

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Self-Optimizing Distributed Trees

Michael K. Reiter

University of North Carolina
Chapel Hill, NC, USA
reiter@cs.unc.edu

Asad Samar

Goldman Sachs International
London, UK

Asad.Samar@gs.com

Chenxi Wang

Forrester Research
Foster City, CA, USA

chenxi.wang@gmail.com

Abstract

We present a novel protocol for restructuring a tree-
based overlay network in response to the workload of the
application running over it. Through low-cost restructuring
operations, our protocol incrementally adapts the tree so as
to bring nodes that tend to communicate with one another
closer together in the tree. It achieves this while respecting
degree bounds on nodes so that, e.g., no node degenerates
into a “hub” for the overlay. Moreover, it limits restruc-
turing to those parts of the tree over which communication
takes place, avoiding restructuring other parts of the tree
unnecessarily. We show via experiments on PlanetLab that
our protocol can significantly reduce communication laten-
cies in workloads dominated by clusters of communicating
nodes.

1. Introduction

Tree structures are widely used in distributed applica-
tions including distributed directory protocols (e.g., [9, 30,
25]), peer-to-peer content sharing systems (e.g., [1, 31, 17,
19, 14]) and application-level multicast (e.g., [6, 15]), to
name a few. In addition, several distributed implemen-
tations of important primitives such as mutual exclusion
(e.g., [22, 5, 13, 28, 20]), and binary search (e.g., [11, 16,
21]) are built using tree structures, and these primitives are
employed in a large number of distributed applications. The
use of trees in different applications is warranted due to re-
quirements specific to each setting, e.g., some applications
map naturally to the tree hierarchy [17], others require the
acyclicity of trees for simple protocol design [22, 5], and yet
others utilize the locality-preserving properties of trees [31].
In all of these applications, a node in the tree communi-
cates with other nodes using messages sent through the tree.
Therefore, the worst case performance of these applications
is proportional to the diameter (longest path between two
nodes) of the tree. The trivial solution that makes the tree

“flat” (every node is a child of the root) does not scale
well—the root becomes a bottleneck. Therefore, all such
applications can benefit from a mechanism that would re-
structure the tree to reduce the number of communication
hops required for a node to access another node (e.g., by re-
ducing the diameter of the tree), while keeping a low fixed
degree.

In this paper we present a distributed algorithm, called
flattening, that improves the performance of accessing one
node from another node in a k-ary tree (where each node
has at most k children). Flattening achieves this through a
novel restructuring technique that adjusts the tree as nodes
communicate with each other, so as to optimize the tree ac-
cording to the workload.

This restructuring has three properties. First, flatten-
ing brings nodes frequently accessing each other, closer to
each other in the tree. Workloads in several applications
are known to exhibit locality, in the sense that nodes that
have communicated in the past are likely to communicate
again in the future; such applications can benefit greatly
from flattening. Note that in a degree-constrained tree (e.g.,
a k-ary tree), optimizing the access between a pair of nodes
(by bringing them close to one another), could conflict with
optimizing for another pair of nodes. This situation is fur-
ther complicated due to the distributed nature of our algo-
rithm: we assume that each node knows and communicates
with only its neighbors in the tree, and has no information
about the remaining tree topology. Flattening employs a
distributed algorithm that utilizes only local information at
each node, and finds a balance among conflicting optimiza-
tion decisions by restructuring for a particular pair of nodes
while at the same time preserving the effects of recent re-
structuring decisions made for other pairs.

Second, flattening has a tendency to reduce the diame-
ter of the tree, without ever explicitly balancing the tree.
In particular, it reduces the diameter of the component of
the tree that spans nodes involved in recent accesses; note
that this component may also contain nodes that are not in-
volved in these accesses. Therefore, if the workload shows

no locality—e.g., if each node accesses a node chosen uni-
formly at random from all nodes in the tree—then flatten-
ing reduces the diameter of the whole tree, since in this case
the component containing frequently accessed nodes would
span most of the tree.

Finally, the restructuring steps are all local, i.e., each re-
structuring step at a node involves either only direct neigh-
bors or at most neighbors of neighbors (nodes two hops
away from each other) in the tree. This allows simple im-
plementation of local policies at each node, e.g., a subtree
containing nodes geographically close to each other could
enforce a policy that prevents a geographically distant node
from entering this subtree, as the tree is restructured. Fur-
thermore, applications where nodes use a routing protocol
to route messages to other nodes in the tree, benefit from
the local restructuring steps, as nodes can easily update the
routing tables according to the new topology.

We prove that flattening incurs a worst-case O(log n)
amortized cost per flattening operation, where n is the num-
ber of nodes in the tree. Since the cost of this restructur-
ing is directly tied to the cost of accessing another node—
restructuring is performed along the path between the two
nodes—the worst case cost of node accesses closely follows
the O(log n) amortized performance of restructuring. Here
we report empirical results from tests performed on Planet-
Lab [7] that validate this analysis. We further implemented
a flood-based access mechanism that runs on a tree, and
allows nodes to access other nodes in the tree. We present
results that demonstrate the performance of this flood-based
protocol using our self-optimizing tree, and compare them
to those obtained by running the same protocol on a ran-
domly generated static tree over the same set of nodes. The
flood-based protocol shows significant performance gains
when utilizing the flattening algorithm.

We emphasize that our contribution lies in a tree opti-
mization algorithm, not in implementing a full-blown ap-
plication overlay. For example, we do not address sev-
eral issues that a complete overlay solution would, in-
cluding implementing various types of object queries (e.g.,
range queries); balancing application load; or dealing with
failures of various types. Our primitive, however, com-
plements tree-based technologies that address such issues
(e.g., [1, 19]).

2. Related work

Our work is inspired by work on balancing binary search
trees (BSTs) in a centralized system (e.g., [2, 26, 4, 12]),
particularly the work on splay trees [26]. A splay tree is
an elegant BST that achieves O(log n) amortized cost per
access. When a node in the tree is accessed, splaying brings
the node to the root of the tree, while balancing the tree in
the process.

Our work differs from splaying in two ways. First, flat-
tening employs a different heuristic that brings an accessed
node close to the node initiating the access, by restructur-
ing along the path between these two nodes—as opposed
to bringing the accessed node close to the root by restruc-
turing along the path to the root. In this way, our heuris-
tic often enables more efficient implementations involving
less restructuring than splaying. Indeed, the amount of re-
structuring performed by splay trees is a limitation in the
centralized setting as well, and has been addressed previ-
ously; e.g., variants like semi-splaying [26], randomized
splaying [3, 10] and periodic splaying [29], all attempt to
reduce restructuring. We compare the restructuring costs of
flattening versus splaying and its variants in our companion
document [24].

Second, splaying uses non-local restructuring steps; this
is mainly a result of restructuring in the context of binary
search trees that require preserving the order of nodes in the
tree. In particular, top-down splaying requires distant nodes
in the original tree to form an edge with each other within a
single restructuring step. This not only complicates enforc-
ing local policies (like preserving geographic locality in the
tree), but can also make it difficult for an application’s rout-
ing protocol to adjust routes according to the restructuring.
Flattening improves on both of these aspects through local
restructuring steps—an optimization enabled since our tar-
get setting does not require preserving the order of nodes in
the tree.

Apart from splay trees, other balanced tree structures
(e.g., [4, 18, 2, 12]) have also been proposed. Most of
these proposals explicitly balance the tree with each in-
sertion and deletion, incurring a high cost for these op-
erations. Distributed implementations of some of these
algorithms (but not splaying) have also been proposed
(e.g., [11, 16, 21, 14]). Our approach is different in that it is
less sensitive to insertions and deletions of nodes, and more
sensitive to the actual workload. That is, our algorithm fo-
cuses its restructuring on the communication paths that are
actually used, thereby yielding better performance for some
workloads than even explicit balancing can achieve.

3. System model

Our system consists of n nodes distributed across a net-
work and initially structured as a rooted, binary, unordered
(and not necessarily complete) tree. (We will relax the as-
sumption of a binary tree in Section 5.5.) Our algorithms
make no assumptions about nodes joining or leaving the
tree, except that the tree remains connected. Each node
is initialized only with the identities of its neighbors in the
tree, i.e., a parent pointer (the distinguished value “⊥” in the
case of the root) and a set of child pointers of cardinality at
most two. There is no central database accessible to nodes

that contains information about the tree structure. Nodes
communicate via remote procedure calls (RPCs). Nodes
and communication between them are reliable but asyn-
chronous: nodes do not fail, and each RPC completes in
a finite but unbounded time.

Nodes access other nodes according to application-
specific protocols. We do not assume anything about these
protocols except that two nodes in the tree communicate
across the unique path between them in the tree, and so the
access performance can be improved if this path contains
fewer hops. The node that initiates the access request is de-
noted as the requester, and the node that is being accessed
is denoted as the target.

4. Overview

At a high level, our algorithm works as follows: When
a requester node r accesses a target node t, flattening is
performed along the path between t and r. In particular,
bottom-up flattening (Section 5.1) is employed while mov-
ing up the tree and top-down semi-flattening (Section 5.2) is
used while moving down the tree. When this restructuring
completes, t and r are closer to each other than before, and
the height (distance from the root) of all the nodes in the
path between t and r is reduced, i.e., the smallest subtree
containing both t and r is left more balanced. This restruc-
turing of the tree is not performed in the “critical path” of
the access protocol, but rather as a background process: our
tree simply “observes” the workload, and then optimizes it-
self so future accesses may be performed more efficiently.

In order to avoid concurrent restructuring of the tree,
which would require expensive locking of parts of the tree,
nodes implement mutually exclusive access to a shared to-
ken, i.e., there is only one “owner” of this token at a time.
When a requester completes its access operation, it retrieves
this token from the token’s previous owner, becoming the
new owner itself. After becoming the new owner of the to-
ken, r notifies t, and t in turn initiates restructuring along
the path to r. Our restructuring algorithm is not dependent
on a particular protocol for managing mutually exclusive
access to this token, though we do require that it enables
nodes to navigate to the current owner of the token, i.e., al-
lows a node x in the path from t to r to find the next node
in this path (denoted as nextNode(x, t, r) in our pseudo-
code). Moreover, it must enable x to find if x is the highest
node in this path or not (denoted as amHighNode(x, t, r)
in the pseudo-code). An example of such a protocol is
Quiver [23], which maintains this navigation information
through the use of “pointers” at each node that point to one
of the neighbors of this node. These pointers need to be
adjusted as flattening restructures the tree. Since flattening
works in local restructuring steps, adjusting these pointers
to reflect the new tree topology is feasible. Here we omit

the details of the Quiver protocol and the adjustments re-
quired to its state as the tree is restructured, in the interest
of space; interested readers are referred to our companion
documents [23, 24] for these details. We summarize the
high-level steps as follows:

1. Requester r accesses target t through application-
specific mechanisms.

2. r retrieves the token using the Quiver protocol, becom-
ing the new (and only) owner of the token.

3. r notifies t, and t initiates flattening, with each node on
the path from t to r using Quiver to navigate toward r.

4. Bottom-up flattening and top-down semi-flattening al-
gorithms are used when going up and down the tree,
respectively, along the path from t to r.

Note that steps 2–4 are not in the critical path of the ap-
plication workload (step 1), and in particular, r (or any
other node) may initiate subsequent access operations with-
out waiting for the completion of steps 2–4.

5. Flattening algorithms

Binary search trees use the “move to front” heuristic and
rotate accessed nodes close to the root, since all searches
in a BST start from the root. In our setting however, a re-
quest may originate from any node in the tree. So a bet-
ter heuristic is to move the targets close to the requesters.
In order to achieve this, we rotate the requesters and the
targets close to the root of the smallest subtree that con-
tains them. This scheme minimizes restructuring in the tree
(compared to some BSTs that rotate nodes all the way to
the root of the tree) if the requester and the target are al-
ready close to each other. We implement this scheme by
restructuring along the path from the target to the requester,
employing both bottom-up flattening and top-down semi-
flattening techniques, which we detail in Sections 5.1 and
5.2, respectively. This combination of “full” and “semi”
flattening also allows our algorithm to adapt rather quickly
to changing workloads while still being conservative about
the number of messages exchanged for restructuring pur-
poses.

Most existing restructuring techniques (again used in the
context of BSTs) employ rotation as the basic restructuring
step. This is convenient as rotation preserves the order of
nodes in the tree—a requirement for binary search trees.
Since ordering of nodes is irrelevant in our target protocols,
we define and use new primitives that are better suited to
our goals. Here we present these primitives and the bottom-
up, top-down and hybrid (that combines bottom-up and top-
down) flattening algorithms that use these primitives.

Figure 1. Bottom-up flattening: t first rotates over z and then x. Any child may be preferred for the
first rotation (b preferred here). For subsequent rotations, preferred child is the one that t last rotated
over (z here).

5.1. Bottom-up flattening

Our first algorithm is a bottom-up scheme that is em-
ployed when navigating up the tree from the target t to the
requester r. Bottom-up flattening starts from t and proceeds
to the highest node in the path to r. In case t is this highest
node, no bottom-up restructuring is performed. The result
of bottom-up flattening is to bring t to the root of the subtree
that contains r, while leaving the subtree containing t and r
more balanced than before.

5.1.1. Preferred rotation primitive

We define a variation of the well-known rotation primitive,
for bottom-up flattening. For each rotation performed by
the target t over its parent z, t chooses one of its children
as a preferred child. The rotation is performed such that
t keeps the preferred child and “hands off” the other child
to z. We call this a preferred rotation. Preferred rotations
are used in bottom-up flattening as shown in Figure 1. For
the first rotation, t chooses either one of its children as the
preferred child. For each subsequent rotation, the child that
t just rotated over in the previous step (node z in Figure 1)
is preferred. t performs these steps until it rotates over the
highest node in the path to r.

5.1.2. Bottom-up flattening algorithm

Figure 2 shows the distributed algorithm that implements
bottom-up flattening. We denote the variables encoding per-
sistent state at a node y using the prefix “y.”, e.g., y.parent.
Variable names without the prefix denote temporary state
that is deleted once this invocation is over.

The target t initiates bottom-up flattening by invoking
t.BUFlatten(r, b, t), where r is the requester and b is t’s
preferred child. In line 2, elmt(S) simply returns the ele-
ment of a singleton set S; this element is the non-preferred
child of t. If t is initially a leaf node then b = ⊥ and a = ⊥
(line 2). If t only has one child then b is that child and

a = ⊥. We assume that when there is a remote invoca-
tion on a ⊥ node, the method returns (possibly with an er-
ror message) so the invoking node can carry on its execu-
tion. The rotateEdge invocation (line 5) results in z setting
z.parent to t (line 13) and adding t’s non-preferred child a
to z.children, replacing t (line 14). It then returns its previ-
ous parent x and whether z was the highest node in the orig-
inal path from t to r before restructuring began (line 15).
Note that t’s new parent after each preferred rotation (t’s
grand-parent before the rotation) need not be notified of its
new child t, since t is going to rotate over this node anyway
in the next step. Therefore, at each subsequent step after the
first rotation, t.parent does not contain t in its children set
but rather contains the node z that t just rotated over in the
previous step. After the last rotation, t.parent is notified of
its new child (line 9). The RPCs in lines 5, 7 and 9 ensure
that all restructuring is complete by the time the last rotation
completes.

5.2. Top-down semi-flattening

Our second algorithm is a top-down scheme that restruc-
tures the tree when navigating down the tree from t to r.
Top-down semi-flattening starts at the highest node in the
path from t to r and brings r part way up to this high-
est node. If top-down semi-flattening is preceded by the
bottom-up variant (as in hybrid flattening, Section 5.3), this
highest node is, in fact, t.

5.2.1. Child swap primitive

Top-down semi-flattening is performed by repeating the
step shown in Figure 3. y, x and a are in the path from t
to r. Node y swaps its child c with x’s child a. We call
this step child swap. “+” represents the current node of the
flattening operation, i.e., the next child swap is performed
by a. Top-down semi-flattening is initiated by the highest
node in the path between t and r, and terminates if r is the
current node or a child of the current node.

1. t.BUFlatten(r, b, w) /* r: requester, b: preferred child, w: former child of t.parent */
2. a← elmt(t.children \ {b}) /* a is the child not preferred */
3. z ← t.parent /* z is the current parent */
4. t.children← {t.children \ {a}} ∪ {z} /* replace child a with z */
5. [gParent, isHigh]← z.rotateEdge(t, r, w, a) /* z replaces its child w with a and sets z.parent to t */
6. t.parent← gParent /* set new parent to old grand-parent */
7. a.setParent(z) /* a.parent now points to z */
8. if isHigh is true /* if z was the highest node in the path, then... */
9. t.parent.replaceChild(z, t) /* ...my new parent replaces its child z with me and stop */
10. else t.BUFlatten(r, z, z) /* otherwise, perform next rotation preferring z */

11. z.rotateEdge(t, r, w, a) /* t: target, r: requester, w: child to replace, a: new child */
12. x← z.parent /* x is my current parent */
13. z.parent← t /* set t as new parent */
14. z.children← {z.children \ {w}} ∪ {a} /* replace child w with a */
15. return [x, amHighNode(z, t, r)] /* return x and if I am the highest node in this path or not */

16. x.replaceChild(z, t) /* z: child to replace, t: new child */
17. x.children← {x.children \ {z}} ∪ {t} /* replace child z with t and return */

18. a.setParent(z) /* z: new parent */
19. a.parent← z /* set parent to z and return */

Figure 2. Bottom-up flattening. All nodes implement all algorithms.

Figure 3. Top-down semi-flattening: y, x
and a are in the path from t to r. z is
y’s parent (not shown). Next invocation is
a.TDSemiFlatten(t, r, y).

5.2.2. Top-down semi-flattening algorithm

Figure 4 shows the distributed algorithm for this scheme.
The algorithm is initiated by the highest node h in the path
from t to r as h.TDSemiFlatten(t, r, h.parent). At each
step, the current node y and its child x on the path from t to
r swap y’s child that is not in this path with x’s child that
is in this path (lines 9 and 13). The children are notified of
their new parents (lines 7, 10).

Top-down semi-flattening approximately halves the
depth of each node (relative to h) in the path from h to r;

again note that h = t in case bottom-up flattening is em-
ployed before top-down semi-flattening. As a result, semi-
flattening brings r closer to t.

5.3. Hybrid flattening

Our main algorithm combines bottom-up flattening with
top-down semi-flattening to restructure along the path from
the target t to the requester r. Figure 5 shows the distributed
algorithm for hybrid flattening. t performs bottom-up flat-
tening if it is not the highest node (lines 2–7). This results
in t becoming the root of the subtree that contains r. After
bottom-up flattening is complete, if r is a child of t then no
more restructuring is required (line 8). Otherwise, t initi-
ates top-down semi-flattening (line 9) that continues until r
is reached.

Figure 6 shows an example tree where flattening is per-
formed between t and r. Hybrid flattening brings t and r
close to each other and in the process, balances the subtree
containing t and r.

5.4. Analysis

Flattening minimizes the number of messages exchanged
during each flattening step, while maximizing the effects of

1. y.TDSemiFlatten(t, r, z) /* t: target, r: requester, z: my new parent */
2. y.parent← z
3. if r ∈ {y} ∪ y.children /* if I or my child is the requester, then...*/
4. stop /* ...stop the restructuring */
5. x← nextNode(y, t, r) /* find the child that is in path from t to r */
6. c← elmt(y.children \ {x}) /* this is the child not in path */
7. c.setParent(x) /* c’s parent should now be x */
8. a← x.childSwap(t, r, c) /* swap children at x and get a, the grand-child in path */
9. y.children← {y.children \ {c}} ∪ {a} /* swap child with grand-child */
10. a.TDSemiFlatten(t, r, y) /* initiate next child swap; this RPC can be non-blocking */

11. x.childSwap(t, r, c) /* t: target, r: requester, c: my parent’s child not in path */
12. a← nextNode(x, t, r) /* find my child that is in path from t to r */
13. x.children← {x.children \ {a}} ∪ {c} /* swap child with parent’s child */
14. return a /* return my child that has been swapped */

Figure 4. Top-down semi-flattening. All nodes implement all algorithms.

1. t.HybridFlatten(r) /* r: requester */
2. if amHighNode(t, t, r) is false /* BUFlatten if I am not the highest node */
3. {a, b} ← t.children /* a and b are t’s children, could be null */
4. if a = ⊥
5. prefChild← b /* choose the non-null child as the preferred child */
6. else prefChild← a /* if both are null or both are non-null then choose any */
7. t.BUFlatten(r, prefChild, t) /* do bottom-up flattening */
8. if r �∈ t.children /* if more than one hop away from r, then...*/
9. t.TDSemiFlatten(t, r, t.parent) /*...do top-down semi-flattening */

Figure 5. Hybrid flattening algorithm.

Figure 6. Hybrid flattening. Bold lines show
the path between t and r. Root of A was the
first preferred child.

the restructuring in balancing the tree and bringing the re-
questers and their targets closer to each other. In particu-
lar, each preferred rotation (used in bottom-up flattening)

requires only 4 messages—two messages for each of the
two RPCs in lines 5 and 7 in Figure 2—except for the last
rotation that requires 6 messages due to line 9 in Figure 2.
Each child swap (used in top-down semi-flattening) requires
5 messages and moves two steps down the tree—two mes-
sages for each of the two RPCs in lines 7 and 8 in Figure 4
and an additional message for the RPC in line 10 in Fig-
ure 4. (This RPC may be non-blocking, and so we do not
count its response against the latency of the child swap.)

We perform a detailed analysis of the amortized cost of
flattening using the potential method [27]. We assign a real
number called potential to each possible state of the tree.
A potential function is a mapping from the tree states to
the potential. The expense of an operation in the potential
method is defined as the sum of the actual work of the oper-
ation and the net increase in the potential as a result of this
operation. Using this definition, the total actual work of a

sequence of m operations can be derived as:

total actual work = total expense+net decrease in potential
(1)

Our proof strategy to bound the total actual work of a se-
quence of operations is to bound the expense of the se-
quence of operations (Lemma 1 for top-down and Lemma 2
for bottom-up flattening) and the net decrease in potential
(Lemma 3) resulting from the sequence of operations. For
this proof, we assume that the tree contains a static set V of
n nodes. Note that this is only required to quantify the cost
of flattening in terms of the size of the tree; our algorithm
does not require a static set of nodes or an upper bound on
the number of nodes in this set.

We begin by assigning a positive weight w(x) to each
node x that remains fixed throughout the execution. Then
define the size s(x) of a node x to be the sum of weights
of all nodes in the subtree rooted at x. We define the rank
r(x) of x as log(s(x)) (binary logarithms are used through-
out). The potential function is just the sum of the ranks
of all nodes in the tree. As a measure of the actual work,
we charge one work unit for each child swap and preferred
rotation. Since each child swap and preferred rotation is
performed with a fixed number of RPCs (described above),
our analysis with work unit one suffices to yield an asymp-
totic bound, in that the constants can be immediately de-
rived from the discussion above on the number of messages
required in each step. We use s and s′, r and r′ to denote the
sizes and ranks of nodes just before and after a restructuring
step, respectively.

Lemma 1. The expense of top-down semi-flattening from a
node t to a node r is at most 2(r(t)− r(r)).

Proof. Top-down semi-flattening consists of child swaps.
The expense of top-down semi-flattening is the sum of the
expense of all the child swaps from t to r. We claim that
the expense of a single child swap with x being the parent
of a and y being the parent of x (see Figure 3) is at most
2(r(y) − r′(a)). The sum of these child swap expenses
“telescopes” to 2(r(t) − r(r)) if the path length between t
and r is even and 2(r(t)−r(r′)) if this length is odd, where
r′ is the parent of r. The Lemma holds in either case since
r(r′) ≥ r(r).

So we only need to prove the claim regarding the expense
of each child swap. The child swap is as shown in Figure 3.
The actual number of work units associated with a child
swap is one so the expense is:

1 + net increase in potential

= 1 + r′(x) − r(x) [since only x’s rank changes]
≤ 1 + r′(x) − r(a) [since r(x) ≥ r(a)]

Now we need to prove that 1 + r′(x) − r(a) ≤ 2(r(y) −
r′(a)), which we rearrange as follows, with each line being

equivalent:

1 ≤ 2r(y)− 2r′(a) + r(a)− r′(x)
1 ≤ 2r(y)− r′(a)− r′(x) [since r′(a) = r(a)]
−1 ≥ r′(a)− r(y) + r′(x)− r(y)

−1 ≥ log
(

s′(a)
s(y)

)
+ log

(
s′(x)
s(y)

)

This is true since s(y) ≥ s′(a) + s′(x) and log b + log c
maximizes at −2 if b + c ≤ 1 (convexity of log).

Lemma 2. The expense of bottom-up flattening from a node
t to a node h is at most 2(r(h)− r(t)) + 1.

Proof. Bottom-up flattening consists only of preferred ro-
tations. To see the effects of preferred rotations on the ex-
pense of bottom-up flattening, we need to analyze two pre-
ferred rotations at a time. Bottom-up flattening consists of
these pairs of preferred rotations, possibly followed by a
single preferred rotation at the end, in case the path between
t and h is of odd length.

Let z be the parent of t and x be the parent of z as shown
in Figure 1. t is the node that performs the preferred rota-
tions. We claim that the expense of a single preferred ro-
tation is at most 2(r′(t) − r(t)) + 1 and that of a pair of
preferred rotations is at most 2(r′(t) − r(t)). The sum of
these expenses telescopes and proves the lemma. We now
prove our claim.

The actual number of work units of a preferred rotation
performed by t over z is one. The expense is:

1 + r′(t)− r(t) + r′(z)− r(z)
≤ 1 + r′(t)− r(t) [since r′(z) ≤ r(z)]
≤ 1 + 2(r′(t)− r(t)) [since r′(t) ≥ r(t)]

The actual number of work units of a pair of preferred rota-
tions performed by t over z and then over x (see Figure 1)
is two. The amortized expense is:

2 + r′(t)− r(t) + r′(z)− r(z) + r′(x) − r(x)
= 2− r(t) + r′(z)− r(z) + r′(x) [since r′(t) = r(x)]
≤ 2 + r′(z) + r′(x) − 2r(t) [since r(t) ≤ r(z)]

Now we need to prove that 2 + r′(z) + r′(x) − 2r(t) ≤
2(r′(t) − r(t)), which we rearrange as follows with each
line being equivalent:

2 ≤ 2r′(t)− r′(z)− r′(x)
−2 ≥ r′(z)− r′(t) + r′(x) − r′(t)

−2 ≥ log
(

s′(z)
s′(t)

)
+ log

(
s′(x)
s′(t)

)

This is true since s′(t) ≥ s′(z) + s′(x) and log b + log c
maximizes at −2 if b + c ≤ 1 (convexity of log).

Lemma 3. The net decrease in potential over any se-
quence of operations is at most

∑
v∈V log(W

w(v)), where
W =

∑
v∈V w(v).

Proof. The maximum size of a node v, for all v ∈ V , is W
when v is the root of the tree and the minimum size is w(v)
when v is a leaf. Thus the net decrease in the rank of node v
is at most log(W)− log(w(v)). Summing up over all nodes
proves the lemma.

Theorem 1. The total actual work done by a sequence of m
top-down flattening operations is at most (2m + n) log n.

Proof. Assign a weight of 1/n to each node, and so W = 1.
The total expense of the sequence is at most m(2(r(t) −
r(r))) ≤ 2m log n for any t and r, see Lemma 1. The net
decrease in potential is at most

∑
v∈V log(W

w(v)) = n log n.
Substituting these values in Equation 1 proves the result.

Theorem 2. The total actual work done by a sequence of
m bottom-up flattening operations is at most m + (2m +
n) log n.

Proof. Assign a weight of 1/n to each node. The to-
tal expense of the sequence is at most m(1 + 2(r(h) −
r(t))) ≤ m + 2m log n for any h and t, see Lemma 2.
The net decrease in potential is at most

∑
v∈V log(W

w(v)) =
n logn. Substituting these values in Equation 1 proves the
result.

Theorem 3. The total actual work done by a sequence of m
hybrid flattening operations is at most 3m+(2m+n) log n.

Proof. Assign a weight of 1/n to each node. The total ex-
pense of the sequence is at most m(1 + 2(r(h) − r(t)) +
2(r′′(t) − r(r))) for any t, h and r, where r′′(t) is the rank
of t after bottom-up flattening, see Lemmas 1 and 2. Note
that r′′(t) is the same as the rank of h before bottom-up
flattening (the subtree contains the same nodes), so the total
expense of the sequence is at most m(1 + 2(r(h)− r(t)) +
2(r(h) − r(r))) ≤ m + 2m log 2n = 3m + 2m logn for
any t, h and r. The net decrease in potential is at most∑

v∈V log(W
w(v)) = n log n. Substituting these values in

Equation 1 proves the result.

A consequence of these results is that as m grows, our
restructuring induces an average path length between nodes
that access one another of O(log n) in size. If access pat-
terns are stable, they will inherit the benefits of conducting
accesses over these short paths. We confirm this intuition
empirically in Section 6.

5.5. K-ary trees

Our algorithms as described in the previous sections
work only for a binary tree. However, extension to k-ary
trees is straightforward. In both bottom-up flattening and
top-down semi-flattening, each step consists of a node re-
placing one of its children—let us denote this as the least
significant node—with a node in the path to the requester—
denote it as the most significant node. In the first step of
Figure 1, the root of subtree A is the least significant node
and z is the most significant node whereas in Figure 3, c is
the least significant node and a is the most significant node.
In the case of a k-ary tree, the most significant node is still
well-defined (the node in the path to the requester) but the
least significant node is not. A simple strategy to define the
least significant node could be the following: If a node x in
a k-ary tree has k′ < k children, then we say it has k − k′

null children. x prioritizes its children according to some
heuristic, e.g., a least recently used (LRU) type algorithm
that gives a higher priority to a child that was in the access
path of the most recent access through x. The null children
always get the lowest priority. Then x may choose the child
with the lowest priority as the least significant node when
restructuring.

6. Experiments

We have completed an implementation of the flattening
algorithms described in the previous sections including an
implementation of the Quiver protocol [23] for mutually ex-
clusive access to the token, and for navigating along the path
from the target to the requester (see Section 4).

6.1. Experimental setup

Our experiments were run on PlanetLab [8] using 40
nodes spread across North America. For each experiment,
these 40 nodes were arranged in a binary tree; we chose a
binary tree (versus a k-ary tree for k > 2) so as to maximize
the tree diameters experienced with only 40 nodes. After
initializing each node with information about its parent and
children, nodes initiated an application workload. In or-
der to emulate an application that uses the tree structure for
communication between nodes, each node performed flood-
based searches for other nodes in the tree. In each of these
searches, the requester node broadcast a packet to each of
its neighbors with the identity of the target node. Each node
(except the target) that received such a packet, forwarded
it to each of its neighbors, except the neighbor from where
the packet came. When the target node itself received this
packet, it sent an acknowledgment directly (outside the tree)
to the requester. After receiving the acknowledgment from
the target, the requester measured the latency of the access

and then retrieved the token and notified the target, which
then initiated the flattening algorithm along the path to the
requester.

In order to control the sequence of requests (so we could
construct worst cases and other distributions), we used one
node external to the tree as a “monitor”. The monitor ex-
changed control messages with all nodes, e.g., to have nodes
initiate an access request or to pull information about how
long an access operation took.

We performed three sets of experiments: the first em-
ployed a randomly constructed tree and a random work-
load, i.e., each node chose its target uniformly at random
among all nodes. The second set again employed a ran-
domly constructed tree, but used a workload where nodes
were divided in groups such that nodes in a particular group
accessed each other more frequently. The final set utilized a
location-aware tree, i.e., geographically nearby nodes were
placed close to each other in the tree, and a random work-
load. Each data point in our graphs is an average value over
four runs.

6.2. Random tree, random workload

For these tests we constructed a random binary tree
among 40 PlanetLab nodes. In order to perform an access
operation, a node chose another node uniformly at random
from the set of all 39 other nodes in the tree, and initiated
a flood-based access request for the chosen node. The top
of Figure 6.2 presents the amortized latencies of the access
operations with and without using flattening. Flattening sig-
nificantly improved the performance of access operations,
and it did so by reducing the diameter of the tree; see the
bottom of Figure 6.2. This is further confirmed by com-
paring the tree topologies at the beginning and end of each
experiment. An example is shown in Figure 6.2. Note that
since nodes chose their targets at random, the set of recent
requesters and targets span most of the tree, and so flatten-
ing has the effect of balancing the whole tree.

6.3. Random tree, group workload

In a second set of tests, we again arranged the 40 Plan-
etLab nodes in a random binary tree. In these tests, though,
we partitioned the nodes into 10 non-intersecting groups
of four nodes each. When selecting a node to access via
the flooding algorithm, each node selected from within its
group with probability 0.8, and selected from outside its
group with probability 0.2. We hypothesized that with such
a workload, our approach would tend to bring the members
of each group closer to one another, thereby improving the
latency of intra-group accesses.

The results from these tests are shown in Figure 9. This
figure shows the average access latencies that resulted when

 260

 270

 280

 290

 300

 310

 320

 100 200 300 400 500

A
ve

ra
ge

 ti
m

e
pe

r
ac

ce
ss

 (
m

se
cs

)

Total number of accesses

Access w/o Flattening
Access w/ Flattening

 12
 14
 16
 18
 20
 22

 0 100 200 300 400 500
H

op
s

Total number of accesses

Diameter w/ Flattening

Figure 7. Random workload on a randomly
constructed tree (Section 6.2). Top shows
amortized access latencies with and without
flattening. Bottom shows the diameter of the
tree with flattening.

3

35 28

37

16

27

10

2

9

4

5

25

32

29

39

30

15

17

6

31

18

36

13

1

26 22

20

38 24

8

0

34 19

14 12

23

7

11

21

33

5

9

3

39

37

30

32 29

2 33

8

23 25

15 34 24 27 1

12

13 11

0

267 4

17

36 14

20

16

1928

18

38

6

35 10

31

22

21

Figure 8. An example start (left) and end
(right) topology from an experiment with a
random workload on a randomly constructed
tree (Section 6.2).

flattening was or was not used. As the top portion shows, the
access latency was dramatically improved through the use

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 ti
m

e
pe

r
ac

ce
ss

 (
m

se
cs

)

Total number of accesses

Access w/o Flattening
Access w/ Flattening

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500

H
op

s

Total number of accesses

Tree diameter
Mean group diameter

Figure 9. Latencies (top) and tree and group
diameters (bottom) in group-biased workload
(Section 6.3).

of flattening. The reason for this improvement is demon-
strated in the bottom portion of the same figure, which
shows the average tree diameter and the average group di-
ameter, i.e., the hops between the furthest members in each
group, averaged over all groups. The error bars in this bot-
tom graph show the standard deviation of the group diame-
ters. As this graph shows, the tree and group diameters drop
rapidly at first, and then continue a slight downward trend
for the duration of the workload. This, in turn, translates to
significant latency savings for access (see top of Figure 9).

This conclusion is also supported by examining the
topologies that resulted from our experiments. For exam-
ple, Figure 10 shows an initial and an ending topology in
one of our experiments. The label on each node indicates
the group of which that node is a member. The right tree
also shows the groups that end with the largest group diam-
eter (in gray) and that end with the smallest group diameter
(in black); these two groups are colored similarly in the left
tree to show where these groups began in the initial topol-

1

10

4 6

5

3

10

2

2

5 4

1 8

9

3

9

1

9

8 2

3 7

1

7 8

3 2

5 4

10

7

10 6

5

7

9 8

6 4

6

5

5 5

92

2

2

10 8

2 10 8

7

7 5

10 1

3

3

6 4

9 9

9

4 8

4 8

1 1

1

6

3 3

7

6

6

10

4

7

Figure 10. Example PlanetLab node topolo-
gies at the start (left) and end (right) of the
group-bias experiments (Section 6.3). Circles
with the same numbers represent nodes in
the same group. The gray group (10) ends
with the worst diameter, and the black group
(1) ends with the best. Flattening reduces
group diameters overall.

ogy. A careful examination of the various groups shows
that the group diameters became smaller during the work-
load due to flattening.

6.4. Geographic tree, random workload

Our last experiments organized the 40 nodes geograph-
ically, by partitioning the nodes into “west coast”, “east
coast” and “central” nodes; each such group occupied a
contiguous portion of the tree initially. We then performed
random workloads in which each node, to perform an ac-
cess, selected a node to access uniformly at random from
among the 39 other nodes. In this context we explored three
different restructuring regimes: no restructuring; universal
flattening without attention to the geographic partitioning;
and geographic flattening, i.e., flattening within each geo-
graphic region only. That is, a path between a requester
and a target that traversed multiple regions was restructured
only on its contiguous subpaths within each region; connec-
tions between regions and the nodes they connected were
left alone.

We explored this workload to highlight a feature of flat-
tening, namely that each restructuring step, being localized
to the vicinity of the node executing it, can be applied in
subtrees effectively and enables the node to apply localized
policies that limit restructuring. The benefit that this offers
is convincingly demonstrated in Figure 11. As shown, the
restructuring that respected local geographic policies out-
performed both no restructuring and universal restructuring,
and in fact the universal restructuring performed no better

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500

A
ve

ra
ge

 ti
m

e
pe

r
ac

ce
ss

 (
m

se
cs

)

Total number of accesses

No Flattening
Universal Flattening

Geographic Flattening

Figure 11. Access latencies in experiments
beginning with a geographically placed tree
and running a random workload with geo-
graphic flattening (Section 6.4).

10

28

4

39

24

6

7

0

27

31

22

25

5

36

30 8

38

18

17

37

3

34

35

2

14 20

21

33

13

9 32

29

15

23

11 26

16

19

12

1

38

20 8

10

29

2

39

25 6

4

13 24

5

28 15

32 9

11

35

7

36

33 1

14 22

34

26 3

0 19

31

12

21

30

16 1823 17

37

27

Figure 12. An example start (left) and end
(right) topology from an experiment begin-
ning with a geographically placed tree and
running a random workload with geographic
flattening (Section 6.4). Nodes are colored
according to their regions.

than no restructuring due to its failure to account for ge-
ographic realities. An example topology produced by this
geographic restructuring is shown in Figure 12.

7. Conclusions

In this paper, we presented a novel algorithm by which
a distributed tree restructures itself dynamically to offer
lower-latency communication to the applications that run

over it. Our restructuring method shortens the path between
nodes that have communicated with each other in the past,
and so these nodes will benefit if they communicate in the
future (i.e., if the application exhibits communication local-
ity). Moreover, it does so through a series of inexpensive,
primitive steps performed by nodes on that path; each such
step involves localized communications with its neighbors,
simplifying the adaptation of the applications’ routing data
structures to reflect the restructuring. We have implemented
our approach and confirmed the performance benefits it of-
fers using experiments on PlanetLab.

8. Acknowledgments

This work was supported in part by NSF awards 0326472
and 0433540. We are grateful to the reviewers for their
comments, which were useful for improving this paper.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
p2p information systems. In Proceedings of the 6th Inter-
national Conference on Cooperative Information Systems,
2001.

[2] G. M. Adelson-Velskii and E. M. Landis. An algorithm for
the organization of information. Soviet Math. Dokl. 3, pages
1259–1263, 1962.

[3] S. Albers and M. Karpinski. Randomized splay trees: the-
oretical and experimental results. Information Processing
Letters, 81(4):213–221, 2002.

[4] R. Bayer. Symmetric binary B-Trees: data structure and
maintenance algorithms. Acta Informatica, 1:290–306,
1972.

[5] Y. Chang, M. Singhal, and M. Liu. A fault tolerant algorithm
for distributed mutual exclusion. In Proc. 9th IEEE Symp.
on Reliable Dist. Syst., pages 146–154, 1990.

[6] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for
end system multicast. IEEE Journal on Selected Areas in
Communication (JSAC), Special Issue on Networking Sup-
port for Multicast, 20(8), 2002.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an overlay
testbed for broad-coverage services. ACM SIGCOMM Com-
puter Communication Review, 33(3):3–12, 2003.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an overlay
testbed for broad-coverage services. ACM SIGCOMM Com-
puter Communication Review, 33(3):3–12, 2003.

[9] M. J. Demmer and M. Herlihy. The Arrow distributed direc-
tory protocol. In Proc. 12th Intl. Symposium of Distributed
Computing, pages 119–133, 1998.

[10] M. Furer. Randomized splay trees. In Proc. of the 10th An-
nual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[11] K. Gilon and D. Peleg. Compact deterministic distributed
dictionaries. In Proc. of the Annual ACM Symposium on
Principles of Distributed Computing, 1991.

[12] L. J. Guibas and R. Sedgewick. A dichromatic framework
for balanced trees. In Proc. 19th IEEE Symposium on Foun-
dations of Computer Science, 1978.

[13] J. M. Helary, A. Mostefaoui, and M. Raynal. A general
scheme for token- and tree-based distributed mutual exclu-
sion algorithms. IEEE Transactions on Parallel and Dis-
tributed Systems, 5(11):1185–1196, 1994.

[14] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A
balanced tree structure for peer-to-peer networks. In Pro-
ceedings of the 31st International Conference on Very Large
Databases, Aug. 2005.

[15] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole, Jr. Overcast: Reliable multicasting with
an overlay network. In Proceedings of the 4th USENIX Sym-
posium on Operating Systems Design and Implementation,
2000.

[16] T. Johnson and A. Colbrook. A distributed data-balanced
dictionary based on the B-link tree. Technical Report
MIT/LCS/TR-530, Massachusetts Institute of Technology,
1992.

[17] R. Kurmanowytsch, M. Jazayeri, and E. Kirda. Towards a
hierarchical, semantic peer-to-peer topology. In Proceedings
of the 2nd International Conference on Peer-to-Peer Com-
puting, 2002.

[18] P. L. Lehman and S. B. Yao. Efficient locking for concur-
rent operations on B-trees. ACM Transactions on Database
Systems, 6(4):650–670, 1981.

[19] C. Y. Liau, W. S. Ng, Y. Shu, K.-L. Tan, and S. Bressan. Effi-
cient range queries and fast lookup services for scalable p2p
networks. In Proceedings of the 2nd International Work-
shop on Databases, Information Systems and Peer-to-Peer
Computing, pages 78–92, 2004.

[20] M. Naimi, M. Trehel, and A. Arnold. A log (n) distributed
mutual exclusion algorithm based on path reversal. Journal
of Parallel and Distributed Computing, 34(1):1–13, 1996.

[21] D. Peleg. Distributed data structures: a complexity oriented
view. In Proc. 4th International Workshop on Distributed
Algorithms, pages 71–89, 1990.

[22] K. Raymond. A tree-based algorithm for distributed mu-
tual exclusion. ACM Transactions on Computer Systems,
7(1):61–77, Feb. 1989.

[23] M. K. Reiter and A. Samar. Quiver: Consistent object shar-
ing for edge services. IEEE Transactions on Parallel and
Distributed Systems, 2007. To appear.

[24] A. Samar. Quiver on the Edge: Consistent, Scalable Edge
Services. PhD thesis, Carnegie Mellon University, Aug.
2006.

[25] B. Silaghi, B. Bhattacharjee, and P. Keleher. Query rout-
ing in the TerraDir distributed directory. In Scalability and
Traffic Control in IP Networks II, pages 299–309, July 2002.

[26] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32(3):652–686, 1985.

[27] R. E. Tarjan. Amortized computational complexity. SIAM J.
Appl. Discrete Math, 6:306–318, 1985.

[28] S. Wang and S. Lang. A tree-based distributed algorithm for
the k-entry critical section problem. In IEEE International
Conference on Parallel and Distributed Systems, Dec. 1994.

[29] H. E. Williams, J. Zobel, and S. Heinz. Self-adjusting trees
in practice for large text collections. Software, Practice and
Experience, 31(10):925–939, 2001.

[30] W. Yeong, T. Howes, and S. Kille. Lightweight directory
access protocol, 1995. RFC 1777.

[31] C. Zhang, A. Krishnamurthy, and R. Y. Wang. Brushwood:
Distributed trees in peer-to-peer systems. In Proceedings
of the 4th International Workshop on Peer-to-Peer Systems,
Feb. 2005.

