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Abstract Client puzzles have been advocated as a promis-
ing countermeasure to denial-of-service (DoS) attacks in
recent years. However, how to operationalize this idea in
network protocol stacks still has not been sufficiently stud-
ied. In this paper, we describe our research on a multi-layer
puzzle-based DoS defense architecture, which embeds puz-
zle techniques into both end-to-end and IP-layer services.
Specifically, our research results in two new puzzle tech-
niques: puzzle auctions for end-to-end protection and conges-
tion puzzles for IP-layer protection. We present the designs
of these approaches and evaluations of their efficacy. We
demonstrate that our techniques effectively mitigate DoS
threats to IP, TCP and application protocols; maintain full
interoperability with legacy systems; and support incremen-
tal deployment. We also provide a game theoretic analysis
that sheds light on the potential to use client puzzles for incen-
tive engineering: the costs of solving puzzles on an attackers’
behalf could motivate computer owners to more aggressively
cleanse their computers of malware, in turn hindering the
attacker from capturing a large number of computers with
which it can launch DoS attacks.
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1 Introduction

Denial-of-service (DoS) attacks continue to plague today’s
Internet. Malware and automatic attack tools [18,24,25,35]
have substantially lowered the bar for launching massive
distributed denial-of-service (DDoS) attacks. Recent attacks
have been reported to involve thousands or even tens of thou-
sands of zombie computers, which can be acquired from
the black market according to Computer Associates.1 At the
same time, resource-intensive services can be susceptible to
even low-bandwidth, end-to-end DoS attacks. Besides the
well-known SYN-flooding attack, examples of such threats
include attacks on authentication services [22] and crafted
attacks that drive the data structures used in a service imple-
mentation into their worst-case performance [20].

Countermeasures to DoS attacks have been studied for
years. Unfortunately, many existing defense techniques are
passive in nature: it is the sole responsibility of the defender
to detect and filter denials-of-service, while the attacker is
spared any penalty for squandering server resources. Such
a defense philosophy could be insufficient to defend against
vast zombie capabilities to overwhelm the victim. At the same
time, it offers little incentive to the owners of Internet hosts to
protect their computers from unwittingly joining the zombie
fleet—given the negligible interference of the DDoS tools on
the compromised machines that host them [18,24,25,35] on
the one hand and the significant administrative overhead of
malware defense on the other.

Client puzzles [9,22,38] could lead to a potentially more
active response to DoS. In this approach, a client solves
a computational “puzzle” for requesting service before the
server commits resources, thereby imposing a massive
computational burden on adversaries bent on generating

1 http://www.theregister.co.uk/2005/06/03/malware_blitz/.
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legitimate service requests to consume substantial server
resources. While the idea of client puzzles has been explored
to an extent, many important questions remain unaddressed.
In particular, it is unclear how to operationalize these puz-
zles in network protocol stacks to protect the availability of
communication resources, while preserving interoperability
with legacy systems. In addition, computing puzzles also
adds to legitimate clients’ load, and in the presence of adver-
saries with unknown computing power, minimizing legiti-
mate clients’ cost is an important challenge.

In this paper, we report on the design and implementation
of puzzle techniques to mitigate DoS threats. We envision a
multi-layer DoS defense architecture built upon two key puz-
zle techniques: puzzle auctions that offer an end-to-end pro-
tection to Internet services and congestion puzzles that work
in routers to alleviate the threat of bandwidth-exhaustion
attacks. Both approaches help control attack flows, are inter-
operable with legacy systems, and support incremental
deployment. We justify these claims through both analysis
and empirical evaluations. We also describe a game-theoretic
analysis that sheds light on the ability of puzzles to fend off
attacks involving a large number of zombies.

2 Related work

2.1 Denial-of-service attacks and countermeasures

An end-to-end DoS attack that has harrassed the Internet
for many years is TCP SYN flooding [19]. TCP SYN flood-
ing exploits a weakness in the TCP connection establish-
ment protocol (three-way handshake) where a connection
state can be half-open. A typical TCP three-way handshake
proceeds as follows: A client first sends a SYN packet to the
server. Upon receipt of the SYN, the server allocates state
to hold information associated with the half-open connec-
tion and sends back a SYN-ACK packet to the client. The
client completes the connection by replying with an ACK
packet. In SYN-flooding attacks, attackers initiate many SYN
requests without sending ACK packets. This exhausts the
server’s half-open waiting queue and thus blocks a legitimate
client’s request from being serviced. Countermeasures to this
attack include ingress filtering and SYN-cookies [40]. These
approaches are designed to defend against attacks involving
spoofed IP addresses and therefore are less effective when
adversaries can use (many) zombies’ authentic IP source
addresses. SYN-cookies also introduce compatibility prob-
lems. A server using SYN-cookies does not keep a half-open
queue and instead encodes an authentication token into a
SYN-ACK packet. However, not all the service parameters
can be encoded into the packet, which prevents clients from
using certain TCP performance enhancements and transac-
tional TCP [40]. More seriously, if the ACK packet is lost,

the server cannot reconstruct the connection state or thus
retransmit a SYN-ACK. This does not happen in the original
protocol with the SYN-ACK retransmission mechanism [40].
All these weaknesses have been avoided in the approaches
we propose in this paper.

Recently, researchers have also discussed other threats
to the availability of end-to-end services, which could use
resource-intensive operations, such as cryptographic opera-
tions, to bring down an Internet server. For example, Meadows
[43], Aura et al. [9] and Dean and Stubblefield [22] explored
an attack in which a large number of messages with bogus
signatures to deplete an authentication server’s CPU cycles.
Another example is given by Crosby and Wallach [20], who
demonstrated that carefully crafted inputs could degrade hash
tables to linked lists, and thus force a web proxy to run at its
worse-case performance. These attacks can be mitigated by
puzzles, including the approaches we propose here.

In a bandwidth-exhaustion attack, attackers generate a
large volume of traffic to deplete a network router’s band-
width. Mechanisms to counter this attack include aggregate-
based congestion control [36,42,64], overlay systems [4,6,
39,45], capability-based approaches [7,33,63], trace-back
[5,13,16,21,50,52,53] and filtering [29,37,41,51,55,62].
Aggregate-based congestion control provides mechanisms
for detecting and controlling aggregates at a router using
an attack signature, and a pushback mechanism to propa-
gate aggregate control requests (and the attack signature)
to upstream routers. However, it critically depends on the
mechanism by which attacks are detected and an attack sig-
nature is formulated, and this can be a source of difficulty
against an intelligent adversary that varies its traffic char-
acteristics over time. A website can be protected by a large
overlay network, on which individual nodes anonymously
route a trusted client’s traffic to the website’s hidden location.
These approaches rely on a CAPTCHA [58] (http://www.
captcha.org) to identify human visitors, and therefore may
not work for other non-human-driven services such as DNS.
Capability-based approaches authorize a legitimate client to
establish a privileged communication channel with a server
using a secret token (capability). However, they suffer from
“denial-of-capability” attack in which adversaries may satu-
rate the link of the server distributing capabilities to prevent
clients from obtaining capabilities [8]. Traceback and most
filtering methods are designed for countering spoofed traf-
fic, and therefore are of less utility against non-spoofed attack
traffic.

2.2 Client puzzles

An inherent weakness of today’s Internet applications is that
attackers may consume significant server resources at little
cost. Client puzzles are a technique that strives to improve
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this situation: The client is required to commit computing
resources before receiving resources. The idea can even help
to defend against attacks with large numbers of zombie com-
puters: A study shows that existing DDoS tools are carefully
designed not to disrupt the zombie computers, so as to avoid
alerting the machine owners of their presence [32]. When
client puzzles are used, zombie computers are required to
commit computing resources during attacks. This may alert
the owner to the attacker’s use of this machine and motivate
the owner to stop the attack.

To our knowledge, the first proposal for using client puz-
zles to defend against connection depletion attacks appears
in [38]. Client puzzles have also been proposed to similarly
protect authentication protocols against denial-of-service [9].
More generally, cryptographic puzzles have been employed
for this purpose in the contexts of key agreement [44],
defending against junk e-mail [26], creating digital time cap-
sules [48], metering Web site usage [30], lotteries [34,56]
and fair exchange [15,31,56]. Recent proposals for puzzle
design include puzzle outsourcing [61] and implementation
of the dual receiver cryptosystem [23]. Whereas most puz-
zle proposals impose a number of computational steps to
generate a solution, a “memory bound” alternative imposing
memory accesses has been devised in an effort to impose
similar puzzle solving delay even on clients with very differ-
ent computational power [3]. Though here we will employ
computational puzzles, we expect that memory-bound puz-
zles could work equally well in our context and will explore
this in future work. Gligor presents an attractive approach
that utilizes reverse Turing tests as puzzles to prevent auto-
mated flooding in network protocols that should be driven by
humans [33]. Gligor also offers insightful comments on the
weaknesses of computation-based puzzles in providing guar-
anteed access for end-to-end services during DDoS attacks.

The only prior implementation of client puzzles to protect
end-to-end services reported in the literature, to our knowl-
edge, was done in the context of TLS [22]. Although [38]
postulates a TCP-based puzzle scheme, it does not report
an implementation. In addition, their proposed implementa-
tion is incompatible with TCP in that a computer with this
puzzle mechanism will not be able to communicate to the
computer without the mechanism. The end-to-end proposal
we describe here offers better backward compatibility.

To our knowledge, we are the first to propose a puzzle-
based defense against DDoS attacks on the IP layer [60].
Feng has argued the importance of implementing puzzles
at the IP layer, because otherwise, any upper-level puzzle
protection is still vulnerable to the DDoS attacks at this
layer [27]. Feng et al. recently proposed an IP-layer puz-
zle mechanism [28] which, similar to our work [60], uses
ICMP source quench messages to transport puzzles. Dif-
ferent from ours, however, their approach does not address
issues of collaboration among multiple upstream routers to

control a bandwidth-exhaustion attack, and engineering
challenges to reduce routers’ computation overheads.

3 Puzzle-based multi-layer defense

The objective of puzzle-based DoS defense is to increase the
cost for a sustaining attack so as to overwhelm the adver-
sary’s attack capability and expose its zombies to intrusion
detection systems, while maintaining affordable overheads
for legitimate clients and the defender. To this end, the design
of a puzzle mechanism must account for the particular type of
DoS threat it intends to counter and the constraints imposed
by its application domain. As discussed before, DoS attacks
can happen to both IP-layer and end-to-end services, each of
which raises different technical challenges to development
of a puzzle countermeasure. Here we advocate a multi-layer
defense which employs separate puzzle mechanisms for IP-
layer and end-to-end services; the former addresses the threat
of bandwidth exhaustion attacks, and the latter deals with
protocol-specific DoS attacks that might induce a sufficiently
low rate of traffic so as to be invisible to the IP-layer defenses.

To protect an end-to-end service, we need to embed puz-
zles into hosts. End hosts usually have sufficient resources
to handle verification of puzzle solutions at a high speed.
Therefore, the major technical challenge becomes how to
minimize legitimate clients’ overheads. In addition, end-to-
end services are much more complicated than stateless ser-
vices running on the IP layer, which requires a careful design
of puzzles to keep interoperability with legacy systems. On
the other hand, an end-to-end service contains built-in mech-
anisms such as retransmission to accommodate stateful puz-
zles which could be more effective than a stateless alternative.

An IP-layer defense builds puzzles into routers. A router
is a resource-intensive device and could be constrained even
in its capability to verify puzzle solutions. More seriously,
defeating a bandwidth exhaustion attack may require col-
laboration among a large number of routers, and the extra
burdens of this collaboration could further aggravate indi-
vidual routers’ resource pinch. This suggests that a router-
level puzzle mechanism must be very lightweight, incurring
a negligible overhead to the defender. A bright side of the
IP-layer defense, however, is the simplicity of the stateless
IP protocol, which makes interoperability easy to archive.

Our solution for multi-layer DoS defense is composed of
two puzzle mechanisms: puzzle auctions which protect end-
to-end services, and congestion puzzles which work inside
routers. A puzzle auction takes advantage of the stateful end-
to-end service to minimize the overhead for a legitimate client
to acquire service. We demonstrate an implementation of this
technique in the TCP layer that is fully compatible with the
original protocol. We have engineered congestion puzzles
to minimize the overheads on the defender. We show our
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approach to be extremely lightweight, incurring negligible
overheads to routers. These two techniques are designed for
different network devices (end hosts and routers) and can
therefore be used both separately and jointly at the user’s
discretion.

In the following sections, we elaborate the designs of these
two techniques and evaluate their efficacy.

4 End-to-end DoS defense: puzzle auction

In this section, we describe puzzle auctions [59], which offers
an end-to-end protection of Internet services from DoS
attacks. This technique lets each client use the solution of
a puzzle it solves to bid for service from an Internet server,
and the server allocates its limited resources to the highest
bidders—that is, the clients who solve the most difficult puz-
zles. We design a bidding strategy which allows legitimate
clients to bid smartly, raising puzzle difficulty (i.e., their bids)
gradually until it is just above attackers’ computation capa-
bilities. We also describe an implementation of this technique
to the TCP protocol stack to counter the TCP SYN-flooding
attack, which demonstrates the efficacy of the technique and
its interoperability with legacy systems.

The puzzle auction mechanism can be put to use at the
discretion of the Internet server. No ISP or router-level sup-
port is needed. This makes the technique easy to deploy. On
the other hand, like other end-to-end DoS countermeasures,
this approach only works when adversaries cannot deplete an
Internet server’s bandwidth. In the next section, we describe
another puzzle technique which offers an IP-layer DoS pro-
tection but requires more resources to deploy.

4.1 The puzzle auction protocol

4.1.1 Model

For our purposes, a puzzle consists of two algorithms: one
(possibly randomized) algorithm for generating “candidate
solutions” and one deterministic algorithm for verifying
whether a candidate solution is an acceptable solution. A
trial is one sequence of (i) generating one candidate solution
using the first algorithm and (ii) verifying it using the second
algorithm. We presume that there is no more efficient way to
generate an acceptable solution than repeatedly performing
trials until the verification algorithm reports a success.

The resource allocation problem we consider can be char-
acterized as a tuple 〈C, A, S, V, R〉, where: C = {ci=1,2,...}
is a set of legitimate clients; A = {ai=1,2,...} is a set of
adversaries; S denotes the server; and V : C ∪ A → N

is a valuation function indicating the maximum number of
trials a client (either legitimate or malicious) is willing to per-
form to obtain the resource in a reasonable waiting period,

assuming that it will actually obtain the resource having per-
formed these trials.

The parameter R is a model R = 〈L , τ 〉 for the server’s
resources: The server keeps a buffer queue with the length
L as resources and allocates a buffer to each request upon
deciding to service the request. Every request carries a pri-
ority chosen by the client. When the buffer queue is full, the
server can deprive a request with low priority of its buffer
to make room for a request with higher priority. If a request
keeps the buffer for a time interval no less than τ , we say the
service (of that request) is complete. Otherwise, we say the
service fails. This model is called buffer model.

The buffer model is sufficiently general to describe a range
of service types with limited resources. To show this, we
consider two general categories of resources distinguished
by Qie et al. [47]: renewable resources such as CPU cycles;
and non-renewable resources such as processes, ports, TCP
connection data structures and locks. First consider services
on renewable resources, and let r be the available service
rate and Ts be the maximum time the client can wait for
the resource. Now consider a client’s request that arrives at
time T ′: If among all requests inside the system between T ′
and T ′ + Ts , the priority of the client’s request is within top
rTs requests, then the request will be served before T ′ + Ts .
In other words, the adversaries need to submit at least rTs

requests with higher priorities within Ts time units to prevent
the request from being served. This situation is described by
an instance of our buffer model with L = rTs and service
time τ = Ts . Holding a buffer in this queue for a period
no less than τ is equivalent to acquisition of the renewable
resource. In services on nonrenewable resources, we treat
the length of the buffer queue L as the total resources the
server has and τ as the service time. A client must equip its
request with a priority high enough to obtain a buffer and
keep it until the completion of the service, where the service
is preemptive.2

In the buffer model, we use an all-pay auction to allo-
cate the server’s limited resources. In an all-pay auction, all
bidders pay their bids before the auctioneer announces the
winner. All the payments are forfeited, while only the win-
ner gets the resources. In our mechanism, each client who
requests resources is asked to solve a puzzle at a level of
difficulty of the client’s choosing and attach the solution to
its service request. The server maps the difficulty of the puz-
zle to the priority with a non-decreasing function. When the
buffer queue is full, the server uses incoming requests with
higher priority to supplant ones with lower priority in the
buffer queue. We call this a puzzle auction.

2 Here, we assume nonrenewable resources are preemptive. For exam-
ple, during the establishment of TCP connections, the server can drop
some half-open connections and release the buffers when the half-open
queue is full.
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4.1.2 The Protocol

In order to detail our auction protocol, we begin by adopting
a particular puzzle type. Here we employ a puzzle similar to
that of [9], consisting of a “nonce” parameter Ns created by
the server and a parameter Nc created by the client. A solu-
tion to this puzzle is a string X such that the first m bits of
h(Ns, Nc, X) are zeros, where h is a public hash function. We
call m the puzzle difficulty. We presume that generating can-
didate values for X is of negligible computational cost, and
so treat the verification of a candidate X (i.e., an application
of h) as the cost of a trial.

In our mechanism, we take this puzzle construction
because it allows a client to select the puzzle difficulty it
solves. More specifically, many end-to-end protocols have
retransmission mechanisms. We exploit this and the above
puzzle formulation to design a bidding strategy for clients to
complete the service with minimal computation. Specifically,
a client can send its first request without solving any puzzle.
If the request is declined, the client knows that the server
may be under an attack. Thus, it solves a puzzle and resends
a new request with the solution. If the request is declined
again, the client further increments the puzzle difficulty in
the next retransmission. This process continues until either
the client completes the service or her valuation vc has been
reached.

The auction protocol additionally employs the following
notation:

– rc: a service request from client c ∈ C .
– BF: the set of all service requests already in the buffer

queue. |BF| ≤ L .
– DIF: a function mapping each service request to the level

of difficulty of the puzzle solution it contains. For a puzzle
solution X in rc, if the initial m bits of h(Ns, Nc, X) are
zeros, then DIF(rc) = m. For notational simplicity, we
overload the function and denote DIF(X) = m.

– CD: the target puzzle difficulty for the client’s request.
– INIT : the client’s initial target puzzle difficulty.
– INCR: the value by which the client increments the target

puzzle difficulty for its request.
– vc: maximum number of hash operations client c will

perform for this service request.

1. Client sends service request:
(a) Client c sets CD = 0 and X = 0; and generates a

new client parameter Nc.
(b) Client c does a bruteforce search of the puzzle solu-

tion with the difficulty level CD in the interval X ∈
[0, vc]:
While (DIF(X) < CD and X < vc) X = X + 1
If (X = vc) exit and report failure.

Client c constructs a request rc containing Nc and X ,
and sends the request to S.

2. Server allocates resources:
(a) Server S periodically checks the buffer queue to clear

the requests from BF that have completed service.
(b) On receipt of the client request rc, server S checks

the client parameter Nc in rc:

If (any r ′ ∈ BF contains Nc) drop rc and goto 2(c).

Now server S checks BF:

If (|BF| < L)

insert rc into BF
else if (∀r ′ ∈ BF : DIF(r ′) ≥ DIF(rc))

drop rc and goto 2(c)
else locate a request r ′ ∈ BF with the lowest puzzle

difficulty among all requests in BF, drop r ′,
insert rc and goto 2(c).

(c) Server S sends to client ĉ a notification of service
failure which contains the current server nonce Ns ,
where ĉ is the client whose request rĉ has been
dropped (if any) at 2(b).

3. Upon receipt of a failure notification, client retrans-
mits:
Client c extracts the server nonce Ns from the message,
and increases its bid as necessary:

If (CD < INIT )
CD = INIT

else CD = CD+ INCR
Goto Step 1(b).

In the protocol above, Nc and Ns play roles similar, but not
identical, to nonce identifiers as often used in cryptographic
protocols. Ns should change periodically, say every T time
units, to limit the reuse of puzzles (and their solutions). Nc

is constrained merely to not be in use simultaneously by two
different requests. Though the adversary can consecutively
reuse a puzzle solution X for the same Nc for up to T time
units (i.e., before Ns changes), it still needs to generate at
least L puzzle solutions of sufficient difficulty in time T to
flood the server. In practice, enforcing that only simultane-
ous requests bear different values for Nc, as opposed to all
requests, avoids the server needing to store a large list of pre-
viously seen nonce identifiers (which could itself pose a DoS
opportunity).

The puzzle auction protocol above is efficient in the sense
that the client can raise its bid just above the attacker’s bids to
win an auction. In other words, if the client wins the auction,
it wins with the minimum expected computation for the given
adversary.
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4.1.3 Security analysis

Here, we analyze the security of the proposed puzzle auction
mechanism. We consider the following setting: An adversary
with Z zombie computers is trying to attack the server S by
denying the service over a buffer R = 〈L , τ 〉. Here, we con-
sider τ 
 T , where T is the duration of the “server nonce
period” before Ns is changed, and for simplicity we con-
sider one legitimate client, i.e., |C | = 1. Let ξ be the event
that the legitimate client c ∈ C cannot complete the service.
The objective of the adversary is to maximize the probability
Pr{ξ}.

For simplicity, we assume that the client c starts bid-
ding at the beginning of a server nonce period, and con-
sequently that the attackers competing with c must, as well.
Let (b0, b1, . . . , bn) be a sequence of bids. The client first
bids b0. If rejected, it continues to bid b1 and so on. In total,
it retries no more than n + 1 times. In solving a puzzle, we
call a hash operation a hash step. We further assume that each
zombie and the client can perform hash steps at the same rate
s. We call s the step rate.

We assume the hash function is a random function (i.e.,
random oracle [11]). That is, for each input, the hash func-
tion independently and randomly (with uniform distribution)
maps it to an output in the image space. The only restriction
is that the same input always yields the same output. In prac-
tice, a good candidate for random oracle is MD5 with its
output truncated [11]. The random oracle model gives us a
geometric random variable for the steps used to solve a puz-
zle. Specifically, to solve a puzzle with initial m zero bits,
a hash step can be viewed as a Bernoulli experiment with
a probability of 2−m to succeed. Throughout the rest of the
paper, we describe and analyze the puzzle auction mecha-
nism with this model.

Let us first look at the adversary’s bidding strategy. Let
us assume that the adversary has perfect coordination among
zombie computers. Therefore, we can view the attacker as
a “super computer” whose computing power is equal to the
sum of all zombie computers’. That is, the adversary can
perform hash operations at the step rate Zs.

We say a client set a bid to difficulty level m if in solving
a puzzle, the client bids with the first solution it found whose
difficulty level is no less than m. In order for the adversary
to cause this bid to be dropped, the adversary must compute
L bids of difficulty (at least) m; we are interested in how
long it will take the adversary to generate L such bids. Let
χm

i be the random variable describing the number of steps
for computing the i-th bid in all L bids set to difficulty m.
χm

1 , . . . , χm
L are i.i.d. random variables. When L is large, we

can approximate the total steps for computing the L bids:∑L
i=1 χm

i with expectation E[χm
i ]L = 2m L . (During this

time, the legitimate client can compute roughly s′ ≈ 2m L
Z

steps.)
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Fig. 1 Security of the puzzle auction

To support the above approximation, we need to investi-
gate the probability that the adversary takes fewer steps to
compute the L puzzles. This is answered by Proposition 1.

Proposition 1 The probability of solving no less than L puz-
zles with difficulty at least m in 2m−1L steps is no more than
exp(− 1

6 L).

Proposition 1 shows that the attacker’s probability to set L
bids to difficulty m within 2m−1L steps drops exponentially
w.r.t. the length of the buffer queue L . For example, if the
server has L = 1024 buffers, the attacker’s chance to overbid
is less than e−170.

For simplicity, we ignore the adversary’s probability to set
all L bids to m within 2m−1L steps when buffer queue is suffi-
ciently long. On this basis of this approximation assumption,
we estimate the upper bound of the attacker’s probability to
launch a DoS attack with the following theorem.

Theorem 1 Under the Approximation Assumption, for legit-
imate client c with step rate s, service time τ and a bid
sequence (b0, b1, . . . , bn), the probability that the attacker
can successfully prevent the client from completing service is

Pr{ξ}<(1− 2−b0)
2b0−1 L

Z −τ s
n∏

i=1

(1− 2−bi )
(2bi−1−2bi−1−1

)L
Z

(1)

Figure 1 further illustrates that the probability of attack
increases with the number of zombies and decreases with
the buffer size.

4.2 Implementation to TCP protocol stack

In this section, we describe our implementation of the puz-
zle auction mechanism in the TCP protocol stack of the
Linux kernel, specifically version 2.4.17. Our implementa-
tion effectively defends against connection-depletion attacks
on TCP, preserves compatibility with the original protocol
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and introduces only negligible overheads to the server. Our
approach is also interoperable to a degree with clients having
unmodified kernels.

To embed our protocol into the TCP protocol stack, the
first problem we need to solve is how to determine the client
parameter Nc and the server parameter Ns . When establish-
ing a TCP connection, the server decides whether a packet
belongs to an existing connection or half-open connection
according to its source IP address (SIP), destination IP
address (DIP), source port (SP), destination port (DP) and
the initial sequence number (ISN). In other words, the server
does not allow two connections from the same client for the
same ports and the same initial sequence number. Therefore,
we can take these parameters, i.e., SIP, DIP, SP, DP and ISN,
as the client parameter Nc. This treatment prevents clients
from using the same puzzle to make two connections simul-
taneously. Moreover, it also simplifies the process to verify
a puzzle: No extra work is necessary for detecting repeated
client parameters because the existing classifier that filters
incoming packets automatically does the job.

The server nonce Ns is supposed to change after each
nonce period. A straightforward construction is to hash a
server secret with a timer which increases for every nonce
period. This guarantees that the server nonce changes peri-
odically. Moreover, so as to make an adversary’s task more
difficult when it cannot eavesdrop on responses to requests
bearing a spoofed IP address, we add the client’s IP address to
the input of the hash function for generating the server nonce.
Thus, clients with different IP addresses are given different
server nonces. If the adversary sends requests with spoofed
IP addresses and cannot intercept the server responses, it
will not obtain correct server nonces to compute solutions to
puzzles.

To achieve compatibility, we advocate embedding the
puzzle auction protocol into the communication flows of the
original protocol. In practice, this is feasible because there
are numerous covert channels in network protocols. In a TCP
header, several fields can be used to carry the server nonce
and the puzzle solution. During the three-way handshake,
the SYN packet from the client has its acknowledgement
sequence number empty, into which a 32-bit puzzle solution
can be placed. We also take the RST packet as the failure
notification and insert the server nonce Ns into its 32-bit
sequence number field and, if a larger Ns is desired, in the
window size and/or urgent pointer fields (for a total of up to
64 bits).

We roughly describe the TCP puzzle auction as follows:
A client first sends a SYN packet without a puzzle solution to
the server. After receiving the packet, the server first checks
the puzzle difficulty to determine the priority of the request
(i.e., the difficulty of the puzzle solved, which should be
small, since the client did not intentionally solve a puzzle),
and then adds the request to the half-open queue if the buffer

queue is not full. Otherwise, the server drops a request with
the lowest priority (probably the new packet) and sends back
a RST packet with the server nonce generated according to
the client’s IP address. The receiver of the RST packet uses
the server nonce to increase its bid (i.e., compute a puzzle)
and retransmits a new SYN with the puzzle solution. If the
request is declined again, the client further raises its bid and
does a retransmission again. This process continues until the
client either receives the SYN-ACK or runs out the maximal
number of retransmissions preset by the protocol.

A drawback for client puzzles is that the client needs to
install puzzle-solving software. If implemented within the
network protocol stack, this may require modifying every
client’s kernel. Our implementation, however, mitigates this
problem: In the TCP puzzle auction protocol, the server
determines the puzzle difficulty of a packet by computing
h(Ns, SI P, DI P, S P, D P, I SN , X). For a client without
a puzzle-solving kernel, the puzzle solution X is fixed in
each connection effort. However, it is still able to change the
puzzle difficulty with different ISNs. TCP requires that each
new session start with a more or less random ISN for prevent-
ing TCP hijacking [12]. A client can generate a new ISN by
simply starting a new session. Our protocol supports launch-
ing new sessions consecutively by using a RST packet to
immediately reset the client without a puzzle-solving kernel,
thus saving it from doing exponential backoff. By resetting
new sessions to query the server with different ISNs, a client
will finally hit a puzzle difficulty high enough to complete
a connection in most cases. This can be viewed as another
strategy to solve puzzles that is undertaken by clients unaware
of the puzzle mechanism: Instead of performing hash opera-
tions itself, the client treats the server as an oracle to test its
solution. We call this strategy bid and query.3

A problem, however, is that the attackers also can take
this strategy. More seriously, they do not need to wait for
the answer of the query (SYN-ACK or RST) and thus can
continuously generate numerous packets in hopes that many
of them can get into the queue. However, this approach is
limited by the server’s bandwidth. For example, let us look
at a 1 Gbps network. Since the shortest TCP/IP packet is 64
bytes, the maximal packet rate of this network is no more than
1,953,125 packets per second (pps). In the Linux TCP imple-
mentation, the server drops “old” half-open connections (i.e.,

3 Semantically, a RST packet usually indicates to the client that no
server is listening to a port, thus discouraging the client from recon-
necting. To preserve these semantics for a client with a puzzle-solving
kernel, a puzzle auction server can signal a dropped bid in some of the
unused bits of the corresponding RST header. In the absence of this
signal, the client can interpret the RST as meaning there is no server
process listening on that port, as usual. A client without a puzzle-solving
kernel, on the other hand, will attempt a connection for a preset num-
ber of times (without exponential backoff, and so this should proceed
quickly) and stop after a number of tries without success.
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that have timed out after sending the SYN-ACK at least once)
when the queue is full. This may take only 9 s, during which
the adversary can submit 1, 953, 125 × 9 packets. Since in
expectation, only about 1/2m of these will bear puzzles of dif-
ficulty at least m (supposing the adversary is choosing them
randomly), if L > (1, 953, 125 × 9)/2m then the adversary
will probably fail to consume all L buffers with puzzles of dif-
ficulty at least m using this strategy. For example, if L = 1024
then a legitimate client will probably be able to succeed with
a bid of only m = 15, which the legitimate client can generate
in roughly 5 s using repeated queries to the server, assuming
a round trip time (RTT) of 200 microseconds.

That said, if the attackers can generate such a large
throughput, they do not need SYN flooding to attack the
server, because they can already exhaust the server band-
width. This is interesting because it is widely believed that
SYN flooding needs a relatively small number of packets
and thus is very easy to launch. Our TCP puzzle mecha-
nism, however, raises the bar to this kind of threat and makes
it potentially harder to exploit than bandwidth-exhaustion
attacks.

4.3 Experimental evaluation

In this section, we report our experimental study of the puz-
zle auction mechanism in a network environment. Our setup
contains three computers: a client, a server and an attacker.
The client is an obsolete Pentium Pro 199MHz machine with
64MB memory. The server has an Intel PIII/600 with 256MB
memory. Both computers have a 2.4.17 kernel, either a stan-
dard one or a customized one with our puzzle auction mech-
anism. The attacker is strong, having two Intel PIII/1GHz
CPUs and 1GB memory. It is also equipped with Linux kernel
2.4.17. Roughly speaking, the attacker has computing power
ten times the client’s. All these computers are attached to a
100Mbps campus network.

The objectives of this empirical study are: (1) evaluation
of the overhead of the puzzle mechanism, (2) test of the per-
formance of the system under SYN flooding attacks.

We first study the overhead of the puzzle auction mecha-
nism. When a SYN packet is entering the system, the server
first determines its priority. To avoid keeping too much infor-
mation in the kernel, we configure the server to compute the
server nonce for a request on the fly. Therefore, the server
needs to take two hash operations to find out the priority
of a request: one for the nonce and the other for the puzzle
difficulty. The extra costs here are just a little bit above the
two hash operations. In our experiment, we made 1,000 con-
secutive connections each to the server with standard kernel
and our customized kernel. The standard kernel gave us the
average connection time of 250.8 microseconds. The puzzle
auction kernel had an average time of 255.4 microseconds.
This empirical evaluation shows that the extra costs brought

in by the puzzle auction mechanism are almost negligible:
only 4.6 microseconds.

The second experiment is on system performance in the
presence of attackers with different computing power. In
standard Linux, when a server is under a SYN flood attack,
the kernel reduces the number of SYN-ACK retransmissions
to two, so as to drop old requests quickly and make room for
new requests. That is, a half-open connection may be held
about 9 s (3 s for the first timeout and 6 s for the second). In
our experiment, we first set the server’s retransmission num-
ber under attack to 2 and then further reduced it to only one,
which took about 3 s to discard a half-open connection after
the half-open queue became full. We refer to the first server
setting as Setting 2 (i.e., two retransmissions) and the second
as Setting 1. The server has a half-open queue with the buffer
size of 1,024 and mapped puzzle difficulty levels to priority
levels as follows: difficulty levels 0, 1, 2, 3, 4, 5, 6 and 7
to priority level 0; 8, 9, 10 and 11 to 1; 12 and 13 to 2; all
difficulty levels k above 13 to k − 11.

On the attacker, we installed SYN flooding code capable
of generating attack traffic with puzzles of varied difficulty
levels. In the experiment, the attacker launched 5 attacks each
on the server with different retransmission settings. These
attacks set puzzle difficulty to 0, 8, 12, 14, 15. Without solving
puzzles, the attacker started SYN flooding at a packet rate of
7,000 pps. This rate easily brought down a server with the
standard kernel. With the difficulty level of 8, the attacker
was still able to flood the server at the packet rate more than
5,000 pps. However, its capability to generate packets was
greatly impaired when the puzzle difficulty went above 12.

In the experiment, we tested two bidding strategies on the
client: bid and query (BQ) and incremental bidding (IB). The
BQ client had a standard kernel and a small program which
made sequential and consecutive connections to the server.
The IB client had a puzzle-solving kernel which automat-
ically increased bids via retransmissions. Each experiment
lasted until the client completed 500 connections success-
fully. After each successful connection, the client reset the
connection and waited for a period randomly drawn from a
uniform distribution between 0 and 150 milliseconds before
trying again (so that the next attempt would not immediately
reclaim the “opening” that closing the connection created).
The connection time was measured to the point when the
connection succeeds, and was restarted when the following
connection attempt was initiated. The average connection
time was computed by averaging the connection time over
the 500 successful attempts.

Our experiment compared the average connection time
of these two strategies in various attack and retransmission
settings. The results are presented in Fig. 2 bottom, where
the X-axis indicates the difficulty level of the puzzles solved
by the attacker and the Y-axis is the average connection time
for the client. If the attacker did not solve puzzles at all, the
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Fig. 2 Top Overheads of puzzle mechanism. Bottom Average connec-
tion time for BQ and IB w.r.t different retransmission settings in the
server

client completed connections quickly: In either setting, the
average connection time is around 30 milliseconds (ms) for
BQ client and 1.3 ms for IB client. With the attacker’s bids
rising, the connection time was prolonged. For BQ client, the
peak came when the attacker set the puzzle difficulty level
to 8, 66.737 ms in Setting 2 and 40.581 ms in Setting 1.
IB client, however, suffered the maximal delay at difficulty
level 12, 58.308 ms in Setting 2 and 28.738 in Setting 1.
The expected connection time dropped after the peaks, down
to less than 500 microseconds at puzzle difficulty of 15. In
general, the client performed well with the puzzle auction
server. Even in the presence of strong attacker, a successful
connection costs less than 0.1 s on the average.

Although BQ performs comparably to IB, this largely
owes to the short RTT in the experiment. Once the server
sits outside the client’s network, a RTT on the order of mil-
liseconds will raise the connection time. In addition, a BQ
client consumes significantly greater server resources. Thus,
we emphasize that this should be considered at best a tem-

porary approach to enable a client without a puzzle-solving
kernel to participate in puzzle auctions.

5 Router-level DoS defense: congestion puzzles

Puzzle auctions do not suffice when adversaries are capable
of generating a large amount of traffic to deplete a victim’s
bandwidth. In this section, we describe another puzzle
technique which works on the IP level and can therefore
mitigate the threat of bandwidth exhaustion attacks. This
technique, called congestion puzzles (CP), is designed for
Internet routers to control congestion flows without explic-
itly detecting attack traffic.

An assumption we made in our research is that adversaries
cannot eavesdrop on most legitimate clients’ flows. In prac-
tice, monitoring a large fraction of legitimate clients’ flows
is difficult in wide area networks. This assumption allows
us to employ very lightweight authentication schemes using
sequence numbers or authentication “cookies”.

In the follow-up sections, we first survey the CP mecha-
nism, then elaborate on its individual components and finally
evaluate this technique theoretically and empirically.

5.1 Congestion puzzles

The puzzle type we adopt for congestion puzzles is identical
to what is described in Sect. 4.1.2, which requires a server
to periodically update its nonce. We call such a period the
nonce period.

In order to transmit packets on a congested route, a client
should install a puzzle client program. This is an application
program that interacts with the operating system only through
the standard application programming interface (API). This
greatly enhances its ease of deployment: e.g., it could be
automatically installed from trusted web sites. A client would
have incentives to install this program because it increases the
client’s likelihood to get her packets through during network
congestion. In the rest of this paper, we refer to a client with
the puzzle client software installed as a “puzzle client”.

The CP mechanism is mainly implemented in routers. A
puzzle router will trigger the CP mechanism when an out-
bound link experiences sustained severe congestion, which
can be detected by standard methods (e.g., [42]). For instance,
a router may monitor the loss rate on the link: If the loss rate
exceeds a threshold for several seconds, the router activates
the puzzle mechanism.

Once activated, the CP mechanism distributes puzzle para-
meters (such as a server nonce and difficulty level) to clients,
requiring computation flows (puzzle solutions) for traffic
traversing the congested link. The manner in which these
parameters are sent to the appropriate clients is detailed in
Sect. 5.1.1. At a puzzle router’s interface, a puzzle-based rate
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limiter (PRL) controls the rate of the inbound bit flows on the
basis of the computation flows. We describe this mechanism
in Sect. 5.1.2.

During a bandwidth-exhaustion attack, a single router usu-
ally cannot protect its bandwidth alone. Our solution lets
the router push congestion control requests to its upstream
routers, which can help prevent the attack flows from con-
verging to the congested router. This is achieved using a
distributed puzzle mechanism that allows puzzle routers to
generate and distribute puzzles and to validate puzzle solu-
tions in a distributed way. We present this mechanism in
Sect. 5.1.3.

5.1.1 Puzzle distribution

A congested router needs to propagate a congestion notifi-
cation and puzzle parameters to the sources (puzzle clients)
of the responsible traffic. Moreover, it needs to periodically
update its server nonce at these puzzle clients. Here, we
present an algorithm that achieves these goals efficiently.

Our algorithm is based on ICMP messages [46]. ICMP is a
set of control protocols that provide feedback about problems
in Internet communication. An example is PING in which a
client sends an echo request to a server to test whether it is
reachable; upon receiving the echo, the server replies with
the request message. The ICMP header starts with an 8-bit
type field that determines the rest of the header; so far, 41
of the 255 available type values have been used by various
protocols [10]. The PING echo request (ICMP type 8) also
has a 16-bit identifier field and a 16-bit sequence number
field to aid in matching echos and replies.

Our approach defines two new types of ICMP messages, a
probe packet and a puzzle-solution packet, by which a puzzle
client communicates with a congested router. These mes-
sages are constructed similar to PING messages, except that
they are identified through new type values. A puzzle client
uses probe packets to solicit a congestion notification and
initial puzzle parameters from a congested router. A puzzle
client uses a puzzle solution packet to deliver puzzle solu-
tions to the router. A puzzle client further takes advantage of
puzzle solution packets to solicit updated puzzle parameters.
So as to permit seamless transition between puzzle parame-
ter updates, routers permit overlapping nonce periods so that
both old and new puzzle parameters are allowed for use dur-
ing a transition period. We denote this transition period by T .

Upon issuing one of these message types, the puzzle client
generates and includes a random string called an authentica-
tion cookie in the message payload. Using this cookie, any
router receiving the message can include this cookie in any
response to the client, to authenticate itself to the client.4 In

4 Recall that adversaries are assumed to have only limited capability to
eavesdrop and intercept legitimate clients’ packets. Other authentication
mechanisms, once deployed, also can be used in our approach.

addition to an authentication cookie, a probe message con-
tains a payload of blank space, of length equal to that needed
to store puzzle parameters (the difficulty level and server
nonce). A puzzle-solution packet contains puzzle parame-
ters, a puzzle solution and blank space for updating puzzle
parameters. How routers process these messages is described
below.

Monitoring. Each puzzle client monitors network activity
of its local system. Whenever the client system visits an
IP address, the puzzle client sends probe messages to that
address periodically. If there is no congestion, these mes-
sages are silently dropped by either the destination host or
the router directly connected to that host.

Distributing congestion notifications. Once a puzzle
router detects congestion on one of its outbound links, it
generates a server nonce, activates a puzzle-based rate limiter
(Sect. 5.1.2) and admits a constant flow of probe messages
to the congested link from each of its inbound interfaces. For
every probe message received, the router inserts the server
nonce and puzzle difficulty into its payload (in addition to the
authentication cookie), and changes the type of the message
to PING echo request. This message will therefore elicit a
PING reply to the client containing these parameters.

Updating puzzle parameters

– Upon receiving a PING reply, the puzzle client first
checks the reply with the authentication cookie it con-
tains. If correct, the client stops probing and starts send-
ing puzzle solution packets to the IP address it is visiting
(Sect. 5.1.2).

– Upon receiving a puzzle solution packet, the congested
router utilizes the puzzle in a rate limiting algorithm; see
Sec. 5.1.2. If the router has updated its server nonce and/or
requested difficulty level, it places these new values into
the packet payload (along with the authentication cookie),
sets the packet type to PING echo request, and forwards
it. This message will thus elicit a PING reply from the
destination host to inform the client of the new puzzle
parameters.

– If a puzzle client does not receive any PING replies within
a period T , it stops sending puzzle solution packets and
starts sending probe messages.

The cost of puzzle distribution is modest. The extra traf-
fic caused by probe messages takes only a small portion of
bandwidth because a probe packet will typically be much
smaller than the packets in a communication flow. To add or
update puzzle parameters in a packet, a router only needs to
overwrite existing payload fields.
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5.1.2 Puzzle-based rate limiter

During a bandwidth-exhaustion attack, every puzzle client
sending packets through a congested link is supposed to
generate a virtual “computation flow”. The average rate of
this computation flow σc (average number of hash opera-
tions per second) is tied to the rate of the client’s bit flow
σb (bytes per second) through a public control function F :
σb ≤ F(σc, d), where d is the difficulty level of puzzles. F is
an increasing function of σc and a decreasing function of d.
Under the random oracle model, we have the average num-
ber of hash operations for finding a solution is 2d . Therefore,
a simple construction of the control function is as follows:
F(σc, d) = α2−dσc, where α is a parameter called control
ratio measured by bytes per hash operation. The control ratio
describes the relation between bit flow and computation flow.
For example, α = 10, 000 means that to sustain a bit flow of
a rate σb = 10, 000 bytes/second, the client is expected to
perform 2d hash operations/second, equivalent to solving at
least one puzzle no easier than d per second on the average.

A puzzle router uses the control function to limit the rate of
congestion flows (flows heading toward the congested link) at
its network interfaces. This mechanism is called puzzle-based
rate limiting (PRL). Without direct observation of computa-
tion flow, PRL estimates σc as σp2d , where σp is the rate of
puzzle solutions no easier than d. Specifically, PRL imple-
ments a token bucket and a virtual waiting queue at each
network interface. For every inbound puzzle-solution packet
carrying a correct puzzle solution, PRL adds α tokens to the
token bucket at its inbound interface. An inbound packet will
be forwarded toward the congested link by removing num-
ber of tokens equal to the packet size from the token bucket.
When the tokens are depleted, PRL decides on the fate of
the packet according to the virtual waiting queue. If there
is sufficient room for queuing the packet, PRL forwards it.
Otherwise, PRL discards it. We illustrate the mechanism in
Fig. 3.

If a puzzle router needs to forward puzzle-solution packets
to the next hop (Sect. 5.1.3), these packets also need to be
rate limited by the token bucket because they also belong to
the congestion flows, even though the puzzle solutions they

carry are part of computation flows. This prevents adversaries
from using puzzle packets to aggravate the congestion.

The CP mechanism may control the high-bandwidth flows
by tuning puzzle difficulty d. PRL has two thresholds: th2 >

th1. If the loss rate of σl bits/s at the congested link exceeds
th2, PRL raises d until the loss rate drops just below th2 but
above th1. If σl < th1, PRL starts to reduce d. PRL may raise
d quickly to suppress attack flows, while lowering d slowly
and carefully to prevent intermittent attacks. A problem here
is that the puzzle difficulty d only gives a very coarse control
of the congestion flows, suppressing σb exponentially. This
can be complemented by fine-tuning the control rate α to
maximize the bandwidth utilization.

The idea of PRL is to constrain the upper bound of σb with
σc and d. For this purpose, it is not important for a puzzle
router to determine whether a particular puzzle solution is
correct or not, as long as the router can make a good estimate
of σc. Therefore, the router only needs to randomly sample
some of the puzzle-solution packets to estimate the ratio of
wrong solutions. We will elaborate on this in Sect. 5.2.

The basic PRL mechanism does not differentiate between
congestion flows according to their source IPs: As long as
they arrive on the same network interface and are destined
to the same congestion IP (the destination IP or IP prefix to
which a significant fraction of traffic is destined5), they are all
controlled by the same token bucket. This gives adversaries
opportunities to “free ride” on legitimate clients’ puzzle solu-
tions, i.e., if their attack traffic arrives on the same interface
as the legitimate clients’. This problem would be mitigated
with the wide deployment of puzzle routers, since they can
better separate the bit flows from different sources based on
inbound interfaces. However, when only a few routers have
implemented puzzles, free riding could be significant.

Here, we design a simple algorithm to mitigate this prob-
lem, called IP caching. For each interface, a puzzle router
randomly caches a small set of source IPs or IP prefixes
from the incoming puzzle-solution packets. For each IP or IP
prefix cached, PRL employs a separate token bucket (called
IP bucket) to control its bit flow. The rest of the congestion
flows are handled by a main bucket in the same manner as the
basic PRL. PRL updates its IP cache with a least frequently
used (LFU) algorithm: When the cache is full, the IP whose
bucket has the fewest tokens added within some period will
be merged into the main bucket, to make room for another
IP bucket.

5.1.3 Distributed puzzle verifications

During a bandwidth-exhaustion attack, a router usually can-
not protect itself alone. A cooperative solution, which

5 This IP adress or IP prefix can be obtained using an approach proposed
in [42].
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involves upstream routers to help throttle the attack flows,
could offer better defense [32]. At a high level, a congested
puzzle router may pass a congestion notification including
congestion IPs and its puzzle parameters to upstream routers,
requesting that they activate PRL to prevent attack flows from
converging. This, however, may not work well if adversaries
manage to send duplicate puzzle solutions through different
paths to the victim. Since individual routers do not have a
global view, they cannot determine whether a puzzle solu-
tion has already been used on another routing path, and thus
are unable to prevent the attack flows from reaching the con-
gested router. In this section, we present a distributed puzzle
mechanism (DPM) to counter this attack.

Our distributed puzzle mechanism requests individual
puzzle routers on the puzzle distribution paths to generate
their own path nonces and attach them to the congestion
notification during the puzzle distribution phase. On the path
from the congested router to a client, we denote the path
nonce of the i th router (starting from the first router upstream
of the congested router) by Ni . We call the sequence
Ns |N1|N2 · · · |Ni−1|Ni router i receives from its downstream
routers6 (including itself) the nonce sequence.

For two nonce sequences Φ1 and Φ2, we denote by Φ2 ∈
Φ1 if Φ2 is a prefix of Φ1; we also denote the part remain-
ing after deleting the contiguous sequence Φ2 from Φ1 by
Φ1−Φ2. Following we describe the distributed puzzle mech-
anism through the actions taken by puzzle router i .

Upon receiving a congestion notification M on interface I

1. Randomly generate a path nonce Ni , append it to M and
save the nonce sequence Φi = Ns |N1| · · · |Ni and the
congestion IPs.

2. Forward M to the upstream neighbors from which pack-
ets with congestion IPs come.

3. Activate PRL on all inbound interfaces except I to con-
trol the flow with congestion IPs.

Upon receiving a probe packet, process as a normal probe
packet, using Φi as the server nonce.

Upon receiving a puzzle-solution packet with a nonce
sequence Φ = Ns |N1| · · · |Nk |Nc

1. if (Φi �∈ Φ) then drop the packet and return.
2. if (Φ − Φi appeared before) then drop the packet and

return.
3. Validate the puzzle solution (Sect. 5.2.1) and then save

Φ −Φi for checking repeated puzzles.
4. Forward the puzzle-solution packet to the next hop.

For solving puzzles or validating solutions, nonce
sequences are treated as server nonces. Each router i also

6 Recall Ns is the nonce of the congested router.
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Fig. 4 Probabilistic Validation. “A:p” refers to an event A (Yes or No)
that happens with a probability p

takes the sequence of path nonces starting from its upstream
neighbor to the puzzle client (i.e., Φ−Φi ) as the client nonce,
which we call the client nonce sequence.

By using path nonces, DPM gives different responders dif-
ferent puzzles (nonce sequences), thus preventing the adver-
sary from replaying the solutions via different paths.

5.2 Implementation costs

In this section, we show that with a proper management, the
overheads of the CP mechanism (in terms of both computa-
tion and memory) can be easily afforded by a modern router.

5.2.1 Probabilistic validation of puzzle solutions

Essentially, our puzzle-based rate limiting controls the rate of
bit flow σb according to the rate of computation flow σc. This
implies that a puzzle router does not need to know whether a
particular puzzle solution is correct, as long as it can reason-
ably estimate σc. Probabilistic validation (PV) is based on
this idea. Specifically, a puzzle router employs a sampling
probability pc to determine whether to validate an inbound
puzzle-solution packet; if the packet goes without being val-
idated, the router tosses another coin biased to a false prob-
ability pe (see below) to decide whether to add tokens into
the token bucket or not. This process is illustrated in Fig. 4.

The false probability pe represents the ratio of false puzzle
solutions contained in the current computation flow, which
is estimated from puzzle solutions sampled in the recent
past. This raises two research questions, however: (1) how to
choose the sampling probability pc and (2) how to estimate
the false probability pe.

Intuitively, one can use a constant pc, that is, sample every
puzzle-solution packet with the same probability. This treat-
ment, however, does not work well due to the variation in the
arrival rate of these packets that the router must accommo-
date. In particular, an adversary may produce a large volume
of such packets in an effort to depleting a puzzle router’s
CPU resources. Therefore, we employ a dynamic sampling
probability such that when the arrival rate is within a puzzle
router’s processing capability, most puzzle solutions will be
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validated. When the arrival rate grows, the router reduces the
number of samples to protect its CPU resources.

We design a very simple dynamic sampling method. At
time t , a puzzle router first estimates the packet arrival rate
of puzzle-solution packets σ t

a with a typical exponential-
averaging rate estimator [54]. Then, the router compares σ t

a
with a sampling index η, which roughly indicates the average
number of hash (e.g., MD5) computations the router is will-
ing to perform in one second for every interface, to compute
the sample probability at time t as pt

c = min{ η
σ t

a
, 1}. This

sampling probability changes dynamically with the packet
arrival rate of puzzle-solution packets.

A follow-up question is how to estimate the false prob-
ability pe. Since every sample has been chosen with a dif-
ferent probability, a simple averaging over all the validation
results gives a biased estimate of the ratio of false puzzle solu-
tions. Here, we present two simple estimators which works
well with dynamic sampling: weighted averaging (WA) and
exponential averaging (EA).

At time t , WA averages the validation outcomes of the
sampled puzzle solutions, weighted by the inverse of the
sample distribution over all puzzle-solution packets received
before t . In other words, it gives the samples drawn with small
pc heavy weights and these with large pc light weights.7

Specifically, WA works as follows. The router keeps the
total number of puzzle-solution packets received before t : �t

and the sum of all the sampling probabilities before t : Wt =∑
t ′≤t pt ′

c . On validating a puzzle solution at time t , the router
increases the total number of samples: n← n+1 and updates
a value V . If the puzzle solution is correct, V ← (1− 1

n )V ;
otherwise, V ← (1 − 1

n )V + 1
npt

c
. Then the estimate of the

false probability pt
e can be computed as: pt

e = min{Wt V
�t

, 1}.
The router can reset all the parameters whenever the con-
gested router changes the puzzle difficulty.

Sometimes, adversaries may change their strategy during
a DDoS attack. For example, they could honestly solve puz-
zles initially, and then suddenly produce large numbers of
false solutions. In this case, an estimator that can quickly
adapt to the adversary’s behavior is desired. One such esti-
mator that works well in practice is exponential averaging.
EA is as simple as follows: If the router samples a correct
puzzle solution at time t , then pe ← (1 − λ)pe; other-
wise, pe ← (1 − λ)pe + λ, where 0 < λ < 1 is a small
constant. The idea of EA is to bias the false probability
towards the most recent observations. Therefore, it reflects

7 Essentially, WA and dynamic sampling are similar to the importance
sampling in statistics, which concentrates sampling on the important
part of a dataset. The difference is that in a DDoS attack, it is hard to tell
which part of a computation flow is important: Adversaries with perfect
coordination among their zombies can manipulate the flow. Here, the
dynamic sampling just serves for protecting routers from exhausting its
computing resources.

the adversaries’ recent strategy. It does not even need to com-
pensate for the dynamic sampling, given that an appropriate
λ is chosen to give a weight to the new sample. In our exper-
iments, we have observed that EA achieved a slightly better
performance than WA.

Both EA and WA make a good estimate of σc with a very
small number of samples. Our experiments show that during a
bandwidth-exhaustion attack, a router sampling no more than
80 puzzles per second (80 MD5 operations8/second) con-
trolled congestion flows effectively. Such computing loads
would effect a modern router negligibly. For example, a
route-switch processor (RSP) of Cisco 7500 series router [2]
has a MIPS 4600 CPU with a clock speed ranging from 100
to 250 MHz. In his paper on MD5 performance [57], Touch
shows the performance of optimized MD5 on a comparable
CPU MIPS 4400 (with a clock speed 150 Mhz) can achieve
a rate of about 51.2 Mbps. A puzzle-solution packet usually
does not exceed 100 bytes. Therefore, performing 100 MD5
operations per second takes only about 0.16% of the router’s
CPU time.

5.2.2 Minimizing the memory for storing client nonces

In order to prevent adversaries from reusing puzzle solutions,
a puzzle router is expected to keep all client nonce sequences
(except those in invalid puzzle solutions) throughout a nonce
period. This may constitute a considerable memory expense.
In this section, we show how to use a space-efficient data
structure called Bloom filter [14] to compress the required
storage to a size acceptable to a modern router.

A Bloom filter is implemented using a large bit vector
with m bits. The bit vector initialized to zeros. For every new
puzzle-solution packet, the Bloom filter employs k indepen-
dent uniform hash functions to map the client nonce sequence
to k bits in the vector and then sets each of these bits to 1.
Bits can be set multiple times.

A duplicate client nonce sequence can be easily detected
by computing the k bits with k hash functions. If any one of
these bits is zero, the client nonce sequence has not appeared
before within the current nonce period. If all bits have been
set, it is highly likely that the puzzle solution is duplicate. It
is possible that some unused nonce happens to collide with
these stored in the Bloom filter, thereby causing a false pos-
itive. However, the probability of the false positives can be
controlled.

The hash functions implemented in the Bloom filter can
be very light-weight, e.g., much more efficient than MD5,
since no cryptographic strength is required for these hash
functions. Specifically, it does not have to be difficult to find
the preimage given a hash image. Previous research presents

8 MD5 operation here refers to the operation of computing an MD5
hash function with the puzzle parameters as input.
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promising candidates, e.g., the salted CRC-32 [52], which
can perform at link speed.

One prominent property of a Bloom filter is that there
is an explicit tradeoff between the size of the filter and the
probability of false positive. Let n be the maximal number of
nonces a puzzle router plans to store. After the Bloom filter is
full, the probability of a false positive is: P = (1−(1− 1

m )kn)k

≈ (1 − e
−kn

m )k . For example, with m = 16n and k = 8,
the false positive probability is about 0.00058. This gives
legitimate clients 25 hops away a mistaken reject rate less
than 0.015.

Modern routers could afford the memory for implement-
ing a Bloom filter. Snoeren et al. even suggest to use this
method to record the trace of every packet traversing a core
router [52]. Their research further shows that mere software
support is sufficient for slow-to-medium speed routers (up
to OC-12). With proper hardware support, it works for fast
routers (OC-48 and faster) [49]. Our approach only records
the trace of nonces in a nonce period and thus requires smaller
memory in general.

For example, a Cisco 7500 series router has a packet
switching capability of up to 2.2 M packets/second.9 Given
a (m/n) ratio of 16, if all these packets are puzzle solu-
tions, a puzzle router needs 88 MB memory to keep all the
client nonce sequences within a nonce period of 20 seconds.
On the other hand, even the memory on a single RSP can
be extended to 256 MB or more [2]. Actually, this through-
put of puzzle-solution packets is unreasonable because these
packets are used to reserve the bandwidth. Therefore, a puz-
zle router can use some standard rate limiter [42] to limit
the arrival rate of puzzle-solution packets to an appropri-
ate ratio of its switch/forward capability, before the puzzle
flow is processed by PRL. Here we take a ratio of κ

α
, where

0 < κ ≤ α is a constant. With κ = 1 α = 10, 000, the size
of the Bloom filter is reduced to 1.1MB, which can be easily
built into modern routers.

5.3 Evaluation

In this section, we evaluate the performance of congestion
puzzles under bandwidth-exhaustion attacks. Our experiment
is based on NS-2 [1], the most widely used network simula-
tor, and CAIDA’s Skitter map [17], a traceroute map of real
Internet topologies. Due to the limitations of NS-2, we had to
keep the scale of our simulation within thousands of nodes.
However, we also limited the bandwidth of congested link to
only 20Mbps. We believe that a realistic network with higher
bandwidth (e.g., 1Gbps) could withstand larger scale attacks
by using our techniques.

9 The length of the packet is usually set to 1000 bits.

From the skitter map, we randomly selected 1,500 paths.
Each path ends with an end host. We randomly chose 500
hosts as legitimate clients. The number of zombies was set
to 100, 300, 500, 800 and 1,000. Their locations were also
randomly drawn from the end hosts.

On the basis of the 1,500 paths, we constructed a network
with NS-2. A congested link which was the adversaries’ tar-
get connected a web server to the network. The bandwidth
of the congested link was set to 20 Mbps and every other
link to 30 Mbps. Each legitimate client simulated traffic for
browsing web pages with the NS-2 web traffic generator.
Each adversary produced UDP packets at a constant rate of
300 Kbps to target the congested link. The minimum rate of
the attack traffic (with 100 adversaries) was 30 Mbps and the
maximum rate (with 1,000 adversaries) was 300 Mbps.

The congested router has a nonce period of 20 s. Each end
host installed a puzzle-client agent. On receiving conges-
tion notification, each puzzle client started to continuously
solve puzzles of the difficulty level d given by the congested
router. We set the time to perform one MD5 operation to 10
microseconds. Each puzzle client determined the number of
MD5 steps n for finding a puzzle solution according to a geo-
metric random variable with a distribution (1−2−d)n−12−d .
This realistically simulated the puzzle-solving delay. After
solving a puzzle, the puzzle client sent a puzzle-solution
packet to the congested router.

5.3.1 Puzzle difficulty

We first evaluated the performance of congestion puzzles
using different levels of puzzle difficulty. Figure 5 top depicts
the impact of puzzle difficulty (x-axis) on the legitimate
clients’ packet acceptance rate (the number of packets sent
vs. the number of packets received by the web server). Here,
difficulty level 0 represents the case without congestion puz-
zles. We note that the sending rates of both attackers and
legitimate clients are unaffected by the puzzle solving diffi-
culty, as puzzle solving (by puzzle clients) is decoupled from
application traffic, though obviously difficulty impacts this
traffic reaching the target.

Without puzzles, legitimate clients stood little chance to
connect to the web server. The situation improved with
increase of the puzzle difficulty. When there were less than
300 zombies, the peak of the acceptance rate arrived with
d = 18, more than 90%. In the presence of more zombies,
more difficult puzzles were expected for choking the attack
flows. Especially, in the case that the number of zombies
exceeded that of the legitimate clients, we needed d = 20 to
secure an acceptance rate above 85%. Higher difficulty levels
were unnecessary and adversely affected legitimate clients’
packet acceptance rates.

Adversaries’ traffic was substantially controlled with the
increase of puzzle difficulty. This is presented in Fig. 5
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Fig. 5 Impact of puzzle difficulty on the packet acceptance rate: top
Legitimate clients, bottom Adversaries

bottom. This experiment suggests that by tuning puzzle diffi-
culty appropriately, congestion puzzles can effectively con-
tain a bandwidth-exhaustion attack.

5.3.2 Partial deployment

In this experiment, we investigated the performance of con-
gestion puzzles when puzzle routers were only partially
deployed. In these experiments, we randomly chose some
percentage of routers out of the network as legacy (non-
puzzle) routers. However, we fixed the routers close to the
congested router (within five hops) to be puzzle routers;
deployment was “partial” only further away. We believe this
setup will reflect a situation that might occur in practice
were congestion puzzles adopted, in which puzzle routers
are deployed in clusters to defend important stub networks.
Note that these routers are included in the calculation of
the percentage of legacy routers. In this context, we tested
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Fig. 6 Legitimate client acceptance rate for partial distribution: top
without IP caching, bottom with IP caching

congestion puzzles with and without IP caching, which helps
achieve a fine-grained control of the inbound flows when
adversaries attempt to free ride on legitimate clients’ com-
putation flows.

We present the experimental results in Fig. 6, in which the
x-axis represents the percentage of legacy routers out of all
the routers in the network, and the y-axis is the acceptance
rate of legitimate clients’ packets. In the cases that the number
of zombies did not exceed that of legitimate clients, we set
the puzzle difficulty d = 19, otherwise, we set d = 20.

The figure on the top describes the experiment without IP
caching. Legitimate clients’ acceptance rate decreased with
the increase of the percentage of legacy routers. Until the
legacy routers took 50% of the whole network, the accep-
tance rate kept above 60% even with 1,000 zombies. The
mechanism also performed well with a small number of
zombies. For example, with 90% legacy routers and 100
zombies, near 70% acceptance rate was achieved. However, a
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minimal deployment (90% legacy routers) plus a large
number of zombies (1,000) intensified the free riding prob-
lem, thereby reducing the acceptance rate to about
half.

The free-riding problem could be effectively suppressed
with IP caching. In the figure on the bottom, we show the
results of the experiment in which each puzzle router ran-
domly cached 10 IPs/port. This treatment made the mech-
anism perform well even when only a very small fraction
of routers supported puzzles: With 1,000 zombies and 90%
legacy routers, more than 70% of legitimate clients’ pack-
ets were still able to reach the web server in spite of the
bandwidth-exhaustion attack.

5.3.3 Performance of probabilistic validation

In this experiment, we empirically studied the idea of proba-
bilistic validation when zombies generated false puzzle “solu-
tions”.

We considered the adversaries with two strategies. With a
stationary strategy, each zombie decided on whether to gen-
erate a false puzzle solution according to a fixed probability
p drawn uniformly at random. With a dynamic strategy, a
zombie randomly chose two probabilities p1 < p2 and a
switching time 0 < t < 20, and generated false puzzle solu-
tions with p1 before t and then switched to p2.

We evaluated PV with dynamic sampling and either the
weighted averaging (WA) or exponential averaging (EA). To
protect routers from spending computation on a flow con-
taining hardly any correct puzzle solutions, we set a policy
that once a router made more than 300 samples from a puz-
zle solution flow and found its false probability always above
0.95, the router would stop checking the flow and drop all
the packets.

In Fig. 7, we present the experimental results. In the
experiment, we fixed the number of zombies to 1,000 and set
the puzzle difficulty to 20. The x-axis in the figures gives the
sampling index, a rough indication of the maximal
number of MD5 operations each router was willing to per-
form per network interface every second. The top figure
shows the case with stationary adversaries. WA was pretty
sensitive to the sampling index. It performed well after the
index exceeded 20. In contrast, EA behaved in a more sta-
ble fashion, only varying a little (about 5%) while the index
increasing from 5 to 30. Both estimators helped the CP mech-
anism achieve more than 85% acceptance rate with large
index.

Surprisingly, adversaries gained nothing from the dynamic
strategy. Actually, both WA and EA performed better there.
Two factors might have contributed to this result. First, both
estimators (especially EA) might be quite capable of catch-
ing up to the adversaries’ strategy. Second, since we mea-
sured the acceptance rate over the packets transmitted in
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Fig. 7 Legitimate client acceptance rate for probabilistic validation:
top stationary strategy, bottom dynamic strategy

the whole nonce period, the adversaries’ relatively honest
behavior (before switching time t) might help to improve the
final result.

In both experiments, routers made few samples. The max-
imal MD5 rate was lower than 80 per second for the most
heavily-loaded router; the average rate was lower than 10
per second. Such computation load is very affordable for a
modern router.

6 Incentive engineering

Intuitively, it seems that an adversary only needs to obtain
more zombies to defeat puzzles. This, however, comes with
costs. Here, we present a very simple game-theoretic analysis
which shows that the puzzle technique can actually engineer
Internet users’ incentives and make a large-scale attack more
difficult to happen.
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The game of DDoS attack is not just played by the adver-
sary (maybe irrational) and the victim. Between them, there
stand Internet users who are rational, acting on their own
interests. The adversary attempts to steal these users’
resources to attack the victim, while keeping the users’ cost
of unwittingly participating in the attack much lower than the
cost of removing the malware [32]. Previous research shows
that such a strategy, taken by most DDoS tools, minimizes
the motivation that the computer owners have to protect their
computers [32]. This however could be changed with the
introduction of puzzle techniques.

Let ν(σc, d) be a user’s cost of computing puzzles with
rate σc and difficulty level d. We consider the case that the
number of zombies is large enough to launch a DDoS attack
even when individuals act exactly as legitimate clients. In this
case, both the zombie and the client incur the same computing
costs ν(σc, d). Let ν̂ be a constant cost for stopping the attack
(removal of malware) or taking measures to prevent malware
infection. ν̂ could be the expected expense for buying anti-
virus software, or just effort to download and install patches.
Let υ be a legitimate user’s valuation of the service the victim
provides.

The owner of a zombie computer gets no profit from
attacking the victim. Therefore, her objective is to minimize
the cost. If ν(σc, d) < ν̂, she lets the attack continue. Oth-
erwise, her optimal strategy is to cleanse her computer of
the malware. This also applies to those whose systems are
vulnerable to malware exploits and thus easy to acquire by
the adversary. If ν(σc, d) < υ and the DDoS attack stops, a
legitimate client enjoys a profit of u = υ − ν(σc, d) which
positively relates to the profit of the target of the attack (the
victim). Otherwise, the client cannot obtain or afford the ser-
vice and thus neither the client nor the victim profits. This
implies that their common interests is to maximize u. For
simplicity, we treat them as a single player throughout the
following analysis.

We model the interaction between owners of zombies and
potential zombies (the legitimate systems which are weakly
protected and thus vulnerable to malware exploits) and the
victim as a sequential game in which the victim first declares
puzzle parameters which determines ν(σc, d) and then the
owners choose their strategies (attack or stop attack). A ratio-
nal owner will choose to stay out of the attack once the cost of
attack exceeds the cost of stopping it, formally ν(σc, d) ≥ ν̂.
When this happens, the victim’s profit is determined by the
valuation of the service and the cost of solving puzzles which
equals to ν̂, the cost of stopping the attack. Such a profit
remains positive if υ > ν̂. If this condition holds, both vic-
tim and the owners’ rational moves will be locked into a fixed
point: The victim’s optimal strategy is to set ν(σc, d) = ν̂ to
maximize the profit u, and zombies owners’ optimal strategy
is to stop the attack to minimize the loss. These strategies
form a Nash equilibrium for the sequential game in which no

player can be better off by taking another strategy given the
other sticks to its strategy. In practice, a problem for the analy-
sis is that the owners of the zombies might not be aware of the
presence of malware on their systems. This can be solved by
introducing an intrusion detector to monitor the anomalous
usage of CPU resources, which suggests potential malware
activities.

The above analysis indicates that puzzles mitigate the
threat of large-scale DDoS attacks if υ > ν̂, that is, the
legitimate clients’ valuation of service must exceed the costs
for prevention or removal of malware from an infected sys-
tem. We believe this is achievable: For example, customers’
benefits of having maintenance service from Microsoft are
usually much higher than the little inconvenience resulting
from downloading and installing the most up-to-date patches.
By setting puzzle parameters properly, a puzzle mechanism
encourages the owners of zombies to stop contributing to
an attack, which makes it harder for an adversary to sus-
tain a large-scale DDoS attack. Remember that we consider
a very adverse situation where even if individual zombies
behave just like legitimate users, the aggregate of their traf-
fic can still overwhelm the victim. When this happens, most
other countermeasures no longer work10 because zombies’
and legitimate clients’ traffic becomes indistinguishable.

7 Discussion

Bidding information during a puzzle auction is exchanged
through some unused bits in packets’ TCP headers, which
may cause these packets to be processed outside a router’s
fast path. However, this happens only when the server is about
to run out of its half-open connection resources, which is very
unusual in the absence of attacks. Even in this case, only the
SYN packets and RST packets for unsuccessful connection
attempts and the SYN packet for a successful connection11

go through the router’s slow path, because other TCP packets
in an already established connection are kept unchanged in
our approach and thus still go through the fast path. Actually,
the fast path only works on packets which have previously
been sent to the same address, and therefore the first packet of
a connection (the SYN packet) usually has to be switched by
the slow path. This suggests that the impact of our approach
on the normal communication between the client and the
server could be very small.

If a server’s half-open queue is too short, even some com-
mon events such as a background port scan could cause the

10 A Turing test may still work. However, so far it only works for pro-
tecting web servers. Even in this case, it prevents many benign software
agents such as crawlers to collect data for their owners.
11 The packet carries a puzzle solution in its acknowledgement
sequence number field.
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needed bid to increase. However, this has more to do with
the misconfiguration of the server than the weakness of our
approach. Puzzle auctions actually mitigate this problem by
offering legitimate clients a way to connect to the server if
they are willing to pay the computation costs.

The puzzle techniques we propose here work on TCP and
IP layers, and therefore can protect all kinds of services above
them. However, the overheads of these techniques could be
perceived differently in different application protocols. For
example, SSH (port 22) itself involves intensive computa-
tions for encrypting and decrypting data, which could make
the delay caused by puzzle solving less obvious than that in
other protocols such as HTTP.

Puzzle auctions can mitigate the threats of application-
level resource depletion attacks. A prominent example for
such attacks is the attack on computationally-intensive ser-
vices, such as public-key authentication. Previous research
shows that puzzles work effectively against this attack in prin-
ciple [22]. Our approach can be used to set the right level
of puzzle difficulty to defeat the attackers while maintain-
ing reasonably small computation overheads for legitimate
clients.

Puzzle auctions could also contribute to the mitigation of
bandwidth-exhaustion attacks when they are used along with
other techniques. Both capability-based and overlay-based
systems require a client to convince a server (either a capabil-
ity issuer or an overlay node) of its legitimacy so as to acquire
access to a protected communication channel. Although a
CAPTCHA can serve for this purpose to some extent, it is
not general enough for many services not driven by humans.
Our puzzle auction approach can be applied to these systems
to control adversaries’ capability to attack through protected
channels. Indeed, it has been reported that some proposals,
e.g., SIFF [63], have already implemented our technique.

Congestion puzzles mitigate the congestion on a router’s
output link by controlling the traffic flowing toward that link.
This does not affect the servers receiving the packets from
other links of the router. A problem here is that our approach
could be a bit greedy: it always allocates the bandwidth
according to the computation flows clients generate. This
may starve those with limited computation power. A poten-
tial mitigation is to first grant everyone a fair quota, and then
use computation flows to allocate the remaining bandwidth.

Combined with other DoS countermeasures, congestion
puzzles could mitigate bandwidth-exhaustion attacks even
with a very limited deployment. For example, we might use
a CP-protected edge router to help distribute capabilities for
a capability-based system, which prevents adversaries from
capturing a large number of capability tokens. In addition,
our CP mechanism could work together with some network
intrusion detectors (NID) to price the flows carrying attack
signatures with a higher puzzle difficulty level, which limits
the throughputs of these flows. This treatment differs from

other signature-based filtering in that a suspicious flow will
only be “taxed” rather than cut off, which reduces collateral
damage to legitimate clients’ traffic caused by the false posi-
tive of the NID signatures. Another way to make the CP tech-
nique more effective is using referral and reputation mecha-
nisms. A puzzle router could give easier puzzles to the flows
from some reliable sources, for example, a friendly ISP’s
domain, which helps further reduce legitimate clients’ over-
heads. To prevent IP spoofing in this case, a shared secret key
could be issued to these trusted domains to generate puzzle
parameters.

Both of our puzzle mechanisms require clients to install
software. However, such software could be made very light-
weight and easy to deploy. For example, a script will be
enough to serve as a puzzle client in most cases. Although
we implemented TCP puzzle auction to the Linux kernel, a
non-kernel alternative which works as a simple firewall or
proxy on the client is also plausible.

A limitation of our approaches is the use of computation-
based puzzles which have been demonstrated to be less
socialistic—incurring substantial overheads to those with
weak computation power, such as PDAs. However, the gen-
eral architectures of both puzzle auction and congestion puz-
zles could accommodate other types of puzzles, for example,
the memory-bound puzzles which are more fair to clients
with different computation resources.

8 Conclusions and future work

Denial of service attacks pose a grave threat to the current
Internet. This threat seems unlikely to fade away in absence
of an active defense technique which pressures attackers’
resources and raises the costs for delivering attack traffic.
Client puzzles offer such a defense: An adversary cannot
seize the victim’s resources without committing its own
resources first, which therefore limits its attack capability.
In this paper, we describe our research on a multi-layer DoS
defense architecture built upon two key puzzle techniques
working on different network layers: puzzle auctions, which
provide end-to-end protection, and congestion puzzles, which
control attack flows on the IP layer. We elaborated on the
designs of these two approaches, and reported our evalua-
tions of their efficacy and usability. These approaches have
been demonstrated to be effective in mitigating DoS threats
to the IP, TCP and application layers; to be interoperable with
legacy systems; and to support incremental deployment. We
also analyzed the puzzle technique using game theory, shed-
ding light on the potential of employing this technique to
motivate Internet clients to aggressively protect their com-
puting systems, making it more difficult for an adversary to
capture a large number of zombie computers.
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Appendix

A: Selected proofs

Proof for Proposition 1 Our proof requires the following
Hoeffding Bound:

Lemma 1 Hoeffding Bound Let X1, X2, · · · , Xn be a set
of independent, identically distributed random variables in
[0,1], and let X =∑

i Xi . Then: Pr{X− E[X ] ≥ εE[X ]} ≤
exp

(− 1
3ε2 E[X ]).

Under the random oracle model, we can take steps for
solving puzzles as a sequence of i.i.d. Bernoulli random vari-
ables, with probability 2−m for the outcome 1, that is, found
the solution to the puzzle; and probability 1 − 2−m for 0.
Let χ1, χ2, . . . be this random variable sequence. Therefore,
we have that in 2m−1L steps, the total number of puzzles

being solved is χ =∑2m−1 L
i=1 χi . With the linearity of expec-

tation, it is easy to get E[χ ] = L/2. According to Lemma 1,
we conclude: Pr{χ − E[χ ] ≥ E[χ ]} ≤ exp

(− 1
3 E[χ ]) =

exp
(− 1

6 L
)
. ��

Proof for Theorem 1 To prevent the client from completing
the service, the attacker must block all of c’s n + 1 bids.
With the Approximation Assumption, we ignore the proba-
bility that the adversary generates L bids with difficulty level
at least bi within 2bi−1L steps. The total Z zombies allow
the adversary to complete hash steps Z times faster than the
client c. That means, if the client c can set its bid to difficulty
bi within 2bi−1L/Z −τ s steps, the adversary cannot prevent
the client to complete the service. On the other hand, from
the adversary’s viewpoint, this is the necessary condition to
block the client. Let ξi be the event that the adversary suc-
cessfully prevents c from getting the service after the client
bids b0, . . . , bi . We have the client’s probability of failure in

the first bid is: Pr{ξ0} < (1− 2−b0)
2b0−1 L

Z −τ s .
The adversary can continue to block b1 only if the client

cannot generate the bid b1 in the following (2b1−1

L/Z−τ s)− (2b0−1L/Z−τ s)=(2b1−1−2b0−1)L/Z steps.

This gives us: Pr{ξ1} < (1 − 2−b0)
2b0−1 L

Z −τ s

(1− 2−b1)
(2b1−1−2b0−1)L

Z .
Following this line of reasoning, we can obtain the result

of the theorem. ��
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