
Verifying Distributed Erasure-Coded Data

James Hendricks
Carnegie Mellon University

jimi@cs.cmu.edu

Gregory R. Ganger
Carnegie Mellon University
ganger@ece.cmu.edu

Michael K. Reiter
University of North Carolina

at Chapel Hill
reiter@cs.unc.edu

ABSTRACT
Erasure coding can reduce the space and bandwidth overheads of
redundancy in fault-tolerant data storage and delivery systems. But
it introduces the fundamental difficulty of ensuring that all erasure-
coded fragments correspond to the same block of data. Without
such assurance, a different block may be reconstructed from dif-
ferent subsets of fragments. This paper develops a technique for
providing this assurance without the bandwidth and computational
overheads associated with current approaches. The core idea is
to distribute with each fragment what we call homomorphic fin-
gerprints. These fingerprints preserve the structure of the erasure
code and allow each fragment to be independently verified as cor-
responding to a specific block. We demonstrate homomorphic fin-
gerprinting functions that are secure, efficient, and compact.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Distributed
systems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance;
E.4 [Coding and Information Theory]: Error control codes

General Terms
Reliability, Security

Keywords
Homomorphic fingerprinting, fault-tolerant storage, erasure codes

1. INTRODUCTION
Erasure coding can reduce the space and bandwidth overheads of

redundancy in fault-tolerant data storage and delivery systems. An
m-of-n erasure code encodes a block of data into n fragments, each
1/mth the size of the original block, such that any m can be used to
reconstruct the original block. Thus, (n−m) of the fragments can
be unavailable (e.g., due to corruption or server failure) without
loss of access. Example erasure coding schemes with these prop-
erties include Reed-Solomon codes [26] and Rabin’s Information
Dispersal Algorithm [25].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC '07, August 12–15, 2007, Portland, Oregon, U SA .
Copyright 2007 ACM 978-1-59593-616-5/07/0008 . . . $5. 00.

Unfortunately, erasure coding creates a fundamental challenge:
determining if a given fragment indeed corresponds to a specific
original block. If this is not ensured for each fragment, then recon-
structing from different subsets of fragments may result in different
blocks, violating any reasonable definition of data consistency.

Systems in which clients cannot be trusted to encode and dis-
tribute data correctly use one of two approaches. In the first ap-
proach, servers are provided the entire block of data, allowing them
to agree on the contents and generate their own fragments [5, 6].
Savings are achieved for storage, but bandwidth overheads are no
better than for replication. In the second approach, clients verify
all n fragments when they perform a read to ensure that no other
client could observe a different value [13]. In this approach, each
fragment is accompanied by a cross-checksum [12, 15], which con-
sists of a hash of each of the n fragments. A reader verifies the
cross-checksum by reconstructing a block from m fragments and
then recomputing the other (n−m) fragments and comparing their
hash values to the corresponding entries in the cross-checksum, a
significant computational overhead.

This paper develops a new approach, in which each fragment
is accompanied by a set of fingerprints that allows each server to
independently verify that its fragment was generated from the orig-
inal value. The key insight is that the coding scheme imposes cer-
tain algebraic constraints on the fragments, and that there exist ho-
momorphic fingerprinting functions that preserve these constraints.
Servers can verify the integrity of the erasure coding as evidenced
by the fingerprints, agreeing upon a particular set of encoded frag-
ments without ever needing to see them. Thus, the two common
approaches described above could be used without the bandwidth
or computation overheads, respectively.

The fingerprinting functions we propose belong to a family of
universal hash functions [7], chosen to preserve the underlying al-
gebraic constraints of the fragments. A particular fingerprinting
function is chosen at random with respect to the fragments being
fingerprinted. This “random” selection can be deterministic with
the appropriate application of a cryptographic hash function [3].
If data is represented carefully, the remainder from division by a
random irreducible polynomial [24] or the evaluation of a polyno-
mial at a random point preserve the needed algebraic structure. The
resulting fingerprints are secure, efficient, and compact.

The rest of this paper is organized as follows. Section 2 provides
a formal definition of homomorphic fingerprinting along with two
such functions. Section 3 describes a data structure called a finger-
printed cross-checksum. Section 4 demonstrates how homomor-
phic fingerprinting can improve distributed protocols by improving
the bandwidth overhead of the AVID protocol [5]. Section 5 demon-
strates the performance of this approach. Section 6 considers other
protocols. Section 7 surveys related work. Section 8 concludes.

139

© ACM, 2007. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/1281100.1281122.

2. HOMOMORPHIC FINGERPRINTING
This section defines homomorphic fingerprinting and its applica-

tions to erasure codes. Section 2.1 defines fingerprinting, providing
two examples: division and evaluation fingerprinting. Section 2.2
defines homomorphic fingerprinting and shows that both division
and evaluation fingerprinting are homomorphic fingerprinting func-
tions. Section 2.3 explains the applications of homomorphic finger-
printing functions to erasure codes.

Throughout this paper, let � denote a finite field with operators
“+” and “·”, and let �qk denote such a field of order qk where q is

prime. Let t
R← T denote selection of an element from T uniformly

at random and its assignment to t.

2.1 Fingerprinting

DEFINITION 2.1. An ε-fingerprinting function fp : K × �
δ → �

γ

satisfies

max
d,d′∈�δ

d �=d′

Pr
[
fp(r,d) = fp(r,d′) : r

R← K
]
≤ ε

In words, the probability under random selection of r that fp(r,d) =
fp(r,d′) is at most ε.

Let �qk [x] denote the set of polynomials with coefficients in �qk ,
with “+” and “·” defined as in normal polynomial arithmetic. A
vector d ∈ �

δ
qk of δ elements of �qk has a natural representation as

a polynomial d(x) ∈ �qk [x] of degree less than δ with coefficients

in �qk where the jth element of d is the coefficient in d(x) of degree
j, where 0 ≤ j < δ. We will use these notations interchangeably,
denoting d as d(x) when it assumes this form.

EXAMPLE 2.2. [Rabin fingerprinting] Let �2 denote a field of or-
der 2, let K = {2,3,4, . . . ,2γ}, and let P2 : K → �2 [x] be a deter-
ministic algorithm that outputs monic irreducible polynomials of
prime degree γ with coefficients in �2 such that

Pr
[

p(x) = P2(r) : r
R←K

]
= Pr

[
p′(x) = P2(r) : r

R← K
]

for all p(x), p′(x) ∈ �2 [x] of degree γ. That is, P2 selects monic
degree-γ irreducible polynomials uniformly at random, where prob-
abilities are taken with respect to the uniformly random selection
of r. Rabin showed that fp : K ×�

δ
2 → �

γ
2 defined by

fp(r,d(x)) : p(x)← P2(r);
return (d(x) mod p(x))

is an ε-fingerprinting function for ε = δ
2γ−2 [24].

THEOREM 2.3. [Division fingerprinting] Let �qk denote a field

of order qk , let the size of K be the number of monic irreducible
polynomials of degree γ with coefficients in �qk , and let Pqk : K →
�qk [x] be a deterministic algorithm that outputs monic irreducible
polynomials of degree γ with coefficients in �qk chosen uniformly
at random, with probabilities taken over the choice of input r ∈ K
uniformly at random. Then fp(r,d) : K ×�

δ
qk → �

γ
qk defined by

fp(r,d(x)) : p(x)← Pqk(r);
return (d(x) mod p(x))

is an ε-fingerprinting function for ε = δ
qkγ−q

kγ
2
≈ δ

qkγ .

PROOF. As in [24], this is because there are at least qkγ−q
kγ
2

γ
monic degree-γ irreducible polynomials with coefficients in
�qk [32], of which any nonzero degree-δ polynomial with coeffi-

cients in �qk may have at most 	 δ
γ
 factors of degree-γ. Consider

the difference of any two distinct polynomials with matching fin-
gerprints. Let d(x),d′(x) ∈ �qk [x] and d(x) ≡ d′(x) mod p(x) but
d(x) �= d′(x). Then (d(x)−d′(x))≡ 0 mod p(x), so p(x) is a factor
of (d(x)− d′(x)). Because d(x) �= d′(x), (d(x)− d′(x)) �= 0. But
there are at most δ

γ different monic degree-γ irreducible polynomi-
als with coefficients in �qk that are factors of a nonzero degree-δ
polynomial (d(x)−d′(x)). Hence, the probability that p(x) is one
of these polynomials is at most δ

qkγ−q
kγ
2

.

Division fingerprinting is a generalization of Rabin fingerprinting.
Both are fast due to fast implementations of P2 [24] and Pqk [30].

Let �qkγ = �qk [x]/p(x) denote the extension field of polynomi-
als with coefficients in �qk of degree less than γ, with “+” defined
as normal and “·” defined modulo a constant monic degree-γ ir-
reducible polynomial p(x) ∈ �qk [x]. Let �qkγ [y] denote the set of
polynomials with coefficients in �qkγ , with “+” and “·” defined as
normal. It is convenient to consider d ∈ �qkγ [y] as a polynomial in
two variables, d(y,x).

A vector d ∈ �δ
qk of δ elements of �qk has a natural representation

as a polynomial d(y,x) ∈ �qkγ [y] of degree less than δ
γ in variable y.

The jth element of d is the coefficient in d(y,x) of degree 	 j
γ
 in

variable y and degree j mod γ in variable x. We will use these no-
tations interchangeably, denoting d as d(y,x) when it assumes this
form.

THEOREM 2.4. [Evaluation fingerprinting] Let �qkγ = �qk [x]/p(x)
denote a field of polynomials with coefficients in �qk of degree less
than γ with “·” defined modulo p(x), a constant monic degree-γ irre-
ducible polynomial. Let K = {0, . . . ,qkγ−1}, and let S : K → �qkγ

be a deterministic algorithm that outputs an element of �qkγ cho-
sen uniformly at random, with probabilities taken over the choice
of input r ∈ K uniformly at random. Then the function fp(r,d) :
K ×�

δ
qk → �

γ
qk defined by

fp(r,d(y,x)) : s(x)← S(r);
return d(s(x),x)

is an ε-fingerprinting function for ε = δ/γ
qkγ .

PROOF. As in [20], this is because any � δ
γ
 points fully deter-

mine a polynomial of degree less than δ
γ over a field. Hence, any

two distinct polynomials of degree less than δ
γ share fewer than δ

γ
points. Because there are qkγ different points in �qkγ , the proba-
bility that a randomly chosen point is shared between two distinct

polynomials is at most δ/γ
qkγ .

A trivial implementation of S is to return the polynomial represen-
tation of r divided into γ coefficients, where each coefficient is an
element of �qk .

Variants of division and evaluation fingerprinting known as the
division and evaluation hashes can be used for message authenti-
cation. They are two of the fastest hashes, producing the smallest
output and requiring the fewest bits of random input [22].

140

2.2 Homomorphism
Throughout this paper, let b ·d denote the application of “·” by a

scalar b ∈ � to each element in a vector d ∈ �σ of σ elements of �.

DEFINITION 2.5. A fingerprinting function fp : K × �
δ → �

γ is
homomorphic if fp(r,d)+ fp(r,d′) = fp(r,d + d′) and b · fp(r,d) =
fp(r,b ·d) for any r ∈ K and any d,d′ ∈ �

δ , b ∈ �.

THEOREM 2.6. The fingerprinting functions given in Example 2.2
and Theorem 2.3 are homomorphic.

PROOF. For any d,d′ ∈ �δ
qk and any r ∈ K , p(x)← Pqk(r),

fp(r,d(x))+ fp(r,d′(x)) = d(x) mod p(x)+d′(x) mod p(x)
= (d(x)+d′(x)) mod p(x)
= fp(r,d(x)+d′(x))

Moreover, for any b ∈ �qk ,

fp(r,b ·d(x)) = (b ·d(x)) mod p(x)
= b · (d(x) mod p(x))
= b · fp(r,d(x))

THEOREM 2.7. The fingerprinting function given in Theorem 2.4
is homomorphic.

PROOF. For any d,d′ ∈ �δ
qk and any r ∈ K , s(x)← S(r),

fp(r,d(y,x))+ fp(r,d′(y,x)) = d(s(x),x)+d′(s(x),x)
= (d +d′)(s(x),x)
= fp(r,d +d′)

Moreover, for any b ∈ �qk ,

fp(r,b ·d) = fp(r,(b ·d)(y,x))
= (b ·d)(s(x),x)
= b · (d(s(x),x))
= b · fp(r,d(y,x))

The following lemma restates the properties of a homomorphic
fingerprinting function.

LEMMA 2.8. Let fp : K × �
δ → �

γ denote a homomorphic
ε-fingerprinting function. For any fixed constants bi ∈ �, 1≤ i≤m,

max
d,d1,...,dm∈�δ
d �=∑m

i=1 bi·di

Pr

[
fp(r,d) =

m

∑
i=1

bi · fp(r,di) : r
R← K

]
≤ ε

PROOF. Suppose otherwise. That is, suppose that there are
d,d′,d1, . . . ,dm ∈ �δ such that d �= d′ = ∑m

i=1 bi ·di and

Pr

[
fp(r,d) =

m

∑
i=1

bi · fp(r,di) : r
R←K

]
> ε

By homomorphism, for any r ∈ K ,
m

∑
i=1

bi · fp(r,di) =
m

∑
i=1

fp(r,bi ·di) = fp(r,
m

∑
i=1

bi ·di) = fp(r,d′)

Then

Pr
[
fp(r,d) = fp(r,d′) : r

R←K
]

> ε

in violation of Definition 2.1.

Let encode(B j) output
dj1 . . . djn

Then [encode(B1);encode(B2); · · · ;encode(Bσ)] outputs
d11 . . . d1n
d21 . . . d2n
.

dσ1 . . . dσn

Let di = (d1i,d2i, . . . ,dσi). That is, each di is a column vector
from above. Then encodeσ(B) outputs

d1 . . . dn

Figure 2.1: Encoding a vector

2.3 Applications to erasure codes
DEFINITION 2.9. An m-of-n erasure coding scheme is a pair of de-
terministic algorithms (encode,decode), where encode : �m → �

n

and decode : (� ×{1, . . . ,n})m→ �
m . If d1, . . . ,dn← encode(B),

then decode(di1 , . . . ,dim) = B for any distinct i1, . . . , im (1≤ i j ≤ n).

Each fragment provided to decode is accompanied by its index
i∈ {1, . . . ,n}. For notational simplicity, let each index be implicitly
provided to decode.

DEFINITION 2.10. An m-of-n erasure coding scheme
(encode,decode) is linear if there exist fixed constants bi j ∈ �

for each 1 ≤ i ≤ n and 1 ≤ j ≤ m such that for any B ∈ �
m , if

d1, . . . ,dn← encode(B) then di = ∑m
j=1 bi j ·d j .

Examples of linear erasure coding schemes are Reed-Solomon
codes [26] and Rabin’s Information Dispersal Algorithm [25].

The following three shorthands will be useful for the next the-
orem. First, to consider only the ith encoded fragment, de-
fine the shorthand di ← encodei(B). Second, we abbreviate
encode(decode(di1 , . . . ,dim)) as encode(di1 , . . . ,dim). Third, to ap-
ply encode or decode to each of the jth elements of m σ-length
vectors for every j ∈ {1, . . . ,σ}, define the shorthands encodeσ :
(�σ)m→ (�σ)n and decodeσ : (�σ)m→ (�σ)m. Then d1, . . . ,dn←
encodeσ(B) and B← decodeσ(di1 , . . . ,dim), where B ∈ (�σ)m and
di ∈ �

σ . See Figure 2.1 for illustration.

THEOREM 2.11. Let fp : K × �
δ → �

γ be a homomorphic
ε-fingerprinting function, and let (encode,decode) be a linear era-
sure code with coefficients bi j ∈ �, for 1≤ i≤ n and 1≤ j ≤m. If

(d1, . . . ,dn)← encodeδ(B), then for any r ∈ K and any 1≤ i≤ n,

fp(r,di) = encode
γ
i (fp(r,d1), . . . , fp(r,dm))

PROOF.

fp(r,di) = fp(r,encodeδ
i (B))

= fp(r,
m

∑
j=1

bi j ·d j) (by Definition 2.10)

=
m

∑
j=1

bi j · fp(r,d j) (by Definition 2.5)

= encode
γ
i (fp(r,d1), . . . , fp(r,dm))

(by Definition 2.10)

141

COROLLARY 2.12. Let fp : K × �
δ → �

γ be a homomorphic
ε-fingerprinting function, and let (encode,decode) be a linear era-
sure code. If (d1, . . . ,dn)← encodeδ(B), then for any d �= di,

Pr
[

fp(r,d) = encode
γ
i (fp(r,d1), . . . , fp(r,dm)) : r

R←K
]
≤ ε

PROOF. Follows from Theorem 2.11 and Lemma 2.8.

Theorem 2.11 and Corollary 2.12 state two useful facts about
homomorphic fingerprinting functions. First, the fingerprints from
an encoding of a block are equal to the encoding of the fingerprints
of the block. That is, homomorphic fingerprinting functions are
homomorphic. Second, if the fingerprint of a fragment is equal to
the encoding of the fingerprints of other fragments, the fragment is,
with high probability, the encoding of the other fragments. That is,
homomorphic fingerprinting functions are fingerprinting functions.

3. FINGERPRINTED CROSS-CHECKSUM
The fault-tolerant data storage example we give in Section 4 uti-

lizes a data structure that we call a fingerprinted cross-checksum.
Before considering the contents of a fingerprinted cross-checksum,
recall the following definition of a collision-resistant hash function
(e.g., see [27]).

DEFINITION 3.1. A family of hash functions {hashK : {0,1}∗ →
{0,1}λ}K∈K ′ is (τ,ε′)-collision resistant if for every probabilistic
algorithm A that runs in time τ,

Pr

[
d′ �= d ∧ hashK(d′) = hashK(d) :

K
R← K ′, 〈d,d′〉 ← A(K)

]
≤ ε′

A fingerprinted cross-checksum then has the following form.

DEFINITION 3.2. An m-of-n fingerprinted cross-checksum fpcc
consists of an array fpcc.cc[] of n values in {0,1}λ and an array
fpcc.fp[] of m values in �

γ .

The name “fingerprinted cross-checksum” derives from the fact
that the array fpcc.cc[] is a cross-checksum [12, 15] and because
fpcc.fp[] holds homomorphic fingerprints.

Let hash : {0,1}∗ → {0,1}λ denote a random instance
of a (τ,ε′)-collision resistant hash function family, and let
fp : K × �

δ → �
γ be a homomorphic ε-fingerprinting function.

Let random oracle : ({0,1}λ)n → K denote a random oracle [3],
which is a fixed, public function chosen uniformly at random from
all functions from the same domain to the same range. The fol-
lowing definition specifies when a fragment is consistent with a
fingerprinted cross-checksum.

DEFINITION 3.3. Let fpcc be a fingerprinted cross-checksum. A
fragment d ∈ �δ is consistent with fpcc for index i, 1≤ i≤ n, if

fpcc.cc[i] = hash(d)

and

fp(r,d) = encode
γ
i (fpcc.fp[1], . . . , fpcc.fp[m])

where r = random oracle(fpcc.cc[1], . . . , fpcc.cc[n]).

THEOREM 3.4. Let A be a probabilistic algorithm that runs in time
τ, makes χ queries to random oracle, and produces an m-of-n fpcc
and fragments di1 , . . . , dim , and d′i′1 , . . . , d′i′m such that each fragment
is consistent with fpcc for its index. If

B ← decodeδ(di1 , . . . ,dim)

B′ ← decodeδ(d′i′1 , . . . ,d
′
i′m)

then the probability that B �= B′ is at most ε′+M · ε for constant
M = χ

(n
m+1

)
.

PROOF. Suppose that A, running in time τ, produces some
fpcc and fragments di1 , . . . ,dim and d′i′1 , . . . ,d

′
i′m

, each consistent

with fpcc for its index, such that if B← decodeδ(di1 , . . . ,dim) and
B′ ← decodeδ(d′i′1 , . . . ,d

′
i′m

) then B �= B′. B �= B′ implies that for

some j, 1≤ j≤m, di j �= encodeδ
i j
(B′). Yet, because each fragment

is consistent with fpcc, for each d̂i ∈ {di j ,d
′
i′1
, . . . ,d′i′m}, by Defini-

tion 3.3

fp(r, d̂i) = encode
γ
i (fpcc.fp[1], . . . , fpcc.fp[m])

where r = random oracle(fpcc.cc[1], . . . , fpcc.cc[n]). By Defini-
tion 2.9, we can rearrange this to

fp(r,di j) = encode
γ
i j
(fp(r,d′i′1), . . . , fp(r,d′i′m))

We bound the probability with which A succeeds in pro-
ducing such values. First suppose that A fails to produce a
collision in hash. Then, for any random oracle query r̂ ←
random oracle(h1, . . . ,hn), A possesses at most one d̂i such that
hash(d̂i) = hi, for each 1≤ i≤ n. Of these n fragments d̂1, . . . , d̂n,
consider each selection of m + 1 of them, d̂i0 , d̂i1 , . . . , d̂im , such
that B̂← decodeδ(d̂i1 , . . . , d̂im) implies d̂i0 �= encodeδ

i0 (B̂). This se-

lection satisfies fp(r̂, d̂i0) = encode
γ
i0
(fp(r̂, d̂i1), . . . , fp(r̂, d̂im)) with

probability at most ε, by Corollary 2.12. Since there are at most(n
m+1

)
such selections per random oracle query, and since there are

χ queries to the random oracle, the probability with which A gen-
erates any such d̂i0 , . . . , d̂im without finding a collision in hash is
at most M · ε where M = χ

(n
m+1

)
. Adding the probability ε′ that

A finds a collision in hash, the total probability of A’s success is
bounded by ε′+M · ε.

4. EXAMPLE: IMPROVING AVID
This section illustrates how homomorphic fingerprinting can im-

prove distributed protocols by modifying the AVID [5] protocol to
make it more bandwidth efficient. Section 4.1 describes AVID. Sec-
tion 4.2 highlights our modifications. Section 4.3 provides a com-
plete description along with pseudo-code of the modified protocol,
AVID-FP. Section 4.4 proves that AVID-FP satisfies the functional
specification of an asynchronous verifiable information dispersal
protocol given in [5]. Both the AVID and AVID-FP protocols can
be used to build a Byzantine fault-tolerant distributed storage sys-
tem using only 3 f + 1 servers [6], where f is an upper bound on
the number of faulty servers.

This section assumes that there are n servers and that a data block
is erasure coded into fragments such that any m fragments suffice
to decode it, where m≥ f +1 and n = m+2 f . The system model is
similar to that in [5]; there are authenticated, reliable, asynchronous
point-to-point communications channels between all servers and
clients, and all servers and clients are computationally limited so
as to be unable to break the utilized cryptographic primitives.

142

4.1 AVID
AVID [5] is an asynchronous verifiable information dispersal pro-

tocol. In such a protocol, a client disperses some block B, which
can later be retrieved by any client. The verifiability of the protocol
ensures that any two clients retrieve the same block after dispersal.

For simplicity, the description of AVID in this section is re-
stricted to m = f + 1 and n = 3 f + 1. To write a block, a client
encodes it into fragments and computes the hash of every frag-
ment, creating a cross-checksum. The client sends to each server
its fragment and the cross-checksum. Each server then echoes the
cross-checksum and its fragment to all other servers in an echo

message. After receiving 2 f + 1 fragments and matching cross-
checksums in echo messages, a correct server decodes the block,
re-encodes it, and verifies each component of the cross-checksum,
aborting if inconsistencies are found. A correct server then broad-
casts this consistent cross-checksum and its fragment from the
re-encoding to all other servers in a ready message. A correct
server does likewise if it receives f + 1 ready messages before
it receives 2 f + 1 echo messages. After receiving 2 f + 1 ready

messages, a correct server can conclude that f + 1 servers broad-
cast ready messages that all correct servers will eventually re-
ceive. Hence, all correct servers will broadcast ready messages,
and so all will receive at least 2 f +1 such messages and reach this
point. The server can then reconstruct its fragment if needed and
store this value. The bandwidth required to store block B is then

O(n2 |B|
m) = O(n 3 f+1

f+1 |B|) = O(n|B|), assuming the cross-checksum
is of negligible size.

To read a block, a client retrieves a fragment and cross-checksum
from each server until it finds a matching cross-checksum from
f + 1 servers and m fragments that are consistent with this cross-
checksum. These fragments are decoded and returned.

4.2 AVID-FP
This section modifies AVID to utilize homomorphic fingerprint-

ing, creating a new protocol, AVID-FP. AVID-FP differs from AVID

in that servers agree upon a fingerprinted cross-checksum that is
consistent with a block rather than on the block itself; servers need
not echo fragments. The bandwidth required to store block B in

AVID-FP is then O(n |B|m) = O(m+2 f
m |B|) = O(|B|), assuming a fin-

gerprinted cross-checksum is of negligible size.
In AVID-FP, each cross-checksum is replaced by the fingerprinted

cross-checksum from Section 3. Unlike a cross-checksum, a server
can verify with a fingerprinted cross-checksum that its fragment
corresponds to a unique block without knowing the entire block.
As a consequence, there is no need to send a fragment along with
each echo or ready message, which saves substantial bandwidth.
Furthermore, a server has nothing to re-encode and verify upon re-
ceiving an echo or ready message, saving a substantial amount of
computation.

A less welcome consequence is that a correct server cannot re-
construct its fragment if it is not provided by the client. This is not
a problem, however, because a server can still verify that enough
other correct servers received consistent fragments such that a con-
sistent block will always be retrievable in the future. Hence, af-
ter a block is dispersed, at least f + 1 correct servers will know
the agreed-upon fingerprinted cross-checksum and at least m will
know their fragments. To read a block, a client retrieves these
f + 1 matching fingerprinted cross-checksums and m consistent
fragments.

4.3 AVID-FP pseudo-code
Pseudo-code for AVID-FP can be found in Figure 4.2. In or-

der to disperse a value B in AVID-FP, a client generates fragments
(line 101) and the fingerprinted cross-checksum (lines 102–104).
The client then sends each server its fragment and the fingerprinted
cross-checksum.

Each server verifies that the fragment it receives is consistent
with the fingerprinted cross-checksum (lines 600–603). If this is
true, the server stores the fragment and sends an echo message
containing the fingerprinted cross-checksum to all other servers
(lines 604–605).

Upon receiving m + f echo messages with matching finger-
printed cross-checksums from unique servers, a server can deter-
mine that at least m correct servers sent such messages and hence
stored fragments consistent with the fingerprinted cross-checksum
(line 701). The server then sends a ready message containing the
fingerprinted cross-checksum to all other servers (line 702).

If a server receives f + 1 ready messages with matching fin-
gerprinted cross-checksums from unique servers (line 801), at least
one must be from a correct server that determined that at least m
correct servers stored consistent fragments. Hence, such a server
can determine likewise and send a ready message to all other
servers, if it has yet to do so (line 802).

If a server receives 2 f +1 ready messages with matching finger-
printed cross-checksums from unique servers, at least f + 1 must
be from correct servers (line 804). Hence, each correct server
will receive at least these f + 1 matching ready messages. Then
each correct server will send a ready message (lines 801–802), so
each correct server will actually receive at least 2 f + 1 matching
ready messages. Thus, a correct server can conclude upon receiv-
ing 2 f +1 ready messages that all correct servers will eventually
receive 2 f + 1 ready messages, as well. The server can then save
the agreed upon fingerprinted cross-checksum and respond to the
client (line 806).

Upon receiving 2 f +1 responses, the client is assured that f +1
correct servers have saved the same fingerprinted cross-checksums
and that m correct servers have stored fragments consistent with
this fingerprinted cross-checksum. To retrieve a block, then, a
client retrieves a fragment and fingerprinted cross-checksum from
each server, waiting for matching fingerprinted cross-checksums
from f +1 servers (lines 407–408) and consistent fragments from
m servers (line 411). These fragments are then decoded and the
resulting block is returned.

4.4 AVID-FP correctness
To see why this is correct, recall the definition of an asynchronous

verifiable information dispersal scheme given in [5]:

DEFINITION 4.1. An (m,n)-asynchronous verifiable information
dispersal scheme is a pair of protocols (disperse, retrieve) that sat-
isfy the following with high probability:

Termination: If disperse(B) is initiated by a correct client, then
disperse(B) is eventually completed by all correct servers.

Agreement: If some correct server completes disperse(B), all
correct servers eventually complete disperse(B).

Availability: If f + 1 correct servers complete disperse(B), a
correct client that initiates retrieve() eventually reconstructs some
block B′.

Correctness: After f +1 correct servers complete disperse(B),
all correct clients that initiate retrieve() eventually retrieve the same
block B′. If the client that initiated disperse(B) was correct, then
B′ = B.

143

c disperse(B): /∗ Client disperse protocol ∗/
100: store count← 0
101: d1, . . . ,dn ← encodeδ(B)
102: for (i ∈ {1, . . . ,n}) do fpcc.cc[i]← hash(di)
103: r← random oracle(fpcc.cc[1], . . . , fpcc.cc[n])
104: for (i ∈ {1, . . . ,m}) do fpcc.fp[i]← fingerprint(r,di)
105: for (i ∈ {1, . . . ,n}) do send(disperse, fpcc,di) to Si

Upon receiving (stored) from Si for the first time
200: store count← store count+1
201: if (store count = 2 f +1) then return SUCCESS

c retrieve(): /∗ Client retrieve protocol ∗/
300: fpcc← NULL; State[∗]← 〈NULL,NULL,NULL〉
301: for (i ∈ {1, . . . ,n}) do send(retrieve) to Si

Upon receiving (retrieved, ˆfpcc,〈fpcc′,d〉) from Si

400: if (NULL �= fpcc′) then
401: h← hash(d)
402: r← random oracle(fpcc′.cc[1], . . . , fpcc′.cc[n]); fp← fingerprint(r,d)
403: fp′ ← encode

γ
i (fpcc′.fp[1], . . . , fpcc′.fp[m])

404: if (NULL = fpcc′ ∨ (fp = fp′ ∧h = fpcc′.cc[i])) then
405: State[i]← 〈 ˆfpcc, fpcc′,d〉
406:
407: if (|{ j : State[j] = 〈 ˆfpcc,∗,∗〉 ∧ ˆfpcc �= NULL}|= f +1) then
408: fpcc← ˆfpcc
409: if (fpcc �= NULL) then
410: Frags←{d j : State[j] = 〈∗, fpcc,d j〉}
411: if (|Frags|= m) then return decodeδ(Frags)

s init(): /∗ Initialize server state ∗/
500: echoed← 〈NULL,NULL〉; verified← NULL

501: EchoSet∗ ← /0; ReadySet∗ ← /0

/∗ Server i code to disperse data ∗/
Upon receiving (disperse, fpcc,di) from client

600: h← hash(di)
601: r← random oracle(fpcc.cc[1], . . . , fpcc.cc[n]); fp← fingerprint(r,di)
602: fp′ ← encode

γ
i (fpcc.fp[1], . . . , fpcc.fp[m])

603: if (echoed = 〈NULL,NULL〉 ∧ fp = fp′ ∧ h = fpcc.cc[i]) then
604: echoed← 〈fpcc,di〉
605: for (j ∈ {1, . . . ,n}) do send(echo, fpcc) to S j

Upon receiving (echo, fpcc) from S j

700: EchoSetfpcc← EchoSetfpcc ∪ { j}
701: if (|EchoSetfpcc|= m+ f ∧ |ReadySetfpcc|< f +1) then
702: for (j ∈ {1, . . . ,n}) do send(ready, fpcc) to S j

Upon receiving (ready, fpcc) from S j

800: ReadySetfpcc← ReadySetfpcc ∪ { j}
801: if (|ReadySetfpcc|= f +1 ∧ |EchoSetfpcc| < m+ f) then
802: for (j ∈ {1, . . . ,n}) do send(ready, fpcc) to S j
803:
804: if (|ReadySetfpcc|= 2 f +1) then
805: verified← fpcc
806: send(stored) to client

/∗ Server i code to retrieve data ∗/
Upon receiving (retrieve) from client

900: send(retrieved,verified,echoed) to client

Figure 4.2: AVID-FP pseudo-code

Termination is simple, as in the original AVID protocol. If a cor-
rect client initiates disperse, it erasure codes the block and com-
putes a valid fingerprinted cross-checksum before dispersing frag-
ments to each server (lines 101–105). Eventually, at least m + f
correct servers receive disperse messages, verify their fragments
against the fingerprinted cross-checksum, and send echo messages
to all other servers (line 605). Each correct server eventually re-
ceives at least m+ f echo messages; it will then send a ready mes-
sage (line 702) unless it has already done so (line 802). Thus each
correct server will eventually receive at least 2 f + 1 ready mes-
sages, at which point it will send a stored message to the client
and complete. Hence, all correct servers eventually complete.

Agreement is simpler than in the original AVID protocol because
a server in AVID-FP need not reconstruct the block before returning
a ready message. If some correct server completes disperse(B),
then it received 2 f + 1 ready messages (line 804). At least f + 1
must have come from correct servers, so all correct servers will
eventually receive ready messages from these servers. Then the
condition satisfied on either line 801 or line 701 will be met for all
correct servers, so all correct servers will send ready messages and
receive at least 2 f +1 such messages, thus completing.

Availability is different than in the original AVID protocol. In
AVID, fragments must be echoed such that a correct server can re-
construct its fragment if needed; in AVID-FP, fragments are not
echoed. If any correct server completes disperse, it received 2 f +1
ready messages. Then at least one correct server received m + f
echo messages. If not, at most f ready messages would be re-
ceived by any correct server, because no correct server would meet
the condition on line 701. Hence, at least m correct servers stored
consistent fragments (line 604). Then after f + 1 correct servers
complete disperse, a client that initiates retrieve will eventually
receive f + 1 matching fingerprinted cross-checksums (saved on
line 805) along with m consistent fragments, which it will decode
and return as some block B′.

Correctness is similar to the original AVID protocol except that
the properties of the homomorphic fingerprint are required. Sup-
pose some correct server saves fpcc1 on line 805 and some other

correct server saves fpcc2 �= fpcc1. Then m + f servers echoed
fpcc1, of which at least m were correct, and m + f servers echoed
fpcc2, of which at least m were correct. Because a correct server
will only echo once (line 603 will never be satisfied after line 604
is reached), there are at least m+m+ f servers involved, which is a
contradiction (there are only n < m+m+ f servers in the system).
Hence, any block decoded during retrieve is consistent with the
same fpcc. Furthermore, if a correct client initiated disperse(B),
this fpcc will be consistent with B. Then, by Theorem 3.4, the
probability that B �= B′ is negligible, for appropriately chosen pa-
rameters.

5. PERFORMANCE
Homomorphic fingerprinting is efficient, contributing little over-

head to distributed protocols. To demonstrate that homomorphic
fingerprinting is not a substantial computational burden in proto-
cols such as the AVID-FP protocol given above, this section com-
pares an implementation of the evaluation fingerprinting function
against cryptographic hashing. The evaluation fingerprinting func-
tion implementation in this section is similar to the evaluation hash
considered in [22] and [30].

A polynomial

d(y,x) = aσ(x) · yσ + . . .+a0(x) · y0 ∈ �qkγ [y]

can be evaluated using Horner’s rule. To do so, let fp← 0, and for
j = σ, . . . ,0, iteratively compute fp← fp · y+a j(x). The efficiency
of this implementation then depends on an efficient implementation
of “+” and “·” for a j(x),y ∈ �qkγ = �qk [x]/p(x), where y, the point
at which to evaluate, is the fixed random value s(x)← S(r).

Given an implementation of “+” and “·” for �qk , construct “+”
and “·” for �qk [x]/p(x) as follows. Consider the representation of
a(x) ∈ �qk [x]/p(x) as a polynomial

a(x) = bγ−1 · xγ−1 + . . .+b0

where bi ∈ �qk . The “+” operator is defined as the addition of
same-degree terms. The “·” operator is defined as multiplication

144

of two polynomials of degree less than γ modulo a constant monic
degree-γ irreducible polynomial p(x) ∈ �qk [x].

For fixed s(x), compute a(x) ·s(x) as follows. For 0≤ i < γ, build
γ lookup tables mapping each bi ∈ �qk to bi ·xi · s(x) mod p(x); that

is, compute the map bi �→ bi · xi · s(x) mod p(x). Each of these γ
tables will contain qk entries that are each �log2 qkγ
 bits wide.
A 128-bit fingerprint over �28 must compute 16 such tables after
the random value r is selected; each table is 4 kB, for a total of
64 kB. Given these tables, one can compute a(x) · s(x) as the sum

of γ lookups, Σγ−1
i=0 (bi · xi · s(x) mod p(x)). For �28 , this requires a

table lookup plus an exclusive-or per byte of input.
For �28 , building these tables is efficient: “+” is simply exclusive-

or, and “·” can be implemented using a 64 kB lookup table. The
“mod” operator can be defined using “+” and “·”. Because p(x)
is constant, “mod” can be implemented with a lookup table for
bi �→ bi · xγ mod p(x). This table will contain 28 entries of γ bytes
each, for a total of 4 kB for a 128-bit fingerprint, and it can be
computed before the random value r is selected.

Gladman’s implementation of SHA-1 [11] achieves a through-
put of 110 megabytes per second on a 3 GHz Intel Pentium D. On
this machine, the time to compute lookup tables for the evaluation
fingerprint implementation presented here is 20 microseconds. Af-
ter this computation, this implementation achieves a throughput of
410 megabytes per second.

6. OTHER PROTOCOLS
m-of-n erasure coding is used in many distributed systems (e.g.,

[1, 6, 8, 13, 18, 28]), because it reduces storage, network band-
width, and I/O bandwidth. The savings approaches a factor of m
when compared to replication. The division and evaluation finger-
printing functions are homomorphic over several popular erasure
codes. Reed-Solomon codes [26] interpolate a polynomial over a
field �qk , and Rabin’s Information Dispersal Algorithm [25] en-
codes using an n×m matrix over a field �qk where every m×m
submatrix is invertible. Both are linear erasure codes over �qk . A
common field is �28 such that field elements are bytes. Rabin fin-
gerprinting is homomorphic over many erasure codes based solely
on exclusive-or, such as Online Codes [19] and parity.

Homomorphic fingerprinting provides benefits to erasure-coded
Byzantine fault-tolerant storage systems [6, 13]. Section 4 demon-
strated how the AVID protocol [5], used in [6], can exploit homo-
morphic fingerprinting to be more bandwidth efficient. Variants of
the PASIS protocol [13, 14] can also exploit homomorphic finger-
printing. In the “non-repairable” protocol a writer sends fragments
along with a cross-checksum to each server; a reader returns a block
after finding sufficient servers with fragments and matching cross-
checksums. Before accepting a value, a reader must reconstruct all
fragments and recompute the cross-checksum, a significant compu-
tational overhead. This protocol can benefit directly by replacing
the cross-checksum with a fingerprinted cross-checksum, obviating
the need for fragment reconstruction and cross-checksum recom-
putation. The “repairable” protocol can also benefit, but requires
further modifications.

Homomorphic fingerprinting may also provide benefits to erasure-
coded broadcast [8], content distribution [17], and similar applica-
tions, if the encoding is not trusted to be consistent without verifi-
cation.

7. RELATED WORK
A common cryptographic application of universal hashing is for

message authentication codes (MACs) [22]. An early proposal by
Krawczyk [16] included a MAC similar to Rabin’s fingerprints.

Shoup presented faster variants [30] along with implementation
suggestions to optimize performance. Nevelsteen compares several
other variants [22].

Homomorphic fingerprinting functions share homomorphic prop-
erties with incremental hashing functions [2]. Incremental hashing,
however, is substantially slower because it is based on number-
theoretic primitives. The homomorphic properties of incremental
hashing are exploited in [17], which applies these homomorphic
properties to Online Codes [19] in a peer-to-peer content distribu-
tion network.

The algebraic properties of certain universal hashes has been ex-
amined before. Rabin used these properties to update the finger-
print of a file [24]. In [29], a similar technique is used by a disk
scrubber to check the consistency of erasure-coded data in a benign
environment. In [4], algebraic properties are leveraged to permit
fast updates of Rabin fingerprints of data structures such as trees.

More distantly related to this technique is verifiable secret shar-
ing (e.g., [9, 10, 23, 31]), which allows correct participants to verify
that a secret was shared among them consistently. The secrecy of
the shared value, however, which must be preserved throughout the
share distribution and verification process, drives these protocols to
employ number-theoretic techniques that are significantly heavier-
weight than considered here.

It is worth mentioning that a random oracle, as in Section 3,
can be replaced with an evaluation of a distributed pseudo-random
function [21] in a protocol such as AVID-FP. This construction has
the benefit of requiring only standard cryptographic assumptions.

8. CONCLUSION
Homomorphic fingerprinting enables efficient verification that

fragments have been correctly generated by an erasure-coding of
a particular data block. A high level of security can be achieved
with small fingerprints, and fingerprint generation has lower com-
putational overhead than cryptographic hashing. This technique
provides benefits to several distributed protocols. In particular, dis-
tributed storage systems capable of tolerating Byzantine clients,
which may attempt to write sets of fragments that reconstruct dif-
ferent values depending upon which subset is used, can benefit sig-
nificantly from this mechanism.

9. ACKNOWLEDGMENTS
We would like to thank the PODC reviewers for their feedback as

well as the early reviewers of the ideas in this paper, including Raja
Sambasivan, Matthew Wachs, Michael Abd-El-Malek, Theodore
Wong, and Jay Wylie. We thank the members and companies of
the CyLab Corporate Partners and the PDL Consortium (including
APC, Cisco, EMC, Google, Hewlett-Packard, Hitachi, IBM, Intel,
LSI, Network Appliance, Oracle, Panasas, Seagate, and Symantec)
for their interest, insights, feedback, and support.

This material is based on research sponsored in part by the
National Science Foundation, via grants CNS-0326453 and CCF-
0424422, and by the Army Research Office, under agreement num-
ber DAAD19–02–1–0389. James Hendricks is supported in part by
a National Science Foundation Graduate Research Fellowship.

10. REFERENCES
[1] M. K. Aguilera, R. Janakiraman, and L. Xu. Using erasure

codes efficiently for storage in a distributed system. In
Proceedings of the International Conference on Dependable
Systems and Networks, pages 336–345. IEEE Computer
Society, 2005.

145

[2] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental
cryptography: The case of hashing and signing. In Advances
in Cryptology – CRYPTO ’94, pages 216–233.
Springer-Verlag, 1994.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of
the 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM Press, 1993.

[4] A. Z. Broder. Some applications of Rabin’s fingerprinting
method. Sequences II: Methods in Communications,
Security, and Computer Science, pages 143–152, 1993.

[5] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In Proceedings of the 24th IEEE
Symposium on Reliable Distributed Systems, pages 191–202.
IEEE Press, 2005.

[6] C. Cachin and S. Tessaro. Optimal resilience for
erasure-coded Byzantine distributed storage. In Proceedings
of the International Conference on Dependable Systems and
Networks, pages 115–124. IEEE Computer Society, 2006.

[7] J. L. Carter and M. N. Wegman. Universal classes of hash
functions (extended abstract). In Proceedings of the 9th ACM
Symposium on Theory of Computing, pages 106–112. ACM
Press, 1977.

[8] M. Castro, P. Druschel, A. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-bandwidth
multicast in cooperative environments. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 298–313. ACM Press, 2003.

[9] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch.
Verifiable secret sharing and achieving simultaneity in the
presence of faults. In Proceedings of the 26th Annual
Symposium on the Foundations of Computer Science, pages
383–395. IEEE Press, 1985.

[10] P. Feldman. A practical scheme for non-interactive verifiable
secret sharing. In Proceedings of the 28th Annual Symposium
on the Foundations of Computer Science, pages 427–437.
IEEE Press, 1987.

[11] B. Gladman. SHA1, SHA2, HMAC and key derivation in C.
http://fp.gladman.plus.com/cryptography technology/sha.

[12] L. Gong. Securely replicating authentication services. In
Proceedings of the 9th International Conference on
Distributed Computing Systems, pages 85–91. IEEE
Computer Society, 1989.

[13] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
Efficient Byzantine-tolerant erasure-coded storage. In
Proceedings of the International Conference on Dependable
Systems and Networks, pages 135–144. IEEE Computer
Society, 2004.

[14] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
The safety and liveness properties of a protocol family for
versatile survivable storage infrastructures. Technical Report
CMU–PDL–03–105, Parallel Data Laboratory, Carnegie
Mellon University, 2004.

[15] H. Krawczyk. Distributed fingerprints and secure
information dispersal. In Proceedings of the 12th ACM
Symposium on Principles of Distributed Computing, pages
207–218. ACM Press, 1993.

[16] H. Krawczyk. LFSR-based hashing and authentication. In
Advances in Cryptology – CRYPTO ’94, pages 129–139.
Springer-Verlag, 1994.

[17] M. N. Krohn, M. J. Freedman, and D. Mazieres. On-the-fly
verification of rateless erasure codes for efficient content

distribution. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE Press, 2004.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
and B. Zhao. Oceanstore: An architecture for global-scale
persistent storage. In Proceedings of the 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 190–201. ACM
Press, 2000.

[19] P. Maymounkov. Online codes. Technical Report
TR2002–833, Secure Computer Systems Group, New York
University, 2002.

[20] K. Mehlhorn and U. Vishkin. Randomized and deterministic
simulations of PRAMs by parallel machines with restricted
granularity of parallel memories. Acta Informatica,
21(4):339–374, 1984.

[21] M. Naor, B. Pinkas, and O. Reingold. Distributed
pseudo-random functions and KDCs. In Advances in
Cryptology – EUROCRYPT ’99, pages 327–346.
Springer-Verlag, 1999.

[22] W. Nevelsteen and B. Preneel. Software performance of
universal hash functions. In Advances in Cryptology –
EUROCRYPT ’99, pages 24–41. Springer-Verlag, 1999.

[23] T. Pedersen. Distributed provers with applications to
undeniable signatures. In Advances in Cryptology –
EUROCRYPT ’91, pages 221–242. Springer-Verlag, 1991.

[24] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[25] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. Journal of the ACM,
36(2):335–348, 1989.

[26] I. S. Reed and G. Solomon. Polynomial codes over certain
finite fields. SIAM Journal of Applied Mathematics,
8:300–304, 1960.

[27] P. Rogaway and T. Shrimpton. Cryptographic hash-function
basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and
collision resistance. In Proceedings of the 11th International
Workshop on Fast Software Encryption. Springer-Verlag,
2004.

[28] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence.
FAB: Building distributed enterprise disk arrays from
commodity components. In Proceedings of the 11th

International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
48–58. ACM Press, 2004.

[29] T. Schwarz. Verification of parity data in large scale storage
systems. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and
Applications. CSREA Press, 2004.

[30] V. Shoup. On fast and provably secure message
authentication based on universal hashing. In Advances in
Cryptology – CRYPTO ’96, pages 313–328. Springer-Verlag,
1996.

[31] M. A. Stadler. Publicly verifiable secret sharing. In Advances
in Cryptology – EUROCRYPT ’96, pages 190–199.
Springer-Verlag, 1996.

[32] D. Travis. On irreducible polynomials in Galois fields. The
American Mathematical Monthly, 70(10):1089–1090, 1963.

146

	Introduction
	Homomorphic Fingerprinting
	Fingerprinting
	Homomorphism
	Applications to erasure codes

	Fingerprinted cross-checksum
	Example: Improving Avid
	Avid
	Avid-fp
	Avid-fp pseudo-code
	Avid-fp correctness

	Performance
	Other protocols
	Related Work
	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

