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Abstract

An important yet largely uncharted problem in malware
defense is how to automate generation of infection signa-
tures for detecting compromised systems, i.e., signatures
that characterize the behavior of malware residing on a sys-
tem. To this end, we develop AGIS, a host-based technique
that detects infections by malware and automatically gener-
ates an infection signature of the malware. AGIS monitors
the runtime behavior of suspicious code according to a set
of security policies to detect an infection, and then identifies
its characteristic behavior in terms of system or API calls.
AGIS then statically analyzes the corresponding executa-
bles to extract the instructions important to the infection’s
mission. These instructions can be used to build a template
for a static-analysis-based scanner, or a regular-expression
signature for legacy scanners. AGIS also detects encrypted
malware and generates a signature from its plaintext de-
cryption loop. We implemented AGIS on Windows XP and
evaluated it against real-life malware, including keyloggers,
mass-mailing worms, and a well-known mutation engine.
The experimental results demonstrate the effectiveness of
our technique in detecting new infections and generating
high-quality signatures.

1 Introduction

The capability of malware to spread rapidly has moti-
vated research in fully automated defense techniques that
do not require human intervention. For example, signifi-
cant strides have been made in the automated generation of
exploit signatures and patches (e.g., [28, 17, 14, 24, 22, 30,
23,21, 6, 8, 33, 20, 27]) to protect vulnerable software from
being exploited. These approaches detect the compromise
of a process and then trace the compromise to the exploit
input that caused it, enabling the construction of a signature
for that input and possibly variations thereof. These tech-
niques, however, are largely constrained to detecting and
generating signatures for code-injection attacks, due to the
limited class of violations they can detect.

Although many research projects have developed solu-
tions to automatically generate exploit signatures to prevent
the malware from penetrating vulnerable systems, they can-
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not prevent all attacks, especially zero-day ones, and thus
allow malware to infect the victim systems. This prob-
lem calls for an automatic mechanism to detect the mal-
ware when it has already penetrated the vulnerable systems.
We meet this challenge by exploring the automatic genera-
tion of a different type of signature, an infection signature,
which characterizes malware’s behavior when it resides on
a system. The main objective of constructing infection sig-
natures is to detect the presence of a malware that has suc-
cessfully penetrated a system. While an exploit signature
can be generated through analyzing the software vulnera-
bility which allows the exploit to happen [33, 2], infection
signatures are generally more difficult to get, due to the di-
versity of malware’s behavior in an infected system.

The first kind of infection signatures to have undergone
extensive study are virus signatures, which are generated
mostly through manual analyses of virus code. Kephart and
Armold proposed an approach that automatically extracts
invariant byte sequences from “goat” files infected by the
virus running in a controlled environment [13]. A similar
approach has been adopted by Symantec in their digital im-
mune system [29]. These techniques rely on a virus’ repli-
cation behavior, which is absent in other types of malware
such as spyware, Trojans and back doors. In addition, they
cannot handle polymorphic and metamorphic code [3].

There are other malware detectors that identify malware
by its MDS5 checksum. Generation of a checksum signa-
ture can be easily automated. However, it is too specific
to accommodate any modification to the code. Wang et
al. [31] proposed a network-based signature generation ap-
proach which automatically extracts invariant tokens from
malware’s communication traffic. However, such a signa-
ture can be evaded if attackers vary the servers which com-
municate with infected hosts (possibly through a botnet) or
simply encrypt network traffic.

In this paper, we seek a very general approach to auto-
matically generating infection signatures, in particular one
that does not presuppose a method by which the attacker
causes his code to be executed on the computer; in the limit,
the user could have installed and run the malware himself,
as users are often tricked into doing. Consequently, our ap-
proach does not begin with detectors for a code-injection at-
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tack (e.g., using an input-provided value as a pointer [18]),
but rather monitors for an array of suspicious behaviors
that are indicative of a compromise, such as a system call
to hook a dynamic-link library (DLL) file for intercepting
keystrokes, and subsequent I/O activities for depositing and
transferring a log file. Once such behaviors are detected,
our technique employs dynamic and static analyses to ex-
tract the instruction sequences used to perform the offend-
ing actions, and can do so even if the instructions have un-
dergone moderate obfuscations. These instructions can be
used to build a “vanilla” version of infection [4, 5], an in-
struction template for a static analyzer to detect the infec-
tion’s variants, or regular-expression signatures for legacy
malware scanners. In the case that malware has been en-
crypted, our technique extracts the instructions necessary
for it to decrypt its executable and run, which must be plain-
text. We have implemented these techniques in a system
called AGIS, and will detail its operation here.

At a high level, AGIS bears some similarity to behavior-
based spyware detection that employs a composite of dy-
namic and static analyses to detect spyware in the form of
browser plug-ins [16, 9]. However, our technique comple-
ments that approach in that it works on standalone malware
such as keyloggers and mass-mailing worms. Recently,
Yin et al. [34] proposed Panorama, a technique that ap-
plies instruction-level taint analysis to malware detection
and analysis. Panorama is designed for infection detec-
tion, whereas AGIS is the first host-based approach for au-
tomatic infection signature generation, though it also con-
tains a coarser-grained detection component. Our experi-
mental evaluation shows that AGIS’ system-call level taint
analysis seems to be sufficient for detecting many existing
infections and is much more efficient.

We believe that AGIS advances research on malware de-
fense in the following respects.
o Detection of infections caused by novel malware. We
have developed a new technique to detect a previously un-
known infection by monitoring behavior of suspicious code
for violations of security policy. Examples of such behavior
include hooking a DLL file and exporting log files, or re-
cursively searching a file system (for email addresses) and
connecting to SMTP servers. While our technique is also
applicable to plugin-based spyware (c.f. [16]), our current
focus is standalone malware.
e Automatic generation of infection signatures. We have
developed novel dynamic and static analysis techniques to
generate infection signatures. Our dynamic analyzer inputs
to the static analyzer the locations of the system or API calls
within an infection’s executables that are responsible for its
malicious behavior, and other information that facilitates
static analysis of the malicious code. The static analyzer
then extracts the instructions indispensable to these calls.
Our approach also keeps track of the relationships among
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different components of an infection through monitoring
their interactions, which enables automatic generation of
a series of signatures to identify the infection components
which are indirectly responsible for the malicious behavior.
This property is particularly important to malware disinfec-
tion, as some infection component, if left undetected, could
restore other components once removed.

o Resilience to obfuscated and encrypted infection exe-
cutables. We demonstrate that our technique can reliably
and efficiently extract signatures from an infection even if
its code has been moderately obfuscated and encrypted.

2 Design and Implementation

In this section, we describe the general design of AGIS
and a prototype we implemented under Windows XP. To
generate infection signatures, AGIS takes two key steps:
malicious behavior detection and infection signature ex-
traction. We first present the general idea through a simple
example, and then elaborate on these individual steps.

2.1 Overview

As an illustrative example, consider a Trojan downloader
trapped within a honeypot. Once activated, the Trojan
downloads and installs a keylogger, and sets a Run registry
key to point to it in order to survive the infected system
reboots. The keylogger consists of two components, an ex-
ecutable file which installs a hook to Windows message-
handling mechanism, and a DLL file containing the hook
callback function to create and transfer log files.

To detect this infection, the AGIS-enhanced honeypot
first runs the Trojan to monitor its system calls. From these
calls, AGIS constructs an infection graph which records the
relations among the Trojan and the files it downloads, as
evidenced by, e.g., the registry change to automatically in-
voke the keylogger executable, and extends the surveillance
to them. An alarm is raised when the keylogger installs
the DLL to monitor keyboard inputs through the system
call NtUserSetWindowsHookEx, and the DLL exports
a file in response to inputs of keystrokes.! Such behavior is
suspected to violate a security policy which forbids hooking
the keyboard and writing a log file. The presence of this ma-
licious activity can be confirmed by a static analyzer which
tries to find an execution path from the callback function in
the DLL to the Nt WriteFile call being observed. Back-
tracking on the infection graph, AGIS also pronounces the
Trojan to be malicious.

To extract infection signatures, our dynamic analyzer
first identifies the locations of the calls within executables
(a.k.a. call sites) responsible for the malicious behaviors,
which include downloading of the keylogger, modification
of the registry key, invocation of the keylogger, installation

lKeystrokes are automatically generated by a program in AGIS.
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Figure 1. The infection graph of the example. The dotted lines

annotated with ‘backtrack’ describe the backtracking process. The

vertices with ‘Detected!!!’” are detected violating security policies.
of the DLL and export of a log file. It can also collect other
information useful to static analysis, in particular, the call
sites of other observed system calls, anchoring the execu-
tion path of the program. Using such information, a static
analyzer extracts the instruction sequences in individual ex-
ecutables which affect the malicious calls directly or tran-
sitively. The infection signatures of the Trojan downloader
are derived from these instructions.

2.2 Malicious Behavior Detection

The objectives of this step are to determine whether a
piece of suspicious code is malware and if so, to identify a
set of behaviors which characterize it. AGIS adopts a novel
technique which first builds an infection graph to describe
the relationships among different components of an infec-
tion, such as modified registry keys and downloaded exe-
cutables, and then detects some components’ malicious be-
haviors using a set of security policies. These behaviors are
used to generate infection signatures.

Infection Graph. An infection graph is a tuple (V, A),
where V is a set of vertices and A is a set of arcs. The set
V is further partitioned into two subsets: a set S of subjects
which contains executable components such as a keylogger
and a set O of objects that includes other components such
as registry entries. An arc a from component v to v’ indi-
cates that either v outputs something to v/, e.g., creating v’,
or v/ inputs something from v, e.g., reading from v. We
also consider an arc existing from an auto-start extensibil-
ity point (ASEP) [32] such as the Run registry key to the
executable it points to.

AGIS builds an infection graph using a system call level
taint-analysis technique. This was achieved in our imple-
mentation through a kernel monitor that hooks Windows
system service dispatch table (SSDT) and the shadow table
to intercept system calls. The monitor first taints the sus-
picious code trapped in a honeypot and its process, which
forms the first set of vertices on the infection graph we call
the sources. Other vertices are obtained through taint prop-
agation: a tainted v propagates taint to another subject or
object v’ if an arc can be drawn from v to v’ as discussed
above. Figure 1 presents the infection graph of the example
in Section 2.1, in which the Trojan passes the taint to the
Run registry key, the hook installer, and the DLL file.
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Security Policies. Tainted executables are monitored by
AGIS for the behaviors that violate a set of predetermined
security policies. Infections of the same type usually ex-
hibit common behavior patterns. For example, a keylog-
ger usually hooks the system message-handling mechanism
and then records keystrokes into a local or remote log; a
mass-mailing worm is very likely to search the file sys-
tem for email addresses and then connect to remote SMTP
servers to propagate itself to other clients. Security policies
are set to flag an alarm whenever these malicious activities
are observed. For the above example, the keylogger pol-
icy detects a sequence of hooking and recording behaviors,
and the mass-mailing policy detects reading files and then
connecting to SMTP servers. In AGIS, we specify security
policies using Behavior Monitoring Specification Language
(BMSL) [26]. Table 1 describes two example policies.

A policy can capture many malware instances: e.g., we
examined 23 mass-mailing worms reported by Symantec,
all of which exhibit the behaviors described above. Our ex-
periments on 19 common applications using the above poli-
cies (see Section 3.1) did not report any false positives.

Infection Detection and Behavior Extraction. AGIS de-
tects an infection by matching the behaviors of suspicious
code to the event pattern of a security policy. Most such
behaviors can be directly observed through system calls,
while the rest need to be identified through static analy-
sis of suspicious executables. For example, the keylogger
rule in Table 1 will be activated only if the program makes
WriteFile or Sendto calls and those calls are reachable
from the hooked function f. The second condition is ver-
ified by the helper function ExistPath, which searches for
an execution path connecting f to a function exporting a file
in the control flow graph (CFG) of a tainted executable.?
The EzistSearchLoop helper function in the mass-mailing
rule can be implemented using dynamic analysis alone: our
approach triggers the rule if the frequency of recurrence of
ReadFile or related calls from the same call site exceeds a
pre-determined threshold.

Once an event pattern is observed, AGIS detects an in-
fection and puts the detected processes and their executable
files in the infection set /. After that, the backtrack func-
tion is invoked, which inductively adds to A all vertices
from which N can be reached in the infection graph. Dur-
ing this process, the file representing a vertex in A/, which
could also be a vertex, is also included in the infection set.
These vertices and their arcs form a subgraph connecting
the sources to the behaviors that trigger a security policy.
We then remove the vertices which do not have physical
representations on the hard disk and their arcs. The remain-
ing subgraph records all the behaviors leading to the ma-

2Static analysis can be defeated by anti-di 1bling techniques [11], or deep
obfuscations of the executable. When this happens, we can use instruction-level dy-
namic analysis to verify the existence of an execution path.
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detected (N )&&backtrack(N') && GenSign(N')

NAME SECURITY POLICY COMMENTS
Keylogger any()x; hook(keyboard, f)[f1 = f;any()*; | If a call to hook keyboard is observed in the system call set SysCall and the callback
rule (WriteFile||Sendto)| EzistPath(f1) — | function f it points to has an execution path leading to either WriteFile or Sendto,

then a keylogger is detected (detected) and its processes and files are added into N/, the
infection set, We also need to backtrack the infection graph, adding the tainted subject or
object with an arc to the subject(s) or object(s) in N to N (backtrack), and generate a
signature for every file in N’ (GenSign).

Mass- any()*; (ReadFile()| EzistSearchLoop;
mailing- (1Sendto(SMTP))x)*; Sendto(SMTP) —
worm rule detected(N) &&backtrack(N) && GenSign(N)

If an executable file contains a loop to search directories for reading files
(EzistSearchLoop) and API calls to send messages to SMTP servers, then it is a mass-
mailing worm.

Table 1. Examples of security policies written in BMSL. BMSL rules have the form event_pattern — action, where both event_pattern and
action can be defined as regular expressions to connect functions and statements.

licious activities and retrievable from a compromised sys-
tem. We call the set of such behaviors the infection action
set, denoted by M, which is used to generate signatures for
executable files in V.

Figure 1 illustrates a detection and backtrack process.
Here the malicious behaviors include the actions to hook
and record keystrokes from the keylogger, the actions to
change the run registry key and deposit the keylogger from
the installer, and the registry entry that points to the keylog-
ger which automatically starts the malware.

2.3 Infection Signature Extraction

An ideal infection signature should uniquely character-
ize an infection to eliminate false positives, and also toler-
ate metamorphism exhibited by malware variants to avoid
false negatives. AGIS pursues these two goals by extract-
ing the instruction sequences responsible for an infection’s
behaviors in its infection action set M. These instruction
sequences are extracted through a combination of dynamic
and static analysis.

Dynamic Analysis. An executable’s behaviors observed by
AGIS are in the form of system calls. Our dynamic analyzer
implemented in the kernel monitor intercepts these calls and
examines their call stacks to find out the return addresses in-
side a tainted executable’s process image. These addresses
are further mapped into the call sites in the executable’s
physical file. This approach is able to work smoothly for
programs that do not contain any encoded components. For
an encoded executable, the approach reveals the discrep-
ancy between the instructions in its process image and those
in its file, which allows the static analyzer to extract the code
used to decrypt and run it.

A challenge is that malware can forge a stack frame, in-
cluding its return address, and enter a library or API call
using a jump instruction other than a call. If the jump is
direct, then this jump to the library or API call can be de-
tected by static analysis and used either in our subsequent
static analysis or used within a signature directly (since nor-
mal programs do not do this). If the jump is indirect, and if
the jump target cannot be computed by static analysis, then
dynamic analysis is needed to infer the jump target, either
by instrumenting the jump or via instruction-level tracing.
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A similar approach would be necessary to analyze multi-
threaded malware in which one threat manipulates the stack
frames of another. AGIS does not implement this analysis
at present, however, and refining this approach is a topic of
ongoing work.

Static Analysis. After locating all the call sites, our static
analyzer, which was implemented based upon Proview
PVDASM (nttp://pvdasm.reverse-engineering.net/),
applies a chopping technique [25] to extract the instruc-
tion sequences influencing the calls responsible for the ma-
licious behaviors in the infection action set M. Chopping
is a static analysis technique which reveals the instructions
involved in carrying the influence of one specific instruction
(the source criterion) to another (the target criterion) [25].
For example, to find a chop for a target instruction call
eax, we first find from the program’s control flow the last
instruction before the target which operates on eax, and
then move on to identify the last instruction which influ-
ences that instruction, and so on, until the source instruction
is reached. Since the behaviors in which we are interested
are system or API calls, the objective of the chopping is to
find all the instructions which directly or transitively affect
these calls. To this end, not only do we need to take the call
instruction itself as the target criterion, but we also have to
include in the target other instructions known to be part of
the call, in particular, the stack operations for transferring
parameters. This requires knowledge of an API function’s
model, which provides the information on the input param-
eters of the APL

Here we describe the idea behind our static analysis
mechanism. Our approach takes advantage of the call se-
quences observed in the dynamic analysis step to pinpoint
the execution path traversed. If the executable is multi-
threaded, we build a call sequence for every thread to make
sure that it reflects an execution path. Let (cg,...,c,) be
the call sites of a call sequence, where ¢y is the beginning of
the executable’s control flow and ¢, is a call site inside the
infection action set M that is determined to violate policy.
To extract the instructions responsible for that call, AGIS:
(1) disassembles the executable’s binaries and constructs a
control flow graph; (2) finds an executable path p which
includes (cg, . .. ,cn); (3) for k = n... 1, chops the instruc-
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tion sequence of p between cx—1 and c.

Metamorphic Infection. AGIS can reliably extract a chop
even if an infection has been moderately obfuscated. Com-
mon obfuscation transformations [4] include junk-code in-
Jection, code transposition, register reassignment and in-
struction substitution. AGIS forms a CFG before chopping
which defeats the injection of the junk code unrelated to the
malicious calls. The technique proposed in SAFE [4] can
also be used to mitigate the threat which adds junk code to
a chop. Specifically, code between two points on the chop
[p1, p2] is deemed as junk code if every variable (register or
buffer) has the same value at p; as its value at p;. How-
ever, the problem of junk code detection is undecidable in
general [4]. The code transposition attack becomes power-
less in the presence of the CFG, which restores the original
program flow. Register reassignment and instruction substi-
tution are of more concern for infection scanning than sig-
nature generation. However, a static-analysis based scanner
can convert the output of AGIS to an intermediate form [5]
which replaces the registers and addresses with variables
and utilizes a dictionary to detect equivalent instructions.

Encoded Executables. The dynamic analyzer also com-
pares an infection’s instructions around malicious call sites
in the virtual memory with their counterparts in the physical
file.3 If there is a discrepancy, AGIS reports that the mal-
ware is encoded and moves on to generate a signature from
its decryption loop. This is achieved through identifying
the instruction which writes to the addresses of these mali-
cious calls, and then chopping the infection’s executable to
extract all other instructions that influence it.

A critical question here is how to capture the instruc-
tion serving as the chopping target. The most reliable way
is using tools such as Microsoft’s Nirvana and iDNA [1] to
conduct an instruction-level tracing. A more lightweight but
less reliable alternative is changing a malicious executable’s
physical file to set the attribute of the section involving ma-
licious calls to ready-only and rerun the executable. Such
an execution will produce an exception, which reveals the
location of the instruction. We evaluated this approach us-
ing a real infection (Section 3.2), and successfully extracted
the chop for the decryption loop. However, this approach
might identify an incorrect instruction if the read-only sec-
tion actually contains data.

Construction of Signatures. A collection of the chops
from the beginning of the execution flow ¢y to important
calls within one thread or process constitutes a piece of
vanilla malware, which describes the malicious activities an
infection carries out. In case the infection is encrypted, the
chop for its decryption loop is treated as vanilla malware.

3 A malware could evade this approach by deliberately putting the instructions
around call sites to their corresponding locations in the file. This attack can be de-
feated through extracting the chop of malicious calls from a tainted process’s virtual
memory and checking its existence in the process’s physical file.

1-4244-2398-9/08/$20.00 ©2008 IEEE

Compared with a static analyzer, traditional pattern-
matching scanners perform much faster though they are
much less resilient to metamorphism. AGIS can generate
byte-sequence signatures or regular-expression signatures
for these scanners. Here is a simple approach. Given a
signature size [ in bytes, the signature generator selects a
malicious call or a decryption instruction and walks from
its location backward along its chop to find the first m + 1
instruction segments, each of which has a continuous ad-
dress space and contains B; (1 < ¢ < m + 1) bytes. These
segments satisfy two conditions: (1) E:’_’__l B; <land (2)
Z?:l B; > l. A regular-expression signature is formed
through a conjunction of the first m segments and a string
in the (m + 1)th segment with a length of  — }_7" | B;
bytes. For example, let the signature size be 30 bytes and
the sizes of three segments closest to the call site be 8, 12
and 16; the signature generated is a conjunction of the first
and the second segments, and a string of 10 bytes in the last
segment. Our research shows that the efficacy of such a sig-
nature is related to the selection of the malicious call. If that
call has also been frequently used by legitimate programs,
a long signature is needed to subdue the false positive rate.
Otherwise, a short signature can be sufficient.

3 Evaluation

In this section, we describe our evaluation of AGIS.
Our objectives were to understand its efficacy from
three perspectives: (1) effectiveness in detecting new
infections, (2) quality of the signatures it gener-
ates, and (3) resilience to moderate obfuscations. To
this end, we conducted experiments with infections
caused by strains of real-world malware and their vari-
ants, including MyDoom (D/L/Q/U), NetSky(B/X)
(http://www.symantec.com/security_response), Spy—
ware.KidLogger (http://www.rohos.com/kid-logger/),
Invisible KeyLogger 97 Shareware version (http:
//www.spywareguide.com/product_show.php?id=438/),
and Home Keylogger v1.60 (http://www.kmint21.com/
xeylogger/). The experiments were carried out in a virtual
machine (VMware) installed with Windows XP (service
pack 2) on a host with 3.2GHz CPU and 1GB memory.

3.1 Infection Detection

We ran AGIS against the nine strains of malware inside
VMware and successfully detected all of them. MyDoom
(D/L/Q/U) and NetSky (B/X) triggered the mass-mailing
rule in Table 1, and all three keyloggers set off the key-
logger rule. AGIS successfully generated infection graphs
for all of these infections. Here, we take MyDoom.D and
Spyware.KidLogger as two examples to elaborate on our
experiments.

MyDoom.D. Mydoom.D is a mass-mailing worm, which
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is also capable of turning off anti-virus applications, stop-
ping the computer from booting and reducing system se-
curity (http://www.symantec.com/security_response/
writeup.jsp?docid=2004-012612-5422-99). This worm
arrives as an attachment to an email.

Our kernel monitor reported the following behav-
iors. It first copied itself to \WINDOWS\SYSTEM32\
as taskmon.exe and dropped another executable
shimgapi.dll to the same directory. Then, it modified
many registry keys, including the Run registry key to point
to itself. The monitor observed that a thread of the exe-
cutable invoked a large number of Nt ReadFile calls from
the same call site. These calls touched 588 files. This well
exceeds the threshold for detecting a search loop, which
we set as 100. Another thread of the application made a
number of calls to NtDeviceIoControlFile, which
turned out to be the attempts to invoke Send, delivering
messages to the SMTP server related to an email address we
included in a “goat” html file. At this point, the event con-
ditions for mass-mailing worms were unambiguously met
and the rule was triggered.

Spyware.KidLogger. Spyware.KidLogger is a spyware
program that logs keystrokes. It can also monitor in-
stant messaging, web browsing and the applications ac-
tivated periodically.  Symantec rates its risk impact
as high (http://www.symantec.com/security_response/
writeup. jsp?docid=2006-020913-4035-99).

Within AGIS, KidLogger deposited and executed
a temporary executable is-I486L.tmp which further
dropped several files, including executables Hooks.d11
and MainWnd.exe. 1is-I486L.tmp then modified
the Run registry key to point to MainWnd.exe. Af-
ter being activated, MainWnd pointed the RunService
registry key to itself.  Then, it initiated a call to
NtUserSetWindowsHookEx, the parameters of which
indicated that the hook was set for the keyboard, and
that the callback function was located inside Hooks .d11.
That file responded to keystrokes with a number of calls
to NtWriteFile. Our static analyzer scanned that
DLL and found an execution path from the entry of
the callback function to the site of the API call which
led to NtWriteFile. Moreover, the sites of all the
calls observed from Hooks.dll which happened be-
fore NtWriteFile also appeared on that path. This
matched the EzistPath condition, and triggered the key-
logger rule (in Table 1), which classified MainWnd.exe,
Hooks.d11 and the KidLogger installer as malware.

Policy False Positives. We ran both security policies on 19
common applications including BitTorrent, web browsers,
Microsoft Office, Google desktop and others. Our prototype
did not classify any of them as an infection. Google desktop
was found to hook the keyboard. However, its hook pro-
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API Call Call Site Comments
#

RegSetValueExXA 1 Set the Run Registry key to point to Taskmon . exe

ReadFile 1 Scan the file system for email adds
WS2.32.dll:send 3 Send emails to SMTP servers

Table 2. Malicious Calls in MyDoom.D.

cedure did not write to files or make network connections.
Other applications’ behavior did not even come close to the
keylogger policy. Some applications such as Outlook were
observed to make connections to a mail server. However,
they did not read numerous files as a mass-mailing worm
does. The legitimate application making the largest number
of calls to NtReadFile from a unique call site was Pow-
erPoint, which accessed 90 files. In contrast, MyDoom read
588 files in our experiment.

3.2 Signature Generation

AGIS automatically extracted the chops for all the infec-
tions we tested. Again, we use MyDoom.D and KidLogger
as examples to explain our results.

MyDoom.D. The kernel monitor reported five malicious
calls (Table 2) from the main executable of MyDoom,
which was renamed as TaskMon . exe. Our static analyzer
extracted three chops, one for setting the registry, one for
scanning the file system and one for sending emails. Fig-
ure 2 illustrates the execution path for scanning, in which
the instructions on the chop are highlighted. From that fig-
ure we can easily identify the loop for searching directories
(on the left) which contains API calls FindFirstFileA
and FindNextFileA, and its embedded loop for reading
files (on the right) which uses CreateFile to open an ex-
isting file and then continuously read from that file. More-
over, the chops automatically extracted from other My-
Doom worms and NetSky worms have similar structures.

Spyware.KidLogger. We detected five malicious
calls from three executables dropped by KidLogger
(KidLogger.exe, MainWnd.exe and Hooks.dll).
These calls are listed in Table 3.  Our static ana-
lyzer extracted chops from the recorded calls. Fig-
ure 3 demonstrates the execution paths and the chops
for MainWnd.exe and Hooks.dll. MainWnd.exe
hooked a callback function in Hooks.dll to inter-
cept keystrokes. The chop of that DLL preserved the
important instructions of the keylogger, which first ac-
quired keystrokes (GetKeyNameTextA), and then cre-
ated or opened a log file (CreateFileA) to save them
(SetFilePointer and WriteFile).

Signature False Positives. Two types of signatures were
generated from the chops: the regular-expression signature
constructed using the approach described in Section 2.3,
and the vanilla malware directly built from these chops. To
evaluate their false positive rates, we collected 1378 PE
files from directory ‘C:\ProgramFiles’ on Windows
XP and used them as a test dataset.
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Entry Point

m 004A4617: CALL 004AGE3A
—> 003AGE3IA: CALL 004A6ESS

[: 004A6ES3: 0 \6D7.
P 00iR6D73: PUSH EBP

004A6E0B: CALL 004A68F3

I:Funcr.ion Starting from 0x004A68F9
.—’ v

A

599 MP DWORD PTR SS: [EBP-04H], 001

004A69A2: LEA EAX,DWORD PTR 88: [EBP+FFFFFDA4]
004AG9A8: PUSH EAX

004ARE69A2: JNZ 004AS9D0

004A69AB: LEA EAX,DWORD PTR SS: [EBP+FFFFFEE4]
004A69B1: PUSH EAX

004A69B2: CALL DWORD PTR DS:[004A10CC] ;FindFirstFPileA

JO4RGICE: JMP 0D4AE3EL

004A69D0: PUSH DWORD PTR §8: [EBP-04H])

004A69D3: CALL DWORD PTR DS:[004A1094] ;FindNextFileA
9: TEST EAX, EAX

JZ 004A6ARS

CMP BYTE PTR SS: [EBP+FFFFFDDO] , 25H

004AGR43: CMP AL, 10
004R6A4D: JNZ 004ASAGF
004A6A6F: LEA EAX,DWORD PTR S8S:[EBP+FFFFFDA4]

IV—-—— EQCAGA'ID 1 CALL 004A6AIF I

CO3AGAB2: JMP 004A6A68 PR 7.1 ——

Function Starting from 0x004A6ASF

004A6AYF: PUSH EBP

: (RRP-04H], 01H

QOAABCAT: INZ 0 5
004A6C4B: PUSH DWORD PTR SS: [EBP+08H]

[ 004A6C4E: CALL 004A6647

Function Starting from 0x004A6647
004A6647: PUSH EBP
004R€648: MOV EBP, ESP

004A666A: CALL DWORD PTR DS:[004A1068] ;CreateFileA

004A66A7: PUSH EAX — o
004A66AA: MOV EAX,DWORD PTR 8S: [EBP+08H)

004A66AD: CMP EAX, E2X

004AG66AL
004A66BL
OV4AA66BE:
004AG6E8: ADD DWORD PTR SS5: [EBP-04H],EAX

004A66BB: MOV BYTE PTR SS: (EAX+EBP+FFFEFFF4H) , BL
004A66C2: PUSH EAX

004A66C2: PUSH EAX

004A66C3: LEAR EAX,DNORD PTR 88: [EBP+FFFEFFF4]
004A66C9: PUSH EAX

004A66CA: CALL 004A6719

004A66P2: PUSH EBX

004A66F3: PUSH EAX

004A66F4: LEA EAX,DWORD PTR S8S: [EBP+FFFEFFF4]
004A66FA: PUSH EDI

004A66FB: PUSH EAX

004R66FC: PUSH DWORD PTR SS:[EBP-0CH]

004A66FF: MOV DWORD PTR SS: (EBP+08H], EBX

0U4A6702: JMP 004ASGAS i LOOP ===

Figure 2. The execution path for scanning email addresses in MyDoom.D. Highlighted instructions are on the chop.

24: PUSH 00
: CALL 00401509
. ADD ESP, 04
QU4 U132E: CALL 00401449
Euuuuuux PUSH 0041E210 Sy . = |
00401445: CALL DWORD PTR DS: [00418128] ;LoadLibraryA

0040144B: TEST EAX, BAX
44D: MOV DWORD PTR DS:[004226A4], EAX

000117B: PUSH EBP
100011B8: LEA EAX,DWORD PTR 88: [EBP+FFFFFE30]

100011CE: PUSH EAX
100011CF: CALL DWORD PTR DS:[10006028] ;CreateFileA

10001248: CALL EDI
1000124A: PUSH 02
1000124C: PUSH EBX
1000124D: PUSH EBX
1000124E: PUSH DWORD PTR 88: [EBP+0CH]

iWriteFile

100010EC: PUSH 13
100010EE: PUSH EAX

[: 00401452: JNZ 0040146C

“7[oo40146c: MOV ECX,DWORD PTR DS: [004183DC]

00401472: PUSH ESI
00401473: MOV ESI,DWORD PTR DS:[00418390]
00401479: PUSH 00

0040147B: PUSH EAX 10001129: PUSH EAX

100010E9: LEA EAX,DWORD PTR 83; (EBP-14H)

100010EF: PUSH DWORD PTR 88: [EBP+10H]
100010F2: CALL DWORD PTR D8:[10006114] ;GetKeyNameTextA

0040147C: PUSH ECX 1000112A: LEA EAX,DNORD PTR £¢: [EBP-50H] 10001264: PUSH ESI
|0040147D: PUSH 02 1000112D: PUSH BAX 10001265: PUSH DWMORD PTR 8S: [EBP+0CH]
0040147F_CALL EST ; SetiindowsHookExA WriteFile

CALL DWORD PTR D8:([10006054] ;SetFilePointer
LER EAX,DWORD PTR $S:[ERP-04H]

10001263: PUSH EAX

rlﬂﬂﬂlllE. CALL 1000117B

(A) The Execution Path of Set A
in MainWnd.exe and its Chop

(B) The Execution Path of NtWriteFile in
Hooks.dIl and its Chop.

Figure 3. The execution paths and their chops for Spyware Kidlogger. Highlighted instructions are on the chop.

Regular-expression Signatures. The regular-expression sig-
nature we used is a conjunction of byte strings which are
closest to the site of a malicious call on its chop. Therefore,
it is natural to conjecture that the selection of the call af-
fects the quality of the signature. Another important factor
related to false positives is signature length. The longer a
signature is, the more specific it becomes and therefore the
fewer false positives it will introduce. The objective of our
experiments was to study the relation between these factors
and the false positive rate of our signatures. We developed
a simple scanner which first took out the executable section
of a PE file and then attempted to find the signature from it.
Figure 4 describes the experiment results.

In the figure, the signatures constructed from the API
functions RegSetValueExA and Send had the lowest
false positive rates. A possible reason is that these func-
tions are less frequently used than the other functions,
such as CreateProcessA. False positives also decreased
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False Positive Rate vs. Signature Length
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|
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False positive rate
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Signature length (Bytes)

—a— SatWindowsHookExA(KidLogger)
—e— ReadFile(MyDoom)

—e— CreateProcessA(KidLoggar)
—— RegSelValueExA(MyDoom)
—e—WS2_32.dIl: send (MyDoom)

Figure 4. False positive rate vs. signature length.

with the increase of the signature length. As illustrated in
Figure 4, false positives were eliminated after the length
reached 28 bytes.

Vanilla Malware. To evaluate the quality of a vanilla-
malware signature, we need to demonstrate that the in-
struction template (i.e, the chop) we extracted will not ap-
pear in a legitimate program. To this end, we developed
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File Name API Call Call Site # | Comments

kidlogger.exe | CreateProcessA 1 Create a process (is-I486L.tmp) to install other code

MainWnd.exe RegSetValueExA 1 Set the Run Registry key to point to itself
SetWindowsHookExA | 1 Hook the keyboard

Hooks.dll WriteFile 2 Export keystrokes to a log file

Table 3. Malicious calls of Spyware.KidLogger. Note that there was one temporary executable (1s-I486L. tmp) with malicious
calls. However, we did not use them because the file was deleted and could not be used for signature generation.

a static-analysis based scanner which works as follows. It
first checks if a program imports all the API functions on
the template chop, and then attempts to find an execution
path in the program with all these functions on it. If both
conditions are satisfied, the scanner further chops that path
with regard to the last call within the path, and compares
the sequence of the operators of the instructions on the
template chop with those on the chop of the normal pro-
gram. For example, suppose the instructions on the tem-
plate are push eax; add eax,ebx; mov ebx, 10;
the sequence we attempt to find from the chop in a nor-
mal program is push add mov. In our experiment, we
scanned all 1378 files, and no false positive was reported by
our scanners.

Resilience to Metamorphism. The ability of AGIS to with-
stand metamorphic malware was evaluated using a mutation
engine based on RPME (http://vx.netlux.org/vx.php?
id=er10), which can perform three mutations: junk code
injection, instruction transposition and instruction replace-
ment. To generate metamorphic code, we ran the mutation
engine on the execution paths used to extract chops.

RPME performed all three mutation operations on the
execution paths of MyDoom.D and KidLogger, which were
subsequently analyzed using our static analyzer. As ex-
pected, all the chops extracted were identical to the origi-
nal ones except that some adjacent but independent instruc-
tions were swapped. We believe that this problem is minor
because it will not cheat our analyzer into extracting the
instructions unrelated to malicious behaviors. Moreover,
chopping also reveals the dependency relations among in-
dividual instructions, which can be used to identify the in-
struction sequences differing only in the positions of inde-
pendent instructions. In our experiments, the code size of
the execution paths varied from 39 bytes to 467 bytes, while
the mutated code kept a constant size of 4K bytes.

Effectiveness against Encode Infections. We also evalu-
ated our prototype using an encoded infection, MyDoom.D,
which is packed using UPX. In the experiment, our proto-
type located malicious call sites in the section UPX1 of its
executable, and set the attribute of the section to read-only.
Rerunning the executable produced an exception which re-
vealed the malicious instruction mov [edi], eax. Our
static analyzer chopped the executable using that instruction
to generate vanilla malware. Further study shows that the
chop extracted actually describes the unpack loop of UPX.
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3.3 Performance

We measured the performance of our implementation:
infection detection took 73s for MyDoom.D and 66s for
KidLogger; signature generation took 60s for MyDoom.D
and 6s for KidLogger. As a comparison, Panorama [34]
takes 15 to 25 minutes to detect one malware sample.

4 Discussion and Limitations

The current design of AGIS could be evaded by mal-
ware that penetrates the operating system (OS) kernel and
those capable of countering dynamic analysis. For exam-
ple, malware can check the SSDT to detect the presence of
the kernel monitor and remove its executables. In addition,
an infection might deliberately delay running its malicious
payload or condition the execution of malicious activities
on environmental factors.

Our current implementation only monitors malware’s in-
teraction with the OS, which are observable from system
calls. However, some infections are in the form of add-
ons to a legitimate application and so their interactions with
the application does not go through the OS (e.g., spyware
based on Brower Helper Objects [16]). Our implementa-
tion will let these behaviors slip under the radar. While
our implementation will not detect such malware, recent re-
search [16, 19] suggests there is no essential technical bar-
rier to wrapping the interactions in a technology like AGIS.

Dealing with metamorphic malware is a challenge for
AGIS that we are continuing to explore. Theoretically it is
possible to develop a metamorphic malware that thoroughly
modifies the way it accomplishes its mission for every in-
fection. In practice, however, many malware authors build
their metamorphic or polymorphic malware using the mu-
tation engines developed by third parties. As discussed in
Section 2.3, AGIS is tolerant of several obfuscations com-
mon to such tools.

As discussed in Section 2.3, the AGIS implementation
is limited in its ability to identify the locations of API calls
by malware that forges return addresses in its stack frames
and performs these calls using indirect jumps. This prob-
lem can be mitigated through dynamic analysis. For ex-
ample, we can use static analysis to identify indirect jumps
and then instrument the code before them to help identify
their jump targets at runtime. Dynamic slicing techniques
can also be applied to extract the chop when obfuscations
confound static analysis.
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5 Related Work

Techniques for automatic generation of malware signa-
tures have been intensively studied [28, 17, 14, 24, 22, 30,
23,21, 7, 6, 8, 33, 20]. However, existing research mainly
focuses on generation of exploit signatures which reflect the
intrusion vectors malware employs to break into a vulnera-
ble system. Such signatures are designed for preventing an
exploit, not for detecting an already infected system. Infec-
tion signatures are used to detect infections, which serves to
complement exploit signatures.

Only limited research has been conducted to automate
infection signature generation. The first automatic tool for
generating virus signatures was proposed by Kephart and
Arnold [13]. Their approach extracts a prevalent byte se-
quence from infected files which serve as “goats” to at-
tract infection from a virus in a sandboxed environment.
This method does not handle metamorphic malware well
and heavily relies on the replication property of viruses.
By comparison, AGIS can generate signatures for non-
replicating infections, and is tolerant to some forms of meta-
morphic malware. Wang et al. [31] recently proposed Net-
Spy, a network-based technique for generating spyware sig-
natures. NetSpy intercepts spyware’s communication with
spyware companies, and extracts prevalent strings from its
messages. In contrast, AGIS is a host-based technique,
which complements NetSpy with the host information re-
lated to an infection’s behaviors.

Recently, Kirda et al. proposed a behavior-based spy-
ware detection technique [16, 9] which applies dynamic
analysis to detect suspicious communications between an
IE browser and its Browser Helper Object plug-ins, and then
analyzes the binaries of suspicious plug-ins to identify the
library calls which may lead to leakage of user’s inputs. Al-
though this approach shares some similarity with AGIS, it
is for detection only, not for signature generation. In addi-
tion, its focus is BHO-based spyware, versus the standalone
spyware that AGIS targets.

The taint-analysis technique AGIS uses to construct in-
fection graphs resembles those proposed for other purposes
such as tracking intrusion steps and recovering a compro-
mised system. BackTracker [15] traces an intrusion back
to the point it entered the system. Process Coloring [12]
is another system designed for a similar purpose. Back-to-
the-Future [10] offers a system repair technique to restore
an infected system using a log recording infected files and
registry entries.

With the objective of malware detection, Panorama [34]
tracks how taint information flows among system objects
at an instruction level. In contrast, our approach tracks
taint propagation at a coarser granularity (system calls) and
so potentially overestimates taint propagation. Our ex-
perimental results shown that such overestimation has not
introduced any additional false positives in the detection
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phase. Moreover, our coarser approach enables AGIS to run
with less performance overhead. Besides detection, our ap-
proach also generates infection signatures. MetaAware [35]
describes an approach to identify metamorphic malware by
extracting and matching code patterns that are used to ex-
ecute system calls. Proposed independently, the signature
generation step of AGIS is similar to the code pattern ex-
traction step of MetaAware. Compared to MetaAware, our
approach can detect unknown malware, while our approach
doesn’t focus on an algorithm to match signatures. The two
approaches can complement each other.

6 Conclusions

In this paper, we presented AGIS, a host-based technique
for automatic generation of infection signatures. AGIS
tracks the activities of suspicious code inside a honeypot
to detect malware, and identifies a set of malicious behav-
iors that characterizes the infection. Dynamic and static
analyses are used to automatically extract the instruction se-
quences responsible for these behaviors. A range of infec-
tion signatures can be constructed using these sequences,
from regular-expression signatures for legacy scanners to
vanilla malware for a static analyzer [4]. Our empirical
study demonstrates the efficacy of the approach.
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