
Probabilistic Opaque Quorum Systems

Michael G. Merideth1 and Michael K. Reiter2

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 University of North Carolina, Chapel Hill, NC, USA

Abstract. Byzantine-fault-tolerant service protocols like Q/U and FaB
Paxos that optimistically order requests can provide increased efficiency
and fault scalability. However, these protocols require n ≥ 5b + 1 servers
(where b is the maximum number of faults tolerated), owing to their
use of opaque Byzantine quorum systems; this is 2b more servers than
required by some non-optimistic protocols. In this paper, we present a
family of probabilistic opaque Byzantine quorum systems that require
substantially fewer servers. Our analysis is novel in that it assumes
Byzantine clients, anticipating that a faulty client may seek quorums
that maximize the probability of error. Using this as motivation, we
present an optional, novel protocol that allows probabilistic quorum sys-
tems to tolerate Byzantine clients. The protocol requires only one addi-
tional round of interaction between the client and the servers, and this
round may be amortized over multiple operations. We consider actual
error probabilities introduced by the probabilistic approach for concrete
configurations of opaque quorum systems, and prove that the probability
of error vanishes with as few as n > 3.15b servers as n and b grow.

1 Introduction

For distributed systems consisting of a large number of servers, a Byzantine-
fault-tolerant replication algorithm that requires all servers to communicate with
each other for every client request can be prohibitively expensive. Therefore, for
large systems, it is critical that the protocol have good fault scalability [1]—the
property that performance does not (substantially) degrade as the system size
is increased—by avoiding this communication.

Byzantine-fault-tolerant service protocols must assign a total order to requests
to provide replicated state machine semantics [2]. To minimize the amount of
communication between servers, protocols like Q/U [1] and FaB Paxos [3] use
opaque quorum systems [4] to order requests optimistically. That is, servers in-
dependently choose an ordering, without steps that would be required to reach
agreement with other servers; the steps are performed only if servers choose
different orderings. Under the assumption that servers independently typically
choose the same ordering, the optimistic approach can provide better fault scala-
bility in the common case than protocols like BFT [5], which require that servers
perform steps to agree upon an ordering before choosing it [1]. However, opti-
mistic protocols have the disadvantage of requiring at least 5b + 1 servers to

A. Pelc (Ed.): DISC 2007, LNCS 4731, pp. 403–419, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

404 M.G. Merideth and M.K. Reiter

tolerate b server faults, instead of as few as 3b + 1 servers, and so they cannot
tolerate as many faults for a given number of servers.

In this paper, we present probabilistic opaque quorum systems (POQS), a new
type of probabilistic quorum system [6], in order to increase the fraction of faults
that can be tolerated by an optimistic approach from fewer than n/5 to as many
as n/3.15. A POQS provides the same properties as the strict opaque quorum
systems used by, e.g., Q/U and FaB Paxos, but is probabilistic in the sense
that quorums are not guaranteed to overlap in the number of servers required
to ensure safety. However, we prove that this error probability is negligible for
large system sizes (for a given ratio of b to n). Application domains that could
give rise to systems of such scale include sensor networks and edge services.

Byzantine clients are problematic for all probabilistic quorum systems because
the combination of high fault tolerance and low probability of error that can be
achieved is based on the assumption that clients choose quorums uniformly at ran-
dom (and independently of other quorums and the state of the system, e.g., the
values held by each server, and the identities of faulty servers). This can be seen in
our results that show: (i) that probabilistic opaque quorum systems can tolerate
up to n/3.15 faults (compared with less than n/5 faults for strict opaque quorum
systems) assuming that all quorums are selected uniformly at random, but that
the maximum fault tolerance drops to n/4.56 faults if Byzantine clients are al-
lowed to choose quorums according to their own goals; and (ii) that to achieve a
specified error probability for a given degree of fault tolerance, substantially more
servers are required if quorums are not selected uniformly at random.

Therefore, we present a protocol with which we constrain clients to using
pseudo-randomly selected access sets (sets of servers contacted in order to find
quorums, c.f., [7]) of a prescribed size. In the limit, we can set the sizes of
access sets to be the sizes of quorums, thereby dictating that all clients use
pseudo-randomly selected quorums, and providing a mechanism that guarantees,
in practice, the behavior of clients that is assumed by probabilistic quorum
systems. However, as shown in Section 4.3, the notion of restricted access sets
allows us a range of options in trading off the low error probability and high
fault tolerance of completely random quorum selection, for the guaranteed single-
round access provided when there is an available quorum (one in which all servers
respond) in every access set.

Our contributions are as follows:

– We present the first family of probabilistic opaque quorum system construc-
tions. For each construction, we: (i) show that we are able to reduce the
number of servers below the 5b + 1 required by protocols that use strict
opaque quorums, (ii) prove that it works with vanishing error probability
as the system size grows, and (iii) evaluate the characteristics of its error
probability over a variety of specific system sizes and configurations.

– We present the first analysis of a probabilistic quorum system that accounts
for the behavior of Byzantine clients. We anticipate that a faulty client may
choose quorums with the goal of maximizing the error probability, and show
the effects that this may have.

Probabilistic Opaque Quorum Systems 405

– We present an access-restriction protocol that allows probabilistic quorum
systems to tolerate faulty clients with the same degree of fault tolerance as if
all clients were non-faulty. One aspect of the protocol is that servers work to
propagate the values of established writes to each other in the background.
Therefore, we provide analysis, unique to opaque quorum systems, of the
number of servers that must propagate a value for it to be accepted by
another server.

2 Related Work

Strict Opaque Quorum Systems. Opaque Byzantine quorum systems were
introduced by Malkhi and Reiter [4] in two variants: one in which the number
of non-faulty servers in a quorum is at least half of the quorum, and the other
in which the number of non-faulty servers represents a strict majority of the
quorum. The first construction makes it unnecessary for the client to know the
sets of servers of which the system can tolerate failure (hence the term ‘opaque’),
while the second construction additionally makes it possible to create a protocol
that does not use timestamps. The paper also proves that 5b is the lower bound
on the number of servers for the first version; simply changing the inequality to
a strict inequality proves 5b+1 is the lower bound for the second. In this paper,
we are concerned with the second variant.

The constraints on strict opaque quorums have also been described in the
context of consensus and state-machine-replication protocols, e.g., the Q/U [1]
and FaB Paxos [3] protocols, though not explicitly as opaque quorums. Abd-
El-Malek et al. [1] provide generic (not just threshold) opaque quorum system
constraints that they prove sufficient for providing state-machine replication se-
mantics where both writes and reads complete in a single (pipelined) phase when
there is no write–write contention. Martin and Alvisi [3] use an opaque quorum
system of acceptors in FaB Paxos, a two-phase consensus protocol (with a des-
ignated proposer) and three-phase state-machine-replication protocol requiring
at least 5b + 1 servers.

Probabilistic Quorum Systems. Table 1. Minimum servers needed for proba-
bilistic and strict quorum variants

prob. strict presented
Opaque 3.15b + 1 5b + 1 Here
Masking 2.62b + 1 4b + 1 [6]

Dissemination b + 1 3b + 1 [6]

A Probabilistic Quorum System
(PQS), as presented by Malkhi et
al. [6], can provide better avail-
ability and fault tolerance than
provided by strict quorum sys-
tems; Table 1 compares proba-
bilistic quorums with their strict
quorum counterparts.1 Malkhi et
al. provide constructions for dissemination and masking quorums, and prove
properties of load and availability for these constructions. They do not address

1 The 2.62b lower bound for masking quorums is not shown in [6], but can be quickly
derived using our results from Section 4.

406 M.G. Merideth and M.K. Reiter

opaque quorum systems, or the effects of concurrent or Byzantine writers; we
address each of these. In addition, in Section 4, we borrow analysis techniques
from [6], but our analysis is more general in the sense that clients are not all as-
sumed to communicate only with quorums of servers. We also use a McDiarmid
inequality [8] in our technical report [9] for bounding the error probability; this
provides a simpler bounding technique for our purposes than do the Chernoff
bounds used there. The technique that we present in Section 5 for restricting
access to limited numbers of servers should be applicable to the constructions of
Malkhi et al. equally well.

Other Work. Signed Quorum Systems [10] and k-quorums [11,12] also weaken
the requirements of strict quorum systems but use different techniques; our tech-
nical report [9] has a more detailed discussion. There has been work on strict
quorum systems that can tolerate Byzantine clients (e.g., [13,14]) but this is
fundamentally unconcerned with the way in which quorums are chosen because
such choices cannot impact the correctness of strict quorum systems.

3 System Model and Definitions

We assume a system with a set U of servers, |U | = n, and an arbitrary but
bounded number of clients. Clients and servers can fail arbitrarily (i.e., Byzan-
tine [15] faults). We assume that up to b servers can fail, and denote the set of
faulty servers by B, where B ⊆ U . Any number of clients can fail. Failures are
permanent. Clients and servers that do not fail are said to be non-faulty. We
allow that faulty clients and servers may collude, and so we assume that faulty
clients and servers all know the membership of B (although non-faulty clients
and servers do not). We make the standard assumption that nodes are computa-
tionally bound such that they cannot subvert the effectiveness of cryptographic
primitives.

Throughout the paper, we use San Serif font to denote random variables,
uppercase ITALICS for set-valued constants, and lowercase italics for integer-
valued constants.

3.1 Behavior of Clients

We abstractly describe client operations as either writes that alter the state
of the service or reads that do not. Informally, a non-faulty client performs a
write to update the state of the service such that its value (or a later one)
will be observed with high probability by any subsequent operation; a write
thus successfully performed is called “established” (we define established more
precisely below). A non-faulty client performs a read to obtain the value of the
latest established write, where “latest” refers to the value of the most recent
write preceding this read in a linearization [16] of the execution. Therefore, we
define the correct value for the read to return to be the value of this latest
established write; other values are called incorrect. We assume that the read and
write operations by non-faulty clients take the following forms:

Probabilistic Opaque Quorum Systems 407

– Writes: To perform a write, a non-faulty client selects a write access set
Awt ⊆ U of size awt uniformly at random and attempts to inform all servers
in Awt of the write value. Formally, the write is established once all non-
faulty servers in some set Qwt ⊆ Awt of size qwt ≤ awt servers have accepted
this write. (Intuitively, an access set is a set of servers contacted in order to
find a live quorum, c.f., [7].) We refer to qwt as the write quorum size; to any
Qwt ⊆ U of that size as a write quorum; and to Qwt = {Qwt ⊆ U : |Qwt| =
qwt} as the write quorum system.

– Reads: To perform a read, a non-faulty client selects a read access set Ard

of size ard uniformly at random and attempts to contact each server in Ard

to learn the value that the server last accepted. We denote the minimum
number of servers from which a non-faulty client must receive a response
to complete the read successfully by qrd ≤ ard. We refer to qrd as the read
quorum size; to any Qrd ⊆ U of that size as a read quorum; and to Qrd =
{Qrd ⊆ U : |Qrd| = qrd} as the read quorum system.

In a read operation, we refer to each response received from a server in Ard as a
vote for a read value. We assume that votes for two read values that result from
any two distinct write operations are distinguishable from each other, even if
the corresponding write values are the same (this is discussed in Section 5). The
read operation discerns the correct value from these votes in a protocol-specific
way. It is possible in an optimistic protocol such as Q/U [1], for example, that
the (at least qrd) votes may reflect a write operation but not provide enough
evidence to determine whether that write is established. In this case, the reader
may itself establish, or repair, the write value before returning it, to ensure that
a subsequent reader returns that value, as well (which is necessary to achieve
linearizability). In such a protocol, the reader does so by copying its votes for
that value to servers, in order to convince them to accept that write.

For this reason, the correctness requirements for POQS discussed in Section 4
treat not only the number of votes that a non-faulty reader observes for the
correct value, but also the number of votes that a faulty client can gather for
a conflicting value. A conflicting value is a specific type of incorrect value char-
acterized by the property that a non-faulty server would accept either it or the
correct value, but not both. Two values may conflict because, e.g., they both
bear the same timestamp, or are “conditioned on” the same established write in
the sense used in Q/U. We assume that this timestamp or similar information
can be used to distinguish older (stale) values from newer values. Enabling a
faulty client to obtain sufficiently many votes for a conflicting value would, e.g.,
enable it to convince other non-faulty servers to accept the conflicting value via
the repair protocol, a possibility that must be avoided for correctness.

Consequently, an error is said to occur when a non-faulty client fails to return
the correct value or a faulty client obtains sufficiently many votes for a conflicting
value. This definition (or specifically “sufficiently many”) will be made more
precise in Section 4.4. The error probability then refers to the probability of an
error when the client (non-faulty or faulty) reads from a read access set Ard

chosen uniformly at random. While we cannot force a faulty client to choose

408 M.G. Merideth and M.K. Reiter

Ard uniformly at random, in Section 5 we demonstrate an access protocol that
enables a faulty client to assemble votes for a value that can be verified by servers
(and hence, e.g., to perform a repair in Q/U) only if Ard was selected uniformly
at random, which is good enough for our purposes. So, from here forward, we
restrict our attention to read access sets chosen in this way.

3.2 Communication

The communication assumptions we adopt are common to prior works in prob-
abilistic [6] and signed [10] quorum systems: we assume that each non-faulty
client can successfully communicate with each non-faulty server with high prob-
ability, and hence with all non-faulty servers with roughly equal probability. This
assumption is in place to ensure that the network does not significantly bias a
non-faulty client’s interactions with servers either toward faulty servers or to-
ward different non-faulty servers than those with which another non-faulty client
can interact. Put another way, we treat a server that can be reliably reached by
none or only some non-faulty clients as a member of B.

This assumption enables us to refine the read protocol of Section 3.1 in a
straightforward way so that non-faulty clients choose read quorums from an
access set uniformly at random. (More precisely, a faulty server can bias quorum
selection away from quorums containing it by not responding, but this decreases
the error probability, and so we conservatively assume that non-faulty clients
select read quorums at random from their access sets.) However, because a write
is, by definition, established once all of the non-faulty servers in any write quorum
within Awt have accepted it, the write quorum at which a write is established
contains all servers in Awt ∩ B; i.e., only the the non-faulty servers within the
write quorum are selected uniformly at random by a non-faulty client.

The access-restriction protocol of Section 5 requires no communication as-
sumptions beyond those of the probabilistic quorums it supports.

4 Probabilistic Opaque Quorum Systems

In this section, we present a family of probabilistic opaque quorum systems. We
begin by reviewing the properties of strict opaque quorum systems [4]. Define
the following functions (where Qrd and Qwt are as defined in Section 3.1):

correct(Qrd, Qwt) : |(Qrd ∩ Qwt) \ B| (1)
conflicting(Qrd, Qwt) : |(Qrd ∩ B) ∪ (Qrd \ Qwt)| (2)

correct(Qrd, Qwt) returns the number of non-faulty servers in the intersection
of a pair of read and write quorums, while conflicting(Qrd, Qwt) returns the
other servers in the read quorum, all of which may return a conflicting value in
some protocol execution. Let a read operation return a value that receives at
least r votes. Then, the consistency property for strict opaque quorum systems
is as follows:

Probabilistic Opaque Quorum Systems 409

O-Consistency : ∀Qrd ∈ Qrd, ∀Qwt ∈ Qwt :
correct(Qrd, Qwt) ≥ r > conflicting(Qrd, Qwt). (3)

The property states that the number of non-faulty servers in the intersection
of any read quorum and write quorum must represent a majority of the read
quorum. Because of this and the fact that newer values can be distinguished
from older values, the correct value—which, by definition, is established by being
written to all of the non-faulty servers in a write quorum—can be distinguished
from other values, even if some non-faulty servers (and all faulty servers) present
conflicting or stale values. At a high level, O-Consistency guarantees:

P1 No two conflicting writes are both established.
P2 Every read observes sufficiently many votes for the correct value to identify

it as such.
P3 No (non-faulty or faulty) reader obtains votes for a conflicting value sufficient

to repair it successfully.

Given that the stated assumptions of a strict opaque quorum system hold,
the system behaves correctly. In contrast to this, probabilistic opaque quorum
systems (POQS) allow for a (small) possibility of error. Informally, this can be
thought of as relaxing O-Consistency so that a variant of it holds for most—but
not all—quorums. To ensure that the probability of an error happening is small,
POQS are designed so that P1, P2, and P3 hold with high probability.

In the remainder of this section, we model the worst-case behavior of faulty
clients (Section 4.1); derive a constraint (PO-Consistency, Section 4.2) that de-
termines the maximum fraction of faulty servers that can be tolerated (Sec-
tion 4.3) by POQS; and prove that the error probability goes to zero as n (and b)
is increased if this constraint is satisfied (Section 4.4).

4.1 Behavior of Faulty Clients

Because a faulty client can behave arbitrarily, we examine the way that a faulty
client should choose quorums to maximize the chance of error. Throughout this
section, let Awt denote a write access set from which Qwt (a quorum used for
an established write) is selected by a faulty client, let A′

wt be a write access set
used for a conflicting write by a faulty client, and let Ard be a read access set
from which Qrd, a read quorum, is selected by a faulty client. Again, we assume
that Awt, A′

wt, and Ard are selected uniformly at random, an assumption that
can be enforced using the protocol of Section 5.

A faulty client can increase the error probability with a write in one of two
ways: (i) by establishing a write at a write quorum that contains as many faulty
servers as possible, or (ii) by performing the write of a conflicting value in a way
that maximizes the number of non-faulty servers that accept it, i.e., by writing
to all of A′

wt \ Qwt. Since a faulty client may perform both such writes, we
assume that this client has knowledge of Awt and A′

wt simultaneously. However,
it is important to note that a faulty client does not have knowledge of the read

410 M.G. Merideth and M.K. Reiter

Fig. 1. The preference (1st, 2nd, 3rd) a faulty client gives to a server when choosing
(a) Qwt, or (b) Qrd

access set A′
rd used by a non-faulty client—or specifically the non-faulty servers

within it, i.e., A′
rd \ B—and so Qwt is chosen independently of A′

rd \ B.2

Figure 1(a) shows the preferences that a faulty client gives to servers when
choosing Qwt to do both (i) and (ii). Goal (i) requires maximizing |Qwt ∩ B|
to maximize the probability that P1 or P2 is violated; hence, first preference
is given to the servers in Awt ∩ B in a write. Goal (ii) requires minimizing
|(Qwt ∩ A′

wt) \ B| to maximize the probability that P1 or P3 is violated; hence,
the servers in (Awt ∩ A′

wt) \ B are avoided to the extent possible.
A faulty client can increase the probability that P3 is violated by choosing

a read quorum with the most faulty servers and non-faulty servers that share
the same conflicting value. Figure 1(b) shows the preferences that a faulty client
gives to servers to do so. Because a faulty client can collude with the servers in
B, it can obtain replies from all servers in B that are also in Ard, i.e., the servers
in Ard∩B. It can also wait for responses from all of the non-faulty servers in Ard

with the conflicting value, i.e., those in Ard ∩ (A′
wt \ Qwt). Only after receiving

all such responses, and only if these responses number fewer than qrd, must it
choose responses from servers with other values.

4.2 Probabilistic Constraint

In this section, we present PO-Consistency, a constraint akin to O-Consistency
specified in terms of expected values for POQS. As detailed below, let MinCorrect
be a random variable for the minimum number of non-faulty servers that report
the correct value in a randomly chosen read quorum taken by a non-faulty client.
(Recall that an error is caused by MinCorrect being too small only for reads
performed by a non-faulty client.) Also, let MaxConflicting be a random variable
for the maximum number of servers that report a conflicting value in a read
quorum taken from a randomly chosen read access set by a faulty client that seeks
to maximize MaxConflicting. (Recall that an error is caused by MaxConflicting

2 More precisely, with the access protocol in Section 5, A′
rd can be hidden unless, and

until, that read access set is used for repair, at which point it is too late for faulty
clients to choose Qwt so as to induce an error in that read operation.

Probabilistic Opaque Quorum Systems 411

being too large even if the client is faulty.) Then the consistency property for
POQS is:

PO-Consistency : E [MinCorrect] > E [MaxConflicting] . (4)

As shown in Section 4.4, PO-Consistency allows us to choose a threshold, r,
for the number of votes used to determine the result of a read operation, while
ensuring that the error probability vanishes as we increase n (and b).

We now derive expressions for MinCorrect and MaxConflicting. Recall that B is
the set of up to b faulty servers. Let Awt be a randomly chosen write access set,
and let Ard be a randomly chosen read access set. As stated in the system model,
a write to Awt is established once it has been accepted by all of the non-faulty
servers in any Qwt, a write quorum within Awt. Therefore, we conservatively
assume that the number of faulty servers in Qwt is:

MalWrite = |Awt ∩ B|. (5)

Here, Awt is a random variable taking on a write access set chosen uniformly at
random from Awt.

Qwt also contains qwt − MalWrite non-faulty servers, not necessarily chosen
at random, in addition to the MalWrite faulty servers. Let Cwt represent these
non-faulty servers:

Cwt = Qwt \ B, (6)
|Cwt| = qwt − MalWrite, (7)

where Qwt is a random variable taking on the write quorum at which the write is
established, and Cwt is a random variable taking on the set of non-faulty servers
within this write quorum. Then, the number of non-faulty servers that return
the correct value in a read quorum selected by a non-faulty client is,

MinCorrect = |Qrd ∩ Cwt|, (8)

where Qrd is a random variable taking on a read quorum chosen uniformly at
random from Ard, itself chosen uniformly at random from Ard.

A faulty client may select its read quorum, Qrd, to maximize the number of
votes for a single conflicting value in an attempt to invalidate P3. Therefore, as
described in Section 4.1, the client first chooses all faulty servers in Ard. The
number of such servers is,

Malevolent = |Ard ∩ B|. (9)

The faulty client also chooses the non-faulty servers that vote for the con-
flicting value that is most represented in Ard; these servers are a subset of
(Ard \ (Cwt ∪ B)). This conflicting value has an associated write access set A′

wt

chosen uniformly at random from Awt, and no vote from a non-faulty server
not in A′

wt will be counted among those for this conflicting value (because votes
for any two write operations are distinguishable from each other as discussed in

412 M.G. Merideth and M.K. Reiter

Section 3.1). Let A′
wt be a random variable taking on A′

wt. Then, the number of
non-faulty servers in Ard that vote for this conflicting value is,

Conflicting = |Ard ∩ (A′
wt \ (Cwt ∪ B))|. (10)

A faulty client can choose all of these servers for Qrd. Therefore, since the sets of
servers measured by Malevolent and Conflicting are disjoint (the former consists
solely of faulty servers; the latter solely of non-faulty servers), the maximum
number of instances of the same conflicting value that a faulty client will select
for Qrd is,

MaxConflicting = Malevolent + Conflicting. (11)

4.3 Minimum System Sizes

In this section, we consider PO-Consistency under various assumptions concern-
ing the sizes of access sets and quorums in order to derive the maximum fraction
of faults that can be tolerated with decreasing error probability as a function of n
(and b). Our primary result is Theorem 1 which provides an upper bound on b for
which PO-Consistency holds. It is derived using the expectations of MinCorrect
and MaxConflicting (derived in our technical report [9]) that are computed using
the worst-case behavior of faulty clients presented in Section 4.1.

Theorem 1. PO-Consistency holds iff

b <
(ardqwtn − 2ardawtn + a2

wtard + qrdqwtn)n
n2ard − ardawtn + a2

wtard + qrdawtn
.

Table 2. Lower bounds on n for various con-
figurations

n > = n = n − b = n − 2b
3.15b - ard qrd awt qwt -
3.83b ard qrd awt qwt -
4.00b awt ard qrd qwt -
4.08b - ard awt qwt qrd

4.56b ard awt qrd qwt -
4.73b awt ard qwt qrd

5.49b - ard qrd awt qwt

6.07b ard qrd awt qwt

6.19b - ard awt qrd qwt

As shown in Section 4.4, a con-
struction exhibits decreasing error
probability in the limit with in-
creasing n if PO-Consistency holds.
Therefore, the remainder of this
section is concerned with interpret-
ing the inequality in Theorem 1.
Our analysis of this inequality is
given in Table 2 and shows that the
best bounds are provided when: (i)
both types of quorums are as large
as possible (while still ensuring an
available quorum), i.e., qrd = qwt =
n − b; and (ii), given (i), that ac-
cess sets as small as possible. Our
technical report [9] provides a more detailed analysis including an inequality for
systems with no Byzantine clients.

4.4 Bounding the Error Probability

Suppose a read operation always returns a value that receives more than r votes,
where E [MaxConflicting] ≤ r < E [MinCorrect]. Then, the error probability, ε, is

Probabilistic Opaque Quorum Systems 413

ε = Pr(MaxConflicting > r ∨ MinCorrect ≤ r). (12)

Theorem 2 states that if r is chosen so that

E [MinCorrect] − r = θ(n) and
r − E [MaxConflicting] = θ(n) (13)

then ε decreases as a function of n, assuming that the ratio of each of b, ard,
qrd, awt, and qwt to n remains constant. For example, r can be set equal to
(E [MaxConflicting] + E [MinCorrect])/2.

Theorem 2. Let MinCorrect, MaxConflicting, and r be defined as above (so PO-
Consistency holds) and let the ratio of each of b, ard, qrd, awt, and qwt to n be
fixed. Then,

ε = 2/eΩ(n) + 2/eΩ(n).

5 Access-Restriction Protocol

Our analysis in the previous sections assumes that all access sets are chosen uni-
formly at random by all clients—even faulty clients. Therefore, here we present
an access-restriction protocol that is used to enforce this. Recall from Section 3.1
that the need for read access sets to be selected uniformly at random is moti-
vated by repair. As such, protocols that do not involve repair may not require
this access-restriction protocol for read operations.

Our protocol must balance conflicting constraints. First, a client may be forced
to discard a randomly chosen access set—and choose another—because a given
access set (of size less than b servers more than a quorum) might not contain an
available quorum. However, in order to support protocols like Q/U [1] that use
opaque quorum systems for single-round writes, we cannot require additional
rounds of communication for each operation. This precludes, for example, a
protocol in which the servers collectively choose an access set at random and
assign it to the client for every operation. As such, a client must be able to
choose from multiple access sets without involving the servers for each. Yet, a
faulty client should be prevented from discarding access sets in order to choose
the one that has the highest probability of causing an error given the current
system state. In addition, we should ensure that a faulty client does not benefit
from waiting for the system state to change in order to use a previously chosen
access set that becomes more advantageous as a result of the change.

In our protocol, the client obtains one or more random values, each called a
Verifiable Random Value (VRV), with the participation of non-faulty servers.
Each VRV determines a unique, verifiable, ordered sequence of random access
sets that the client can use; the client has no control over the sequence. To deter
a client from discarding earlier access sets in the sequence for potentially more
favorable access sets later in the sequence, the protocol imposes an exponentially
increasing cost (in terms of computation) for the ability to use later access sets.

414 M.G. Merideth and M.K. Reiter

The cost is implemented as a client puzzle [17]. We couple this with a facility for
the propagation of the correct value in the background so that any advantages
for a faulty client in the current system state are reduced if the client chooses
to delay performing the operation while it explores later access sets. Finally, to
deter a client from waiting for the system state to change, we tie the validity
of a VRV (and its sequence of access sets) to the state of the system so that as
execution proceeds, any unused access sets become invalid.

5.1 Obtaining a VRV

In order to get an access set, the client first must obtain a VRV from the servers.
Servers implement a metering policy, in which each server responds to a request
for a VRV only after a delay. The delay varies, such that it increases exponentially
with the rate at which the client has requested VRVs during some recent interval
of time—i.e., a client that has not requested a VRV recently will receive a VRV
with little or no delay, whereas a client that has recently requested many VRVs
will receive a VRV after a (potentially significant) delay. To offload work from
servers to clients (e.g., for scalability), the servers can make it relatively more
expensive (in terms of time) to ask for and receive a new VRV than to compute
a given number of access sets (potentially for multiple operations) from a single
VRV, using the mechanisms described below.

The VRV is characterized by the following properties:

– It can be created only with the consent of non-faulty servers;
– Its validity is tied to the state of the system, in the sense that as the system

state evolves (possibly merely through the passage of time), eventually the
VRV is invalidated;

– While it is valid, any non-faulty server can verify its validity and so will
accept it.

The VRV must be created with the consent of non-faulty servers because other-
wise faulty servers might collude to issue multiple VRVs to a faulty client with
no delay. Therefore, l, the number of servers required for the issuance of a VRV,
must be at least b + 1. However, of the non-faulty servers in the system, only
those among the (at least l−b) used to issue a VRV will impose additional delay
before issuing an additional VRV. Therefore, to minimize the time to get an
additional VRV, a faulty client avoids involving servers that have issued VRVs
recently. This strategy maximizes the number of VRVs to which the non-faulty
server contributing to the fewest VRVs has contributed. Thus, once k VRVs have
been issued, all n − b non-faulty servers have contributed to the issuance of at
least
k(l − b)/(n − b)� of these k. Since all non-faulty servers have contributed
to at least this many VRVs, and the delay is exponential in this number, the
time T (k) required for a client to obtain k VRVs is:

T (k) = Ω

(
exp

⌊
k(l − b)
n − b

⌋)

Probabilistic Opaque Quorum Systems 415

In practice, T (k) for a client decays during periods in which that client does
not request additional VRVs, so that a client that does not request VRVs for a
period can obtain one with small delay.

The validity of the VRV (and its sequence of access sets) is tied to the state
of the system so that as execution proceeds, any unused access sets become
invalid. To implement this, the replication protocol may provide some piece
of data that varies with the state of the system—the Object History Set in
Q/U [1] is an example of this—with which the servers can compute a VRV,
but, in the absence of a suitable value from the protocol, the VRV can include
a timestamp (assuming that the non-faulty servers have roughly synchronized
clocks). The VRV consists of this value together with a digital signature cre-
ated using a (l, n)-threshold signature scheme (e.g., [18]), i.e., so that any set
of l servers can together create the signature, but smaller sets of servers can-
not. The signature scheme must be strongly unforgeable [19], meaning that an
adversary, given a VRV, is not able to find other valid VRVs. This is necessary
because otherwise a faulty client would be able to generate variations of a valid
VRV until finding one from which to select an access set that causes an error
(see below).

5.2 Choosing an Access Set

As motivated above: (i) the VRV determines a sequence of valid access sets; and
(ii) a client puzzle must make it exponentially harder to use later access sets
in the sequence than earlier ones. In addition, it is desirable for our protocol to
satisfy the following requirements:

– Each VRV must determine only a single valid sequence of access sets. This
is to prevent a faulty client from choosing a preferred sequence.

– The puzzle solutions must be easy to verify, so that verification costs do not
limit the scalability of the system in terms of the number of requests.

– There must be a solution to each puzzle. Otherwise a non-faulty client might
be unable to use any access set.

– No server can know the solution to the puzzle beforehand due to the Byzan-
tine fault model. Otherwise, a faulty client could avoid the exponential work
by asking a faulty server for the solution.

In our protocol, the sequence of access sets is determined as follows. Let v be
a VRV, let g be a hash function modeled as a random oracle [20], and let ac-
cess set be a deterministic operation that, given a seed value, selects an access
set of the specified size from the set of all access sets of that size in a uniform
fashion. Let the first seed, s1, be g(v), and the i’th seed, si, be g(si−1). Then the
i’th access set is access set(si). Our technical report [9] contains an example
specification of access set.

In order to use the i ’th access set, the client must solve a puzzle of suitable
difficulty. This puzzle must be non-interactive [21] to avoid additional rounds of
communication. There are many suitable candidate puzzle functions [21].

416 M.G. Merideth and M.K. Reiter

5.3 Server Verification

Upon receiving a write request for the i ’th access set, each non-faulty server
in the chosen access set must verify that it is a member of the access set; for
a repair request it must verify that the relevant votes are from servers in the
access set of the read operation that gave rise to the repair. In addition, in either
case, before accepting the value, each server must verify that the VRV is valid,
that the access set corresponds to the i ’th access set of the sequence, and that
the client has provided a valid solution to a puzzle of the appropriate difficulty
level to use the i ’th access set.

While the client can obtain additional access sets from the VRV, each access set
used is treated as a different operation by servers as stated in Section 3.1; e.g., a
write operation using one access set, and then using another access set, is treated
as two different writes,3 so that a faulty client cannot “accumulate” more than
awt servers for its operation through the use of multiple write access sets.

5.4 Background Propagation

As described above, servers work to propagate the values of established writes to
each other in the background. Our main contribution in this area is our analysis
of the threshold number of servers that must propagate a value for it to be ac-
cepted by another server. While related Byzantine diffusion protocols (e.g., [22])
use the number b+1, we require a larger number because opaque quorum systems
allow that some non-faulty servers may accept conflicting values. We assume an
appropriate propagation algorithm (e.g., a variant of an epidemic algorithm [23]
such as [22]). At a high level, a non-faulty server has two responsibilities. First,
having accepted a write value and returned a response to the client, it periodi-
cally informs other servers that it has accepted the value. Second, if it has not
yet accepted a value upon learning that a threshold number, p, of servers have
accepted the value, it accepts the value. Faulty servers are all assumed to have
access to any conflicting value directly without propagation, so we assume no
additional constraints on their behavior.

Lemma 1. Let n < 2qwt − 2b and p = n − qwt + b + 1. Then an established
value will be accepted and propagated by at least p non-faulty servers, and no
conflicting value can be propagated by p servers (faulty or non-faulty).

For example, if qwt = n − b and n > 4b we set p = 2b + 1. Since the established
value will be accepted by at least p non-faulty servers, it will propagate. No
conflicting value will propagate.

If the conditions of Lemma 1 do not hold, we must allow for some probability
of error during propagation. We set p so that it is between the expectations
of the minimum number of non-faulty servers that accept an established write
(PCorrect), and the maximum number of servers that propagate a conflicting
value (PConflicting).
3 Typically, a Byzantine-fault-tolerant write protocol must already be resilient to par-

tial writes, which is how these writes using different access sets might appear to the
service.

Probabilistic Opaque Quorum Systems 417

Lemma 2. PO-Consistency ⇒ E [PCorrect] > E [PConflicting].

Lemma 2 shows that we can set p as described for any system in which PO-
Consistency holds.

6 Evaluation

In this section, we analyze error probabilities for concrete system sizes. In addi-
tion to validating our results from Section 4, this shows that an access restriction
protocol like that of Section 5 can provide significant advantages in terms of
worst-case error probabilities.

101

102

103

104

105

10-410-310-2

m
in

 n

error probability

n=3.25b+1
n=3.93b+1
n=4.10b+1
n=4.66b+1
n=5.00b+1

101

102

103

104

105

10-410-310-2

m
in

 n

error probability

n=4.66b+1
n=5.00b+1

(a) restricted reads and writes (b) unrestricted
(ard = qrd, awt = qwt) (ard = n, awt = n)

Fig. 2. Number of servers required to achieve given calculated worst-case error proba-
bility

Figure 2 plots the total number of nodes required to achieve a given calcu-
lated error probability for two configurations that tolerate faulty clients where
qwt = qrd = n− b: the restricted configuration (ard = qrd, awt = qwt) and the un-
restricted configuration (ard = n, awt = n). Since the unrestricted configuration
(Figure 2(b)) does not require the access-restriction protocol of Section 5, yet
yields better maximum ratios of b to n than the other configurations listed in
Table 2 in which qwt = awt − b or qrd = ard − b from Section 4.3, we do not eval-
uate the error probabilities for those configurations here. In all cases, the error
probabilities are worst-case in that they reflect the situation in which all b nodes
are in fact faulty. For each configuration, we provide plots for different ratios of
n to b, ranging from the maximum b for a given configuration, to n = 5b+1, as a
comparison with strict opaque quorum systems. Our technical report [9] provides
details of our calculations, as well as calculations for additional configurations.

In the figure, we see that to decrease the worst-case error probability, we can
either keep the same function of b in terms of n while increasing n, or hold n fixed
while decreasing the number of faults the system can tolerate. In addition, we see
that configurations that tolerate a larger b also provide better error probabilities

418 M.G. Merideth and M.K. Reiter

for a given b. Overall, we find that our constructions can tolerate significantly
more than b = n/5 faulty servers, while providing error probabilities in the range
of 10−2 to 10−4 for systems with fewer than 50 servers to hundreds of servers.
Coupled with the dissemination of correct values between servers (off the critical
path), as described in Section 5.4, the error probability decreases between writes.

7 Conclusion

First, have presented probabilistic opaque quorum systems (POQS), a new type
of opaque quorum system that we have shown can tolerate up to n/3.15 Byzan-
tine servers (compared with n/5 Byzantine servers for strict opaque quorum sys-
tems) with high probability, while preserving the properties that make opaque
quorums useful for optimistic Byzantine-fault-tolerant service protocols. Second,
we have presented an optional, novel access-restriction protocol for POQS that
provides the ability for servers to constrain clients so that they use randomly
selected access sets for operations. With POQS, we expect to create probabilistic
optimistic Byzantine fault-tolerant service protocols that tolerate substantially
more faults than current optimistic protocols. While strict opaque quorums sys-
tems may be more appropriate for smaller systems that require no chance of
error, a POQS can provide increased fault tolerance for a given number of nodes,
with a worst-case error probability that is bounded and that decreases as the
system scales.

Acknowledgments. This work was partially supported by NSF grant CCF-
0424422.

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-
scalable Byzantine fault-tolerant services. In: Symposium on Operating Systems
Principles (October 2005)

2. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

3. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Depend-
able and Secure Computing 3(3), 202–215 (2006)

4. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4),
203–213 (1998)

5. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems 20(4), 398–461 (2002)

6. Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems.
Information and Computation 170(2), 184–206 (2001)

7. Bazzi, R.A.: Access cost for asynchronous Byzantine quorum systems. Distributed
Computing 14(1), 41–48 (2001)

8. McDiarmid, C.: Concentration for independent permutations. Combinatorics,
Probability and Computing 11(2), 163–178 (2002)

9. Merideth, M.G., Reiter, M.K.: Probabilistic opaque quorum systems. Technical
Report CMU-CS-07-117, CMU School of Computer Science (March 2007)

Probabilistic Opaque Quorum Systems 419

10. Yu, H.: Signed quorum systems. Distributed Computing 18(4), 307–323 (2006)
11. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: On the availability of non-strict quorum sys-

tems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 48–62. Springer,
Heidelberg (2005)

12. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Byzantine and multi-writer k-quorums. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 443–458. Springer, Heidelberg
(2006)

13. Liskov, B., Rodrigues, R.: Tolerating Byzantine faulty clients in a quorum system.
In: International Conference on Distributed Computing Systems (2006)

14. Cachin, C., Tessaro, S.: Optimal resilience for erasure-coded Byzantine distributed
storage. In: International Conference on Dependable Systems and Networks (2006)

15. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

16. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems 12(3), 463–492
(1990)

17. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: Network and Distributed Systems Security Sym-
posium, pp. 151–165 (1999)

18. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. Journal of Cryptology 15(2), 75–96 (2002)

19. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

20. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Conference on Computer and Communications Security, pp.
62–73 (1993)

21. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: Com-
munications and Multimedia Security, pp. 258–272 (1999)

22. Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: On propa-
gating updates in a Byzantine environment. Theoretical Computer Science 299(1–
3), 289–306 (2003)

23. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Principles of Distributed Computing, pp. 1–12 (August 1987)

	Probabilistic Opaque Quorum Systems
	Introduction
	Related Work
	System Model and Definitions
	Behavior of Clients
	Communication

	Probabilistic Opaque Quorum Systems
	Behavior of Faulty Clients
	Probabilistic Constraint
	Minimum System Sizes
	Bounding the Error Probability

	Access-Restriction Protocol
	Obtaining a VRV
	Choosing an Access Set
	Server Verification
	Background Propagation

	Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

