.

Here and below, a suitable setting of r is one between E [MinCorrect] and
E [MaxConflicting], inclusive. The remainder of the section is focused on deter-
mining, for each type of probabilistic quorum system, the upper bound on b and
bounds on the load that Lemmas 1 and 2 imply.

Theorem 1. For all € there is a constant d > 1 such that for all qrq, gt where
GraGuwt > dn, qraquwt —n = 2(1), and
qrdqwtT
Grd@uwt + QrdQuwt’

any such probabilistic masking quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large.

Corollary 1. Let arq = qrq and awt = que. For all € there is a constant d > 1
such that for all ¢raq, qut where qraGuwt > dn, Gragquw: —n = 2(1), and

b<n/2,

any such probabilistic masking quorum system employing write markers achieves
error probability no greater than e given a suitable setting of r for all n sufficiently
large.

4 w is the little-oh analog of £2, i.e., f(n) = w(g(n)) if f(n)/g(n) — co as n — oo.

In other words, with write markers, the size of quorums does not impact the
maximum fraction of faults that can be tolerated when quorums are selected
uniformly at random (i.e., when a4 = ¢rq and @y = qut)-

Corollary 2. Let arqg = Grd, Gwt = Gut, and b < n/2. For all € there is a
constant p > 1 such that if gra = que = p\/M, any such probabilistic masking
quorum system employing write markers achieves error probability no greater
than e given a suitable setting of v for all n sufficiently large, and has load

pv/ifn = O(1/ V).

Theorem 2. For all € there is a constant d > 1 such that for all q.q, gt where
qrdqwt > dn7 Qrdqwt — N = Q(l); and

2
n(ardawt + ArdquwtT + Qrdquwt™ — 2ardawtn)
awt(ardawt + QTdn)

b <

any such probabilistic opaque quorum system employing write markers achieves

error probability no greater than e given a suitable setting of r for all n sufficiently
large.

Corollary 3. Let arq = qrq and awt = que. For all € there is a constant d > 1
such that for all ¢raq, qut where qraGuwt > dn, Gragquw: —n = 2(1), and

Gt

b < :
Qut + N

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than e given a suitable setting of r for all n sufficiently
large.

Comparing Corollary 3 with Corollary 1, we see that in the opaque quorum case
qwt cannot be set independently of b.

Corollary 4. Let arg = qrd, Guwt = Qut, and b < (quin)/(quwt +n). For all €
there is a constant d > 1 such that for all qrq, que where qrqqwt > dn and
Grdquwt —n = 2(1), any such probabilistic opaque quorum system employing write
markers achieves error probability no greater than € given a suitable setting of r
for all n sufficiently large, and has load

Corollary 5. Let b = §2(\/n). For all € there is a constant d > 1 such that
for all arq, awt, Grd, Qut Where arg = Gt = Qra = Guwt = b for a value | such
that ¢ > 1> n/(n —b) for some constant ', (Ib)? > dn and (1b)*> —n = 02(1),
any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large, and has load

O(b/n).

Corollary 6. Let a,q = qrq and ayt = qut = n—b. For all € there is a constant
d > 1 such that for all grd4, qut where qraGuwt > dn, qragwe —n = 2(1), and

b < n/2.62,

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large.

4 Implementation

Our implementation of write markers provides the behavior assumed in Section 3,
even with Byzantine clients. Specifically, it ensures properties W1-W3. (Though,
technically, it ensures W2 only approximately in the case of opaque quorum
systems, in which, as we explain below, a faulty server might be able to create
a conflicting candidate using a write marker for a stale, i.e., out-of-date, access
set—but to no advantage.)

Because clients may be faulty, we cannot rely on, e.g., digital signatures is-
sued by them to implement write markers. Instead, we adapt mechanisms of our
access-restriction protocol for probabilistic opaque quorum systems [11]. The
access-restriction protocol is designed to ensure that all clients follow the access
strategy. It already enables non-faulty servers to verify this before accepting a
write. And, since it is the only way of which we are aware for a probabilistic
quorum system to tolerate Byzantine clients when write markers are of bene-
fit (i.e., when the sizes of write access sets are restricted), its mechanisms are
appropriate.

The relevant parts of the preexisting protocol work as follows [11]. From
a pre-configured number of servers, a client obtains a verifiable recent value
(VRV), the value of which is unpredictable to clients and b or fewer servers
prior to its creation. This VRV is used to generate a pseudorandom sequence of
access sets. Since a VRV can be verified using only public information, both it
and the sequence of access sets it induces can be verified by clients and servers.
Non-faulty clients simply choose the next unused access set for each operation.’
However, a faulty client is motivated to maximize the probability of error. If the
use of the next access set in the sequence does not maximize the probability
of error given the current state of the system (i.e., the candidates accepted by
the servers), such a client may try to skip ahead some number of access sets.
Alternatively, such a client might try to wait to use the next access set until the
state of the system changes. If allowed to follow either strategy, such a client
would circumvent the access strategy because its choice of access set would not
be independent from the state of the system.

Three mechanisms are used together to coerce a faulty client to follow the ac-
cess strategy. First, the client must perform exponentially increasing work in ex-
pectation in order to use later access sets. As such, a client requires exponentially

5 Non-faulty clients should choose a new access set for each operation to ensure inde-
pendence from the decisions of faulty clients [11].

increasing time in expectation]

in order to choose a later ac- Client ! . Egi
cess set. This is implemented by So = M % >3
[}
requiring that the client solve s @ \
a client puzzle [16] of the ap- 8
propriate difficulty. The solu- Se 2
tion to the puzzle is, in ex- Ss § \,
pectation, difficult to find but g
easy to verify. Second, the VRV Sn

and sequence of access sets be-
come invalid as the non-faulty
servers accept additional can-
didates, or as the system oth-
erwise progresses (e.g., as time
passes). Non-faulty servers ver-
ify that an access set is still valid, i.e., not stale, before accepting it. Thus, system
progress forces the client to start its work anew, and, as such, makes the work
solving the puzzle for any unused access set wasted. Finally, during the time that
the client is working, the established candidate propagates in the background
to the non-faulty servers that are non-qualified (c.f., [17]). This decreases the
window of vulnerability in which a given access set in the sequence is useful for
a conflicting write by making non-qualified servers aware that (i) there is an
established candidate (so that they will not accept a conflicting candidate) and
(ii) that the state of the system has progressed (so that they will invalidate the
current VRV if appropriate).

Fig. 1. Read operation with write markers:
messages and stages of verification of access
set. (Changes in gray.)

The impact of these three mechanisms is that a non-faulty server can be
confident that the choice of write access set adheres (at least approximately) to
the access strategy upon having verified that the access set is valid, current, and
is accompanied by an appropriate puzzle solution.

For write markers, we extend the protocol so that, as seen in Figure 1, clients
can also perform verification. This requires that information about the puzzle
solution and access set (including the VRV used to generate it) be returned by
the servers to clients. (As seen in Figure 2 and explained below, this information
varies across masking and opaque quorum systems.) In the preexisting access-
restriction protocol, this information is verified and discarded by each server. For
write markers, this information is instead stored by each server in the verification
stage as a write marker. It is sent along with the data value as part of the
candidate to the client during any read operation. If the server is non-faulty—
a fact of which a non-faulty client cannot be certain—the access set used for
the operation was indeed chosen according to the access strategy because the
server performed verification before accepting the candidate. However, because
the server may be faulty, the client performs verification as well; it verifies the
write marker and that the server is a member of the access set. This allows us
to guarantee points W1-W3. As such, faulty non-qualified servers are unable to
vote for the candidates for which qualified servers can vote.

Masking write Figures 1, 2, 3, and 4 il-

A access set B promise Y certificate |0 status lustrate relevant pieces of the
solution . .
data value preexisting protocol and our
Opaque write modifications for write mark-
a access set b status ers in the context of read and
solution write operations in probabilis-
data value . R
Read tic masking and opaque quorum
i query ii datavalue systems. The figures highlight

;gggs'gast:t <olution EL";;;(‘J’;?) that the additions to the pro-
tocol for write markers involve
saving the write markers and re-
turning them to clients so that
clients can also verify them.
The differences in the struc-
ture of the write marker for probabilistic opaque and masking quorum systems
mentioned above results in subtly different guarantees. The remainder of the
section discusses these details.

Fig. 2. Message types. (Write marker empha-
sized with gray.)

4.1 Probabilistic Opaque Quorums

As seen in Figure 2 (message ii), a write marker for a probabilistic opaque
quorum system consists of the write-access-set identifier (including the VRV)
and the solution to the puzzle that unlocks the use of this access set. Unlike
a non-faulty server that verifies the access set at the time of use, a non-faulty
client cannot verify that an access set was not already stale when the access set
was accepted by a faulty server. Initially, this may appear problematic because
it is clear that, given sufficient time, a faulty client will eventually be able to
solve the puzzle for its preferred access set to use for a conflicting write—this
access set may contain all of the servers in B. In addition, the faulty client can
delay the use of this access set because non-faulty clients will be unable to verify
whether it was already stale when it was used.

Fortunately, because non-faulty servers will not accept a stale candidate (i.e.,
a candidate accompanied by a stale access set), the fact that a stale access set
may be accepted by a faulty server does not impact the benefit of write markers
for opaque quorum systems. In general, consistency requires (7), i.e.,

E[1(Qra N Qut) \ Bl > E[|(Alg N AG) MBI+ E [(Alg N AGe) \ B) \ Quet] -

However, only faulty servers will accept a stale candidate. Therefore, if the can-
didate was stale when written to A} ;, no non-faulty server would have accepted

it. Thus, in this case, the consistency constraint is equivalent to,

E[[(Qra N Q) \ Bl > E[[(Alq N AL:) N B

However, this is (6), the constraint

on probabilistic masking quorum Client

\
\\

a

systems without write markers. In So 2 M

. o) -
effect, a faulty client must either: St 2 \ 3
(i) use a recent access set that o ®
is therefore chosen approximately Se < §
uniformly at random, and be lim- S3 % \, <
ited by (7); or (ii), use a stale ac- g %
cess set and be limited by (6). If Sn >

quorums are the sizes of access sets,
both inequalities have the same up-
per bound on b (see [15]); other-
wise, a faulty client is disadvan-
taged by using a stale access set be-
cause a system that satisfies (6) can
tolerate more faults than one that
satisfies (7), and is therefore less likely to result in error (see [15]). Even if the
access set contains all of the faulty servers, i.e., B C A/ ,, then this becomes,

wt

Fig. 3. Write operation in opaque quorum
systems: messages and stages of verifica-
tion of write marker. (Changes in gray.)

E[[(Qra N Qwt) \ Bl] > E[|Al4 N BY].

4.2 Probabilistic Masking Quorums

Protocols for masking quorum systems involve an additional round of communi-
cation (an echo phase, c.f., [8] or broadcast phase, c.f., [18]) during write oper-
ations in order to tolerate Byzantine or concurrent clients. This round prevents
non-faulty servers from
accepting conflicting data

values, as assumed by (2). cient || @ B 5.l ¥]
In order to write a data =0

value, a client must first So o Mi % S° Mi m
obtain a write certificate S 2 \ g [

(a quorum of replies that o @ \ .g
together attest that the Sz < g =
non-faulty servers will ac- Ss % \4 é \4 g

cept no conflicting data g S 5
value). In contrast to Sn > g

optimistic protocols that
use opaque quorum sys-
tems, these protocols are
pessimistic.

This additional round
allows us to prevent clients
from using stale access sets. Specifically, in the request to authorize a data value
(message « in Figure 2 and Figure 4), the client sends the access set identifier
(including the VRV), the solution to the puzzle enabling use of this access set,

Fig. 4. Write operation in masking quorum systems:
messages and stages of verification of write marker.
(Changes in gray.)

and the data value. We require that the certificate come from servers in the ac-
cess set that is chosen for the write operation. Each server verifies the VRV and
that the puzzle solution enables use of the indicated access set before returning
authorization (message § in Figure 2 and Figure 4). The non-faulty servers that
contribute to the certificate all implicitly agree that the access set is not stale,
for otherwise they would not agree to the write. This certificate (sent to each
server in message v in Figure 2 and Figure 4) is stored along with the data
value as a write marker. Thus, unlike in probabilistic opaque quorum systems, a
verifiable write marker in a probabilistic masking quorum system implies that a
stale access set was not used. The reading client verifies the certificate (returned
in message i¢ in Figure 1 and Figure 2) before accepting a vote for a candidate.
Because a writing client will be unable to obtain a certificate for a stale access
set, votes for such a candidate will be rejected by reading clients. Therefore, the
analysis in Section 3 applies without additional complications.

5 Additional Related Work

Probabilistic quorum systems were explored in the context of dynamic systems
with non-uniform access strategies by Abraham and Malkhi [19]. Recently, prob-
abilistic quorum systems have been used in the context of security for wireless
sensor networks [20] as well as storage for mobile ad hoc networks [21]. Lee and
Welch make use of probabilistic quorum systems in randomized algorithms for
distributed read-write registers [22] and shared queue data structures [23].

Signed quorum systems presented by Yu [13] also weaken the requirements
of strict quorum systems but use different techniques. However, signed quorum
systems have not been analyzed in the context of Byzantine faults, and so they
are not presently affected by write markers.

Another implementation of write markers was introduced by Alvisi et al. [24]
for purposes different than ours. We achieve the goals of (i) improving the load,
and (ii) increasing the maximum fraction of faults that the system can tolerate by
using write markers to prevent some faulty servers from colluding. In contrast to
this, Alvisi et al. use write markers in order to increase accuracy in estimating the
number of faults present in Byzantine quorum systems, and for identifying faulty
servers that consistently return incorrect results. Because the implementation of
Alvisi et al. does not prevent faulty servers from lying about the write quorums of
which they are members, it cannot be used directly for our purposes. In addition,
our implementation is designed to tolerate Byzantine clients, unlike theirs.

6 Conclusion

We have presented write markers, a way to improve the load of masking and
opaque quorum systems asymptotically. Moreover, our new masking and opaque
probabilistic quorum systems with write markers can tolerate an additional 24%
and 17% of faulty replicas, respectively, compared with the proven bounds of
probabilistic quorum systems without write markers. Write markers achieve this

by limiting the extent to which Byzantine-faulty servers may cooperate to pro-
vide incorrect values to clients. We have presented a proposed implementation
of write markers that is designed to be effective even while tolerating Byzantine-
faulty clients and servers.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems 4(3) (July 1982) 382-401

. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4)

(1998) 203213

Naor, M., Wool, A.: The load, capacity, and availability of quorum systems. STAM
Journal on Computing 27(2) (1998) 423-447

Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-
scalable Byzantine fault-tolerant services. In: Symposium on Operating Systems
Principles. (October 2005)

. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Symposium on

Operating Systems Design and Implementation. (1999)

Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient Byzantine-
tolerant erasure-coded storage. In: International Conference on Dependable Sys-
tems and Networks. (June 2004)

Kong, L., Manohar, D., Subbiah, A., Sun, M., Ahamad, M., Blough, D.: Agile store:
Experience with quorum-based data replication techniques for adaptive Byzantine
fault tolerance. In: IEEE Symposium on Reliable Distributed Systems. (2005)
143-154

Malkhi, D., Reiter, M.K.: An architecture for survivable coordination in large
distributed systems. IEEE Transactions on Knowledge and Data Engineering 12(2)
(2000) 187202

. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Depend-

able and Secure Computing 3(3) (2006) 202-215

Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems.
Information and Computation 170(2) (2001) 184-206

Merideth, M.G., Reiter, M.K.: Probabilistic opaque quorum systems. In: Interna-
tional Symposium on Distributed Computing. (2007)

Malkhi, D., Reiter, M.K., Wool, A.: The load and availability of Byzantine quorum
systems. STAM Journal of Computing 29(6) (2000) 1889-1906

Yu, H.: Signed quorum systems. Distributed Computing 18(4) (2006) 307-323
Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems 12(3) (1990)
463492

Merideth, M.G., Reiter, M.K.: Write markers for probabilistic quorum systems.
Technical Report CMU-CS-07-165R, Computer Science Department, Carnegie
Mellon University (November 2008)

Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: Network and Distributed Systems Security Sym-
posium. (1999) 151-165

Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: On propa-
gating updates in a Byzantine environment. Theoretical Computer Science 299(1—
3) (2003) 289-306

18.

19.

20.

21.

22.

23.

24.

Martin, J.P.; Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: International
Symposium on Distributed Computing. (2002)

Abraham, I., Malkhi, D.: Probabilistic quorums for dynamic systems. Distributed
Computing 18(2) (2005) 113 — 124

Du, W., Deng, J., Han, Y.S., Varshney, P.K., Katz, J., Khalili, A.: A pairwise
key predistribution scheme for wireless sensor networks. ACM Transactions on
Information and System Security 8(2) (2005) 228-258

Luo, J., Hubaux, J.P., Eugster, P.T.: Pan: providing reliable storage in mobile ad
hoc networks with probabilistic quorum systems. In: International symposium on
mobile ad hoc networking and computing. (2003) 1-12

Lee, H., Welch, J.L.: Applications of probabilistic quorums to iterative algorithms.
In: International Conference on Distributed Computing Systems. (April 2001) 21—
30

Lee, H., Welch, J.L.: Randomized shared queues applied to distributed optimiza-
tion algorithms. In: International Symposium on Algorithms and Computation.
(December 2001)

Alvisi, L., Malkhi, D., Pierce, E., Reiter, M.K.: Fault detection for Byzantine
quorum systems. IEEE Transactions on Parallel and Distributed Systems 12(9)
(2001) 996-1007

